Merge tag 'hwlock-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/remoteproc...
[platform/kernel/linux-rpi.git] / drivers / perf / arm_spe_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Perf support for the Statistical Profiling Extension, introduced as
4  * part of ARMv8.2.
5  *
6  * Copyright (C) 2016 ARM Limited
7  *
8  * Author: Will Deacon <will.deacon@arm.com>
9  */
10
11 #define PMUNAME                                 "arm_spe"
12 #define DRVNAME                                 PMUNAME "_pmu"
13 #define pr_fmt(fmt)                             DRVNAME ": " fmt
14
15 #include <linux/bitfield.h>
16 #include <linux/bitops.h>
17 #include <linux/bug.h>
18 #include <linux/capability.h>
19 #include <linux/cpuhotplug.h>
20 #include <linux/cpumask.h>
21 #include <linux/device.h>
22 #include <linux/errno.h>
23 #include <linux/interrupt.h>
24 #include <linux/irq.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/of_address.h>
29 #include <linux/of_device.h>
30 #include <linux/perf_event.h>
31 #include <linux/perf/arm_pmu.h>
32 #include <linux/platform_device.h>
33 #include <linux/printk.h>
34 #include <linux/slab.h>
35 #include <linux/smp.h>
36 #include <linux/vmalloc.h>
37
38 #include <asm/barrier.h>
39 #include <asm/cpufeature.h>
40 #include <asm/mmu.h>
41 #include <asm/sysreg.h>
42
43 /*
44  * Cache if the event is allowed to trace Context information.
45  * This allows us to perform the check, i.e, perfmon_capable(),
46  * in the context of the event owner, once, during the event_init().
47  */
48 #define SPE_PMU_HW_FLAGS_CX                     0x00001
49
50 static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX);
51
52 static void set_spe_event_has_cx(struct perf_event *event)
53 {
54         if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
55                 event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
56 }
57
58 static bool get_spe_event_has_cx(struct perf_event *event)
59 {
60         return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
61 }
62
63 #define ARM_SPE_BUF_PAD_BYTE                    0
64
65 struct arm_spe_pmu_buf {
66         int                                     nr_pages;
67         bool                                    snapshot;
68         void                                    *base;
69 };
70
71 struct arm_spe_pmu {
72         struct pmu                              pmu;
73         struct platform_device                  *pdev;
74         cpumask_t                               supported_cpus;
75         struct hlist_node                       hotplug_node;
76
77         int                                     irq; /* PPI */
78         u16                                     pmsver;
79         u16                                     min_period;
80         u16                                     counter_sz;
81
82 #define SPE_PMU_FEAT_FILT_EVT                   (1UL << 0)
83 #define SPE_PMU_FEAT_FILT_TYP                   (1UL << 1)
84 #define SPE_PMU_FEAT_FILT_LAT                   (1UL << 2)
85 #define SPE_PMU_FEAT_ARCH_INST                  (1UL << 3)
86 #define SPE_PMU_FEAT_LDS                        (1UL << 4)
87 #define SPE_PMU_FEAT_ERND                       (1UL << 5)
88 #define SPE_PMU_FEAT_INV_FILT_EVT               (1UL << 6)
89 #define SPE_PMU_FEAT_DEV_PROBED                 (1UL << 63)
90         u64                                     features;
91
92         u16                                     max_record_sz;
93         u16                                     align;
94         struct perf_output_handle __percpu      *handle;
95 };
96
97 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
98
99 /* Convert a free-running index from perf into an SPE buffer offset */
100 #define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
101
102 /* Keep track of our dynamic hotplug state */
103 static enum cpuhp_state arm_spe_pmu_online;
104
105 enum arm_spe_pmu_buf_fault_action {
106         SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
107         SPE_PMU_BUF_FAULT_ACT_FATAL,
108         SPE_PMU_BUF_FAULT_ACT_OK,
109 };
110
111 /* This sysfs gunk was really good fun to write. */
112 enum arm_spe_pmu_capabilities {
113         SPE_PMU_CAP_ARCH_INST = 0,
114         SPE_PMU_CAP_ERND,
115         SPE_PMU_CAP_FEAT_MAX,
116         SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
117         SPE_PMU_CAP_MIN_IVAL,
118 };
119
120 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
121         [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
122         [SPE_PMU_CAP_ERND]      = SPE_PMU_FEAT_ERND,
123 };
124
125 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
126 {
127         if (cap < SPE_PMU_CAP_FEAT_MAX)
128                 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
129
130         switch (cap) {
131         case SPE_PMU_CAP_CNT_SZ:
132                 return spe_pmu->counter_sz;
133         case SPE_PMU_CAP_MIN_IVAL:
134                 return spe_pmu->min_period;
135         default:
136                 WARN(1, "unknown cap %d\n", cap);
137         }
138
139         return 0;
140 }
141
142 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
143                                     struct device_attribute *attr,
144                                     char *buf)
145 {
146         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
