platform/surface: aggregator: Use list_move_tail instead of list_del/list_add_tail...
[platform/kernel/linux-starfive.git] / drivers / platform / surface / aggregator / ssh_packet_layer.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * SSH packet transport layer.
4  *
5  * Copyright (C) 2019-2021 Maximilian Luz <luzmaximilian@gmail.com>
6  */
7
8 #include <asm/unaligned.h>
9 #include <linux/atomic.h>
10 #include <linux/error-injection.h>
11 #include <linux/jiffies.h>
12 #include <linux/kfifo.h>
13 #include <linux/kref.h>
14 #include <linux/kthread.h>
15 #include <linux/ktime.h>
16 #include <linux/limits.h>
17 #include <linux/list.h>
18 #include <linux/lockdep.h>
19 #include <linux/serdev.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/workqueue.h>
23
24 #include <linux/surface_aggregator/serial_hub.h>
25
26 #include "ssh_msgb.h"
27 #include "ssh_packet_layer.h"
28 #include "ssh_parser.h"
29
30 #include "trace.h"
31
32 /*
33  * To simplify reasoning about the code below, we define a few concepts. The
34  * system below is similar to a state-machine for packets, however, there are
35  * too many states to explicitly write them down. To (somewhat) manage the
36  * states and packets we rely on flags, reference counting, and some simple
37  * concepts. State transitions are triggered by actions.
38  *
39  * >> Actions <<
40  *
41  * - submit
42  * - transmission start (process next item in queue)
43  * - transmission finished (guaranteed to never be parallel to transmission
44  *   start)
45  * - ACK received
46  * - NAK received (this is equivalent to issuing re-submit for all pending
47  *   packets)
48  * - timeout (this is equivalent to re-issuing a submit or canceling)
49  * - cancel (non-pending and pending)
50  *
51  * >> Data Structures, Packet Ownership, General Overview <<
52  *
53  * The code below employs two main data structures: The packet queue,
54  * containing all packets scheduled for transmission, and the set of pending
55  * packets, containing all packets awaiting an ACK.
56  *
57  * Shared ownership of a packet is controlled via reference counting. Inside
58  * the transport system are a total of five packet owners:
59  *
60  * - the packet queue,
61  * - the pending set,
62  * - the transmitter thread,
63  * - the receiver thread (via ACKing), and
64  * - the timeout work item.
65  *
66  * Normal operation is as follows: The initial reference of the packet is
67  * obtained by submitting the packet and queuing it. The receiver thread takes
68  * packets from the queue. By doing this, it does not increment the refcount
69  * but takes over the reference (removing it from the queue). If the packet is
70  * sequenced (i.e. needs to be ACKed by the client), the transmitter thread
71  * sets-up the timeout and adds the packet to the pending set before starting
72  * to transmit it. As the timeout is handled by a reaper task, no additional
73  * reference for it is needed. After the transmit is done, the reference held
74  * by the transmitter thread is dropped. If the packet is unsequenced (i.e.
75  * does not need an ACK), the packet is completed by the transmitter thread
76  * before dropping that reference.
77  *
78  * On receival of an ACK, the receiver thread removes and obtains the
79  * reference to the packet from the pending set. The receiver thread will then
80  * complete the packet and drop its reference.
81  *
82  * On receival of a NAK, the receiver thread re-submits all currently pending
83  * packets.
84  *
85  * Packet timeouts are detected by the timeout reaper. This is a task,
86  * scheduled depending on the earliest packet timeout expiration date,
87  * checking all currently pending packets if their timeout has expired. If the
88  * timeout of a packet has expired, it is re-submitted and the number of tries
89  * of this packet is incremented. If this number reaches its limit, the packet
90  * will be completed with a failure.
91  *
92  * On transmission failure (such as repeated packet timeouts), the completion
93  * callback is immediately run by on thread on which the error was detected.
94  *
95  * To ensure that a packet eventually leaves the system it is marked as
96  * "locked" directly before it is going to be completed or when it is
97  * canceled. Marking a packet as "locked" has the effect that passing and
98  * creating new references of the packet is disallowed. This means that the
99  * packet cannot be added to the queue, the pending set, and the timeout, or
100  * be picked up by the transmitter thread or receiver thread. To remove a
101  * packet from the system it has to be marked as locked and subsequently all
102  * references from the data structures (queue, pending) have to be removed.
103  * References held by threads will eventually be dropped automatically as
104  * their execution progresses.
105  *
106  * Note that the packet completion callback is, in case of success and for a
107  * sequenced packet, guaranteed to run on the receiver thread, thus providing
108  * a way to reliably identify responses to the packet. The packet completion
109  * callback is only run once and it does not indicate that the packet has
110  * fully left the system (for this, one should rely on the release method,
111  * triggered when the reference count of the packet reaches zero). In case of
112  * re-submission (and with somewhat unlikely timing), it may be possible that
113  * the packet is being re-transmitted while the completion callback runs.
114  * Completion will occur both on success and internal error, as well as when
115  * the packet is canceled.
116  *
117  * >> Flags <<
118  *
119  * Flags are used to indicate the state and progression of a packet. Some flags
120  * have stricter guarantees than other:
121  *
122  * - locked
123  *   Indicates if the packet is locked. If the packet is locked, passing and/or
124  *   creating additional references to the packet is forbidden. The packet thus
125  *   may not be queued, dequeued, or removed or added to the pending set. Note
126  *   that the packet state flags may still change (e.g. it may be marked as
127  *   ACKed, transmitted, ...).
128  *
129  * - completed
130  *   Indicates if the packet completion callback has been executed or is about
131  *   to be executed. This flag is used to ensure that the packet completion
132  *   callback is only run once.
133  *
134  * - queued
135  *   Indicates if a packet is present in the submission queue or not. This flag
136  *   must only be modified with the queue lock held, and must be coherent to the
137  *   presence of the packet in the queue.
138  *
139  * - pending
140  *   Indicates if a packet is present in the set of pending packets or not.
141  *   This flag must only be modified with the pending lock held, and must be
142  *   coherent to the presence of the packet in the pending set.
143  *
144  * - transmitting
145  *   Indicates if the packet is currently transmitting. In case of
146  *   re-transmissions, it is only safe to wait on the "transmitted" completion
147  *   after this flag has been set. The completion will be set both in success
148  *   and error case.
149  *
150  * - transmitted
151  *   Indicates if the packet has been transmitted. This flag is not cleared by
152  *   the system, thus it indicates the first transmission only.
153  *
154  * - acked
155  *   Indicates if the packet has been acknowledged by the client. There are no
156  *   other guarantees given. For example, the packet may still be canceled
157  *   and/or the completion may be triggered an error even though this bit is
158  *   set. Rely on the status provided to the completion callback instead.
159  *
160  * - canceled
161  *   Indicates if the packet has been canceled from the outside. There are no
162  *   other guarantees given. Specifically, the packet may be completed by
163  *   another part of the system before the cancellation attempts to complete it.
164  *
165  * >> General Notes <<
166  *
167  * - To avoid deadlocks, if both queue and pending locks are required, the
168  *   pending lock must be acquired before the queue lock.
169  *
170  * - The packet priority must be accessed only while holding the queue lock.
171  *
172  * - The packet timestamp must be accessed only while holding the pending
173  *   lock.
174  */
175
176 /*
177  * SSH_PTL_MAX_PACKET_TRIES - Maximum transmission attempts for packet.
178  *
179  * Maximum number of transmission attempts per sequenced packet in case of
180  * time-outs. Must be smaller than 16. If the packet times out after this
181  * amount of tries, the packet will be completed with %-ETIMEDOUT as status
182  * code.
183  */
184 #define SSH_PTL_MAX_PACKET_TRIES                3
185
186 /*
187  * SSH_PTL_TX_TIMEOUT - Packet transmission timeout.
188  *
189  * Timeout in jiffies for packet transmission via the underlying serial
190  * device. If transmitting the packet takes longer than this timeout, the
191  * packet will be completed with -ETIMEDOUT. It will not be re-submitted.
192  */
193 #define SSH_PTL_TX_TIMEOUT                      HZ
194
195 /*
196  * SSH_PTL_PACKET_TIMEOUT - Packet response timeout.
197  *
198  * Timeout as ktime_t delta for ACKs. If we have not received an ACK in this
199  * time-frame after starting transmission, the packet will be re-submitted.
200  */
201 #define SSH_PTL_PACKET_TIMEOUT                  ms_to_ktime(1000)
202
203 /*
204  * SSH_PTL_PACKET_TIMEOUT_RESOLUTION - Packet timeout granularity.
205  *
206  * Time-resolution for timeouts. Should be larger than one jiffy to avoid
207  * direct re-scheduling of reaper work_struct.
208  */
209 #define SSH_PTL_PACKET_TIMEOUT_RESOLUTION       ms_to_ktime(max(2000 / HZ, 50))
210
211 /*
212  * SSH_PTL_MAX_PENDING - Maximum number of pending packets.
213  *
214  * Maximum number of sequenced packets concurrently waiting for an ACK.
215  * Packets marked as blocking will not be transmitted while this limit is
216  * reached.
217  */
218 #define SSH_PTL_MAX_PENDING                     1
219
220 /*
221  * SSH_PTL_RX_BUF_LEN - Evaluation-buffer size in bytes.
222  */
223 #define SSH_PTL_RX_BUF_LEN                      4096
224
225 /*
226  * SSH_PTL_RX_FIFO_LEN - Fifo input-buffer size in bytes.
227  */
228 #define SSH_PTL_RX_FIFO_LEN                     4096
229
230 #ifdef CONFIG_SURFACE_AGGREGATOR_ERROR_INJECTION
231
232 /**
233  * ssh_ptl_should_drop_ack_packet() - Error injection hook to drop ACK packets.
234  *
235  * Useful to test detection and handling of automated re-transmits by the EC.
236  * Specifically of packets that the EC considers not-ACKed but the driver
237  * already considers ACKed (due to dropped ACK). In this case, the EC
238  * re-transmits the packet-to-be-ACKed and the driver should detect it as
239  * duplicate/already handled. Note that the driver should still send an ACK
240  * for the re-transmitted packet.
