1 // SPDX-License-Identifier: GPL-2.0-only
3 * Core driver for the pin control subsystem
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
9 * Author: Linus Walleij <linus.walleij@linaro.org>
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
13 #define pr_fmt(fmt) "pinctrl core: " fmt
15 #include <linux/kernel.h>
16 #include <linux/kref.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/err.h>
22 #include <linux/list.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/pinctrl/consumer.h>
26 #include <linux/pinctrl/pinctrl.h>
27 #include <linux/pinctrl/machine.h>
30 #include "../gpio/gpiolib.h"
31 #include <asm-generic/gpio.h>
35 #include "devicetree.h"
40 static bool pinctrl_dummy_state;
42 /* Mutex taken to protect pinctrl_list */
43 static DEFINE_MUTEX(pinctrl_list_mutex);
45 /* Mutex taken to protect pinctrl_maps */
46 DEFINE_MUTEX(pinctrl_maps_mutex);
48 /* Mutex taken to protect pinctrldev_list */
49 static DEFINE_MUTEX(pinctrldev_list_mutex);
51 /* Global list of pin control devices (struct pinctrl_dev) */
52 static LIST_HEAD(pinctrldev_list);
54 /* List of pin controller handles (struct pinctrl) */
55 static LIST_HEAD(pinctrl_list);
57 /* List of pinctrl maps (struct pinctrl_maps) */
58 LIST_HEAD(pinctrl_maps);
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
69 void pinctrl_provide_dummies(void)
71 pinctrl_dummy_state = true;
74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 /* We're not allowed to register devices without name */
77 return pctldev->desc->name;
79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 return dev_name(pctldev->dev);
85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 return pctldev->driver_data;
91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 struct pinctrl_dev *pctldev;
107 mutex_lock(&pinctrldev_list_mutex);
109 list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 if (!strcmp(dev_name(pctldev->dev), devname)) {
111 /* Matched on device name */
112 mutex_unlock(&pinctrldev_list_mutex);
117 mutex_unlock(&pinctrldev_list_mutex);
122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 struct pinctrl_dev *pctldev;
126 mutex_lock(&pinctrldev_list_mutex);
128 list_for_each_entry(pctldev, &pinctrldev_list, node)
129 if (pctldev->dev->of_node == np) {
130 mutex_unlock(&pinctrldev_list_mutex);
134 mutex_unlock(&pinctrldev_list_mutex);
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
148 /* The pin number can be retrived from the pin controller descriptor */
149 for (i = 0; i < pctldev->desc->npins; i++) {
150 struct pin_desc *desc;
152 pin = pctldev->desc->pins[i].number;
153 desc = pin_desc_get(pctldev, pin);
154 /* Pin space may be sparse */
155 if (desc && !strcmp(name, desc->name))
163 * pin_get_name() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @pin: pin number/id to look up
167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 const struct pin_desc *desc;
171 desc = pin_desc_get(pctldev, pin);
173 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
180 EXPORT_SYMBOL_GPL(pin_get_name);
182 /* Deletes a range of pin descriptors */
183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 const struct pinctrl_pin_desc *pins,
189 for (i = 0; i < num_pins; i++) {
190 struct pin_desc *pindesc;
192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
195 radix_tree_delete(&pctldev->pin_desc_tree,
197 if (pindesc->dynamic_name)
198 kfree(pindesc->name);
204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 const struct pinctrl_pin_desc *pin)
207 struct pin_desc *pindesc;
209 pindesc = pin_desc_get(pctldev, pin->number);
211 dev_err(pctldev->dev, "pin %d already registered\n",
216 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
221 pindesc->pctldev = pctldev;
223 /* Copy basic pin info */
225 pindesc->name = pin->name;
227 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
228 if (!pindesc->name) {
232 pindesc->dynamic_name = true;
235 pindesc->drv_data = pin->drv_data;
237 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
238 pr_debug("registered pin %d (%s) on %s\n",
239 pin->number, pindesc->name, pctldev->desc->name);
243 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
244 const struct pinctrl_pin_desc *pins,
250 for (i = 0; i < num_descs; i++) {
251 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
260 * gpio_to_pin() - GPIO range GPIO number to pin number translation
261 * @range: GPIO range used for the translation
262 * @gpio: gpio pin to translate to a pin number
264 * Finds the pin number for a given GPIO using the specified GPIO range
265 * as a base for translation. The distinction between linear GPIO ranges
266 * and pin list based GPIO ranges is managed correctly by this function.
268 * This function assumes the gpio is part of the specified GPIO range, use
269 * only after making sure this is the case (e.g. by calling it on the
270 * result of successful pinctrl_get_device_gpio_range calls)!
272 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
275 unsigned int offset = gpio - range->base;
277 return range->pins[offset];
279 return range->pin_base + offset;
283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
284 * @pctldev: pin controller device to check
285 * @gpio: gpio pin to check taken from the global GPIO pin space
287 * Tries to match a GPIO pin number to the ranges handled by a certain pin
288 * controller, return the range or NULL
290 static struct pinctrl_gpio_range *
291 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
293 struct pinctrl_gpio_range *range;
295 mutex_lock(&pctldev->mutex);
296 /* Loop over the ranges */
297 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
298 /* Check if we're in the valid range */
299 if (gpio >= range->base &&
300 gpio < range->base + range->npins) {
301 mutex_unlock(&pctldev->mutex);
305 mutex_unlock(&pctldev->mutex);
310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
311 * the same GPIO chip are in range
312 * @gpio: gpio pin to check taken from the global GPIO pin space
314 * This function is complement of pinctrl_match_gpio_range(). If the return
315 * value of pinctrl_match_gpio_range() is NULL, this function could be used
316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
317 * of the same GPIO chip don't have back-end pinctrl interface.
318 * If the return value is true, it means that pinctrl device is ready & the
319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
320 * is false, it means that pinctrl device may not be ready.