147         struct dev_ext_attribute *ea =
148                 container_of(attr, struct dev_ext_attribute, attr);
149         int cap = (long)ea->var;
150
151         return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
152 }
153
154 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)                          \
155         &((struct dev_ext_attribute[]) {                                \
156                 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }   \
157         })[0].attr.attr
158
159 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)                             \
160         SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
161
162 static struct attribute *arm_spe_pmu_cap_attr[] = {
163         SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
164         SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
165         SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
166         SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
167         NULL,
168 };
169
170 static const struct attribute_group arm_spe_pmu_cap_group = {
171         .name   = "caps",
172         .attrs  = arm_spe_pmu_cap_attr,
173 };
174
175 /* User ABI */
176 #define ATTR_CFG_FLD_ts_enable_CFG              config  /* PMSCR_EL1.TS */
177 #define ATTR_CFG_FLD_ts_enable_LO               0
178 #define ATTR_CFG_FLD_ts_enable_HI               0
179 #define ATTR_CFG_FLD_pa_enable_CFG              config  /* PMSCR_EL1.PA */
180 #define ATTR_CFG_FLD_pa_enable_LO               1
181 #define ATTR_CFG_FLD_pa_enable_HI               1
182 #define ATTR_CFG_FLD_pct_enable_CFG             config  /* PMSCR_EL1.PCT */
183 #define ATTR_CFG_FLD_pct_enable_LO              2
184 #define ATTR_CFG_FLD_pct_enable_HI              2
185 #define ATTR_CFG_FLD_jitter_CFG                 config  /* PMSIRR_EL1.RND */
186 #define ATTR_CFG_FLD_jitter_LO                  16
187 #define ATTR_CFG_FLD_jitter_HI                  16
188 #define ATTR_CFG_FLD_branch_filter_CFG          config  /* PMSFCR_EL1.B */
189 #define ATTR_CFG_FLD_branch_filter_LO           32
190 #define ATTR_CFG_FLD_branch_filter_HI           32
191 #define ATTR_CFG_FLD_load_filter_CFG            config  /* PMSFCR_EL1.LD */
192 #define ATTR_CFG_FLD_load_filter_LO             33
193 #define ATTR_CFG_FLD_load_filter_HI             33
194 #define ATTR_CFG_FLD_store_filter_CFG           config  /* PMSFCR_EL1.ST */
195 #define ATTR_CFG_FLD_store_filter_LO            34
196 #define ATTR_CFG_FLD_store_filter_HI            34
197
198 #define ATTR_CFG_FLD_event_filter_CFG           config1 /* PMSEVFR_EL1 */
199 #define ATTR_CFG_FLD_event_filter_LO            0
200 #define ATTR_CFG_FLD_event_filter_HI            63
201
202 #define ATTR_CFG_FLD_min_latency_CFG            config2 /* PMSLATFR_EL1.MINLAT */
203 #define ATTR_CFG_FLD_min_latency_LO             0
204 #define ATTR_CFG_FLD_min_latency_HI             11
205
206 #define ATTR_CFG_FLD_inv_event_filter_CFG       config3 /* PMSNEVFR_EL1 */
207 #define ATTR_CFG_FLD_inv_event_filter_LO        0
208 #define ATTR_CFG_FLD_inv_event_filter_HI        63
209
210 /* Why does everything I do descend into this? */
211 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                              \
212         (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
213
214 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                               \
215         __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
216
217 #define GEN_PMU_FORMAT_ATTR(name)                                       \
218         PMU_FORMAT_ATTR(name,                                           \
219         _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,                 \
220                              ATTR_CFG_FLD_##name##_LO,                  \
221                              ATTR_CFG_FLD_##name##_HI))
222
223 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)                            \
224         ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
225
226 #define ATTR_CFG_GET_FLD(attr, name)                                    \
227         _ATTR_CFG_GET_FLD(attr,                                         \
228                           ATTR_CFG_FLD_##name##_CFG,                    \
229                           ATTR_CFG_FLD_##name##_LO,                     \
230                           ATTR_CFG_FLD_##name##_HI)
231
232 GEN_PMU_FORMAT_ATTR(ts_enable);
233 GEN_PMU_FORMAT_ATTR(pa_enable);
234 GEN_PMU_FORMAT_ATTR(pct_enable);
235 GEN_PMU_FORMAT_ATTR(jitter);
236 GEN_PMU_FORMAT_ATTR(branch_filter);
237 GEN_PMU_FORMAT_ATTR(load_filter);
238 GEN_PMU_FORMAT_ATTR(store_filter);
239 GEN_PMU_FORMAT_ATTR(event_filter);
240 GEN_PMU_FORMAT_ATTR(inv_event_filter);
241 GEN_PMU_FORMAT_ATTR(min_latency);
242
243 static struct attribute *arm_spe_pmu_formats_attr[] = {
244         &format_attr_ts_enable.attr,
245         &format_attr_pa_enable.attr,
246         &format_attr_pct_enable.attr,
247         &format_attr_jitter.attr,
248         &format_attr_branch_filter.attr,
249         &format_attr_load_filter.attr,
250         &format_attr_store_filter.attr,
251         &format_attr_event_filter.attr,
252         &format_attr_inv_event_filter.attr,
253         &format_attr_min_latency.attr,
254         NULL,
255 };
256
257 static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj,