241  */
242 static noinline bool ssh_ptl_should_drop_ack_packet(void)
243 {
244         return false;
245 }
246 ALLOW_ERROR_INJECTION(ssh_ptl_should_drop_ack_packet, TRUE);
247
248 /**
249  * ssh_ptl_should_drop_nak_packet() - Error injection hook to drop NAK packets.
250  *
251  * Useful to test/force automated (timeout-based) re-transmit by the EC.
252  * Specifically, packets that have not reached the driver completely/with valid
253  * checksums. Only useful in combination with receival of (injected) bad data.
254  */
255 static noinline bool ssh_ptl_should_drop_nak_packet(void)
256 {
257         return false;
258 }
259 ALLOW_ERROR_INJECTION(ssh_ptl_should_drop_nak_packet, TRUE);
260
261 /**
262  * ssh_ptl_should_drop_dsq_packet() - Error injection hook to drop sequenced
263  * data packet.
264  *
265  * Useful to test re-transmit timeout of the driver. If the data packet has not
266  * been ACKed after a certain time, the driver should re-transmit the packet up
267  * to limited number of times defined in SSH_PTL_MAX_PACKET_TRIES.
268  */
269 static noinline bool ssh_ptl_should_drop_dsq_packet(void)
270 {
271         return false;
272 }
273 ALLOW_ERROR_INJECTION(ssh_ptl_should_drop_dsq_packet, TRUE);
274
275 /**
276  * ssh_ptl_should_fail_write() - Error injection hook to make
277  * serdev_device_write() fail.
278  *
279  * Hook to simulate errors in serdev_device_write when transmitting packets.
280  */
281 static noinline int ssh_ptl_should_fail_write(void)
282 {
283         return 0;
284 }
285 ALLOW_ERROR_INJECTION(ssh_ptl_should_fail_write, ERRNO);
286
287 /**
288  * ssh_ptl_should_corrupt_tx_data() - Error injection hook to simulate invalid
289  * data being sent to the EC.
290  *
291  * Hook to simulate corrupt/invalid data being sent from host (driver) to EC.
292  * Causes the packet data to be actively corrupted by overwriting it with
293  * pre-defined values, such that it becomes invalid, causing the EC to respond
294  * with a NAK packet. Useful to test handling of NAK packets received by the
295  * driver.
296  */
297 static noinline bool ssh_ptl_should_corrupt_tx_data(void)
298 {
299         return false;
300 }
301 ALLOW_ERROR_INJECTION(ssh_ptl_should_corrupt_tx_data, TRUE);
302
303 /**
304  * ssh_ptl_should_corrupt_rx_syn() - Error injection hook to simulate invalid
305  * data being sent by the EC.
306  *
307  * Hook to simulate invalid SYN bytes, i.e. an invalid start of messages and
308  * test handling thereof in the driver.
309  */
310 static noinline bool ssh_ptl_should_corrupt_rx_syn(void)
311 {
312         return false;
313 }
314 ALLOW_ERROR_INJECTION(ssh_ptl_should_corrupt_rx_syn, TRUE);
315
316 /**
317  * ssh_ptl_should_corrupt_rx_data() - Error injection hook to simulate invalid
318  * data being sent by the EC.
319  *
320  * Hook to simulate invalid data/checksum of the message frame and test handling
321  * thereof in the driver.
322  */
323 static noinline bool ssh_ptl_should_corrupt_rx_data(void)
324 {
325         return false;
326 }
327 ALLOW_ERROR_INJECTION(ssh_ptl_should_corrupt_rx_data, TRUE);
328
329 static bool __ssh_ptl_should_drop_ack_packet(struct ssh_packet *packet)
330 {
331         if (likely(!ssh_ptl_should_drop_ack_packet()))
332                 return false;
333
334         trace_ssam_ei_tx_drop_ack_packet(packet);
335         ptl_info(packet->ptl, "packet error injection: dropping ACK packet %p\n",
336                  packet);
337
338         return true;
339 }
340
341 static bool __ssh_ptl_should_drop_nak_packet(struct ssh_packet *packet)
342 {
343         if (likely(!ssh_ptl_should_drop_nak_packet()))
344                 return false;
345
346         trace_ssam_ei_tx_drop_nak_packet(packet);
347         ptl_info(packet->ptl, "packet error injection: dropping NAK packet %p\n",
348                  packet);
349
350         return true;
351 }
352
353 static bool __ssh_ptl_should_drop_dsq_packet(struct ssh_packet *packet)
354 {
355         if (likely(!ssh_ptl_should_drop_dsq_packet()))
356                 return false;
357
358         trace_ssam_ei_tx_drop_dsq_packet(packet);
359         ptl_info(packet->ptl,
360                  "packet error injection: dropping sequenced data packet %p\n",
361                  packet);
362
363         return true;
364 }
365
366 static bool ssh_ptl_should_drop_packet(struct ssh_packet *packet)
367 {
368         /* Ignore packets that don't carry any data (i.e. flush). */
369         if (!packet->data.ptr || !packet->data.len)
370                 return false;
371
372         switch (packet->data.ptr[SSH_MSGOFFSET_FRAME(type)]) {
373         case SSH_FRAME_TYPE_ACK:
374                 return __ssh_ptl_should_drop_ack_packet(packet);
375
376         case SSH_FRAME_TYPE_NAK:
377                 return __ssh_ptl_should_drop_nak_packet(packet);
378
379         case SSH_FRAME_TYPE_DATA_SEQ:
380                 return __ssh_ptl_should_drop_dsq_packet(packet);
381
382         default:
383                 return false;
384         }
385 }
386
387 static int ssh_ptl_write_buf(struct ssh_ptl *ptl, struct ssh_packet *packet,
388                              const unsigned char *buf, size_t count)
389 {
390         int status;
391
392         status = ssh_ptl_should_fail_write();
393         if (unlikely(status)) {
394                 trace_ssam_ei_tx_fail_write(packet, status);
395                 ptl_info(packet->ptl,
396                          "packet error injection: simulating transmit error %d, packet %p\n",
397                          status, packet);
398
399                 return status;
400         }
401
402         return serdev_device_write_buf(ptl->serdev, buf, count);
403 }
404
405 static void ssh_ptl_tx_inject_invalid_data(struct ssh_packet *packet)
406 {
407         /* Ignore packets that don't carry any data (i.e. flush). */
408         if (!packet->data.ptr || !packet->data.len)
409                 return;
410
411         /* Only allow sequenced data packets to be modified. */
412         if (packet->data.ptr[SSH_MSGOFFSET_FRAME(type)] != SSH_FRAME_TYPE_DATA_SEQ)
413                 return;
414
415         if (likely(!ssh_ptl_should_corrupt_tx_data()))
416                 return;
417
418         trace_ssam_ei_tx_corrupt_data(packet);
419         ptl_info(packet->ptl,
420                  "packet error injection: simulating invalid transmit data on packet %p\n",
421                  packet);
422
423         /*
424          * NB: The value 0xb3 has been chosen more or less randomly so that it
425          * doesn't have any (major) overlap with the SYN bytes (aa 55) and is
426          * non-trivial (i.e. non-zero, non-0xff).
427          */
428         memset(packet->data.ptr, 0xb3, packet->data.len);
429 }
430
431 static void ssh_ptl_rx_inject_invalid_syn(struct ssh_ptl *ptl,
432                                           struct ssam_span *data)
433 {
434         struct ssam_span frame;
435
436         /* Check if there actually is something to corrupt. */
437         if (!sshp_find_syn(data, &frame))
438                 return;
439
440         if (likely(!ssh_ptl_should_corrupt_rx_syn()))
441                 return;
442
443         trace_ssam_ei_rx_corrupt_syn(data->len);
444
445         data->ptr[1] = 0xb3;    /* Set second byte of SYN to "random" value. */
446 }
447
448 static void ssh_ptl_rx_inject_invalid_data(struct ssh_ptl *ptl,
449                                            struct ssam_span *frame)
450 {
451         size_t payload_len, message_len;
452         struct ssh_frame *sshf;
453
454         /* Ignore incomplete messages, will get handled once it's complete. */
455         if (frame->len < SSH_MESSAGE_LENGTH(0))
456                 return;
457
458         /* Ignore incomplete messages, part 2. */
459         payload_len = get_unaligned_le16(&frame->ptr[SSH_MSGOFFSET_FRAME(len)]);
460         message_len = SSH_MESSAGE_LENGTH(payload_len);
461         if (frame->len < message_len)
462                 return;
463
464         if (likely(!ssh_ptl_should_corrupt_rx_data()))
465                 return;
466
467         sshf = (struct ssh_frame *)&frame->ptr[SSH_MSGOFFSET_FRAME(type)];
468         trace_ssam_ei_rx_corrupt_data(sshf);
469
470         /*
471          * Flip bits in first byte of payload checksum. This is basically
472          * equivalent to a payload/frame data error without us having to worry
473          * about (the, arguably pretty small, probability of) accidental
474          * checksum collisions.
475          */
476         frame->ptr[frame->len - 2] = ~frame->ptr[frame->len - 2];
477 }
478
479 #else /* CONFIG_SURFACE_AGGREGATOR_ERROR_INJECTION */
480
481 static inline bool ssh_ptl_should_drop_packet(struct ssh_packet *packet)
482 {
483         return false;
484 }
485
486 static inline int ssh_ptl_write_buf(struct ssh_ptl *ptl,
487                                     struct ssh_packet *packet,
488                                     const unsigned char *buf,
489                                     size_t count)
490 {
491         return serdev_device_write_buf(ptl->serdev, buf, count);
492 }
493
494 static inline void ssh_ptl_tx_inject_invalid_data(struct ssh_packet *packet)
495 {
496 }
497
498 static inline void ssh_ptl_rx_inject_invalid_syn(struct ssh_ptl *ptl,
499                                                  struct ssam_span *data)
500 {
501 }
502
503 static inline void ssh_ptl_rx_inject_invalid_data(struct ssh_ptl *ptl,
504                                                   struct ssam_span *frame)
505 {
506 }
507
508 #endif /* CONFIG_SURFACE_AGGREGATOR_ERROR_INJECTION */
509
510 static void __ssh_ptl_packet_release(struct kref *kref)
511 {
512         struct ssh_packet *p = container_of(kref, struct ssh_packet, refcnt);
513
514         trace_ssam_packet_release(p);
515
516         ptl_dbg_cond(p->ptl, "ptl: releasing packet %p\n", p);
517         p->ops->release(p);
518 }
519
520 /**
521  * ssh_packet_get() - Increment reference count of packet.
