drivers: thermal: step_wise: add support for hysteresis
[platform/kernel/linux-rpi.git] / drivers / perf / riscv_pmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This implementation is based on old RISC-V perf and ARM perf event code
8  * which are in turn based on sparc64 and x86 code.
9  */
10
11 #include <linux/cpumask.h>
12 #include <linux/irq.h>
13 #include <linux/irqdesc.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/printk.h>
16 #include <linux/smp.h>
17 #include <linux/sched_clock.h>
18
19 #include <asm/sbi.h>
20
21 static bool riscv_perf_user_access(struct perf_event *event)
22 {
23         return ((event->attr.type == PERF_TYPE_HARDWARE) ||
24                 (event->attr.type == PERF_TYPE_HW_CACHE) ||
25                 (event->attr.type == PERF_TYPE_RAW)) &&
26                 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) &&
27                 (event->hw.idx != -1);
28 }
29
30 void arch_perf_update_userpage(struct perf_event *event,
31                                struct perf_event_mmap_page *userpg, u64 now)
32 {
33         struct clock_read_data *rd;
34         unsigned int seq;
35         u64 ns;
36
37         userpg->cap_user_time = 0;
38         userpg->cap_user_time_zero = 0;
39         userpg->cap_user_time_short = 0;
40         userpg->cap_user_rdpmc = riscv_perf_user_access(event);
41
42 #ifdef CONFIG_RISCV_PMU
43         /*
44          * The counters are 64-bit but the priv spec doesn't mandate all the
45          * bits to be implemented: that's why, counter width can vary based on
46          * the cpu vendor.
47          */
48         if (userpg->cap_user_rdpmc)
49                 userpg->pmc_width = to_riscv_pmu(event->pmu)->ctr_get_width(event->hw.idx) + 1;
50 #endif
51
52         do {
53                 rd = sched_clock_read_begin(&seq);
54
55                 userpg->time_mult = rd->mult;
56                 userpg->time_shift = rd->shift;
57                 userpg->time_zero = rd->epoch_ns;
58                 userpg->time_cycles = rd->epoch_cyc;
59                 userpg->time_mask = rd->sched_clock_mask;
60
61                 /*
62                  * Subtract the cycle base, such that software that
63                  * doesn't know about cap_user_time_short still 'works'
64                  * assuming no wraps.
65                  */
66                 ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
67                 userpg->time_zero -= ns;
68
69         } while (sched_clock_read_retry(seq));
70
71         userpg->time_offset = userpg->time_zero - now;
72
73         /*
74          * time_shift is not expected to be greater than 31 due to
75          * the original published conversion algorithm shifting a
76          * 32-bit value (now specifies a 64-bit value) - refer
77          * perf_event_mmap_page documentation in perf_event.h.
78          */
79         if (userpg->time_shift == 32) {
80                 userpg->time_shift = 31;
81                 userpg->time_mult >>= 1;
82         }
83
84         /*
85          * Internal timekeeping for enabled/running/stopped times
86          * is always computed with the sched_clock.
87          */
88         userpg->cap_user_time = 1;
89         userpg->cap_user_time_zero = 1;
90         userpg->cap_user_time_short = 1;
91 }
92
93 static unsigned long csr_read_num(int csr_num)
94 {
95 #define switchcase_csr_read(__csr_num, __val)           {\
96         case __csr_num:                                 \
97                 __val = csr_read(__csr_num);            \
98                 break; }
99 #define switchcase_csr_read_2(__csr_num, __val)         {\
100         switchcase_csr_read(__csr_num + 0, __val)        \
101         switchcase_csr_read(__csr_num + 1, __val)}
102 #define switchcase_csr_read_4(__csr_num, __val)         {\
103         switchcase_csr_read_2(__csr_num + 0, __val)      \
104         switchcase_csr_read_2(__csr_num + 2, __val)}
105 #define switchcase_csr_read_8(__csr_num, __val)         {\
106         switchcase_csr_read_4(__csr_num + 0, __val)      \
107         switchcase_csr_read_4(__csr_num + 4, __val)}
108 #define switchcase_csr_read_16(__csr_num, __val)        {\
109         switchcase_csr_read_8(__csr_num + 0, __val)      \
110         switchcase_csr_read_8(__csr_num + 8, __val)}
111 #define switchcase_csr_read_32(__csr_num, __val)        {\
112         switchcase_csr_read_16(__csr_num + 0, __val)     \
113         switchcase_csr_read_16(__csr_num + 16, __val)}
114
115         unsigned long ret = 0;
116
117         switch (csr_num) {
118         switchcase_csr_read_32(CSR_CYCLE, ret)
119         switchcase_csr_read_32(CSR_CYCLEH, ret)
120         default :
121                 break;
122         }
123
124         return ret;
125 #undef switchcase_csr_read_32
126 #undef switchcase_csr_read_16
127 #undef switchcase_csr_read_8
128 #undef switchcase_csr_read_4
129 #undef switchcase_csr_read_2
130 #undef switchcase_csr_read
131 }
132
133 /*
134  * Read the CSR of a corresponding counter.