322 #ifdef CONFIG_GPIOLIB
323 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
325 struct pinctrl_dev *pctldev;
326 struct pinctrl_gpio_range *range = NULL;
327 struct gpio_chip *chip = gpio_to_chip(gpio);
329 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
332 mutex_lock(&pinctrldev_list_mutex);
334 /* Loop over the pin controllers */
335 list_for_each_entry(pctldev, &pinctrldev_list, node) {
336 /* Loop over the ranges */
337 mutex_lock(&pctldev->mutex);
338 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
339 /* Check if any gpio range overlapped with gpio chip */
340 if (range->base + range->npins - 1 < chip->base ||
341 range->base > chip->base + chip->ngpio - 1)
343 mutex_unlock(&pctldev->mutex);
344 mutex_unlock(&pinctrldev_list_mutex);
347 mutex_unlock(&pctldev->mutex);
350 mutex_unlock(&pinctrldev_list_mutex);
355 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
359 * pinctrl_get_device_gpio_range() - find device for GPIO range
360 * @gpio: the pin to locate the pin controller for
361 * @outdev: the pin control device if found
362 * @outrange: the GPIO range if found
364 * Find the pin controller handling a certain GPIO pin from the pinspace of
365 * the GPIO subsystem, return the device and the matching GPIO range. Returns
366 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
367 * may still have not been registered.
369 static int pinctrl_get_device_gpio_range(unsigned gpio,
370 struct pinctrl_dev **outdev,
371 struct pinctrl_gpio_range **outrange)
373 struct pinctrl_dev *pctldev;
375 mutex_lock(&pinctrldev_list_mutex);
377 /* Loop over the pin controllers */
378 list_for_each_entry(pctldev, &pinctrldev_list, node) {
379 struct pinctrl_gpio_range *range;
381 range = pinctrl_match_gpio_range(pctldev, gpio);
385 mutex_unlock(&pinctrldev_list_mutex);
390 mutex_unlock(&pinctrldev_list_mutex);
392 return -EPROBE_DEFER;
396 * pinctrl_add_gpio_range() - register a GPIO range for a controller
397 * @pctldev: pin controller device to add the range to
398 * @range: the GPIO range to add
400 * This adds a range of GPIOs to be handled by a certain pin controller. Call
401 * this to register handled ranges after registering your pin controller.
403 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
404 struct pinctrl_gpio_range *range)
406 mutex_lock(&pctldev->mutex);
407 list_add_tail(&range->node, &pctldev->gpio_ranges);
408 mutex_unlock(&pctldev->mutex);
410 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
412 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
413 struct pinctrl_gpio_range *ranges,
418 for (i = 0; i < nranges; i++)
419 pinctrl_add_gpio_range(pctldev, &ranges[i]);
421 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
423 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
424 struct pinctrl_gpio_range *range)
426 struct pinctrl_dev *pctldev;
428 pctldev = get_pinctrl_dev_from_devname(devname);
431 * If we can't find this device, let's assume that is because
432 * it has not probed yet, so the driver trying to register this
433 * range need to defer probing.
436 return ERR_PTR(-EPROBE_DEFER);
438 pinctrl_add_gpio_range(pctldev, range);
442 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
444 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
445 const unsigned **pins, unsigned *num_pins)
447 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
450 if (!pctlops->get_group_pins)
453 gs = pinctrl_get_group_selector(pctldev, pin_group);
457 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
459 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
461 struct pinctrl_gpio_range *
462 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
465 struct pinctrl_gpio_range *range;
467 /* Loop over the ranges */
468 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
469 /* Check if we're in the valid range */
472 for (a = 0; a < range->npins; a++) {
473 if (range->pins[a] == pin)
476 } else if (pin >= range->pin_base &&
477 pin < range->pin_base + range->npins)
483 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
486 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
487 * @pctldev: the pin controller device to look in
488 * @pin: a controller-local number to find the range for
490 struct pinctrl_gpio_range *
491 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
494 struct pinctrl_gpio_range *range;
496 mutex_lock(&pctldev->mutex);
497 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
498 mutex_unlock(&pctldev->mutex);
502 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
505 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
506 * @pctldev: pin controller device to remove the range from
507 * @range: the GPIO range to remove
509 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
510 struct pinctrl_gpio_range *range)
512 mutex_lock(&pctldev->mutex);
513 list_del(&range->node);
514 mutex_unlock(&pctldev->mutex);
516 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
518 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
521 * pinctrl_generic_get_group_count() - returns the number of pin groups
522 * @pctldev: pin controller device
524 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
526 return pctldev->num_groups;
528 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
531 * pinctrl_generic_get_group_name() - returns the name of a pin group
532 * @pctldev: pin controller device
533 * @selector: group number
535 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
536 unsigned int selector)
538 struct group_desc *group;
540 group = radix_tree_lookup(&pctldev->pin_group_tree,
547 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
550 * pinctrl_generic_get_group_pins() - gets the pin group pins
551 * @pctldev: pin controller device
552 * @selector: group number
553 * @pins: pins in the group
554 * @num_pins: number of pins in the group
556 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
557 unsigned int selector,
558 const unsigned int **pins,
559 unsigned int *num_pins)
561 struct group_desc *group;
563 group = radix_tree_lookup(&pctldev->pin_group_tree,
566 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
572 *num_pins = group->num_pins;
576 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
579 * pinctrl_generic_get_group() - returns a pin group based on the number
580 * @pctldev: pin controller device
581 * @selector: group number
583 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
584 unsigned int selector)
586 struct group_desc *group;
588 group = radix_tree_lookup(&pctldev->pin_group_tree,
595 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
597 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
598 const char *function)
600 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
601 int ngroups = ops->get_groups_count(pctldev);
604 /* See if this pctldev has this group */
605 while (selector < ngroups) {
606 const char *gname = ops->get_group_name(pctldev, selector);
608 if (gname && !strcmp(function, gname))
618 * pinctrl_generic_add_group() - adds a new pin group
619 * @pctldev: pin controller device
620 * @name: name of the pin group
621 * @pins: pins in the pin group
622 * @num_pins: number of pins in the pin group
623 * @data: pin controller driver specific data
625 * Note that the caller must take care of locking.
