Merge tag 'net-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[platform/kernel/linux-starfive.git] / drivers / perf / riscv_pmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This implementation is based on old RISC-V perf and ARM perf event code
8  * which are in turn based on sparc64 and x86 code.
9  */
10
11 #include <linux/cpumask.h>
12 #include <linux/irq.h>
13 #include <linux/irqdesc.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/printk.h>
16 #include <linux/smp.h>
17 #include <linux/sched_clock.h>
18
19 #include <asm/sbi.h>
20
21 static bool riscv_perf_user_access(struct perf_event *event)
22 {
23         return ((event->attr.type == PERF_TYPE_HARDWARE) ||
24                 (event->attr.type == PERF_TYPE_HW_CACHE) ||
25                 (event->attr.type == PERF_TYPE_RAW)) &&
26                 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
27 }
28
29 void arch_perf_update_userpage(struct perf_event *event,
30                                struct perf_event_mmap_page *userpg, u64 now)
31 {
32         struct clock_read_data *rd;
33         unsigned int seq;
34         u64 ns;
35
36         userpg->cap_user_time = 0;
37         userpg->cap_user_time_zero = 0;
38         userpg->cap_user_time_short = 0;
39         userpg->cap_user_rdpmc = riscv_perf_user_access(event);
40
41 #ifdef CONFIG_RISCV_PMU
42         /*
43          * The counters are 64-bit but the priv spec doesn't mandate all the
44          * bits to be implemented: that's why, counter width can vary based on
45          * the cpu vendor.
46          */
47         if (userpg->cap_user_rdpmc)
48                 userpg->pmc_width = to_riscv_pmu(event->pmu)->ctr_get_width(event->hw.idx) + 1;
49 #endif
50
51         do {
52                 rd = sched_clock_read_begin(&seq);
53
54                 userpg->time_mult = rd->mult;
55                 userpg->time_shift = rd->shift;
56                 userpg->time_zero = rd->epoch_ns;
57                 userpg->time_cycles = rd->epoch_cyc;
58                 userpg->time_mask = rd->sched_clock_mask;
59
60                 /*
61                  * Subtract the cycle base, such that software that
62                  * doesn't know about cap_user_time_short still 'works'
63                  * assuming no wraps.
64                  */
65                 ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
66                 userpg->time_zero -= ns;
67
68         } while (sched_clock_read_retry(seq));
69
70         userpg->time_offset = userpg->time_zero - now;
71
72         /*
73          * time_shift is not expected to be greater than 31 due to
74          * the original published conversion algorithm shifting a
75          * 32-bit value (now specifies a 64-bit value) - refer
76          * perf_event_mmap_page documentation in perf_event.h.
77          */
78         if (userpg->time_shift == 32) {
79                 userpg->time_shift = 31;
80                 userpg->time_mult >>= 1;
81         }
82
83         /*
84          * Internal timekeeping for enabled/running/stopped times
85          * is always computed with the sched_clock.
86          */
87         userpg->cap_user_time = 1;
88         userpg->cap_user_time_zero = 1;
89         userpg->cap_user_time_short = 1;
90 }
91
92 static unsigned long csr_read_num(int csr_num)
93 {
94 #define switchcase_csr_read(__csr_num, __val)           {\
95         case __csr_num:                                 \
96                 __val = csr_read(__csr_num);            \
97                 break; }
98 #define switchcase_csr_read_2(__csr_num, __val)         {\
99         switchcase_csr_read(__csr_num + 0, __val)        \
100         switchcase_csr_read(__csr_num + 1, __val)}
101 #define switchcase_csr_read_4(__csr_num, __val)         {\
102         switchcase_csr_read_2(__csr_num + 0, __val)      \
103         switchcase_csr_read_2(__csr_num + 2, __val)}
104 #define switchcase_csr_read_8(__csr_num, __val)         {\
105         switchcase_csr_read_4(__csr_num + 0, __val)      \
106         switchcase_csr_read_4(__csr_num + 4, __val)}
107 #define switchcase_csr_read_16(__csr_num, __val)        {\
108         switchcase_csr_read_8(__csr_num + 0, __val)      \
109         switchcase_csr_read_8(__csr_num + 8, __val)}
110 #define switchcase_csr_read_32(__csr_num, __val)        {\
111         switchcase_csr_read_16(__csr_num + 0, __val)     \
112         switchcase_csr_read_16(__csr_num + 16, __val)}
113
114         unsigned long ret = 0;
115
116         switch (csr_num) {
117         switchcase_csr_read_32(CSR_CYCLE, ret)
118         switchcase_csr_read_32(CSR_CYCLEH, ret)
119         default :
120                 break;
121         }
122
123         return ret;
124 #undef switchcase_csr_read_32
125 #undef switchcase_csr_read_16
126 #undef switchcase_csr_read_8
127 #undef switchcase_csr_read_4
128 #undef switchcase_csr_read_2
129 #undef switchcase_csr_read
130 }
131
132 /*
133  * Read the CSR of a corresponding counter.