135  */
136 unsigned long riscv_pmu_ctr_read_csr(unsigned long csr)
137 {
138         if (csr < CSR_CYCLE || csr > CSR_HPMCOUNTER31H ||
139            (csr > CSR_HPMCOUNTER31 && csr < CSR_CYCLEH)) {
140                 pr_err("Invalid performance counter csr %lx\n", csr);
141                 return -EINVAL;
142         }
143
144         return csr_read_num(csr);
145 }
146
147 u64 riscv_pmu_ctr_get_width_mask(struct perf_event *event)
148 {
149         int cwidth;
150         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
151         struct hw_perf_event *hwc = &event->hw;
152
153         if (!rvpmu->ctr_get_width)
154         /**
155          * If the pmu driver doesn't support counter width, set it to default
156          * maximum allowed by the specification.
157          */
158                 cwidth = 63;
159         else {
160                 if (hwc->idx == -1)
161                         /* Handle init case where idx is not initialized yet */
162                         cwidth = rvpmu->ctr_get_width(0);
163                 else
164                         cwidth = rvpmu->ctr_get_width(hwc->idx);
165         }
166
167         return GENMASK_ULL(cwidth, 0);
168 }
169
170 u64 riscv_pmu_event_update(struct perf_event *event)
171 {
172         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
173         struct hw_perf_event *hwc = &event->hw;
174         u64 prev_raw_count, new_raw_count;
175         unsigned long cmask;
176         u64 oldval, delta;
177
178         if (!rvpmu->ctr_read)
179                 return 0;
180
181         cmask = riscv_pmu_ctr_get_width_mask(event);
182
183         do {
184                 prev_raw_count = local64_read(&hwc->prev_count);
185                 new_raw_count = rvpmu->ctr_read(event);
186                 oldval = local64_cmpxchg(&hwc->prev_count, prev_raw_count,
187                                          new_raw_count);
188         } while (oldval != prev_raw_count);
189
190         delta = (new_raw_count - prev_raw_count) & cmask;
191         local64_add(delta, &event->count);
192         local64_sub(delta, &hwc->period_left);
193
194         return delta;
195 }
196
197 void riscv_pmu_stop(struct perf_event *event, int flags)
198 {
199         struct hw_perf_event *hwc = &event->hw;
200         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
201
202         WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
203
204         if (!(hwc->state & PERF_HES_STOPPED)) {
205                 if (rvpmu->ctr_stop) {
206                         rvpmu->ctr_stop(event, 0);
207                         hwc->state |= PERF_HES_STOPPED;
208                 }
209                 riscv_pmu_event_update(event);
210                 hwc->state |= PERF_HES_UPTODATE;
211         }
212 }
213
214 int riscv_pmu_event_set_period(struct perf_event *event)
215 {
216         struct hw_perf_event *hwc = &event->hw;
217         s64 left = local64_read(&hwc->period_left);
218         s64 period = hwc->sample_period;
219         int overflow = 0;
220         uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
221
222         if (unlikely(left <= -period)) {
223                 left = period;
224                 local64_set(&hwc->period_left, left);
225                 hwc->last_period = period;
226                 overflow = 1;
227         }
228
229         if (unlikely(left <= 0)) {
230                 left += period;
231                 local64_set(&hwc->period_left, left);
232                 hwc->last_period = period;
233                 overflow = 1;
234         }
235
236         /*
237          * Limit the maximum period to prevent the counter value
238          * from overtaking the one we are about to program. In
239          * effect we are reducing max_period to account for
240          * interrupt latency (and we are being very conservative).