258                                                   struct attribute *attr,
259                                                   int unused)
260         {
261         struct device *dev = kobj_to_dev(kobj);
262         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
263
264         if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
265                 return 0;
266
267         return attr->mode;
268 }
269
270 static const struct attribute_group arm_spe_pmu_format_group = {
271         .name   = "format",
272         .is_visible = arm_spe_pmu_format_attr_is_visible,
273         .attrs  = arm_spe_pmu_formats_attr,
274 };
275
276 static ssize_t cpumask_show(struct device *dev,
277                             struct device_attribute *attr, char *buf)
278 {
279         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
280
281         return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
282 }
283 static DEVICE_ATTR_RO(cpumask);
284
285 static struct attribute *arm_spe_pmu_attrs[] = {
286         &dev_attr_cpumask.attr,
287         NULL,
288 };
289
290 static const struct attribute_group arm_spe_pmu_group = {
291         .attrs  = arm_spe_pmu_attrs,
292 };
293
294 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
295         &arm_spe_pmu_group,
296         &arm_spe_pmu_cap_group,
297         &arm_spe_pmu_format_group,
298         NULL,
299 };
300
301 /* Convert between user ABI and register values */
302 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
303 {
304         struct perf_event_attr *attr = &event->attr;
305         u64 reg = 0;
306
307         reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable));
308         reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable));
309         reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable));
310
311         if (!attr->exclude_user)
312                 reg |= PMSCR_EL1_E0SPE;
313
314         if (!attr->exclude_kernel)
315                 reg |= PMSCR_EL1_E1SPE;
316
317         if (get_spe_event_has_cx(event))
318                 reg |= PMSCR_EL1_CX;
319
320         return reg;
321 }
322
323 static void arm_spe_event_sanitise_period(struct perf_event *event)
324 {
325         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
326         u64 period = event->hw.sample_period;
327         u64 max_period = PMSIRR_EL1_INTERVAL_MASK;
328
329         if (period < spe_pmu->min_period)
330                 period = spe_pmu->min_period;
331         else if (period > max_period)
332                 period = max_period;
333         else
334                 period &= max_period;
335
336         event->hw.sample_period = period;
337 }
338
339 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
340 {
341         struct perf_event_attr *attr = &event->attr;
342         u64 reg = 0;
343
344         arm_spe_event_sanitise_period(event);
345
346         reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter));
347         reg |= event->hw.sample_period;
348
349         return reg;
350 }
351
352 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
353 {
354         struct perf_event_attr *attr = &event->attr;
355         u64 reg = 0;
356
357         reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter));
358         reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter));
359         reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter));
360
361         if (reg)
362                 reg |= PMSFCR_EL1_FT;
363
364         if (ATTR_CFG_GET_FLD(attr, event_filter))
365                 reg |= PMSFCR_EL1_FE;
366
367         if (ATTR_CFG_GET_FLD(attr, inv_event_filter))
368                 reg |= PMSFCR_EL1_FnE;
369
370         if (ATTR_CFG_GET_FLD(attr, min_latency))
371                 reg |= PMSFCR_EL1_FL;
372
373         return reg;
374 }
375
376 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
377 {
378         struct perf_event_attr *attr = &event->attr;
379         return ATTR_CFG_GET_FLD(attr, event_filter);
380 }
381
382 static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event)
383 {
384         struct perf_event_attr *attr = &event->attr;
385         return ATTR_CFG_GET_FLD(attr, inv_event_filter);
386 }
387
388 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
389 {
390         struct perf_event_attr *attr = &event->attr;
391         return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency));
392 }
393
394 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
395 {
396         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
397         u64 head = PERF_IDX2OFF(handle->head, buf);
398
399         memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
400         if (!buf->snapshot)
401                 perf_aux_output_skip(handle, len);
402 }
403
404 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
405 {
406         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
407         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
408         u64 head = PERF_IDX2OFF(handle->head, buf);
409         u64 limit = buf->nr_pages * PAGE_SIZE;
410
411         /*
412          * The trace format isn't parseable in reverse, so clamp
413          * the limit to half of the buffer size in snapshot mode
414          * so that the worst case is half a buffer of records, as
415          * opposed to a single record.
