1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2015-2016 Marvell International Ltd.
9 #include <asm/arch/cpu.h>
10 #include <asm/arch/soc.h>
12 #include "comphy_a3700.h"
14 DECLARE_GLOBAL_DATA_PTR;
16 struct sgmii_phy_init_data_fix {
21 /* Changes to 40M1G25 mode data required for running 40M3G125 init mode */
22 static struct sgmii_phy_init_data_fix sgmii_phy_init_fix[] = {
23 {0x005, 0x07CC}, {0x015, 0x0000}, {0x01B, 0x0000}, {0x01D, 0x0000},
24 {0x01E, 0x0000}, {0x01F, 0x0000}, {0x020, 0x0000}, {0x021, 0x0030},
25 {0x026, 0x0888}, {0x04D, 0x0152}, {0x04F, 0xA020}, {0x050, 0x07CC},
26 {0x053, 0xE9CA}, {0x055, 0xBD97}, {0x071, 0x3015}, {0x076, 0x03AA},
27 {0x07C, 0x0FDF}, {0x0C2, 0x3030}, {0x0C3, 0x8000}, {0x0E2, 0x5550},
28 {0x0E3, 0x12A4}, {0x0E4, 0x7D00}, {0x0E6, 0x0C83}, {0x101, 0xFCC0},
32 /* 40M1G25 mode init data */
33 static u16 sgmii_phy_init[512] = {
35 /*-----------------------------------------------------------*/
37 0x3110, 0xFD83, 0x6430, 0x412F, 0x82C0, 0x06FA, 0x4500, 0x6D26, /* 00 */
38 0xAFC0, 0x8000, 0xC000, 0x0000, 0x2000, 0x49CC, 0x0BC9, 0x2A52, /* 08 */
39 0x0BD2, 0x0CDE, 0x13D2, 0x0CE8, 0x1149, 0x10E0, 0x0000, 0x0000, /* 10 */
40 0x0000, 0x0000, 0x0000, 0x0001, 0x0000, 0x4134, 0x0D2D, 0xFFFF, /* 18 */
41 0xFFE0, 0x4030, 0x1016, 0x0030, 0x0000, 0x0800, 0x0866, 0x0000, /* 20 */
42 0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, /* 28 */
43 0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
44 0x0000, 0x0000, 0x000F, 0x6A62, 0x1988, 0x3100, 0x3100, 0x3100, /* 38 */
45 0x3100, 0xA708, 0x2430, 0x0830, 0x1030, 0x4610, 0xFF00, 0xFF00, /* 40 */
46 0x0060, 0x1000, 0x0400, 0x0040, 0x00F0, 0x0155, 0x1100, 0xA02A, /* 48 */
47 0x06FA, 0x0080, 0xB008, 0xE3ED, 0x5002, 0xB592, 0x7A80, 0x0001, /* 50 */
48 0x020A, 0x8820, 0x6014, 0x8054, 0xACAA, 0xFC88, 0x2A02, 0x45CF, /* 58 */
49 0x000F, 0x1817, 0x2860, 0x064F, 0x0000, 0x0204, 0x1800, 0x6000, /* 60 */
50 0x810F, 0x4F23, 0x4000, 0x4498, 0x0850, 0x0000, 0x000E, 0x1002, /* 68 */
51 0x9D3A, 0x3009, 0xD066, 0x0491, 0x0001, 0x6AB0, 0x0399, 0x3780, /* 70 */
52 0x0040, 0x5AC0, 0x4A80, 0x0000, 0x01DF, 0x0000, 0x0007, 0x0000, /* 78 */
53 0x2D54, 0x00A1, 0x4000, 0x0100, 0xA20A, 0x0000, 0x0000, 0x0000, /* 80 */
54 0x0000, 0x0000, 0x0000, 0x7400, 0x0E81, 0x1000, 0x1242, 0x0210, /* 88 */
55 0x80DF, 0x0F1F, 0x2F3F, 0x4F5F, 0x6F7F, 0x0F1F, 0x2F3F, 0x4F5F, /* 90 */
56 0x6F7F, 0x4BAD, 0x0000, 0x0000, 0x0800, 0x0000, 0x2400, 0xB651, /* 98 */
57 0xC9E0, 0x4247, 0x0A24, 0x0000, 0xAF19, 0x1004, 0x0000, 0x0000, /* A0 */
58 0x0000, 0x0013, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* A8 */
59 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* B0 */
60 0x0000, 0x0000, 0x0000, 0x0060, 0x0000, 0x0000, 0x0000, 0x0000, /* B8 */
61 0x0000, 0x0000, 0x3010, 0xFA00, 0x0000, 0x0000, 0x0000, 0x0003, /* C0 */
62 0x1618, 0x8200, 0x8000, 0x0400, 0x050F, 0x0000, 0x0000, 0x0000, /* C8 */
63 0x4C93, 0x0000, 0x1000, 0x1120, 0x0010, 0x1242, 0x1242, 0x1E00, /* D0 */
64 0x0000, 0x0000, 0x0000, 0x00F8, 0x0000, 0x0041, 0x0800, 0x0000, /* D8 */