241          */
242         if (left > (max_period >> 1))
243                 left = (max_period >> 1);
244
245         local64_set(&hwc->prev_count, (u64)-left);
246
247         perf_event_update_userpage(event);
248
249         return overflow;
250 }
251
252 void riscv_pmu_start(struct perf_event *event, int flags)
253 {
254         struct hw_perf_event *hwc = &event->hw;
255         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
256         uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
257         u64 init_val;
258
259         if (flags & PERF_EF_RELOAD)
260                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
261
262         hwc->state = 0;
263         riscv_pmu_event_set_period(event);
264         init_val = local64_read(&hwc->prev_count) & max_period;
265         rvpmu->ctr_start(event, init_val);
266         perf_event_update_userpage(event);
267 }
268
269 static int riscv_pmu_add(struct perf_event *event, int flags)
270 {
271         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
272         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
273         struct hw_perf_event *hwc = &event->hw;
274         int idx;
275
276         idx = rvpmu->ctr_get_idx(event);
277         if (idx < 0)
278                 return idx;
279
280         hwc->idx = idx;
281         cpuc->events[idx] = event;
282         cpuc->n_events++;
283         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
284         if (flags & PERF_EF_START)
285                 riscv_pmu_start(event, PERF_EF_RELOAD);
286
287         /* Propagate our changes to the userspace mapping. */
288         perf_event_update_userpage(event);
289
290         return 0;
291 }
292
293 static void riscv_pmu_del(struct perf_event *event, int flags)
294 {
295         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
296         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
297         struct hw_perf_event *hwc = &event->hw;
298
299         riscv_pmu_stop(event, PERF_EF_UPDATE);
300         cpuc->events[hwc->idx] = NULL;
301         /* The firmware need to reset the counter mapping */
302         if (rvpmu->ctr_stop)
303                 rvpmu->ctr_stop(event, RISCV_PMU_STOP_FLAG_RESET);
304         cpuc->n_events--;
305         if (rvpmu->ctr_clear_idx)
306                 rvpmu->ctr_clear_idx(event);
307         perf_event_update_userpage(event);
308         hwc->idx = -1;
309 }
310
311 static void riscv_pmu_read(struct perf_event *event)
312 {
313         riscv_pmu_event_update(event);
314 }
315
316 static int riscv_pmu_event_init(struct perf_event *event)
317 {
318         struct hw_perf_event *hwc = &event->hw;
319         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
320         int mapped_event;
321         u64 event_config = 0;
322         uint64_t cmask;
323
324         hwc->flags = 0;
325         mapped_event = rvpmu->event_map(event, &event_config);
326         if (mapped_event < 0) {
327                 pr_debug("event %x:%llx not supported\n", event->attr.type,
328                          event->attr.config);
329                 return mapped_event;
330         }
331
332         /*
333          * idx is set to -1 because the index of a general event should not be
334          * decided until binding to some counter in pmu->add().
335          * config will contain the information about counter CSR
336          * the idx will contain the counter index
337          */
338         hwc->config = event_config;
339         hwc->idx = -1;
340         hwc->event_base = mapped_event;
341
342         if (rvpmu->event_init)
343                 rvpmu->event_init(event);
344
345         if (!is_sampling_event(event)) {
346                 /*
347                  * For non-sampling runs, limit the sample_period to half
348                  * of the counter width. That way, the new counter value
349                  * is far less likely to overtake the previous one unless
350                  * you have some serious IRQ latency issues.
351                  */
352                 cmask = riscv_pmu_ctr_get_width_mask(event);
353                 hwc->sample_period  =  cmask >> 1;
354                 hwc->last_period    = hwc->sample_period;
355                 local64_set(&hwc->period_left, hwc->sample_period);
356         }
357
358         return 0;
359 }
360
361 static int riscv_pmu_event_idx(struct perf_event *event)
362 {
363         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
364
365         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
366                 return 0;
367
368         if (rvpmu->csr_index)
369                 return rvpmu->csr_index(event) + 1;
370
371         return 0;
372 }
373
374 static void riscv_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
375 {
376         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
377
378         if (rvpmu->event_mapped) {
379                 rvpmu->event_mapped(event, mm);
380                 perf_event_update_userpage(event);
381         }
382 }
383
384 static void riscv_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
385 {
386         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
387
388         if (rvpmu->event_unmapped) {
389                 rvpmu->event_unmapped(event, mm);
390                 perf_event_update_userpage(event);
391         }
392 }
393
394 struct riscv_pmu *riscv_pmu_alloc(void)
395 {
396         struct riscv_pmu *pmu;
397         int cpuid, i;
398         struct cpu_hw_events *cpuc;
399
400         pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
401         if (!pmu)
402                 goto out;
403
404         pmu->hw_events = alloc_percpu_gfp(struct cpu_hw_events, GFP_KERNEL);
405         if (!pmu->hw_events) {
406                 pr_info("failed to allocate per-cpu PMU data.\n");
407                 goto out_free_pmu;
408         }
409
410         for_each_possible_cpu(cpuid) {
411                 cpuc = per_cpu_ptr(pmu->hw_events, cpuid);
412                 cpuc->n_events = 0;
413                 for (i = 0; i < RISCV_MAX_COUNTERS; i++)
414                         cpuc->events[i] = NULL;
415         }
416         pmu->pmu = (struct pmu) {
417                 .event_init     = riscv_pmu_event_init,
418                 .event_mapped   = riscv_pmu_event_mapped,
419                 .event_unmapped = riscv_pmu_event_unmapped,
420                 .event_idx      = riscv_pmu_event_idx,
421                 .add            = riscv_pmu_add,
422                 .del            = riscv_pmu_del,
423                 .start          = riscv_pmu_start,
424                 .stop           = riscv_pmu_stop,
425                 .read           = riscv_pmu_read,
426         };
427
428         return pmu;
429
430 out_free_pmu:
431         kfree(pmu);
432 out:
433         return NULL;
434 }