134  */
135 unsigned long riscv_pmu_ctr_read_csr(unsigned long csr)
136 {
137         if (csr < CSR_CYCLE || csr > CSR_HPMCOUNTER31H ||
138            (csr > CSR_HPMCOUNTER31 && csr < CSR_CYCLEH)) {
139                 pr_err("Invalid performance counter csr %lx\n", csr);
140                 return -EINVAL;
141         }
142
143         return csr_read_num(csr);
144 }
145
146 u64 riscv_pmu_ctr_get_width_mask(struct perf_event *event)
147 {
148         int cwidth;
149         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
150         struct hw_perf_event *hwc = &event->hw;
151
152         if (!rvpmu->ctr_get_width)
153         /**
154          * If the pmu driver doesn't support counter width, set it to default
155          * maximum allowed by the specification.
156          */
157                 cwidth = 63;
158         else {
159                 if (hwc->idx == -1)
160                         /* Handle init case where idx is not initialized yet */
161                         cwidth = rvpmu->ctr_get_width(0);
162                 else
163                         cwidth = rvpmu->ctr_get_width(hwc->idx);
164         }
165
166         return GENMASK_ULL(cwidth, 0);
167 }
168
169 u64 riscv_pmu_event_update(struct perf_event *event)
170 {
171         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
172         struct hw_perf_event *hwc = &event->hw;
173         u64 prev_raw_count, new_raw_count;
174         unsigned long cmask;
175         u64 oldval, delta;
176
177         if (!rvpmu->ctr_read)
178                 return 0;
179
180         cmask = riscv_pmu_ctr_get_width_mask(event);
181
182         do {
183                 prev_raw_count = local64_read(&hwc->prev_count);
184                 new_raw_count = rvpmu->ctr_read(event);
185                 oldval = local64_cmpxchg(&hwc->prev_count, prev_raw_count,
186                                          new_raw_count);
187         } while (oldval != prev_raw_count);
188
189         delta = (new_raw_count - prev_raw_count) & cmask;
190         local64_add(delta, &event->count);
191         local64_sub(delta, &hwc->period_left);
192
193         return delta;
194 }
195
196 void riscv_pmu_stop(struct perf_event *event, int flags)
197 {
198         struct hw_perf_event *hwc = &event->hw;
199         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
200
201         WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
202
203         if (!(hwc->state & PERF_HES_STOPPED)) {
204                 if (rvpmu->ctr_stop) {
205                         rvpmu->ctr_stop(event, 0);
206                         hwc->state |= PERF_HES_STOPPED;
207                 }
208                 riscv_pmu_event_update(event);
209                 hwc->state |= PERF_HES_UPTODATE;
210         }
211 }
212
213 int riscv_pmu_event_set_period(struct perf_event *event)
214 {
215         struct hw_perf_event *hwc = &event->hw;
216         s64 left = local64_read(&hwc->period_left);
217         s64 period = hwc->sample_period;
218         int overflow = 0;
219         uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
220
221         if (unlikely(left <= -period)) {
222                 left = period;
223                 local64_set(&hwc->period_left, left);
224                 hwc->last_period = period;
225                 overflow = 1;
226         }
227
228         if (unlikely(left <= 0)) {
229                 left += period;
230                 local64_set(&hwc->period_left, left);
231                 hwc->last_period = period;
232                 overflow = 1;
233         }
234
235         /*
236          * Limit the maximum period to prevent the counter value
237          * from overtaking the one we are about to program. In
238          * effect we are reducing max_period to account for
239          * interrupt latency (and we are being very conservative).