65 0x82A0, 0x572E, 0x2490, 0x14A9, 0x4E00, 0x0000, 0x0803, 0x0541, /* E0 */
66 0x0C15, 0x0000, 0x0000, 0x0400, 0x2626, 0x0000, 0x0000, 0x4200, /* E8 */
67 0x0000, 0xAA55, 0x1020, 0x0000, 0x0000, 0x5010, 0x0000, 0x0000, /* F0 */
68 0x0000, 0x0000, 0x5000, 0x0000, 0x0000, 0x0000, 0x02F2, 0x0000, /* F8 */
69 0x101F, 0xFDC0, 0x4000, 0x8010, 0x0110, 0x0006, 0x0000, 0x0000, /*100 */
70 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*108 */
71 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04C6, 0x0000, /*110 */
72 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*118 */
73 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*120 */
74 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*128 */
75 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*130 */
76 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*138 */
77 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*140 */
78 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*148 */
79 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*150 */
80 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*158 */
81 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*160 */
82 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*168 */
83 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*170 */
84 0x0000, 0x0000, 0x0000, 0x00F0, 0x08A2, 0x3112, 0x0A14, 0x0000, /*178 */
85 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*180 */
86 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*188 */
87 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*190 */
88 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*198 */
89 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A0 */
90 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A8 */
91 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B0 */
92 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B8 */
93 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C0 */
94 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C8 */
95 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D0 */
96 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D8 */
97 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E0 */
98 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E8 */
99 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1F0 */
100 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 /*1F8 */
106 * return: 1 on success, 0 on timeout
108 static u32 comphy_poll_reg(void *addr, u32 val, u32 mask, u8 op_type)
110 u32 rval = 0xDEAD, timeout;
112 for (timeout = PLL_LOCK_TIMEOUT; timeout > 0; timeout--) {
113 if (op_type == POLL_16B_REG)
114 rval = readw(addr); /* 16 bit */
116 rval = readl(addr) ; /* 32 bit */
118 if ((rval & mask) == val)
124 debug("Time out waiting (%p = %#010x)\n", addr, rval);
129 * comphy_pcie_power_up
131 * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
133 static int comphy_pcie_power_up(u32 speed, u32 invert)
142 reg_set16(phy_addr(PCIE, LANE_CFG1), bf_use_max_pll_rate, 0);
145 * 2. Select 20 bit SERDES interface.