627 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
628 int *pins, int num_pins, void *data)
630 struct group_desc *group;
636 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
640 selector = pctldev->num_groups;
642 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
648 group->num_pins = num_pins;
651 radix_tree_insert(&pctldev->pin_group_tree, selector, group);
653 pctldev->num_groups++;
657 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
660 * pinctrl_generic_remove_group() - removes a numbered pin group
661 * @pctldev: pin controller device
662 * @selector: group number
664 * Note that the caller must take care of locking.
666 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
667 unsigned int selector)
669 struct group_desc *group;
671 group = radix_tree_lookup(&pctldev->pin_group_tree,
676 radix_tree_delete(&pctldev->pin_group_tree, selector);
677 devm_kfree(pctldev->dev, group);
679 pctldev->num_groups--;
683 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
686 * pinctrl_generic_free_groups() - removes all pin groups
687 * @pctldev: pin controller device
689 * Note that the caller must take care of locking. The pinctrl groups
690 * are allocated with devm_kzalloc() so no need to free them here.
692 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
694 struct radix_tree_iter iter;
697 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
698 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
700 pctldev->num_groups = 0;
704 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
707 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
710 * pinctrl_get_group_selector() - returns the group selector for a group
711 * @pctldev: the pin controller handling the group
712 * @pin_group: the pin group to look up
714 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
715 const char *pin_group)
717 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
718 unsigned ngroups = pctlops->get_groups_count(pctldev);
719 unsigned group_selector = 0;
721 while (group_selector < ngroups) {
722 const char *gname = pctlops->get_group_name(pctldev,
724 if (gname && !strcmp(gname, pin_group)) {
725 dev_dbg(pctldev->dev,
726 "found group selector %u for %s\n",
729 return group_selector;
735 dev_err(pctldev->dev, "does not have pin group %s\n",
741 bool pinctrl_gpio_can_use_line(unsigned gpio)
743 struct pinctrl_dev *pctldev;
744 struct pinctrl_gpio_range *range;
749 * Try to obtain GPIO range, if it fails
750 * we're probably dealing with GPIO driver
751 * without a backing pin controller - bail out.
753 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
756 mutex_lock(&pctldev->mutex);
758 /* Convert to the pin controllers number space */
759 pin = gpio_to_pin(range, gpio);
761 result = pinmux_can_be_used_for_gpio(pctldev, pin);
763 mutex_unlock(&pctldev->mutex);
767 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
770 * pinctrl_gpio_request() - request a single pin to be used as GPIO
771 * @gpio: the GPIO pin number from the GPIO subsystem number space
773 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
774 * as part of their gpio_request() semantics, platforms and individual drivers
775 * shall *NOT* request GPIO pins to be muxed in.
777 int pinctrl_gpio_request(unsigned gpio)
779 struct pinctrl_dev *pctldev;
780 struct pinctrl_gpio_range *range;
784 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
786 if (pinctrl_ready_for_gpio_range(gpio))
791 mutex_lock(&pctldev->mutex);
793 /* Convert to the pin controllers number space */
794 pin = gpio_to_pin(range, gpio);
796 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
798 mutex_unlock(&pctldev->mutex);
802 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
805 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
806 * @gpio: the GPIO pin number from the GPIO subsystem number space
808 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
809 * as part of their gpio_free() semantics, platforms and individual drivers
810 * shall *NOT* request GPIO pins to be muxed out.
812 void pinctrl_gpio_free(unsigned gpio)
814 struct pinctrl_dev *pctldev;
815 struct pinctrl_gpio_range *range;
819 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
823 mutex_lock(&pctldev->mutex);
825 /* Convert to the pin controllers number space */
826 pin = gpio_to_pin(range, gpio);
828 pinmux_free_gpio(pctldev, pin, range);
830 mutex_unlock(&pctldev->mutex);
832 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
834 static int pinctrl_gpio_direction(unsigned gpio, bool input)
836 struct pinctrl_dev *pctldev;
837 struct pinctrl_gpio_range *range;
841 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
846 mutex_lock(&pctldev->mutex);
848 /* Convert to the pin controllers number space */
849 pin = gpio_to_pin(range, gpio);
850 ret = pinmux_gpio_direction(pctldev, range, pin, input);
852 mutex_unlock(&pctldev->mutex);
858 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
859 * @gpio: the GPIO pin number from the GPIO subsystem number space
861 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
862 * as part of their gpio_direction_input() semantics, platforms and individual
863 * drivers shall *NOT* touch pin control GPIO calls.
865 int pinctrl_gpio_direction_input(unsigned gpio)
867 return pinctrl_gpio_direction(gpio, true);
869 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
872 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
873 * @gpio: the GPIO pin number from the GPIO subsystem number space
875 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
876 * as part of their gpio_direction_output() semantics, platforms and individual
877 * drivers shall *NOT* touch pin control GPIO calls.
879 int pinctrl_gpio_direction_output(unsigned gpio)
881 return pinctrl_gpio_direction(gpio, false);
883 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
886 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
887 * @gpio: the GPIO pin number from the GPIO subsystem number space
888 * @config: the configuration to apply to the GPIO
890 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
891 * they need to call the underlying pin controller to change GPIO config
892 * (for example set debounce time).
894 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
896 unsigned long configs[] = { config };
897 struct pinctrl_gpio_range *range;
898 struct pinctrl_dev *pctldev;
901 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
905 mutex_lock(&pctldev->mutex);
906 pin = gpio_to_pin(range, gpio);
907 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
908 mutex_unlock(&pctldev->mutex);
912 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
914 static struct pinctrl_state *find_state(struct pinctrl *p,
917 struct pinctrl_state *state;
919 list_for_each_entry(state, &p->states, node)
920 if (!strcmp(state->name, name))
926 static struct pinctrl_state *create_state(struct pinctrl *p,
929 struct pinctrl_state *state;
931 state = kzalloc(sizeof(*state), GFP_KERNEL);
933 return ERR_PTR(-ENOMEM);
936 INIT_LIST_HEAD(&state->settings);
938 list_add_tail(&state->node, &p->states);
943 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
944 const struct pinctrl_map *map)
946 struct pinctrl_state *state;
947 struct pinctrl_setting *setting;
950 state = find_state(p, map->name);
952 state = create_state(p, map->name);
954 return PTR_ERR(state);
956 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
959 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
963 setting->type = map->type;
966 setting->pctldev = pctldev;
969 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
970 if (!setting->pctldev) {
972 /* Do not defer probing of hogs (circular loop) */
973 if (!strcmp(map->ctrl_dev_name, map->dev_name))
976 * OK let us guess that the driver is not there yet, and
977 * let's defer obtaining this pinctrl handle to later...