522  * @packet: The packet to increment the reference count of.
523  *
524  * Increments the reference count of the given packet. See ssh_packet_put()
525  * for the counter-part of this function.
526  *
527  * Return: Returns the packet provided as input.
528  */
529 struct ssh_packet *ssh_packet_get(struct ssh_packet *packet)
530 {
531         if (packet)
532                 kref_get(&packet->refcnt);
533         return packet;
534 }
535 EXPORT_SYMBOL_GPL(ssh_packet_get);
536
537 /**
538  * ssh_packet_put() - Decrement reference count of packet.
539  * @packet: The packet to decrement the reference count of.
540  *
541  * If the reference count reaches zero, the ``release`` callback specified in
542  * the packet's &struct ssh_packet_ops, i.e. ``packet->ops->release``, will be
543  * called.
544  *
545  * See ssh_packet_get() for the counter-part of this function.
546  */
547 void ssh_packet_put(struct ssh_packet *packet)
548 {
549         if (packet)
550                 kref_put(&packet->refcnt, __ssh_ptl_packet_release);
551 }
552 EXPORT_SYMBOL_GPL(ssh_packet_put);
553
554 static u8 ssh_packet_get_seq(struct ssh_packet *packet)
555 {
556         return packet->data.ptr[SSH_MSGOFFSET_FRAME(seq)];
557 }
558
559 /**
560  * ssh_packet_init() - Initialize SSH packet.
561  * @packet:   The packet to initialize.
562  * @type:     Type-flags of the packet.
563  * @priority: Priority of the packet. See SSH_PACKET_PRIORITY() for details.
564  * @ops:      Packet operations.
565  *
566  * Initializes the given SSH packet. Sets the transmission buffer pointer to
567  * %NULL and the transmission buffer length to zero. For data-type packets,
568  * this buffer has to be set separately via ssh_packet_set_data() before
569  * submission, and must contain a valid SSH message, i.e. frame with optional
570  * payload of any type.
571  */
572 void ssh_packet_init(struct ssh_packet *packet, unsigned long type,
573                      u8 priority, const struct ssh_packet_ops *ops)
574 {
575         kref_init(&packet->refcnt);
576
577         packet->ptl = NULL;
578         INIT_LIST_HEAD(&packet->queue_node);
579         INIT_LIST_HEAD(&packet->pending_node);
580
581         packet->state = type & SSH_PACKET_FLAGS_TY_MASK;
582         packet->priority = priority;
583         packet->timestamp = KTIME_MAX;
584
585         packet->data.ptr = NULL;
586         packet->data.len = 0;
587
588         packet->ops = ops;
589 }
590
591 static struct kmem_cache *ssh_ctrl_packet_cache;
592
593 /**
594  * ssh_ctrl_packet_cache_init() - Initialize the control packet cache.
595  */
596 int ssh_ctrl_packet_cache_init(void)
597 {
598         const unsigned int size = sizeof(struct ssh_packet) + SSH_MSG_LEN_CTRL;
599         const unsigned int align = __alignof__(struct ssh_packet);
600         struct kmem_cache *cache;
601
602         cache = kmem_cache_create("ssam_ctrl_packet", size, align, 0, NULL);
603         if (!cache)
604                 return -ENOMEM;
605
606         ssh_ctrl_packet_cache = cache;
607         return 0;
608 }
609
610 /**
611  * ssh_ctrl_packet_cache_destroy() - Deinitialize the control packet cache.
612  */
613 void ssh_ctrl_packet_cache_destroy(void)
614 {
615         kmem_cache_destroy(ssh_ctrl_packet_cache);
616         ssh_ctrl_packet_cache = NULL;
617 }
618
619 /**
620  * ssh_ctrl_packet_alloc() - Allocate packet from control packet cache.
621  * @packet: Where the pointer to the newly allocated packet should be stored.
622  * @buffer: The buffer corresponding to this packet.
623  * @flags:  Flags used for allocation.
624  *
625  * Allocates a packet and corresponding transport buffer from the control
626  * packet cache. Sets the packet's buffer reference to the allocated buffer.
627  * The packet must be freed via ssh_ctrl_packet_free(), which will also free
628  * the corresponding buffer. The corresponding buffer must not be freed
629  * separately. Intended to be used with %ssh_ptl_ctrl_packet_ops as packet
630  * operations.
631  *
632  * Return: Returns zero on success, %-ENOMEM if the allocation failed.
633  */
634 static int ssh_ctrl_packet_alloc(struct ssh_packet **packet,
635                                  struct ssam_span *buffer, gfp_t flags)
636 {
637         *packet = kmem_cache_alloc(ssh_ctrl_packet_cache, flags);
638         if (!*packet)
639                 return -ENOMEM;
640
641         buffer->ptr = (u8 *)(*packet + 1);
642         buffer->len = SSH_MSG_LEN_CTRL;
643
644         trace_ssam_ctrl_packet_alloc(*packet, buffer->len);
645         return 0;
646 }
647
648 /**
649  * ssh_ctrl_packet_free() - Free packet allocated from control packet cache.
650  * @p: The packet to free.
651  */
652 static void ssh_ctrl_packet_free(struct ssh_packet *p)
653 {
654         trace_ssam_ctrl_packet_free(p);
655         kmem_cache_free(ssh_ctrl_packet_cache, p);
656 }
657
658 static const struct ssh_packet_ops ssh_ptl_ctrl_packet_ops = {
659         .complete = NULL,
660         .release = ssh_ctrl_packet_free,
661 };
662
663 static void ssh_ptl_timeout_reaper_mod(struct ssh_ptl *ptl, ktime_t now,
664                                        ktime_t expires)
665 {
666         unsigned long delta = msecs_to_jiffies(ktime_ms_delta(expires, now));
667         ktime_t aexp = ktime_add(expires, SSH_PTL_PACKET_TIMEOUT_RESOLUTION);
668
669         spin_lock(&ptl->rtx_timeout.lock);
670
671         /* Re-adjust / schedule reaper only if it is above resolution delta. */
672         if (ktime_before(aexp, ptl->rtx_timeout.expires)) {
673                 ptl->rtx_timeout.expires = expires;
674                 mod_delayed_work(system_wq, &ptl->rtx_timeout.reaper, delta);
675         }
676
677         spin_unlock(&ptl->rtx_timeout.lock);
678 }
679
680 /* Must be called with queue lock held. */
681 static void ssh_packet_next_try(struct ssh_packet *p)
682 {
683         u8 base = ssh_packet_priority_get_base(p->priority);
684         u8 try = ssh_packet_priority_get_try(p->priority);
685
686         lockdep_assert_held(&p->ptl->queue.lock);
687
688         /*
689          * Ensure that we write the priority in one go via WRITE_ONCE() so we
690          * can access it via READ_ONCE() for tracing. Note that other access
691          * is guarded by the queue lock, so no need to use READ_ONCE() there.
692          */
693         WRITE_ONCE(p->priority, __SSH_PACKET_PRIORITY(base, try + 1));
694 }
695
696 /* Must be called with queue lock held. */
697 static struct list_head *__ssh_ptl_queue_find_entrypoint(struct ssh_packet *p)
698 {
699         struct list_head *head;
700         struct ssh_packet *q;
701
702         lockdep_assert_held(&p->ptl->queue.lock);
703
704         /*
705          * We generally assume that there are less control (ACK/NAK) packets
706          * and re-submitted data packets as there are normal data packets (at
707          * least in situations in which many packets are queued; if there
708          * aren't many packets queued the decision on how to iterate should be
709          * basically irrelevant; the number of control/data packets is more or
710          * less limited via the maximum number of pending packets). Thus, when
711          * inserting a control or re-submitted data packet, (determined by
712          * their priority), we search from front to back. Normal data packets
713          * are, usually queued directly at the tail of the queue, so for those
714          * search from back to front.
715          */
716
717         if (p->priority > SSH_PACKET_PRIORITY(DATA, 0)) {
718                 list_for_each(head, &p->ptl->queue.head) {
719                         q = list_entry(head, struct ssh_packet, queue_node);
720
721                         if (q->priority < p->priority)
722                                 break;
723                 }
724         } else {
725                 list_for_each_prev(head, &p->ptl->queue.head) {
726                         q = list_entry(head, struct ssh_packet, queue_node);
727
728                         if (q->priority >= p->priority) {
729                                 head = head->next;
730                                 break;
731                         }
732                 }
733         }
734
735         return head;
736 }
737
738 /* Must be called with queue lock held. */
739 static int __ssh_ptl_queue_push(struct ssh_packet *packet)
740 {
741         struct ssh_ptl *ptl = packet->ptl;
742         struct list_head *head;
743
744         lockdep_assert_held(&ptl->queue.lock);
745
746         if (test_bit(SSH_PTL_SF_SHUTDOWN_BIT, &ptl->state))
747                 return -ESHUTDOWN;
748
749         /* Avoid further transitions when canceling/completing. */
750         if (test_bit(SSH_PACKET_SF_LOCKED_BIT, &packet->state))
751                 return -EINVAL;
752
753         /* If this packet has already been queued, do not add it. */
754         if (test_and_set_bit(SSH_PACKET_SF_QUEUED_BIT, &packet->state))
755                 return -EALREADY;
756
757         head = __ssh_ptl_queue_find_entrypoint(packet);
758
759         list_add_tail(&ssh_packet_get(packet)->queue_node, head);
760         return 0;
761 }
762
763 static int ssh_ptl_queue_push(struct ssh_packet *packet)
764 {
765         int status;
766
767         spin_lock(&packet->ptl->queue.lock);
768         status = __ssh_ptl_queue_push(packet);
769         spin_unlock(&packet->ptl->queue.lock);
770
771         return status;
772 }
773
774 static void ssh_ptl_queue_remove(struct ssh_packet *packet)
775 {
776         struct ssh_ptl *ptl = packet->ptl;
777
778         spin_lock(&ptl->queue.lock);
779
780         if (!test_and_clear_bit(SSH_PACKET_SF_QUEUED_BIT, &packet->state)) {
781                 spin_unlock(&ptl->queue.lock);
782                 return;
783         }
784
785         list_del(&packet->queue_node);
786
787         spin_unlock(&ptl->queue.lock);
788         ssh_packet_put(packet);
789 }
790
791 static void ssh_ptl_pending_push(struct ssh_packet *p)
792 {
793         struct ssh_ptl *ptl = p->ptl;
794         const ktime_t timestamp = ktime_get_coarse_boottime();
795         const ktime_t timeout = ptl->rtx_timeout.timeout;
796
797         /*
798          * Note: We can get the time for the timestamp before acquiring the
799          * lock as this is the only place we're setting it and this function
800          * is called only from the transmitter thread. Thus it is not possible
801          * to overwrite the timestamp with an outdated value below.