147 reg_set16(phy_addr(PCIE, GLOB_CLK_SRC_LO), bf_cfg_sel_20b, 0);
150 * 3. Force to use reg setting for PCIe mode
152 reg_set16(phy_addr(PCIE, MISC_REG1), bf_sel_bits_pcie_force, 0);
157 reg_set16(phy_addr(PCIE, PWR_MGM_TIM1), 0x10C, 0xFFFF);
160 * 5. Enable idle sync
162 reg_set16(phy_addr(PCIE, UNIT_CTRL), 0x60 | rb_idle_sync_en, 0xFFFF);
165 * 6. Enable the output of 100M/125M/500M clock
167 reg_set16(phy_addr(PCIE, MISC_REG0),
168 0xA00D | rb_clk500m_en | rb_clk100m_125m_en, 0xFFFF);
173 reg_set(PCIE_REF_CLK_ADDR, 0x1342, 0xFFFFFFFF);
176 * 8. Check crystal jumper setting and program the Power and PLL
177 * Control accordingly
179 if (get_ref_clk() == 40) {
181 reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC63, 0xFFFF);
184 reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC62, 0xFFFF);
188 * 9. Override Speed_PLL value and use MAC PLL
190 reg_set16(phy_addr(PCIE, KVCO_CAL_CTRL), 0x0040 | rb_use_max_pll_rate,
194 * 10. Check the Polarity invert bit
196 if (invert & PHY_POLARITY_TXD_INVERT)
197 reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_txd_inv, 0);
199 if (invert & PHY_POLARITY_RXD_INVERT)
200 reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_rxd_inv, 0);
203 * 11. Release SW reset
205 reg_set16(phy_addr(PCIE, GLOB_PHY_CTRL0),
206 rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32,
207 bf_soft_rst | bf_mode_refdiv);
209 /* Wait for > 55 us to allow PCLK be enabled */
210 udelay(PLL_SET_DELAY_US);
212 /* Assert PCLK enabled */
213 ret = comphy_poll_reg(phy_addr(PCIE, LANE_STAT1), /* address */
214 rb_txdclk_pclk_en, /* value */
215 rb_txdclk_pclk_en, /* mask */
216 POLL_16B_REG); /* 16bit */
218 printf("Failed to lock PCIe PLL\n");
222 /* Return the status of the PLL */
231 static void reg_set_indirect(u32 reg, u16 data, u16 mask)
233 reg_set(rh_vsreg_addr, reg, 0xFFFFFFFF);
234 reg_set(rh_vsreg_data, data, mask);
238 * comphy_sata_power_up
240 * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
242 static int comphy_sata_power_up(void)
249 * 0. Swap SATA TX lines
251 reg_set_indirect(vphy_sync_pattern_reg, bs_txd_inv, bs_txd_inv);
254 * 1. Select 40-bit data width width
256 reg_set_indirect(vphy_loopback_reg0, 0x800, bs_phyintf_40bit);
259 * 2. Select reference clock and PHY mode (SATA)
261 if (get_ref_clk() == 40) {
263 reg_set_indirect(vphy_power_reg0, 0x3, 0x00FF);
266 reg_set_indirect(vphy_power_reg0, 0x1, 0x00FF);
270 * 3. Use maximum PLL rate (no power save)
272 reg_set_indirect(vphy_calctl_reg, bs_max_pll_rate, bs_max_pll_rate);
275 * 4. Reset reserved bit (??)
277 reg_set_indirect(vphy_reserve_reg, 0, bs_phyctrl_frm_pin);
280 * 5. Set vendor-specific configuration (??)