979 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
981 return -EPROBE_DEFER;
984 setting->dev_name = map->dev_name;
987 case PIN_MAP_TYPE_MUX_GROUP:
988 ret = pinmux_map_to_setting(map, setting);
990 case PIN_MAP_TYPE_CONFIGS_PIN:
991 case PIN_MAP_TYPE_CONFIGS_GROUP:
992 ret = pinconf_map_to_setting(map, setting);
1003 list_add_tail(&setting->node, &state->settings);
1008 static struct pinctrl *find_pinctrl(struct device *dev)
1012 mutex_lock(&pinctrl_list_mutex);
1013 list_for_each_entry(p, &pinctrl_list, node)
1014 if (p->dev == dev) {
1015 mutex_unlock(&pinctrl_list_mutex);
1019 mutex_unlock(&pinctrl_list_mutex);
1023 static void pinctrl_free(struct pinctrl *p, bool inlist);
1025 static struct pinctrl *create_pinctrl(struct device *dev,
1026 struct pinctrl_dev *pctldev)
1029 const char *devname;
1030 struct pinctrl_maps *maps_node;
1032 const struct pinctrl_map *map;
1036 * create the state cookie holder struct pinctrl for each
1037 * mapping, this is what consumers will get when requesting
1038 * a pin control handle with pinctrl_get()
1040 p = kzalloc(sizeof(*p), GFP_KERNEL);
1042 return ERR_PTR(-ENOMEM);
1044 INIT_LIST_HEAD(&p->states);
1045 INIT_LIST_HEAD(&p->dt_maps);
1047 ret = pinctrl_dt_to_map(p, pctldev);
1050 return ERR_PTR(ret);
1053 devname = dev_name(dev);
1055 mutex_lock(&pinctrl_maps_mutex);
1056 /* Iterate over the pin control maps to locate the right ones */
1057 for_each_maps(maps_node, i, map) {
1058 /* Map must be for this device */
1059 if (strcmp(map->dev_name, devname))
1062 * If pctldev is not null, we are claiming hog for it,
1063 * that means, setting that is served by pctldev by itself.
1065 * Thus we must skip map that is for this device but is served
1069 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1072 ret = add_setting(p, pctldev, map);
1074 * At this point the adding of a setting may:
1076 * - Defer, if the pinctrl device is not yet available
1077 * - Fail, if the pinctrl device is not yet available,
1078 * AND the setting is a hog. We cannot defer that, since
1079 * the hog will kick in immediately after the device
1082 * If the error returned was not -EPROBE_DEFER then we
1083 * accumulate the errors to see if we end up with
1084 * an -EPROBE_DEFER later, as that is the worst case.
1086 if (ret == -EPROBE_DEFER) {
1087 pinctrl_free(p, false);
1088 mutex_unlock(&pinctrl_maps_mutex);
1089 return ERR_PTR(ret);
1092 mutex_unlock(&pinctrl_maps_mutex);
1095 /* If some other error than deferral occurred, return here */
1096 pinctrl_free(p, false);
1097 return ERR_PTR(ret);
1100 kref_init(&p->users);
1102 /* Add the pinctrl handle to the global list */
1103 mutex_lock(&pinctrl_list_mutex);
1104 list_add_tail(&p->node, &pinctrl_list);
1105 mutex_unlock(&pinctrl_list_mutex);
1111 * pinctrl_get() - retrieves the pinctrl handle for a device
1112 * @dev: the device to obtain the handle for
1114 struct pinctrl *pinctrl_get(struct device *dev)
1119 return ERR_PTR(-EINVAL);
1122 * See if somebody else (such as the device core) has already
1123 * obtained a handle to the pinctrl for this device. In that case,
1124 * return another pointer to it.
1126 p = find_pinctrl(dev);
1128 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1129 kref_get(&p->users);
1133 return create_pinctrl(dev, NULL);
1135 EXPORT_SYMBOL_GPL(pinctrl_get);
1137 static void pinctrl_free_setting(bool disable_setting,
1138 struct pinctrl_setting *setting)
1140 switch (setting->type) {
1141 case PIN_MAP_TYPE_MUX_GROUP:
1142 if (disable_setting)
1143 pinmux_disable_setting(setting);
1144 pinmux_free_setting(setting);
1146 case PIN_MAP_TYPE_CONFIGS_PIN:
1147 case PIN_MAP_TYPE_CONFIGS_GROUP:
1148 pinconf_free_setting(setting);
1155 static void pinctrl_free(struct pinctrl *p, bool inlist)
1157 struct pinctrl_state *state, *n1;
1158 struct pinctrl_setting *setting, *n2;
1160 mutex_lock(&pinctrl_list_mutex);
1161 list_for_each_entry_safe(state, n1, &p->states, node) {
1162 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1163 pinctrl_free_setting(state == p->state, setting);
1164 list_del(&setting->node);
1167 list_del(&state->node);
1171 pinctrl_dt_free_maps(p);
1176 mutex_unlock(&pinctrl_list_mutex);
1180 * pinctrl_release() - release the pinctrl handle
1181 * @kref: the kref in the pinctrl being released
1183 static void pinctrl_release(struct kref *kref)
1185 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1187 pinctrl_free(p, true);
1191 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1192 * @p: the pinctrl handle to release
1194 void pinctrl_put(struct pinctrl *p)
1196 kref_put(&p->users, pinctrl_release);
1198 EXPORT_SYMBOL_GPL(pinctrl_put);
1201 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1202 * @p: the pinctrl handle to retrieve the state from
1203 * @name: the state name to retrieve
1205 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1208 struct pinctrl_state *state;
1210 state = find_state(p, name);
1212 if (pinctrl_dummy_state) {
1213 /* create dummy state */
1214 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1216 state = create_state(p, name);
1218 state = ERR_PTR(-ENODEV);
1223 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1225 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1226 struct device *consumer)
1228 if (pctldev->desc->link_consumers)
1229 device_link_add(consumer, pctldev->dev,
1230 DL_FLAG_PM_RUNTIME |
1231 DL_FLAG_AUTOREMOVE_CONSUMER);
1235 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1236 * @p: the pinctrl handle for the device that requests configuration
1237 * @state: the state handle to select/activate/program
1239 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1241 struct pinctrl_setting *setting, *setting2;
1242 struct pinctrl_state *old_state = p->state;
1247 * For each pinmux setting in the old state, forget SW's record
1248 * of mux owner for that pingroup. Any pingroups which are
1249 * still owned by the new state will be re-acquired by the call
1250 * to pinmux_enable_setting() in the loop below.