802          */
803
804         spin_lock(&ptl->pending.lock);
805
806         /* If we are canceling/completing this packet, do not add it. */
807         if (test_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state)) {
808                 spin_unlock(&ptl->pending.lock);
809                 return;
810         }
811
812         /*
813          * On re-submission, the packet has already been added the pending
814          * set. We still need to update the timestamp as the packet timeout is
815          * reset for each (re-)submission.
816          */
817         p->timestamp = timestamp;
818
819         /* In case it is already pending (e.g. re-submission), do not add it. */
820         if (!test_and_set_bit(SSH_PACKET_SF_PENDING_BIT, &p->state)) {
821                 atomic_inc(&ptl->pending.count);
822                 list_add_tail(&ssh_packet_get(p)->pending_node, &ptl->pending.head);
823         }
824
825         spin_unlock(&ptl->pending.lock);
826
827         /* Arm/update timeout reaper. */
828         ssh_ptl_timeout_reaper_mod(ptl, timestamp, timestamp + timeout);
829 }
830
831 static void ssh_ptl_pending_remove(struct ssh_packet *packet)
832 {
833         struct ssh_ptl *ptl = packet->ptl;
834
835         spin_lock(&ptl->pending.lock);
836
837         if (!test_and_clear_bit(SSH_PACKET_SF_PENDING_BIT, &packet->state)) {
838                 spin_unlock(&ptl->pending.lock);
839                 return;
840         }
841
842         list_del(&packet->pending_node);
843         atomic_dec(&ptl->pending.count);
844
845         spin_unlock(&ptl->pending.lock);
846
847         ssh_packet_put(packet);
848 }
849
850 /* Warning: Does not check/set "completed" bit. */
851 static void __ssh_ptl_complete(struct ssh_packet *p, int status)
852 {
853         struct ssh_ptl *ptl = READ_ONCE(p->ptl);
854
855         trace_ssam_packet_complete(p, status);
856         ptl_dbg_cond(ptl, "ptl: completing packet %p (status: %d)\n", p, status);
857
858         if (p->ops->complete)
859                 p->ops->complete(p, status);
860 }
861
862 static void ssh_ptl_remove_and_complete(struct ssh_packet *p, int status)
863 {
864         /*
865          * A call to this function should in general be preceded by
866          * set_bit(SSH_PACKET_SF_LOCKED_BIT, &p->flags) to avoid re-adding the
867          * packet to the structures it's going to be removed from.
868          *
869          * The set_bit call does not need explicit memory barriers as the
870          * implicit barrier of the test_and_set_bit() call below ensure that the
871          * flag is visible before we actually attempt to remove the packet.
872          */
873
874         if (test_and_set_bit(SSH_PACKET_SF_COMPLETED_BIT, &p->state))
875                 return;
876
877         ssh_ptl_queue_remove(p);
878         ssh_ptl_pending_remove(p);
879
880         __ssh_ptl_complete(p, status);
881 }
882
883 static bool ssh_ptl_tx_can_process(struct ssh_packet *packet)
884 {
885         struct ssh_ptl *ptl = packet->ptl;
886
887         if (test_bit(SSH_PACKET_TY_FLUSH_BIT, &packet->state))
888                 return !atomic_read(&ptl->pending.count);
889
890         /* We can always process non-blocking packets. */
891         if (!test_bit(SSH_PACKET_TY_BLOCKING_BIT, &packet->state))
892                 return true;
893
894         /* If we are already waiting for this packet, send it again. */
895         if (test_bit(SSH_PACKET_SF_PENDING_BIT, &packet->state))
896                 return true;
897
898         /* Otherwise: Check if we have the capacity to send. */
899         return atomic_read(&ptl->pending.count) < SSH_PTL_MAX_PENDING;
900 }
901
902 static struct ssh_packet *ssh_ptl_tx_pop(struct ssh_ptl *ptl)
903 {
904         struct ssh_packet *packet = ERR_PTR(-ENOENT);
905         struct ssh_packet *p, *n;
906
907         spin_lock(&ptl->queue.lock);
908         list_for_each_entry_safe(p, n, &ptl->queue.head, queue_node) {
909                 /*
910                  * If we are canceling or completing this packet, ignore it.
911                  * It's going to be removed from this queue shortly.
912                  */
913                 if (test_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state))
914                         continue;
915
916                 /*
917                  * Packets should be ordered non-blocking/to-be-resent first.
918                  * If we cannot process this packet, assume that we can't
919                  * process any following packet either and abort.
920                  */
921                 if (!ssh_ptl_tx_can_process(p)) {
922                         packet = ERR_PTR(-EBUSY);
923                         break;
924                 }
925
926                 /*
927                  * We are allowed to change the state now. Remove it from the
928                  * queue and mark it as being transmitted.
929                  */
930
931                 list_del(&p->queue_node);
932
933                 set_bit(SSH_PACKET_SF_TRANSMITTING_BIT, &p->state);
934                 /* Ensure that state never gets zero. */
935                 smp_mb__before_atomic();
936                 clear_bit(SSH_PACKET_SF_QUEUED_BIT, &p->state);
937
938                 /*
939                  * Update number of tries. This directly influences the
940                  * priority in case the packet is re-submitted (e.g. via
941                  * timeout/NAK). Note that all reads and writes to the
942                  * priority after the first submission are guarded by the
943                  * queue lock.
944                  */
945                 ssh_packet_next_try(p);
946
947                 packet = p;
948                 break;
949         }
950         spin_unlock(&ptl->queue.lock);
951
952         return packet;
953 }
954
955 static struct ssh_packet *ssh_ptl_tx_next(struct ssh_ptl *ptl)
956 {
957         struct ssh_packet *p;
958
959         p = ssh_ptl_tx_pop(ptl);
960         if (IS_ERR(p))
961                 return p;
962
963         if (test_bit(SSH_PACKET_TY_SEQUENCED_BIT, &p->state)) {
964                 ptl_dbg(ptl, "ptl: transmitting sequenced packet %p\n", p);
965                 ssh_ptl_pending_push(p);
966         } else {
967                 ptl_dbg(ptl, "ptl: transmitting non-sequenced packet %p\n", p);
968         }
969
970         return p;
971 }
972
973 static void ssh_ptl_tx_compl_success(struct ssh_packet *packet)
974 {
975         struct ssh_ptl *ptl = packet->ptl;
976
977         ptl_dbg(ptl, "ptl: successfully transmitted packet %p\n", packet);
978
979         /* Transition state to "transmitted". */
980         set_bit(SSH_PACKET_SF_TRANSMITTED_BIT, &packet->state);
981         /* Ensure that state never gets zero. */
982         smp_mb__before_atomic();
983         clear_bit(SSH_PACKET_SF_TRANSMITTING_BIT, &packet->state);
984
985         /* If the packet is unsequenced, we're done: Lock and complete. */
986         if (!test_bit(SSH_PACKET_TY_SEQUENCED_BIT, &packet->state)) {
987                 set_bit(SSH_PACKET_SF_LOCKED_BIT, &packet->state);
988                 ssh_ptl_remove_and_complete(packet, 0);
989         }
990
991         /*
992          * Notify that a packet transmission has finished. In general we're only
993          * waiting for one packet (if any), so wake_up_all should be fine.
994          */
995         wake_up_all(&ptl->tx.packet_wq);
996 }
997
998 static void ssh_ptl_tx_compl_error(struct ssh_packet *packet, int status)
999 {
1000         /* Transmission failure: Lock the packet and try to complete it. */
1001         set_bit(SSH_PACKET_SF_LOCKED_BIT, &packet->state);
1002         /* Ensure that state never gets zero. */
1003         smp_mb__before_atomic();
1004         clear_bit(SSH_PACKET_SF_TRANSMITTING_BIT, &packet->state);
1005
1006         ptl_err(packet->ptl, "ptl: transmission error: %d\n", status);
1007         ptl_dbg(packet->ptl, "ptl: failed to transmit packet: %p\n", packet);
1008
1009         ssh_ptl_remove_and_complete(packet, status);
1010
1011         /*
1012          * Notify that a packet transmission has finished. In general we're only
1013          * waiting for one packet (if any), so wake_up_all should be fine.
1014          */
1015         wake_up_all(&packet->ptl->tx.packet_wq);
1016 }
1017
1018 static long ssh_ptl_tx_wait_packet(struct ssh_ptl *ptl)
1019 {
1020         int status;
1021
1022         status = wait_for_completion_interruptible(&ptl->tx.thread_cplt_pkt);
1023         reinit_completion(&ptl->tx.thread_cplt_pkt);
1024
1025         /*
1026          * Ensure completion is cleared before continuing to avoid lost update
1027          * problems.
1028          */
1029         smp_mb__after_atomic();
1030
1031         return status;
1032 }
1033
1034 static long ssh_ptl_tx_wait_transfer(struct ssh_ptl *ptl, long timeout)
1035 {
1036         long status;
1037
1038         status = wait_for_completion_interruptible_timeout(&ptl->tx.thread_cplt_tx,
1039                                                            timeout);
1040         reinit_completion(&ptl->tx.thread_cplt_tx);
1041
1042         /*
1043          * Ensure completion is cleared before continuing to avoid lost update
1044          * problems.