282 reg_set(rh_vs0_a, vsata_ctrl_reg, 0xFFFFFFFF);
283 reg_set(rh_vs0_d, bs_phy_pu_pll, bs_phy_pu_pll);
285 /* Wait for > 55 us to allow PLL be enabled */
286 udelay(PLL_SET_DELAY_US);
288 /* Assert SATA PLL enabled */
289 reg_set(rh_vsreg_addr, vphy_loopback_reg0, 0xFFFFFFFF);
290 ret = comphy_poll_reg(rh_vsreg_data, /* address */
291 bs_pll_ready_tx, /* value */
292 bs_pll_ready_tx, /* mask */
293 POLL_32B_REG); /* 32bit */
295 printf("Failed to lock SATA PLL\n");
303 * comphy_usb3_power_up
305 * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
307 static int comphy_usb3_power_up(u32 type, u32 speed, u32 invert)
314 * 1. Power up OTG module
316 reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0);
319 * 2. Set counter for 100us pulse in USB3 Host and Device
320 * restore default burst size limit (Reference Clock 31:24)
322 reg_set(USB3_CTRPUL_VAL_REG, 0x8 << 24, rb_usb3_ctr_100ns);
325 /* 0xd005c300 = 0x1001 */
326 /* set PRD_TXDEEMPH (3.5db de-emph) */
327 reg_set16(phy_addr(USB3, LANE_CFG0), 0x1, 0xFF);
330 * unset BIT0: set Tx Electrical Idle Mode: Transmitter is in
331 * low impedance mode during electrical idle
333 /* unset BIT4: set G2 Tx Datapath with no Delayed Latency */
334 /* unset BIT6: set Tx Detect Rx Mode at LoZ mode */
335 reg_set16(phy_addr(USB3, LANE_CFG1), 0x0, 0xFFFF);
338 /* 0xd005c310 = 0x93: set Spread Spectrum Clock Enabled */
339 reg_set16(phy_addr(USB3, LANE_CFG4), bf_spread_spectrum_clock_en, 0x80);
342 * set Override Margining Controls From the MAC: Use margining signals
343 * from lane configuration
345 reg_set16(phy_addr(USB3, TEST_MODE_CTRL), rb_mode_margin_override,
348 /* set Lane-to-Lane Bundle Clock Sampling Period = per PCLK cycles */
349 /* set Mode Clock Source = PCLK is generated from REFCLK */
350 reg_set16(phy_addr(USB3, GLOB_CLK_SRC_LO), 0x0, 0xFF);
352 /* set G2 Spread Spectrum Clock Amplitude at 4K */
353 reg_set16(phy_addr(USB3, GEN2_SETTINGS_2), g2_tx_ssc_amp, 0xF000);
356 * unset G3 Spread Spectrum Clock Amplitude & set G3 TX and RX Register
357 * Master Current Select
359 reg_set16(phy_addr(USB3, GEN2_SETTINGS_3), 0x0, 0xFFFF);
362 * 3. Check crystal jumper setting and program the Power and PLL
363 * Control accordingly
365 if (get_ref_clk() == 40) {
367 reg_set16(phy_addr(USB3, PWR_PLL_CTRL), 0xFCA3, 0xFFFF);
370 reg_set16(phy_addr(USB3, PWR_PLL_CTRL), 0xFCA2, 0xFFFF);
376 reg_set16(phy_addr(USB3, PWR_MGM_TIM1), 0x10C, 0xFFFF);
379 * 5. Enable idle sync
381 reg_set16(phy_addr(USB3, UNIT_CTRL), 0x60 | rb_idle_sync_en, 0xFFFF);
384 * 6. Enable the output of 500M clock
386 reg_set16(phy_addr(USB3, MISC_REG0), 0xA00D | rb_clk500m_en, 0xFFFF);
389 * 7. Set 20-bit data width
391 reg_set16(phy_addr(USB3, DIG_LB_EN), 0x0400, 0xFFFF);
394 * 8. Override Speed_PLL value and use MAC PLL
396 reg_set16(phy_addr(USB3, KVCO_CAL_CTRL), 0x0040 | rb_use_max_pll_rate,
400 * 9. Check the Polarity invert bit
402 if (invert & PHY_POLARITY_TXD_INVERT)
403 reg_set16(phy_addr(USB3, SYNC_PATTERN), phy_txd_inv, 0);