1252 list_for_each_entry(setting, &p->state->settings, node) {
1253 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1255 pinmux_disable_setting(setting);
1261 /* Apply all the settings for the new state - pinmux first */
1262 list_for_each_entry(setting, &state->settings, node) {
1263 switch (setting->type) {
1264 case PIN_MAP_TYPE_MUX_GROUP:
1265 ret = pinmux_enable_setting(setting);
1267 case PIN_MAP_TYPE_CONFIGS_PIN:
1268 case PIN_MAP_TYPE_CONFIGS_GROUP:
1277 goto unapply_new_state;
1279 /* Do not link hogs (circular dependency) */
1280 if (p != setting->pctldev->p)
1281 pinctrl_link_add(setting->pctldev, p->dev);
1284 /* Apply all the settings for the new state - pinconf after */
1285 list_for_each_entry(setting, &state->settings, node) {
1286 switch (setting->type) {
1287 case PIN_MAP_TYPE_MUX_GROUP:
1290 case PIN_MAP_TYPE_CONFIGS_PIN:
1291 case PIN_MAP_TYPE_CONFIGS_GROUP:
1292 ret = pinconf_apply_setting(setting);
1300 goto unapply_new_state;
1303 /* Do not link hogs (circular dependency) */
1304 if (p != setting->pctldev->p)
1305 pinctrl_link_add(setting->pctldev, p->dev);
1313 dev_err(p->dev, "Error applying setting, reverse things back\n");
1315 list_for_each_entry(setting2, &state->settings, node) {
1316 if (&setting2->node == &setting->node)
1319 * All we can do here is pinmux_disable_setting.
1320 * That means that some pins are muxed differently now
1321 * than they were before applying the setting (We can't
1322 * "unmux a pin"!), but it's not a big deal since the pins
1323 * are free to be muxed by another apply_setting.
1325 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1326 pinmux_disable_setting(setting2);
1329 /* There's no infinite recursive loop here because p->state is NULL */
1331 pinctrl_select_state(p, old_state);
1337 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1338 * @p: the pinctrl handle for the device that requests configuration
1339 * @state: the state handle to select/activate/program
1341 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1343 if (p->state == state)
1346 return pinctrl_commit_state(p, state);
1348 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1350 static void devm_pinctrl_release(struct device *dev, void *res)
1352 pinctrl_put(*(struct pinctrl **)res);
1356 * devm_pinctrl_get() - Resource managed pinctrl_get()
1357 * @dev: the device to obtain the handle for
1359 * If there is a need to explicitly destroy the returned struct pinctrl,
1360 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1362 struct pinctrl *devm_pinctrl_get(struct device *dev)
1364 struct pinctrl **ptr, *p;
1366 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1368 return ERR_PTR(-ENOMEM);
1370 p = pinctrl_get(dev);
1373 devres_add(dev, ptr);
1380 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1382 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1384 struct pinctrl **p = res;
1390 * devm_pinctrl_put() - Resource managed pinctrl_put()
1391 * @p: the pinctrl handle to release
1393 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1394 * this function will not need to be called and the resource management
1395 * code will ensure that the resource is freed.
1397 void devm_pinctrl_put(struct pinctrl *p)
1399 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1400 devm_pinctrl_match, p));
1402 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1405 * pinctrl_register_mappings() - register a set of pin controller mappings
1406 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1407 * keeps a reference to the passed in maps, so they should _not_ be
1408 * marked with __initdata.
1409 * @num_maps: the number of maps in the mapping table
1411 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1415 struct pinctrl_maps *maps_node;
1417 pr_debug("add %u pinctrl maps\n", num_maps);
1419 /* First sanity check the new mapping */
1420 for (i = 0; i < num_maps; i++) {
1421 if (!maps[i].dev_name) {
1422 pr_err("failed to register map %s (%d): no device given\n",
1427 if (!maps[i].name) {
1428 pr_err("failed to register map %d: no map name given\n",
1433 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1434 !maps[i].ctrl_dev_name) {
1435 pr_err("failed to register map %s (%d): no pin control device given\n",
1440 switch (maps[i].type) {
1441 case PIN_MAP_TYPE_DUMMY_STATE:
1443 case PIN_MAP_TYPE_MUX_GROUP:
1444 ret = pinmux_validate_map(&maps[i], i);
1448 case PIN_MAP_TYPE_CONFIGS_PIN:
1449 case PIN_MAP_TYPE_CONFIGS_GROUP:
1450 ret = pinconf_validate_map(&maps[i], i);
1455 pr_err("failed to register map %s (%d): invalid type given\n",
1461 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1465 maps_node->maps = maps;
1466 maps_node->num_maps = num_maps;
1468 mutex_lock(&pinctrl_maps_mutex);
1469 list_add_tail(&maps_node->node, &pinctrl_maps);
1470 mutex_unlock(&pinctrl_maps_mutex);
1474 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1477 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1478 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1479 * when registering the mappings.