1045          */
1046         smp_mb__after_atomic();
1047
1048         return status;
1049 }
1050
1051 static int ssh_ptl_tx_packet(struct ssh_ptl *ptl, struct ssh_packet *packet)
1052 {
1053         long timeout = SSH_PTL_TX_TIMEOUT;
1054         size_t offset = 0;
1055
1056         /* Note: Flush-packets don't have any data. */
1057         if (unlikely(!packet->data.ptr))
1058                 return 0;
1059
1060         /* Error injection: drop packet to simulate transmission problem. */
1061         if (ssh_ptl_should_drop_packet(packet))
1062                 return 0;
1063
1064         /* Error injection: simulate invalid packet data. */
1065         ssh_ptl_tx_inject_invalid_data(packet);
1066
1067         ptl_dbg(ptl, "tx: sending data (length: %zu)\n", packet->data.len);
1068         print_hex_dump_debug("tx: ", DUMP_PREFIX_OFFSET, 16, 1,
1069                              packet->data.ptr, packet->data.len, false);
1070
1071         do {
1072                 ssize_t status, len;
1073                 u8 *buf;
1074
1075                 buf = packet->data.ptr + offset;
1076                 len = packet->data.len - offset;
1077
1078                 status = ssh_ptl_write_buf(ptl, packet, buf, len);
1079                 if (status < 0)
1080                         return status;
1081
1082                 if (status == len)
1083                         return 0;
1084
1085                 offset += status;
1086
1087                 timeout = ssh_ptl_tx_wait_transfer(ptl, timeout);
1088                 if (kthread_should_stop() || !atomic_read(&ptl->tx.running))
1089                         return -ESHUTDOWN;
1090
1091                 if (timeout < 0)
1092                         return -EINTR;
1093
1094                 if (timeout == 0)
1095                         return -ETIMEDOUT;
1096         } while (true);
1097 }
1098
1099 static int ssh_ptl_tx_threadfn(void *data)
1100 {
1101         struct ssh_ptl *ptl = data;
1102
1103         while (!kthread_should_stop() && atomic_read(&ptl->tx.running)) {
1104                 struct ssh_packet *packet;
1105                 int status;
1106
1107                 /* Try to get the next packet. */
1108                 packet = ssh_ptl_tx_next(ptl);
1109
1110                 /* If no packet can be processed, we are done. */
1111                 if (IS_ERR(packet)) {
1112                         ssh_ptl_tx_wait_packet(ptl);
1113                         continue;
1114                 }
1115
1116                 /* Transfer and complete packet. */
1117                 status = ssh_ptl_tx_packet(ptl, packet);
1118                 if (status)
1119                         ssh_ptl_tx_compl_error(packet, status);
1120                 else
1121                         ssh_ptl_tx_compl_success(packet);
1122
1123                 ssh_packet_put(packet);
1124         }
1125
1126         return 0;
1127 }
1128
1129 /**
1130  * ssh_ptl_tx_wakeup_packet() - Wake up packet transmitter thread for new
1131  * packet.
1132  * @ptl: The packet transport layer.
1133  *
1134  * Wakes up the packet transmitter thread, notifying it that a new packet has
1135  * arrived and is ready for transfer. If the packet transport layer has been
1136  * shut down, calls to this function will be ignored.
1137  */
1138 static void ssh_ptl_tx_wakeup_packet(struct ssh_ptl *ptl)
1139 {
1140         if (test_bit(SSH_PTL_SF_SHUTDOWN_BIT, &ptl->state))
1141                 return;
1142
1143         complete(&ptl->tx.thread_cplt_pkt);
1144 }
1145
1146 /**
1147  * ssh_ptl_tx_start() - Start packet transmitter thread.
1148  * @ptl: The packet transport layer.
1149  *
1150  * Return: Returns zero on success, a negative error code on failure.
1151  */
1152 int ssh_ptl_tx_start(struct ssh_ptl *ptl)
1153 {
1154         atomic_set_release(&ptl->tx.running, 1);
1155
1156         ptl->tx.thread = kthread_run(ssh_ptl_tx_threadfn, ptl, "ssam_serial_hub-tx");
1157         if (IS_ERR(ptl->tx.thread))
1158                 return PTR_ERR(ptl->tx.thread);
1159
1160         return 0;
1161 }
1162
1163 /**
1164  * ssh_ptl_tx_stop() - Stop packet transmitter thread.
1165  * @ptl: The packet transport layer.
1166  *
1167  * Return: Returns zero on success, a negative error code on failure.
1168  */
1169 int ssh_ptl_tx_stop(struct ssh_ptl *ptl)
1170 {
1171         int status = 0;
1172
1173         if (!IS_ERR_OR_NULL(ptl->tx.thread)) {
1174                 /* Tell thread to stop. */
1175                 atomic_set_release(&ptl->tx.running, 0);
1176
1177                 /*
1178                  * Wake up thread in case it is paused. Do not use wakeup
1179                  * helpers as this may be called when the shutdown bit has
1180                  * already been set.
1181                  */
1182                 complete(&ptl->tx.thread_cplt_pkt);
1183                 complete(&ptl->tx.thread_cplt_tx);
1184
1185                 /* Finally, wait for thread to stop. */
1186                 status = kthread_stop(ptl->tx.thread);
1187                 ptl->tx.thread = NULL;
1188         }
1189
1190         return status;
1191 }
1192
1193 static struct ssh_packet *ssh_ptl_ack_pop(struct ssh_ptl *ptl, u8 seq_id)
1194 {
1195         struct ssh_packet *packet = ERR_PTR(-ENOENT);
1196         struct ssh_packet *p, *n;
1197
1198         spin_lock(&ptl->pending.lock);
1199         list_for_each_entry_safe(p, n, &ptl->pending.head, pending_node) {
1200                 /*
1201                  * We generally expect packets to be in order, so first packet
1202                  * to be added to pending is first to be sent, is first to be
1203                  * ACKed.
1204                  */
1205                 if (unlikely(ssh_packet_get_seq(p) != seq_id))
1206                         continue;
1207
1208                 /*
1209                  * In case we receive an ACK while handling a transmission
1210                  * error completion. The packet will be removed shortly.
1211                  */
1212                 if (unlikely(test_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state))) {
1213                         packet = ERR_PTR(-EPERM);
1214                         break;
1215                 }
1216
1217                 /*
1218                  * Mark the packet as ACKed and remove it from pending by
1219                  * removing its node and decrementing the pending counter.
1220                  */
1221                 set_bit(SSH_PACKET_SF_ACKED_BIT, &p->state);
1222                 /* Ensure that state never gets zero. */
1223                 smp_mb__before_atomic();
1224                 clear_bit(SSH_PACKET_SF_PENDING_BIT, &p->state);
1225
1226                 atomic_dec(&ptl->pending.count);
1227                 list_del(&p->pending_node);
1228                 packet = p;
1229
1230                 break;
1231         }
1232         spin_unlock(&ptl->pending.lock);
1233
1234         return packet;
1235 }
1236
1237 static void ssh_ptl_wait_until_transmitted(struct ssh_packet *packet)
1238 {
1239         wait_event(packet->ptl->tx.packet_wq,
1240                    test_bit(SSH_PACKET_SF_TRANSMITTED_BIT, &packet->state) ||
1241                    test_bit(SSH_PACKET_SF_LOCKED_BIT, &packet->state));
1242 }
1243
1244 static void ssh_ptl_acknowledge(struct ssh_ptl *ptl, u8 seq)
1245 {
1246         struct ssh_packet *p;
1247
1248         p = ssh_ptl_ack_pop(ptl, seq);
1249         if (IS_ERR(p)) {
1250                 if (PTR_ERR(p) == -ENOENT) {
1251                         /*
1252                          * The packet has not been found in the set of pending
1253                          * packets.
1254                          */
1255                         ptl_warn(ptl, "ptl: received ACK for non-pending packet\n");
1256                 } else {
1257                         /*
1258                          * The packet is pending, but we are not allowed to take
1259                          * it because it has been locked.
1260                          */
1261                         WARN_ON(PTR_ERR(p) != -EPERM);
1262                 }
1263                 return;
1264         }
1265
1266         ptl_dbg(ptl, "ptl: received ACK for packet %p\n", p);
1267
1268         /*
1269          * It is possible that the packet has been transmitted, but the state
1270          * has not been updated from "transmitting" to "transmitted" yet.
1271          * In that case, we need to wait for this transition to occur in order
1272          * to determine between success or failure.
1273          *
1274          * On transmission failure, the packet will be locked after this call.
1275          * On success, the transmitted bit will be set.
1276          */
1277         ssh_ptl_wait_until_transmitted(p);
1278
1279         /*
1280          * The packet will already be locked in case of a transmission error or
1281          * cancellation. Let the transmitter or cancellation issuer complete the
1282          * packet.
1283          */
1284         if (unlikely(test_and_set_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state))) {
1285                 if (unlikely(!test_bit(SSH_PACKET_SF_TRANSMITTED_BIT, &p->state)))
1286                         ptl_err(ptl, "ptl: received ACK before packet had been fully transmitted\n");
1287
1288                 ssh_packet_put(p);
1289                 return;
1290         }
1291
1292         ssh_ptl_remove_and_complete(p, 0);
1293         ssh_packet_put(p);
1294
1295         if (atomic_read(&ptl->pending.count) < SSH_PTL_MAX_PENDING)
1296                 ssh_ptl_tx_wakeup_packet(ptl);
1297 }
1298
1299 /**
1300  * ssh_ptl_submit() - Submit a packet to the transport layer.
1301  * @ptl: The packet transport layer to submit the packet to.
1302  * @p:   The packet to submit.
1303  *
1304  * Submits a new packet to the transport layer, queuing it to be sent. This
1305  * function should not be used for re-submission.
1306  *
1307  * Return: Returns zero on success, %-EINVAL if a packet field is invalid or
1308  * the packet has been canceled prior to submission, %-EALREADY if the packet
1309  * has already been submitted, or %-ESHUTDOWN if the packet transport layer
1310  * has been shut down.
1311  */
1312 int ssh_ptl_submit(struct ssh_ptl *ptl, struct ssh_packet *p)
1313 {
1314         struct ssh_ptl *ptl_old;
1315         int status;
1316
1317         trace_ssam_packet_submit(p);
1318
1319         /* Validate packet fields. */
1320         if (test_bit(SSH_PACKET_TY_FLUSH_BIT, &p->state)) {
1321                 if (p->data.ptr || test_bit(SSH_PACKET_TY_SEQUENCED_BIT, &p->state))
1322                         return -EINVAL;
1323         } else if (!p->data.ptr) {
1324                 return -EINVAL;
1325         }
1326
1327         /*
1328          * The ptl reference only gets set on or before the first submission.