405 if (invert & PHY_POLARITY_RXD_INVERT)
406 reg_set16(phy_addr(USB3, SYNC_PATTERN), phy_rxd_inv, 0);
409 * 10. Release SW reset
411 reg_set16(phy_addr(USB3, GLOB_PHY_CTRL0),
412 rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32 | 0x20,
415 /* Wait for > 55 us to allow PCLK be enabled */
416 udelay(PLL_SET_DELAY_US);
418 /* Assert PCLK enabled */
419 ret = comphy_poll_reg(phy_addr(USB3, LANE_STAT1), /* address */
420 rb_txdclk_pclk_en, /* value */
421 rb_txdclk_pclk_en, /* mask */
422 POLL_16B_REG); /* 16bit */
424 printf("Failed to lock USB3 PLL\n");
427 * Set Soft ID for Host mode (Device mode works with Hard ID
430 if (type == PHY_TYPE_USB3_HOST0) {
432 * set BIT0: set ID_MODE of Host/Device = "Soft ID" (BIT1)
433 * clear BIT1: set SOFT_ID = Host
434 * set BIT4: set INT_MODE = ID. Interrupt Mode: enable
435 * interrupt by ID instead of using both interrupts
436 * of HOST and Device ORed simultaneously
437 * INT_MODE=ID in order to avoid unexpected
438 * behaviour or both interrupts together
440 reg_set(USB32_CTRL_BASE,
441 usb32_ctrl_id_mode | usb32_ctrl_int_mode,
442 usb32_ctrl_id_mode | usb32_ctrl_soft_id |
443 usb32_ctrl_int_mode);
452 * comphy_usb2_power_up
454 * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
456 static int comphy_usb2_power_up(u8 usb32)
462 if (usb32 != 0 && usb32 != 1) {
463 printf("invalid usb32 value: (%d), should be either 0 or 1\n",
470 * 0. Setup PLL. 40MHz clock uses defaults.
471 * See "PLL Settings for Typical REFCLK" table
473 if (get_ref_clk() == 25) {
474 reg_set(USB2_PHY_BASE(usb32), 5 | (96 << 16),
475 0x3F | (0xFF << 16) | (0x3 << 28));
479 * 1. PHY pull up and disable USB2 suspend
481 reg_set(USB2_PHY_CTRL_ADDR(usb32),
482 RB_USB2PHY_SUSPM(usb32) | RB_USB2PHY_PU(usb32), 0);
486 * 2. Power up OTG module
488 reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0);
491 * 3. Configure PHY charger detection
493 reg_set(USB2_PHY_CHRGR_DET_ADDR, 0,
494 rb_cdp_en | rb_dcp_en | rb_pd_en | rb_cdp_dm_auto |
495 rb_enswitch_dp | rb_enswitch_dm | rb_pu_chrg_dtc);
498 /* Assert PLL calibration done */
499 ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32),
500 rb_usb2phy_pllcal_done, /* value */
501 rb_usb2phy_pllcal_done, /* mask */
502 POLL_32B_REG); /* 32bit */
504 printf("Failed to end USB2 PLL calibration\n");
506 /* Assert impedance calibration done */
507 ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32),
508 rb_usb2phy_impcal_done, /* value */
509 rb_usb2phy_impcal_done, /* mask */
510 POLL_32B_REG); /* 32bit */
512 printf("Failed to end USB2 impedance calibration\n");
514 /* Assert squetch calibration done */
515 ret = comphy_poll_reg(USB2_PHY_RX_CHAN_CTRL1_ADDR(usb32),
516 rb_usb2phy_sqcal_done, /* value */
517 rb_usb2phy_sqcal_done, /* mask */
518 POLL_32B_REG); /* 32bit */
520 printf("Failed to end USB2 unknown calibration\n");
522 /* Assert PLL is ready */
523 ret = comphy_poll_reg(USB2_PHY_PLL_CTRL0_ADDR(usb32),
524 rb_usb2phy_pll_ready, /* value */