240          */
241         if (left > (max_period >> 1))
242                 left = (max_period >> 1);
243
244         local64_set(&hwc->prev_count, (u64)-left);
245
246         perf_event_update_userpage(event);
247
248         return overflow;
249 }
250
251 void riscv_pmu_start(struct perf_event *event, int flags)
252 {
253         struct hw_perf_event *hwc = &event->hw;
254         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
255         uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
256         u64 init_val;
257
258         if (flags & PERF_EF_RELOAD)
259                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
260
261         hwc->state = 0;
262         riscv_pmu_event_set_period(event);
263         init_val = local64_read(&hwc->prev_count) & max_period;
264         rvpmu->ctr_start(event, init_val);
265         perf_event_update_userpage(event);
266 }
267
268 static int riscv_pmu_add(struct perf_event *event, int flags)
269 {
270         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
271         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
272         struct hw_perf_event *hwc = &event->hw;
273         int idx;
274
275         idx = rvpmu->ctr_get_idx(event);
276         if (idx < 0)
277                 return idx;
278
279         hwc->idx = idx;
280         cpuc->events[idx] = event;
281         cpuc->n_events++;
282         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
283         if (flags & PERF_EF_START)
284                 riscv_pmu_start(event, PERF_EF_RELOAD);
285
286         /* Propagate our changes to the userspace mapping. */
287         perf_event_update_userpage(event);
288
289         return 0;
290 }
291
292 static void riscv_pmu_del(struct perf_event *event, int flags)
293 {
294         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
295         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
296         struct hw_perf_event *hwc = &event->hw;
297
298         riscv_pmu_stop(event, PERF_EF_UPDATE);
299         cpuc->events[hwc->idx] = NULL;
300         /* The firmware need to reset the counter mapping */
301         if (rvpmu->ctr_stop)
302                 rvpmu->ctr_stop(event, RISCV_PMU_STOP_FLAG_RESET);
303         cpuc->n_events--;
304         if (rvpmu->ctr_clear_idx)
305                 rvpmu->ctr_clear_idx(event);
306         perf_event_update_userpage(event);
307         hwc->idx = -1;
308 }
309
310 static void riscv_pmu_read(struct perf_event *event)
311 {
312         riscv_pmu_event_update(event);
313 }
314
315 static int riscv_pmu_event_init(struct perf_event *event)
316 {
317         struct hw_perf_event *hwc = &event->hw;
318         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
319         int mapped_event;
320         u64 event_config = 0;
321         uint64_t cmask;
322
323         hwc->flags = 0;
324         mapped_event = rvpmu->event_map(event, &event_config);
325         if (mapped_event < 0) {
326                 pr_debug("event %x:%llx not supported\n", event->attr.type,
327                          event->attr.config);
328                 return mapped_event;
329         }
330
331         /*
332          * idx is set to -1 because the index of a general event should not be
333          * decided until binding to some counter in pmu->add().
334          * config will contain the information about counter CSR
335          * the idx will contain the counter index
336          */
337         hwc->config = event_config;
338         hwc->idx = -1;
339         hwc->event_base = mapped_event;
340
341         if (rvpmu->event_init)
342                 rvpmu->event_init(event);
343
344         if (!is_sampling_event(event)) {
345                 /*
346                  * For non-sampling runs, limit the sample_period to half
347                  * of the counter width. That way, the new counter value
348                  * is far less likely to overtake the previous one unless
349                  * you have some serious IRQ latency issues.
350                  */
351                 cmask = riscv_pmu_ctr_get_width_mask(event);
352                 hwc->sample_period  =  cmask >> 1;
353                 hwc->last_period    = hwc->sample_period;
354                 local64_set(&hwc->period_left, hwc->sample_period);
355         }
356
357         return 0;
358 }
359
360 static int riscv_pmu_event_idx(struct perf_event *event)
361 {
362         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
363
364         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
365                 return 0;
366
367         if (rvpmu->csr_index)
368                 return rvpmu->csr_index(event) + 1;
369
370         return 0;
371 }
372
373 static void riscv_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
374 {
375         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
376
377         if (rvpmu->event_mapped) {
378                 rvpmu->event_mapped(event, mm);
379                 perf_event_update_userpage(event);
380         }
381 }
382
383 static void riscv_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
384 {
385         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
386
387         if (rvpmu->event_unmapped) {
388                 rvpmu->event_unmapped(event, mm);
389                 perf_event_update_userpage(event);
390         }
391 }
392
393 struct riscv_pmu *riscv_pmu_alloc(void)
394 {
395         struct riscv_pmu *pmu;
396         int cpuid, i;
397         struct cpu_hw_events *cpuc;
398
399         pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
400         if (!pmu)
401                 goto out;
402
403         pmu->hw_events = alloc_percpu_gfp(struct cpu_hw_events, GFP_KERNEL);
404         if (!pmu->hw_events) {
405                 pr_info("failed to allocate per-cpu PMU data.\n");
406                 goto out_free_pmu;
407         }
408
409         for_each_possible_cpu(cpuid) {
410                 cpuc = per_cpu_ptr(pmu->hw_events, cpuid);
411                 cpuc->n_events = 0;
412                 for (i = 0; i < RISCV_MAX_COUNTERS; i++)
413                         cpuc->events[i] = NULL;
414         }
415         pmu->pmu = (struct pmu) {
416                 .event_init     = riscv_pmu_event_init,
417                 .event_mapped   = riscv_pmu_event_mapped,
418                 .event_unmapped = riscv_pmu_event_unmapped,
419                 .event_idx      = riscv_pmu_event_idx,
420                 .add            = riscv_pmu_add,
421                 .del            = riscv_pmu_del,
422                 .start          = riscv_pmu_start,
423                 .stop           = riscv_pmu_stop,
424                 .read           = riscv_pmu_read,
425         };
426
427         return pmu;
428
429 out_free_pmu:
430         kfree(pmu);
431 out:
432         return NULL;
433 }