416          */
417         if (head < limit >> 1)
418                 limit >>= 1;
419
420         /*
421          * If we're within max_record_sz of the limit, we must
422          * pad, move the head index and recompute the limit.
423          */
424         if (limit - head < spe_pmu->max_record_sz) {
425                 arm_spe_pmu_pad_buf(handle, limit - head);
426                 handle->head = PERF_IDX2OFF(limit, buf);
427                 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
428         }
429
430         return limit;
431 }
432
433 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
434 {
435         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
436         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
437         const u64 bufsize = buf->nr_pages * PAGE_SIZE;
438         u64 limit = bufsize;
439         u64 head, tail, wakeup;
440
441         /*
442          * The head can be misaligned for two reasons:
443          *
444          * 1. The hardware left PMBPTR pointing to the first byte after
445          *    a record when generating a buffer management event.
446          *
447          * 2. We used perf_aux_output_skip to consume handle->size bytes
448          *    and CIRC_SPACE was used to compute the size, which always
449          *    leaves one entry free.
450          *
451          * Deal with this by padding to the next alignment boundary and
452          * moving the head index. If we run out of buffer space, we'll
453          * reduce handle->size to zero and end up reporting truncation.
454          */
455         head = PERF_IDX2OFF(handle->head, buf);
456         if (!IS_ALIGNED(head, spe_pmu->align)) {
457                 unsigned long delta = roundup(head, spe_pmu->align) - head;
458
459                 delta = min(delta, handle->size);
460                 arm_spe_pmu_pad_buf(handle, delta);
461                 head = PERF_IDX2OFF(handle->head, buf);
462         }
463
464         /* If we've run out of free space, then nothing more to do */
465         if (!handle->size)
466                 goto no_space;
467
468         /* Compute the tail and wakeup indices now that we've aligned head */
469         tail = PERF_IDX2OFF(handle->head + handle->size, buf);
470         wakeup = PERF_IDX2OFF(handle->wakeup, buf);
471
472         /*
473          * Avoid clobbering unconsumed data. We know we have space, so
474          * if we see head == tail we know that the buffer is empty. If
475          * head > tail, then there's nothing to clobber prior to
476          * wrapping.
477          */
478         if (head < tail)
479                 limit = round_down(tail, PAGE_SIZE);
480
481         /*
482          * Wakeup may be arbitrarily far into the future. If it's not in
483          * the current generation, either we'll wrap before hitting it,
484          * or it's in the past and has been handled already.
485          *
486          * If there's a wakeup before we wrap, arrange to be woken up by
487          * the page boundary following it. Keep the tail boundary if
488          * that's lower.
489          */
490         if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
491                 limit = min(limit, round_up(wakeup, PAGE_SIZE));
492
493         if (limit > head)
494                 return limit;
495
496         arm_spe_pmu_pad_buf(handle, handle->size);
497 no_space:
498         perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
499         perf_aux_output_end(handle, 0);
500         return 0;
501 }
502
503 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
504 {
505         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
506         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
507         u64 limit = __arm_spe_pmu_next_off(handle);
508         u64 head = PERF_IDX2OFF(handle->head, buf);
509
510         /*
511          * If the head has come too close to the end of the buffer,
512          * then pad to the end and recompute the limit.
513          */
514         if (limit && (limit - head < spe_pmu->max_record_sz)) {
515                 arm_spe_pmu_pad_buf(handle, limit - head);
516                 limit = __arm_spe_pmu_next_off(handle);
517         }
518
519         return limit;
520 }
521
522 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
523                                           struct perf_event *event)
524 {
525         u64 base, limit;
526         struct arm_spe_pmu_buf *buf;
527
528         /* Start a new aux session */
529         buf = perf_aux_output_begin(handle, event);
530         if (!buf) {
531                 event->hw.state |= PERF_HES_STOPPED;
532                 /*
533                  * We still need to clear the limit pointer, since the
534                  * profiler might only be disabled by virtue of a fault.