525 rb_usb2phy_pll_ready, /* mask */
526 POLL_32B_REG); /* 32bit */
529 printf("Failed to lock USB2 PLL\n");
537 * comphy_emmc_power_up
539 * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
541 static int comphy_emmc_power_up(void)
546 * 1. Bus power ON, Bus voltage 1.8V
548 reg_set(SDIO_HOST_CTRL1_ADDR, 0xB00, 0xF00);
551 * 2. Set FIFO parameters
553 reg_set(SDIO_SDHC_FIFO_ADDR, 0x315, 0xFFFFFFFF);
556 * 3. Set Capabilities 1_2
558 reg_set(SDIO_CAP_12_ADDR, 0x25FAC8B2, 0xFFFFFFFF);
563 reg_set(SDIO_ENDIAN_ADDR, 0x00c00000, 0);
568 reg_set(SDIO_PHY_TIMING_ADDR, 0x80000000, 0x80000000);
569 reg_set(SDIO_PHY_PAD_CTRL0_ADDR, 0x50000000, 0xF0000000);
574 reg_set(SDIO_DLL_RST_ADDR, 0xFFFEFFFF, 0);
575 reg_set(SDIO_DLL_RST_ADDR, 0x00010000, 0);
583 * comphy_sgmii_power_up
587 static void comphy_sgmii_phy_init(u32 lane, u32 speed)
589 const int fix_arr_sz = ARRAY_SIZE(sgmii_phy_init_fix);
594 for (addr = 0; addr < 512; addr++) {
596 * All PHY register values are defined in full for 3.125Gbps
597 * SERDES speed. The values required for 1.25 Gbps are almost
598 * the same and only few registers should be "fixed" in
599 * comparison to 3.125 Gbps values. These register values are
600 * stored in "sgmii_phy_init_fix" array.
602 if ((speed != PHY_SPEED_1_25G) &&
603 (sgmii_phy_init_fix[fix_idx].addr == addr)) {
605 val = sgmii_phy_init_fix[fix_idx].value;
606 if (fix_idx < fix_arr_sz)
609 val = sgmii_phy_init[addr];
612 reg_set16(sgmiiphy_addr(lane, addr), val, 0xFFFF);
617 * comphy_sgmii_power_up
619 * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
621 static int comphy_sgmii_power_up(u32 lane, u32 speed, u32 invert)
628 * 1. Configure PHY to SATA/SAS mode by setting pin PIN_PIPE_SEL=0
630 reg_set(COMPHY_SEL_ADDR, 0, rf_compy_select(lane));
633 * 2. Reset PHY by setting PHY input port PIN_RESET=1.
634 * 3. Set PHY input port PIN_TX_IDLE=1, PIN_PU_IVREF=1 to keep
635 * PHY TXP/TXN output to idle state during PHY initialization
636 * 4. Set PHY input port PIN_PU_PLL=0, PIN_PU_RX=0, PIN_PU_TX=0.
638 reg_set(COMPHY_PHY_CFG1_ADDR(lane),
639 rb_pin_reset_comphy | rb_pin_tx_idle | rb_pin_pu_iveref,
640 rb_pin_reset_core | rb_pin_pu_pll |
641 rb_pin_pu_rx | rb_pin_pu_tx);
644 * 5. Release reset to the PHY by setting PIN_RESET=0.
646 reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0, rb_pin_reset_comphy);
649 * 7. Set PIN_PHY_GEN_TX[3:0] and PIN_PHY_GEN_RX[3:0] to decide
652 if (speed == PHY_SPEED_3_125G) { /* 3.125 GHz */
653 reg_set(COMPHY_PHY_CFG1_ADDR(lane),
654 (0x8 << rf_gen_rx_sel_shift) |
655 (0x8 << rf_gen_tx_sel_shift),
656 rf_gen_rx_select | rf_gen_tx_select);
658 } else if (speed == PHY_SPEED_1_25G) { /* 1.25 GHz */
659 reg_set(COMPHY_PHY_CFG1_ADDR(lane),
660 (0x6 << rf_gen_rx_sel_shift) |
661 (0x6 << rf_gen_tx_sel_shift),
662 rf_gen_rx_select | rf_gen_tx_select);
664 printf("Unsupported COMPHY speed!\n");
669 * 8. Wait 1mS for bandgap and reference clocks to stabilize;
670 * then start SW programming.