1481 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1483 struct pinctrl_maps *maps_node;
1485 mutex_lock(&pinctrl_maps_mutex);
1486 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1487 if (maps_node->maps == map) {
1488 list_del(&maps_node->node);
1490 mutex_unlock(&pinctrl_maps_mutex);
1494 mutex_unlock(&pinctrl_maps_mutex);
1496 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1499 * pinctrl_force_sleep() - turn a given controller device into sleep state
1500 * @pctldev: pin controller device
1502 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1504 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1505 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1508 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1511 * pinctrl_force_default() - turn a given controller device into default state
1512 * @pctldev: pin controller device
1514 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1516 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1517 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1520 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1523 * pinctrl_init_done() - tell pinctrl probe is done
1525 * We'll use this time to switch the pins from "init" to "default" unless the
1526 * driver selected some other state.
1528 * @dev: device to that's done probing
1530 int pinctrl_init_done(struct device *dev)
1532 struct dev_pin_info *pins = dev->pins;
1538 if (IS_ERR(pins->init_state))
1539 return 0; /* No such state */
1541 if (pins->p->state != pins->init_state)
1542 return 0; /* Not at init anyway */
1544 if (IS_ERR(pins->default_state))
1545 return 0; /* No default state */
1547 ret = pinctrl_select_state(pins->p, pins->default_state);
1549 dev_err(dev, "failed to activate default pinctrl state\n");
1554 static int pinctrl_select_bound_state(struct device *dev,
1555 struct pinctrl_state *state)
1557 struct dev_pin_info *pins = dev->pins;
1561 return 0; /* No such state */
1562 ret = pinctrl_select_state(pins->p, state);
1564 dev_err(dev, "failed to activate pinctrl state %s\n",
1570 * pinctrl_select_default_state() - select default pinctrl state
1571 * @dev: device to select default state for
1573 int pinctrl_select_default_state(struct device *dev)
1578 return pinctrl_select_bound_state(dev, dev->pins->default_state);
1580 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1585 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1586 * @dev: device to select default state for
1588 int pinctrl_pm_select_default_state(struct device *dev)
1590 return pinctrl_select_default_state(dev);
1592 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1595 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1596 * @dev: device to select sleep state for
1598 int pinctrl_pm_select_sleep_state(struct device *dev)
1603 return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1605 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1608 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1609 * @dev: device to select idle state for
1611 int pinctrl_pm_select_idle_state(struct device *dev)
1616 return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1618 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1621 #ifdef CONFIG_DEBUG_FS
1623 static int pinctrl_pins_show(struct seq_file *s, void *what)
1625 struct pinctrl_dev *pctldev = s->private;
1626 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1628 #ifdef CONFIG_GPIOLIB
1629 struct pinctrl_gpio_range *range;
1630 struct gpio_chip *chip;
1634 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1636 mutex_lock(&pctldev->mutex);
1638 /* The pin number can be retrived from the pin controller descriptor */
1639 for (i = 0; i < pctldev->desc->npins; i++) {
1640 struct pin_desc *desc;
1642 pin = pctldev->desc->pins[i].number;
1643 desc = pin_desc_get(pctldev, pin);
1644 /* Pin space may be sparse */
1648 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1650 #ifdef CONFIG_GPIOLIB
1652 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1653 if ((pin >= range->pin_base) &&
1654 (pin < (range->pin_base + range->npins))) {
1655 gpio_num = range->base + (pin - range->pin_base);
1660 chip = gpio_to_chip(gpio_num);
1664 seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
1666 seq_puts(s, "0:? ");
1669 /* Driver-specific info per pin */
1670 if (ops->pin_dbg_show)
1671 ops->pin_dbg_show(pctldev, s, pin);
1676 mutex_unlock(&pctldev->mutex);
1680 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1682 static int pinctrl_groups_show(struct seq_file *s, void *what)
1684 struct pinctrl_dev *pctldev = s->private;
1685 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1686 unsigned ngroups, selector = 0;
1688 mutex_lock(&pctldev->mutex);
1690 ngroups = ops->get_groups_count(pctldev);
1692 seq_puts(s, "registered pin groups:\n");
1693 while (selector < ngroups) {
1694 const unsigned *pins = NULL;
1695 unsigned num_pins = 0;
1696 const char *gname = ops->get_group_name(pctldev, selector);
1701 if (ops->get_group_pins)
1702 ret = ops->get_group_pins(pctldev, selector,
1705 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1708 seq_printf(s, "group: %s\n", gname);
1709 for (i = 0; i < num_pins; i++) {
1710 pname = pin_get_name(pctldev, pins[i]);
1711 if (WARN_ON(!pname)) {
1712 mutex_unlock(&pctldev->mutex);
1715 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1722 mutex_unlock(&pctldev->mutex);
1726 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1728 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1730 struct pinctrl_dev *pctldev = s->private;
1731 struct pinctrl_gpio_range *range;
1733 seq_puts(s, "GPIO ranges handled:\n");
1735 mutex_lock(&pctldev->mutex);
1737 /* Loop over the ranges */
1738 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1741 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1742 range->id, range->name,
1743 range->base, (range->base + range->npins - 1));
1744 for (a = 0; a < range->npins - 1; a++)
1745 seq_printf(s, "%u, ", range->pins[a]);
1746 seq_printf(s, "%u}\n", range->pins[a]);
1749 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1750 range->id, range->name,
1751 range->base, (range->base + range->npins - 1),
1753 (range->pin_base + range->npins - 1));
1756 mutex_unlock(&pctldev->mutex);
1760 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1762 static int pinctrl_devices_show(struct seq_file *s, void *what)
1764 struct pinctrl_dev *pctldev;
1766 seq_puts(s, "name [pinmux] [pinconf]\n");
1768 mutex_lock(&pinctrldev_list_mutex);