1329          * After the first submission, it has to be read-only.
1330          *
1331          * Note that ptl may already be set from upper-layer request
1332          * submission, thus we cannot expect it to be NULL.
1333          */
1334         ptl_old = READ_ONCE(p->ptl);
1335         if (!ptl_old)
1336                 WRITE_ONCE(p->ptl, ptl);
1337         else if (WARN_ON(ptl_old != ptl))
1338                 return -EALREADY;       /* Submitted on different PTL. */
1339
1340         status = ssh_ptl_queue_push(p);
1341         if (status)
1342                 return status;
1343
1344         if (!test_bit(SSH_PACKET_TY_BLOCKING_BIT, &p->state) ||
1345             (atomic_read(&ptl->pending.count) < SSH_PTL_MAX_PENDING))
1346                 ssh_ptl_tx_wakeup_packet(ptl);
1347
1348         return 0;
1349 }
1350
1351 /*
1352  * __ssh_ptl_resubmit() - Re-submit a packet to the transport layer.
1353  * @packet: The packet to re-submit.
1354  *
1355  * Re-submits the given packet: Checks if it can be re-submitted and queues it
1356  * if it can, resetting the packet timestamp in the process. Must be called
1357  * with the pending lock held.
1358  *
1359  * Return: Returns %-ECANCELED if the packet has exceeded its number of tries,
1360  * %-EINVAL if the packet has been locked, %-EALREADY if the packet is already
1361  * on the queue, and %-ESHUTDOWN if the transmission layer has been shut down.
1362  */
1363 static int __ssh_ptl_resubmit(struct ssh_packet *packet)
1364 {
1365         int status;
1366         u8 try;
1367
1368         lockdep_assert_held(&packet->ptl->pending.lock);
1369
1370         trace_ssam_packet_resubmit(packet);
1371
1372         spin_lock(&packet->ptl->queue.lock);
1373
1374         /* Check if the packet is out of tries. */
1375         try = ssh_packet_priority_get_try(packet->priority);
1376         if (try >= SSH_PTL_MAX_PACKET_TRIES) {
1377                 spin_unlock(&packet->ptl->queue.lock);
1378                 return -ECANCELED;
1379         }
1380
1381         status = __ssh_ptl_queue_push(packet);
1382         if (status) {
1383                 /*
1384                  * An error here indicates that the packet has either already
1385                  * been queued, been locked, or the transport layer is being
1386                  * shut down. In all cases: Ignore the error.
1387                  */
1388                 spin_unlock(&packet->ptl->queue.lock);
1389                 return status;
1390         }
1391
1392         packet->timestamp = KTIME_MAX;
1393
1394         spin_unlock(&packet->ptl->queue.lock);
1395         return 0;
1396 }
1397
1398 static void ssh_ptl_resubmit_pending(struct ssh_ptl *ptl)
1399 {
1400         struct ssh_packet *p;
1401         bool resub = false;
1402
1403         /*
1404          * Note: We deliberately do not remove/attempt to cancel and complete
1405          * packets that are out of tires in this function. The packet will be
1406          * eventually canceled and completed by the timeout. Removing the packet
1407          * here could lead to overly eager cancellation if the packet has not
1408          * been re-transmitted yet but the tries-counter already updated (i.e
1409          * ssh_ptl_tx_next() removed the packet from the queue and updated the
1410          * counter, but re-transmission for the last try has not actually
1411          * started yet).
1412          */
1413
1414         spin_lock(&ptl->pending.lock);
1415
1416         /* Re-queue all pending packets. */
1417         list_for_each_entry(p, &ptl->pending.head, pending_node) {
1418                 /*
1419                  * Re-submission fails if the packet is out of tries, has been
1420                  * locked, is already queued, or the layer is being shut down.
1421                  * No need to re-schedule tx-thread in those cases.
1422                  */
1423                 if (!__ssh_ptl_resubmit(p))
1424                         resub = true;
1425         }
1426
1427         spin_unlock(&ptl->pending.lock);
1428
1429         if (resub)
1430                 ssh_ptl_tx_wakeup_packet(ptl);
1431 }
1432
1433 /**
1434  * ssh_ptl_cancel() - Cancel a packet.
1435  * @p: The packet to cancel.
1436  *
1437  * Cancels a packet. There are no guarantees on when completion and release
1438  * callbacks will be called. This may occur during execution of this function
1439  * or may occur at any point later.
1440  *
1441  * Note that it is not guaranteed that the packet will actually be canceled if
1442  * the packet is concurrently completed by another process. The only guarantee
1443  * of this function is that the packet will be completed (with success,
1444  * failure, or cancellation) and released from the transport layer in a
1445  * reasonable time-frame.
1446  *
1447  * May be called before the packet has been submitted, in which case any later
1448  * packet submission fails.
1449  */
1450 void ssh_ptl_cancel(struct ssh_packet *p)
1451 {
1452         if (test_and_set_bit(SSH_PACKET_SF_CANCELED_BIT, &p->state))
1453                 return;
1454
1455         trace_ssam_packet_cancel(p);
1456
1457         /*
1458          * Lock packet and commit with memory barrier. If this packet has
1459          * already been locked, it's going to be removed and completed by
1460          * another party, which should have precedence.
1461          */
1462         if (test_and_set_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state))
1463                 return;
1464
1465         /*
1466          * By marking the packet as locked and employing the implicit memory
1467          * barrier of test_and_set_bit, we have guaranteed that, at this point,
1468          * the packet cannot be added to the queue any more.
1469          *
1470          * In case the packet has never been submitted, packet->ptl is NULL. If
1471          * the packet is currently being submitted, packet->ptl may be NULL or
1472          * non-NULL. Due marking the packet as locked above and committing with
1473          * the memory barrier, we have guaranteed that, if packet->ptl is NULL,
1474          * the packet will never be added to the queue. If packet->ptl is
1475          * non-NULL, we don't have any guarantees.
1476          */
1477
1478         if (READ_ONCE(p->ptl)) {
1479                 ssh_ptl_remove_and_complete(p, -ECANCELED);
1480
1481                 if (atomic_read(&p->ptl->pending.count) < SSH_PTL_MAX_PENDING)
1482                         ssh_ptl_tx_wakeup_packet(p->ptl);
1483
1484         } else if (!test_and_set_bit(SSH_PACKET_SF_COMPLETED_BIT, &p->state)) {
1485                 __ssh_ptl_complete(p, -ECANCELED);
1486         }
1487 }
1488
1489 /* Must be called with pending lock held */
1490 static ktime_t ssh_packet_get_expiration(struct ssh_packet *p, ktime_t timeout)
1491 {
1492         lockdep_assert_held(&p->ptl->pending.lock);
1493
1494         if (p->timestamp != KTIME_MAX)
1495                 return ktime_add(p->timestamp, timeout);
1496         else
1497                 return KTIME_MAX;
1498 }
1499
1500 static void ssh_ptl_timeout_reap(struct work_struct *work)
1501 {
1502         struct ssh_ptl *ptl = to_ssh_ptl(work, rtx_timeout.reaper.work);
1503         struct ssh_packet *p, *n;
1504         LIST_HEAD(claimed);
1505         ktime_t now = ktime_get_coarse_boottime();
1506         ktime_t timeout = ptl->rtx_timeout.timeout;
1507         ktime_t next = KTIME_MAX;
1508         bool resub = false;
1509         int status;
1510
1511         trace_ssam_ptl_timeout_reap(atomic_read(&ptl->pending.count));
1512
1513         /*
1514          * Mark reaper as "not pending". This is done before checking any
1515          * packets to avoid lost-update type problems.
1516          */
1517         spin_lock(&ptl->rtx_timeout.lock);
1518         ptl->rtx_timeout.expires = KTIME_MAX;
1519         spin_unlock(&ptl->rtx_timeout.lock);
1520
1521         spin_lock(&ptl->pending.lock);
1522
1523         list_for_each_entry_safe(p, n, &ptl->pending.head, pending_node) {
1524                 ktime_t expires = ssh_packet_get_expiration(p, timeout);
1525
1526                 /*
1527                  * Check if the timeout hasn't expired yet. Find out next
1528                  * expiration date to be handled after this run.
1529                  */
1530                 if (ktime_after(expires, now)) {
1531                         next = ktime_before(expires, next) ? expires : next;
1532                         continue;
1533                 }
1534
1535                 trace_ssam_packet_timeout(p);
1536
1537                 status = __ssh_ptl_resubmit(p);
1538
1539                 /*
1540                  * Re-submission fails if the packet is out of tries, has been
1541                  * locked, is already queued, or the layer is being shut down.
1542                  * No need to re-schedule tx-thread in those cases.
1543                  */
1544                 if (!status)
1545                         resub = true;
1546
1547                 /* Go to next packet if this packet is not out of tries. */
1548                 if (status != -ECANCELED)
1549                         continue;
1550
1551                 /* No more tries left: Cancel the packet. */
1552
1553                 /*
1554                  * If someone else has locked the packet already, don't use it
1555                  * and let the other party complete it.
1556                  */
1557                 if (test_and_set_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state))
1558                         continue;
1559
1560                 /*
1561                  * We have now marked the packet as locked. Thus it cannot be
1562                  * added to the pending list again after we've removed it here.
1563                  * We can therefore re-use the pending_node of this packet
1564                  * temporarily.
1565                  */
1566
1567                 clear_bit(SSH_PACKET_SF_PENDING_BIT, &p->state);
1568
1569                 atomic_dec(&ptl->pending.count);
1570                 list_move_tail(&p->pending_node, &claimed);
1571         }
1572
1573         spin_unlock(&ptl->pending.lock);
1574
1575         /* Cancel and complete the packet. */
1576         list_for_each_entry_safe(p, n, &claimed, pending_node) {
1577                 if (!test_and_set_bit(SSH_PACKET_SF_COMPLETED_BIT, &p->state)) {
1578                         ssh_ptl_queue_remove(p);
1579                         __ssh_ptl_complete(p, -ETIMEDOUT);
1580                 }
1581
1582                 /*
1583                  * Drop the reference we've obtained by removing it from
1584                  * the pending set.