674 /* 9. Program COMPHY register PHY_MODE */
675 reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
676 PHY_MODE_SGMII << rf_phy_mode_shift, rf_phy_mode_mask);
679 * 10. Set COMPHY register REFCLK_SEL to select the correct REFCLK
682 reg_set16(sgmiiphy_addr(lane, MISC_REG0), 0, rb_ref_clk_sel);
685 * 11. Set correct reference clock frequency in COMPHY register
688 if (get_ref_clk() == 40) {
689 reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
690 0x4 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask);
693 reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
694 0x1 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask);
697 /* 12. Program COMPHY register PHY_GEN_MAX[1:0] */
699 * This step is mentioned in the flow received from verification team.
700 * However the PHY_GEN_MAX value is only meaningful for other
701 * interfaces (not SGMII). For instance, it selects SATA speed
702 * 1.5/3/6 Gbps or PCIe speed 2.5/5 Gbps
706 * 13. Program COMPHY register SEL_BITS to set correct parallel data
710 reg_set16(sgmiiphy_addr(lane, DIG_LB_EN), 0, rf_data_width_mask);
713 * 14. As long as DFE function needs to be enabled in any mode,
714 * COMPHY register DFE_UPDATE_EN[5:0] shall be programmed to 0x3F
715 * for real chip during COMPHY power on.
718 * The step 14 exists (and empty) in the original initialization flow
719 * obtained from the verification team. According to the functional
720 * specification DFE_UPDATE_EN already has the default value 0x3F
724 * 15. Program COMPHY GEN registers.
725 * These registers should be programmed based on the lab testing
726 * result to achieve optimal performance. Please contact the CEA
727 * group to get the related GEN table during real chip bring-up.
728 * We only requred to run though the entire registers programming
729 * flow defined by "comphy_sgmii_phy_init" when the REF clock is
730 * 40 MHz. For REF clock 25 MHz the default values stored in PHY
733 debug("Running C-DPI phy init %s mode\n",
734 speed == PHY_SPEED_3_125G ? "2G5" : "1G");
735 if (get_ref_clk() == 40)
736 comphy_sgmii_phy_init(lane, speed);
739 * 16. [Simulation Only] should not be used for real chip.
740 * By pass power up calibration by programming EXT_FORCE_CAL_DONE
741 * (R02h[9]) to 1 to shorten COMPHY simulation time.
744 * 17. [Simulation Only: should not be used for real chip]
745 * Program COMPHY register FAST_DFE_TIMER_EN=1 to shorten RX
746 * training simulation time.
750 * 18. Check the PHY Polarity invert bit
752 if (invert & PHY_POLARITY_TXD_INVERT)
753 reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_txd_inv, 0);
755 if (invert & PHY_POLARITY_RXD_INVERT)
756 reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_rxd_inv, 0);
759 * 19. Set PHY input ports PIN_PU_PLL, PIN_PU_TX and PIN_PU_RX to 1
760 * to start PHY power up sequence. All the PHY register
761 * programming should be done before PIN_PU_PLL=1. There should be
762 * no register programming for normal PHY operation from this point.
764 reg_set(COMPHY_PHY_CFG1_ADDR(lane),
765 rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx,
766 rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx);
769 * 20. Wait for PHY power up sequence to finish by checking output ports
770 * PIN_PLL_READY_TX=1 and PIN_PLL_READY_RX=1.
772 ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane), /* address */
773 rb_pll_ready_tx | rb_pll_ready_rx, /* value */
774 rb_pll_ready_tx | rb_pll_ready_rx, /* mask */
775 POLL_32B_REG); /* 32bit */
777 printf("Failed to lock PLL for SGMII PHY %d\n", lane);
780 * 21. Set COMPHY input port PIN_TX_IDLE=0
782 reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0x0, rb_pin_tx_idle);
785 * 22. After valid data appear on PIN_RXDATA bus, set PIN_RX_INIT=1.