1770 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1771 seq_printf(s, "%s ", pctldev->desc->name);
1772 if (pctldev->desc->pmxops)
1773 seq_puts(s, "yes ");
1776 if (pctldev->desc->confops)
1783 mutex_unlock(&pinctrldev_list_mutex);
1787 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1789 static inline const char *map_type(enum pinctrl_map_type type)
1791 static const char * const names[] = {
1799 if (type >= ARRAY_SIZE(names))
1805 static int pinctrl_maps_show(struct seq_file *s, void *what)
1807 struct pinctrl_maps *maps_node;
1809 const struct pinctrl_map *map;
1811 seq_puts(s, "Pinctrl maps:\n");
1813 mutex_lock(&pinctrl_maps_mutex);
1814 for_each_maps(maps_node, i, map) {
1815 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1816 map->dev_name, map->name, map_type(map->type),
1819 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1820 seq_printf(s, "controlling device %s\n",
1821 map->ctrl_dev_name);
1823 switch (map->type) {
1824 case PIN_MAP_TYPE_MUX_GROUP:
1825 pinmux_show_map(s, map);
1827 case PIN_MAP_TYPE_CONFIGS_PIN:
1828 case PIN_MAP_TYPE_CONFIGS_GROUP:
1829 pinconf_show_map(s, map);
1837 mutex_unlock(&pinctrl_maps_mutex);
1841 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1843 static int pinctrl_show(struct seq_file *s, void *what)
1846 struct pinctrl_state *state;
1847 struct pinctrl_setting *setting;
1849 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1851 mutex_lock(&pinctrl_list_mutex);
1853 list_for_each_entry(p, &pinctrl_list, node) {
1854 seq_printf(s, "device: %s current state: %s\n",
1856 p->state ? p->state->name : "none");
1858 list_for_each_entry(state, &p->states, node) {
1859 seq_printf(s, " state: %s\n", state->name);
1861 list_for_each_entry(setting, &state->settings, node) {
1862 struct pinctrl_dev *pctldev = setting->pctldev;
1864 seq_printf(s, " type: %s controller %s ",
1865 map_type(setting->type),
1866 pinctrl_dev_get_name(pctldev));
1868 switch (setting->type) {
1869 case PIN_MAP_TYPE_MUX_GROUP:
1870 pinmux_show_setting(s, setting);
1872 case PIN_MAP_TYPE_CONFIGS_PIN:
1873 case PIN_MAP_TYPE_CONFIGS_GROUP:
1874 pinconf_show_setting(s, setting);
1883 mutex_unlock(&pinctrl_list_mutex);
1887 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1889 static struct dentry *debugfs_root;
1891 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1893 struct dentry *device_root;
1894 const char *debugfs_name;
1896 if (pctldev->desc->name &&
1897 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1898 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1899 "%s-%s", dev_name(pctldev->dev),
1900 pctldev->desc->name);
1901 if (!debugfs_name) {
1902 pr_warn("failed to determine debugfs dir name for %s\n",
1903 dev_name(pctldev->dev));
1907 debugfs_name = dev_name(pctldev->dev);
1910 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1911 pctldev->device_root = device_root;
1913 if (IS_ERR(device_root) || !device_root) {
1914 pr_warn("failed to create debugfs directory for %s\n",
1915 dev_name(pctldev->dev));
1918 debugfs_create_file("pins", 0444,
1919 device_root, pctldev, &pinctrl_pins_fops);
1920 debugfs_create_file("pingroups", 0444,
1921 device_root, pctldev, &pinctrl_groups_fops);
1922 debugfs_create_file("gpio-ranges", 0444,
1923 device_root, pctldev, &pinctrl_gpioranges_fops);
1924 if (pctldev->desc->pmxops)
1925 pinmux_init_device_debugfs(device_root, pctldev);
1926 if (pctldev->desc->confops)
1927 pinconf_init_device_debugfs(device_root, pctldev);
1930 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1932 debugfs_remove_recursive(pctldev->device_root);
1935 static void pinctrl_init_debugfs(void)
1937 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1938 if (IS_ERR(debugfs_root) || !debugfs_root) {
1939 pr_warn("failed to create debugfs directory\n");
1940 debugfs_root = NULL;
1944 debugfs_create_file("pinctrl-devices", 0444,
1945 debugfs_root, NULL, &pinctrl_devices_fops);
1946 debugfs_create_file("pinctrl-maps", 0444,
1947 debugfs_root, NULL, &pinctrl_maps_fops);
1948 debugfs_create_file("pinctrl-handles", 0444,
1949 debugfs_root, NULL, &pinctrl_fops);
1952 #else /* CONFIG_DEBUG_FS */
1954 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1958 static void pinctrl_init_debugfs(void)
1962 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1968 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1970 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1973 !ops->get_groups_count ||
1974 !ops->get_group_name)
1981 * pinctrl_init_controller() - init a pin controller device
1982 * @pctldesc: descriptor for this pin controller
1983 * @dev: parent device for this pin controller
1984 * @driver_data: private pin controller data for this pin controller
1986 static struct pinctrl_dev *
1987 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1990 struct pinctrl_dev *pctldev;
1994 return ERR_PTR(-EINVAL);
1995 if (!pctldesc->name)
1996 return ERR_PTR(-EINVAL);
1998 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2000 return ERR_PTR(-ENOMEM);
2002 /* Initialize pin control device struct */
2003 pctldev->owner = pctldesc->owner;
2004 pctldev->desc = pctldesc;
2005 pctldev->driver_data = driver_data;
2006 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2007 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2008 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2010 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2011 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2013 INIT_LIST_HEAD(&pctldev->gpio_ranges);
2014 INIT_LIST_HEAD(&pctldev->node);
2016 mutex_init(&pctldev->mutex);
2018 /* check core ops for sanity */
2019 ret = pinctrl_check_ops(pctldev);
2021 dev_err(dev, "pinctrl ops lacks necessary functions\n");
2025 /* If we're implementing pinmuxing, check the ops for sanity */
2026 if (pctldesc->pmxops) {
2027 ret = pinmux_check_ops(pctldev);
2032 /* If we're implementing pinconfig, check the ops for sanity */
2033 if (pctldesc->confops) {
2034 ret = pinconf_check_ops(pctldev);
2039 /* Register all the pins */
2040 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
2041 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2043 dev_err(dev, "error during pin registration\n");
2044 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2052 mutex_destroy(&pctldev->mutex);
2054 return ERR_PTR(ret);
2057 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2059 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2060 if (PTR_ERR(pctldev->p) == -ENODEV) {
2061 dev_dbg(pctldev->dev, "no hogs found\n");
2066 if (IS_ERR(pctldev->p)) {