1585                  */
1586                 list_del(&p->pending_node);
1587                 ssh_packet_put(p);
1588         }
1589
1590         /* Ensure that reaper doesn't run again immediately. */
1591         next = max(next, ktime_add(now, SSH_PTL_PACKET_TIMEOUT_RESOLUTION));
1592         if (next != KTIME_MAX)
1593                 ssh_ptl_timeout_reaper_mod(ptl, now, next);
1594
1595         if (resub)
1596                 ssh_ptl_tx_wakeup_packet(ptl);
1597 }
1598
1599 static bool ssh_ptl_rx_retransmit_check(struct ssh_ptl *ptl, u8 seq)
1600 {
1601         int i;
1602
1603         /*
1604          * Check if SEQ has been seen recently (i.e. packet was
1605          * re-transmitted and we should ignore it).
1606          */
1607         for (i = 0; i < ARRAY_SIZE(ptl->rx.blocked.seqs); i++) {
1608                 if (likely(ptl->rx.blocked.seqs[i] != seq))
1609                         continue;
1610
1611                 ptl_dbg(ptl, "ptl: ignoring repeated data packet\n");
1612                 return true;
1613         }
1614
1615         /* Update list of blocked sequence IDs. */
1616         ptl->rx.blocked.seqs[ptl->rx.blocked.offset] = seq;
1617         ptl->rx.blocked.offset = (ptl->rx.blocked.offset + 1)
1618                                   % ARRAY_SIZE(ptl->rx.blocked.seqs);
1619
1620         return false;
1621 }
1622
1623 static void ssh_ptl_rx_dataframe(struct ssh_ptl *ptl,
1624                                  const struct ssh_frame *frame,
1625                                  const struct ssam_span *payload)
1626 {
1627         if (ssh_ptl_rx_retransmit_check(ptl, frame->seq))
1628                 return;
1629
1630         ptl->ops.data_received(ptl, payload);
1631 }
1632
1633 static void ssh_ptl_send_ack(struct ssh_ptl *ptl, u8 seq)
1634 {
1635         struct ssh_packet *packet;
1636         struct ssam_span buf;
1637         struct msgbuf msgb;
1638         int status;
1639
1640         status = ssh_ctrl_packet_alloc(&packet, &buf, GFP_KERNEL);
1641         if (status) {
1642                 ptl_err(ptl, "ptl: failed to allocate ACK packet\n");
1643                 return;
1644         }
1645
1646         ssh_packet_init(packet, 0, SSH_PACKET_PRIORITY(ACK, 0),
1647                         &ssh_ptl_ctrl_packet_ops);
1648
1649         msgb_init(&msgb, buf.ptr, buf.len);
1650         msgb_push_ack(&msgb, seq);
1651         ssh_packet_set_data(packet, msgb.begin, msgb_bytes_used(&msgb));
1652
1653         ssh_ptl_submit(ptl, packet);
1654         ssh_packet_put(packet);
1655 }
1656
1657 static void ssh_ptl_send_nak(struct ssh_ptl *ptl)
1658 {
1659         struct ssh_packet *packet;
1660         struct ssam_span buf;
1661         struct msgbuf msgb;
1662         int status;
1663
1664         status = ssh_ctrl_packet_alloc(&packet, &buf, GFP_KERNEL);
1665         if (status) {
1666                 ptl_err(ptl, "ptl: failed to allocate NAK packet\n");
1667                 return;
1668         }
1669
1670         ssh_packet_init(packet, 0, SSH_PACKET_PRIORITY(NAK, 0),
1671                         &ssh_ptl_ctrl_packet_ops);
1672
1673         msgb_init(&msgb, buf.ptr, buf.len);
1674         msgb_push_nak(&msgb);
1675         ssh_packet_set_data(packet, msgb.begin, msgb_bytes_used(&msgb));
1676
1677         ssh_ptl_submit(ptl, packet);
1678         ssh_packet_put(packet);
1679 }
1680
1681 static size_t ssh_ptl_rx_eval(struct ssh_ptl *ptl, struct ssam_span *source)
1682 {
1683         struct ssh_frame *frame;
1684         struct ssam_span payload;
1685         struct ssam_span aligned;
1686         bool syn_found;
1687         int status;
1688
1689         /* Error injection: Modify data to simulate corrupt SYN bytes. */
1690         ssh_ptl_rx_inject_invalid_syn(ptl, source);
1691
1692         /* Find SYN. */
1693         syn_found = sshp_find_syn(source, &aligned);
1694
1695         if (unlikely(aligned.ptr != source->ptr)) {
1696                 /*
1697                  * We expect aligned.ptr == source->ptr. If this is not the
1698                  * case, then aligned.ptr > source->ptr and we've encountered
1699                  * some unexpected data where we'd expect the start of a new
1700                  * message (i.e. the SYN sequence).
1701                  *
1702                  * This can happen when a CRC check for the previous message
1703                  * failed and we start actively searching for the next one
1704                  * (via the call to sshp_find_syn() above), or the first bytes
1705                  * of a message got dropped or corrupted.
1706                  *
1707                  * In any case, we issue a warning, send a NAK to the EC to
1708                  * request re-transmission of any data we haven't acknowledged
1709                  * yet, and finally, skip everything up to the next SYN
1710                  * sequence.
1711                  */
1712
1713                 ptl_warn(ptl, "rx: parser: invalid start of frame, skipping\n");
1714
1715                 /*
1716                  * Notes:
1717                  * - This might send multiple NAKs in case the communication
1718                  *   starts with an invalid SYN and is broken down into multiple
1719                  *   pieces. This should generally be handled fine, we just
1720                  *   might receive duplicate data in this case, which is
1721                  *   detected when handling data frames.
1722                  * - This path will also be executed on invalid CRCs: When an
1723                  *   invalid CRC is encountered, the code below will skip data
1724                  *   until directly after the SYN. This causes the search for
1725                  *   the next SYN, which is generally not placed directly after
1726                  *   the last one.
1727                  *
1728                  *   Open question: Should we send this in case of invalid
1729                  *   payload CRCs if the frame-type is non-sequential (current
1730                  *   implementation) or should we drop that frame without
1731                  *   telling the EC?
1732                  */
1733                 ssh_ptl_send_nak(ptl);
1734         }
1735
1736         if (unlikely(!syn_found))
1737                 return aligned.ptr - source->ptr;
1738
1739         /* Error injection: Modify data to simulate corruption. */
1740         ssh_ptl_rx_inject_invalid_data(ptl, &aligned);
1741
1742         /* Parse and validate frame. */
1743         status = sshp_parse_frame(&ptl->serdev->dev, &aligned, &frame, &payload,
1744                                   SSH_PTL_RX_BUF_LEN);
1745         if (status)     /* Invalid frame: skip to next SYN. */
1746                 return aligned.ptr - source->ptr + sizeof(u16);
1747         if (!frame)     /* Not enough data. */
1748                 return aligned.ptr - source->ptr;
1749
1750         trace_ssam_rx_frame_received(frame);
1751
1752         switch (frame->type) {
1753         case SSH_FRAME_TYPE_ACK:
1754                 ssh_ptl_acknowledge(ptl, frame->seq);
1755                 break;
1756
1757         case SSH_FRAME_TYPE_NAK:
1758                 ssh_ptl_resubmit_pending(ptl);
1759                 break;
1760
1761         case SSH_FRAME_TYPE_DATA_SEQ:
1762                 ssh_ptl_send_ack(ptl, frame->seq);
1763                 fallthrough;
1764
1765         case SSH_FRAME_TYPE_DATA_NSQ:
1766                 ssh_ptl_rx_dataframe(ptl, frame, &payload);
1767                 break;
1768
1769         default:
1770                 ptl_warn(ptl, "ptl: received frame with unknown type %#04x\n",
1771                          frame->type);
1772                 break;
1773         }
1774
1775         return aligned.ptr - source->ptr + SSH_MESSAGE_LENGTH(payload.len);
1776 }
1777
1778 static int ssh_ptl_rx_threadfn(void *data)
1779 {
1780         struct ssh_ptl *ptl = data;
1781
1782         while (true) {
1783                 struct ssam_span span;
1784                 size_t offs = 0;
1785                 size_t n;
1786
1787                 wait_event_interruptible(ptl->rx.wq,
1788                                          !kfifo_is_empty(&ptl->rx.fifo) ||
1789                                          kthread_should_stop());
1790                 if (kthread_should_stop())
1791                         break;
1792
1793                 /* Copy from fifo to evaluation buffer. */
1794                 n = sshp_buf_read_from_fifo(&ptl->rx.buf, &ptl->rx.fifo);
1795
1796                 ptl_dbg(ptl, "rx: received data (size: %zu)\n", n);
1797                 print_hex_dump_debug("rx: ", DUMP_PREFIX_OFFSET, 16, 1,
1798                                      ptl->rx.buf.ptr + ptl->rx.buf.len - n,
1799                                      n, false);
1800
1801                 /* Parse until we need more bytes or buffer is empty. */
1802                 while (offs < ptl->rx.buf.len) {
1803                         sshp_buf_span_from(&ptl->rx.buf, offs, &span);
1804                         n = ssh_ptl_rx_eval(ptl, &span);
1805                         if (n == 0)
1806                                 break;  /* Need more bytes. */
1807
1808                         offs += n;
1809                 }
1810
1811                 /* Throw away the evaluated parts. */
1812                 sshp_buf_drop(&ptl->rx.buf, offs);
1813         }
1814
1815         return 0;
1816 }
1817
1818 static void ssh_ptl_rx_wakeup(struct ssh_ptl *ptl)
1819 {
1820         wake_up(&ptl->rx.wq);
1821 }
1822
1823 /**
1824  * ssh_ptl_rx_start() - Start packet transport layer receiver thread.
1825  * @ptl: The packet transport layer.
1826  *
1827  * Return: Returns zero on success, a negative error code on failure.