786 * to start RX initialization. PIN_RX_INIT_DONE will be cleared to
787 * 0 by the PHY. After RX initialization is done, PIN_RX_INIT_DONE
788 * will be set to 1 by COMPHY. Set PIN_RX_INIT=0 after
789 * PIN_RX_INIT_DONE= 1.
790 * Please refer to RX initialization part for details.
792 reg_set(COMPHY_PHY_CFG1_ADDR(lane), rb_phy_rx_init, 0x0);
794 ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane), /* address */
795 rb_rx_init_done, /* value */
796 rb_rx_init_done, /* mask */
797 POLL_32B_REG); /* 32bit */
799 printf("Failed to init RX of SGMII PHY %d\n", lane);
806 void comphy_dedicated_phys_init(void)
808 int node, usb32, ret = 1;
809 const void *blob = gd->fdt_blob;
813 for (usb32 = 0; usb32 <= 1; usb32++) {
815 * There are 2 UTMI PHYs in this SOC.
816 * One is independendent and one is paired with USB3 port (OTG)
819 node = fdt_node_offset_by_compatible(
820 blob, -1, "marvell,armada-3700-ehci");
822 node = fdt_node_offset_by_compatible(
823 blob, -1, "marvell,armada3700-xhci");
827 if (fdtdec_get_is_enabled(blob, node)) {
828 ret = comphy_usb2_power_up(usb32);
830 printf("Failed to initialize UTMI PHY\n");
832 debug("UTMI PHY init succeed\n");
834 debug("USB%d node is disabled\n",
838 debug("No USB%d node in DT\n", usb32 == 0 ? 2 : 3);
842 node = fdt_node_offset_by_compatible(blob, -1,
843 "marvell,armada-3700-ahci");
845 if (fdtdec_get_is_enabled(blob, node)) {
846 ret = comphy_sata_power_up();
848 printf("Failed to initialize SATA PHY\n");
850 debug("SATA PHY init succeed\n");
852 debug("SATA node is disabled\n");
855 debug("No SATA node in DT\n");
858 node = fdt_node_offset_by_compatible(blob, -1,
859 "marvell,armada-8k-sdhci");
861 node = fdt_node_offset_by_compatible(
862 blob, -1, "marvell,armada-3700-sdhci");
866 if (fdtdec_get_is_enabled(blob, node)) {
867 ret = comphy_emmc_power_up();
869 printf("Failed to initialize SDIO/eMMC PHY\n");
871 debug("SDIO/eMMC PHY init succeed\n");
873 debug("SDIO/eMMC node is disabled\n");
876 debug("No SDIO/eMMC node in DT\n");
882 int comphy_a3700_init(struct chip_serdes_phy_config *chip_cfg,
883 struct comphy_map *serdes_map)
885 struct comphy_map *comphy_map;
886 u32 comphy_max_count = chip_cfg->comphy_lanes_count;
891 for (lane = 0, comphy_map = serdes_map; lane < comphy_max_count;
892 lane++, comphy_map++) {
893 debug("Initialize serdes number %d\n", lane);
894 debug("Serdes type = 0x%x invert=%d\n",
895 comphy_map->type, comphy_map->invert);
897 switch (comphy_map->type) {
898 case PHY_TYPE_UNCONNECTED:
903 ret = comphy_pcie_power_up(comphy_map->speed,
907 case PHY_TYPE_USB3_HOST0:
908 case PHY_TYPE_USB3_DEVICE:
909 ret = comphy_usb3_power_up(comphy_map->type,
914 case PHY_TYPE_SGMII0:
915 case PHY_TYPE_SGMII1:
916 ret = comphy_sgmii_power_up(lane, comphy_map->speed,
921 debug("Unknown SerDes type, skip initialize SerDes %d\n",
927 printf("PLL is not locked - Failed to initialize lane %d\n",