2067 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2068 PTR_ERR(pctldev->p));
2070 return PTR_ERR(pctldev->p);
2073 pctldev->hog_default =
2074 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2075 if (IS_ERR(pctldev->hog_default)) {
2076 dev_dbg(pctldev->dev,
2077 "failed to lookup the default state\n");
2079 if (pinctrl_select_state(pctldev->p,
2080 pctldev->hog_default))
2081 dev_err(pctldev->dev,
2082 "failed to select default state\n");
2085 pctldev->hog_sleep =
2086 pinctrl_lookup_state(pctldev->p,
2087 PINCTRL_STATE_SLEEP);
2088 if (IS_ERR(pctldev->hog_sleep))
2089 dev_dbg(pctldev->dev,
2090 "failed to lookup the sleep state\n");
2095 int pinctrl_enable(struct pinctrl_dev *pctldev)
2099 error = pinctrl_claim_hogs(pctldev);
2101 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2103 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2104 pctldev->desc->npins);
2105 mutex_destroy(&pctldev->mutex);
2111 mutex_lock(&pinctrldev_list_mutex);
2112 list_add_tail(&pctldev->node, &pinctrldev_list);
2113 mutex_unlock(&pinctrldev_list_mutex);
2115 pinctrl_init_device_debugfs(pctldev);
2119 EXPORT_SYMBOL_GPL(pinctrl_enable);
2122 * pinctrl_register() - register a pin controller device
2123 * @pctldesc: descriptor for this pin controller
2124 * @dev: parent device for this pin controller
2125 * @driver_data: private pin controller data for this pin controller
2127 * Note that pinctrl_register() is known to have problems as the pin
2128 * controller driver functions are called before the driver has a
2129 * struct pinctrl_dev handle. To avoid issues later on, please use the
2130 * new pinctrl_register_and_init() below instead.
2132 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2133 struct device *dev, void *driver_data)
2135 struct pinctrl_dev *pctldev;
2138 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2139 if (IS_ERR(pctldev))
2142 error = pinctrl_enable(pctldev);
2144 return ERR_PTR(error);
2148 EXPORT_SYMBOL_GPL(pinctrl_register);
2151 * pinctrl_register_and_init() - register and init pin controller device
2152 * @pctldesc: descriptor for this pin controller
2153 * @dev: parent device for this pin controller
2154 * @driver_data: private pin controller data for this pin controller
2155 * @pctldev: pin controller device
2157 * Note that pinctrl_enable() still needs to be manually called after
2158 * this once the driver is ready.
2160 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2161 struct device *dev, void *driver_data,
2162 struct pinctrl_dev **pctldev)
2164 struct pinctrl_dev *p;
2166 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2171 * We have pinctrl_start() call functions in the pin controller
2172 * driver with create_pinctrl() for at least dt_node_to_map(). So
2173 * let's make sure pctldev is properly initialized for the
2174 * pin controller driver before we do anything.
2180 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2183 * pinctrl_unregister() - unregister pinmux
2184 * @pctldev: pin controller to unregister
2186 * Called by pinmux drivers to unregister a pinmux.
2188 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2190 struct pinctrl_gpio_range *range, *n;
2195 mutex_lock(&pctldev->mutex);
2196 pinctrl_remove_device_debugfs(pctldev);
2197 mutex_unlock(&pctldev->mutex);
2199 if (!IS_ERR_OR_NULL(pctldev->p))
2200 pinctrl_put(pctldev->p);
2202 mutex_lock(&pinctrldev_list_mutex);
2203 mutex_lock(&pctldev->mutex);
2204 /* TODO: check that no pinmuxes are still active? */
2205 list_del(&pctldev->node);
2206 pinmux_generic_free_functions(pctldev);
2207 pinctrl_generic_free_groups(pctldev);
2208 /* Destroy descriptor tree */
2209 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2210 pctldev->desc->npins);
2211 /* remove gpio ranges map */
2212 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2213 list_del(&range->node);
2215 mutex_unlock(&pctldev->mutex);
2216 mutex_destroy(&pctldev->mutex);
2218 mutex_unlock(&pinctrldev_list_mutex);
2220 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2222 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2224 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2226 pinctrl_unregister(pctldev);
2229 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2231 struct pctldev **r = res;
2233 if (WARN_ON(!r || !*r))
2240 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2241 * @dev: parent device for this pin controller
2242 * @pctldesc: descriptor for this pin controller
2243 * @driver_data: private pin controller data for this pin controller
2245 * Returns an error pointer if pincontrol register failed. Otherwise
2246 * it returns valid pinctrl handle.
2248 * The pinctrl device will be automatically released when the device is unbound.
2250 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2251 struct pinctrl_desc *pctldesc,
2254 struct pinctrl_dev **ptr, *pctldev;
2256 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2258 return ERR_PTR(-ENOMEM);
2260 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2261 if (IS_ERR(pctldev)) {
2267 devres_add(dev, ptr);
2271 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2274 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2275 * @dev: parent device for this pin controller
2276 * @pctldesc: descriptor for this pin controller
2277 * @driver_data: private pin controller data for this pin controller
2278 * @pctldev: pin controller device
2280 * Returns zero on success or an error number on failure.
2282 * The pinctrl device will be automatically released when the device is unbound.
2284 int devm_pinctrl_register_and_init(struct device *dev,
2285 struct pinctrl_desc *pctldesc,
2287 struct pinctrl_dev **pctldev)
2289 struct pinctrl_dev **ptr;
2292 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2296 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2303 devres_add(dev, ptr);
2307 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2310 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2311 * @dev: device for which resource was allocated
2312 * @pctldev: the pinctrl device to unregister.
2314 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2316 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2317 devm_pinctrl_dev_match, pctldev));
2319 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2321 static int __init pinctrl_init(void)
2323 pr_info("initialized pinctrl subsystem\n");
2324 pinctrl_init_debugfs();
2328 /* init early since many drivers really need to initialized pinmux early */
2329 core_initcall(pinctrl_init);