1828  */
1829 int ssh_ptl_rx_start(struct ssh_ptl *ptl)
1830 {
1831         if (ptl->rx.thread)
1832                 return 0;
1833
1834         ptl->rx.thread = kthread_run(ssh_ptl_rx_threadfn, ptl,
1835                                      "ssam_serial_hub-rx");
1836         if (IS_ERR(ptl->rx.thread))
1837                 return PTR_ERR(ptl->rx.thread);
1838
1839         return 0;
1840 }
1841
1842 /**
1843  * ssh_ptl_rx_stop() - Stop packet transport layer receiver thread.
1844  * @ptl: The packet transport layer.
1845  *
1846  * Return: Returns zero on success, a negative error code on failure.
1847  */
1848 int ssh_ptl_rx_stop(struct ssh_ptl *ptl)
1849 {
1850         int status = 0;
1851
1852         if (ptl->rx.thread) {
1853                 status = kthread_stop(ptl->rx.thread);
1854                 ptl->rx.thread = NULL;
1855         }
1856
1857         return status;
1858 }
1859
1860 /**
1861  * ssh_ptl_rx_rcvbuf() - Push data from lower-layer transport to the packet
1862  * layer.
1863  * @ptl: The packet transport layer.
1864  * @buf: Pointer to the data to push to the layer.
1865  * @n:   Size of the data to push to the layer, in bytes.
1866  *
1867  * Pushes data from a lower-layer transport to the receiver fifo buffer of the
1868  * packet layer and notifies the receiver thread. Calls to this function are
1869  * ignored once the packet layer has been shut down.
1870  *
1871  * Return: Returns the number of bytes transferred (positive or zero) on
1872  * success. Returns %-ESHUTDOWN if the packet layer has been shut down.
1873  */
1874 int ssh_ptl_rx_rcvbuf(struct ssh_ptl *ptl, const u8 *buf, size_t n)
1875 {
1876         int used;
1877
1878         if (test_bit(SSH_PTL_SF_SHUTDOWN_BIT, &ptl->state))
1879                 return -ESHUTDOWN;
1880
1881         used = kfifo_in(&ptl->rx.fifo, buf, n);
1882         if (used)
1883                 ssh_ptl_rx_wakeup(ptl);
1884
1885         return used;
1886 }
1887
1888 /**
1889  * ssh_ptl_shutdown() - Shut down the packet transport layer.
1890  * @ptl: The packet transport layer.
1891  *
1892  * Shuts down the packet transport layer, removing and canceling all queued
1893  * and pending packets. Packets canceled by this operation will be completed
1894  * with %-ESHUTDOWN as status. Receiver and transmitter threads will be
1895  * stopped.
1896  *
1897  * As a result of this function, the transport layer will be marked as shut
1898  * down. Submission of packets after the transport layer has been shut down
1899  * will fail with %-ESHUTDOWN.
1900  */
1901 void ssh_ptl_shutdown(struct ssh_ptl *ptl)
1902 {
1903         LIST_HEAD(complete_q);
1904         LIST_HEAD(complete_p);
1905         struct ssh_packet *p, *n;
1906         int status;
1907
1908         /* Ensure that no new packets (including ACK/NAK) can be submitted. */
1909         set_bit(SSH_PTL_SF_SHUTDOWN_BIT, &ptl->state);
1910         /*
1911          * Ensure that the layer gets marked as shut-down before actually
1912          * stopping it. In combination with the check in ssh_ptl_queue_push(),
1913          * this guarantees that no new packets can be added and all already
1914          * queued packets are properly canceled. In combination with the check
1915          * in ssh_ptl_rx_rcvbuf(), this guarantees that received data is
1916          * properly cut off.
1917          */
1918         smp_mb__after_atomic();
1919
1920         status = ssh_ptl_rx_stop(ptl);
1921         if (status)
1922                 ptl_err(ptl, "ptl: failed to stop receiver thread\n");
1923
1924         status = ssh_ptl_tx_stop(ptl);
1925         if (status)
1926                 ptl_err(ptl, "ptl: failed to stop transmitter thread\n");
1927
1928         cancel_delayed_work_sync(&ptl->rtx_timeout.reaper);
1929
1930         /*
1931          * At this point, all threads have been stopped. This means that the
1932          * only references to packets from inside the system are in the queue
1933          * and pending set.
1934          *
1935          * Note: We still need locks here because someone could still be
1936          * canceling packets.
1937          *
1938          * Note 2: We can re-use queue_node (or pending_node) if we mark the
1939          * packet as locked an then remove it from the queue (or pending set
1940          * respectively). Marking the packet as locked avoids re-queuing
1941          * (which should already be prevented by having stopped the treads...)
1942          * and not setting QUEUED_BIT (or PENDING_BIT) prevents removal from a
1943          * new list via other threads (e.g. cancellation).
1944          *
1945          * Note 3: There may be overlap between complete_p and complete_q.
1946          * This is handled via test_and_set_bit() on the "completed" flag
1947          * (also handles cancellation).
1948          */
1949
1950         /* Mark queued packets as locked and move them to complete_q. */
1951         spin_lock(&ptl->queue.lock);
1952         list_for_each_entry_safe(p, n, &ptl->queue.head, queue_node) {
1953                 set_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state);
1954                 /* Ensure that state does not get zero. */
1955                 smp_mb__before_atomic();
1956                 clear_bit(SSH_PACKET_SF_QUEUED_BIT, &p->state);
1957
1958                 list_move_tail(&p->queue_node, &complete_q);
1959         }
1960         spin_unlock(&ptl->queue.lock);
1961
1962         /* Mark pending packets as locked and move them to complete_p. */
1963         spin_lock(&ptl->pending.lock);
1964         list_for_each_entry_safe(p, n, &ptl->pending.head, pending_node) {
1965                 set_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state);
1966                 /* Ensure that state does not get zero. */
1967                 smp_mb__before_atomic();
1968                 clear_bit(SSH_PACKET_SF_PENDING_BIT, &p->state);
1969
1970                 list_move_tail(&p->pending_node, &complete_q);
1971         }
1972         atomic_set(&ptl->pending.count, 0);
1973         spin_unlock(&ptl->pending.lock);
1974
1975         /* Complete and drop packets on complete_q. */
1976         list_for_each_entry(p, &complete_q, queue_node) {
1977                 if (!test_and_set_bit(SSH_PACKET_SF_COMPLETED_BIT, &p->state))
1978                         __ssh_ptl_complete(p, -ESHUTDOWN);
1979
1980                 ssh_packet_put(p);
1981         }
1982
1983         /* Complete and drop packets on complete_p. */
1984         list_for_each_entry(p, &complete_p, pending_node) {
1985                 if (!test_and_set_bit(SSH_PACKET_SF_COMPLETED_BIT, &p->state))
1986                         __ssh_ptl_complete(p, -ESHUTDOWN);
1987
1988                 ssh_packet_put(p);
1989         }
1990
1991         /*
1992          * At this point we have guaranteed that the system doesn't reference
1993          * any packets any more.
1994          */
1995 }
1996
1997 /**
1998  * ssh_ptl_init() - Initialize packet transport layer.
1999  * @ptl:    The packet transport layer to initialize.
2000  * @serdev: The underlying serial device, i.e. the lower-level transport.
2001  * @ops:    Packet layer operations.
2002  *
2003  * Initializes the given packet transport layer. Transmitter and receiver
2004  * threads must be started separately via ssh_ptl_tx_start() and
2005  * ssh_ptl_rx_start(), after the packet-layer has been initialized and the
2006  * lower-level transport layer has been set up.
2007  *
2008  * Return: Returns zero on success and a nonzero error code on failure.
2009  */
2010 int ssh_ptl_init(struct ssh_ptl *ptl, struct serdev_device *serdev,
2011                  struct ssh_ptl_ops *ops)
2012 {
2013         int i, status;
2014
2015         ptl->serdev = serdev;
2016         ptl->state = 0;
2017
2018         spin_lock_init(&ptl->queue.lock);
2019         INIT_LIST_HEAD(&ptl->queue.head);
2020
2021         spin_lock_init(&ptl->pending.lock);
2022         INIT_LIST_HEAD(&ptl->pending.head);
2023         atomic_set_release(&ptl->pending.count, 0);
2024
2025         ptl->tx.thread = NULL;
2026         atomic_set(&ptl->tx.running, 0);
2027         init_completion(&ptl->tx.thread_cplt_pkt);
2028         init_completion(&ptl->tx.thread_cplt_tx);
2029         init_waitqueue_head(&ptl->tx.packet_wq);
2030
2031         ptl->rx.thread = NULL;
2032         init_waitqueue_head(&ptl->rx.wq);
2033
2034         spin_lock_init(&ptl->rtx_timeout.lock);
2035         ptl->rtx_timeout.timeout = SSH_PTL_PACKET_TIMEOUT;
2036         ptl->rtx_timeout.expires = KTIME_MAX;
2037         INIT_DELAYED_WORK(&ptl->rtx_timeout.reaper, ssh_ptl_timeout_reap);
2038
2039         ptl->ops = *ops;
2040
2041         /* Initialize list of recent/blocked SEQs with invalid sequence IDs. */
2042         for (i = 0; i < ARRAY_SIZE(ptl->rx.blocked.seqs); i++)
2043                 ptl->rx.blocked.seqs[i] = U16_MAX;
2044         ptl->rx.blocked.offset = 0;
2045
2046         status = kfifo_alloc(&ptl->rx.fifo, SSH_PTL_RX_FIFO_LEN, GFP_KERNEL);
2047         if (status)
2048                 return status;
2049
2050         status = sshp_buf_alloc(&ptl->rx.buf, SSH_PTL_RX_BUF_LEN, GFP_KERNEL);
2051         if (status)
2052                 kfifo_free(&ptl->rx.fifo);
2053
2054         return status;
2055 }
2056
2057 /**
2058  * ssh_ptl_destroy() - Deinitialize packet transport layer.
2059  * @ptl: The packet transport layer to deinitialize.
2060  *
2061  * Deinitializes the given packet transport layer and frees resources
2062  * associated with it. If receiver and/or transmitter threads have been
2063  * started, the layer must first be shut down via ssh_ptl_shutdown() before
2064  * this function can be called.
2065  */
2066 void ssh_ptl_destroy(struct ssh_ptl *ptl)
2067 {
2068         kfifo_free(&ptl->rx.fifo);
2069         sshp_buf_free(&ptl->rx.buf);
2070 }