535                  */
536                 limit = 0;
537                 goto out_write_limit;
538         }
539
540         limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
541                               : arm_spe_pmu_next_off(handle);
542         if (limit)
543                 limit |= PMBLIMITR_EL1_E;
544
545         limit += (u64)buf->base;
546         base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
547         write_sysreg_s(base, SYS_PMBPTR_EL1);
548
549 out_write_limit:
550         write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
551 }
552
553 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
554 {
555         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
556         u64 offset, size;
557
558         offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
559         size = offset - PERF_IDX2OFF(handle->head, buf);
560
561         if (buf->snapshot)
562                 handle->head = offset;
563
564         perf_aux_output_end(handle, size);
565 }
566
567 static void arm_spe_pmu_disable_and_drain_local(void)
568 {
569         /* Disable profiling at EL0 and EL1 */
570         write_sysreg_s(0, SYS_PMSCR_EL1);
571         isb();
572
573         /* Drain any buffered data */
574         psb_csync();
575         dsb(nsh);
576
577         /* Disable the profiling buffer */
578         write_sysreg_s(0, SYS_PMBLIMITR_EL1);
579         isb();
580 }
581
582 /* IRQ handling */
583 static enum arm_spe_pmu_buf_fault_action
584 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
585 {
586         const char *err_str;
587         u64 pmbsr;
588         enum arm_spe_pmu_buf_fault_action ret;
589
590         /*
591          * Ensure new profiling data is visible to the CPU and any external
592          * aborts have been resolved.
593          */
594         psb_csync();
595         dsb(nsh);
596
597         /* Ensure hardware updates to PMBPTR_EL1 are visible */
598         isb();
599
600         /* Service required? */
601         pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
602         if (!FIELD_GET(PMBSR_EL1_S, pmbsr))
603                 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
604
605         /*
606          * If we've lost data, disable profiling and also set the PARTIAL
607          * flag to indicate that the last record is corrupted.
608          */
609         if (FIELD_GET(PMBSR_EL1_DL, pmbsr))
610                 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
611                                              PERF_AUX_FLAG_PARTIAL);
612
613         /* Report collisions to userspace so that it can up the period */
614         if (FIELD_GET(PMBSR_EL1_COLL, pmbsr))
615                 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
616
617         /* We only expect buffer management events */
618         switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) {
619         case PMBSR_EL1_EC_BUF:
620                 /* Handled below */
621                 break;
622         case PMBSR_EL1_EC_FAULT_S1:
623         case PMBSR_EL1_EC_FAULT_S2:
624                 err_str = "Unexpected buffer fault";
625                 goto out_err;
626         default:
627                 err_str = "Unknown error code";
628                 goto out_err;
629         }
630
631         /* Buffer management event */
632         switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) {
633         case PMBSR_EL1_BUF_BSC_FULL:
634                 ret = SPE_PMU_BUF_FAULT_ACT_OK;
635                 goto out_stop;
636         default:
637                 err_str = "Unknown buffer status code";
638         }
639
640 out_err:
641         pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
642                            err_str, smp_processor_id(), pmbsr,
643                            read_sysreg_s(SYS_PMBPTR_EL1),
644                            read_sysreg_s(SYS_PMBLIMITR_EL1));
645         ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
646
647 out_stop:
648         arm_spe_perf_aux_output_end(handle);
649         return ret;
650 }
651
652 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
653 {
654         struct perf_output_handle *handle = dev;
655         struct perf_event *event = handle->event;
656         enum arm_spe_pmu_buf_fault_action act;
657
658         if (!perf_get_aux(handle))
659                 return IRQ_NONE;
660
661         act = arm_spe_pmu_buf_get_fault_act(handle);
662         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
663                 return IRQ_NONE;
664
665         /*
666          * Ensure perf callbacks have completed, which may disable the
667          * profiling buffer in response to a TRUNCATION flag.
668          */
669         irq_work_run();
670
671         switch (act) {
672         case SPE_PMU_BUF_FAULT_ACT_FATAL:
673                 /*
674                  * If a fatal exception occurred then leaving the profiling
675                  * buffer enabled is a recipe waiting to happen. Since
676                  * fatal faults don't always imply truncation, make sure
677                  * that the profiling buffer is disabled explicitly before
678                  * clearing the syndrome register.
679                  */
680                 arm_spe_pmu_disable_and_drain_local();
681                 break;
682         case SPE_PMU_BUF_FAULT_ACT_OK:
683                 /*
684                  * We handled the fault (the buffer was full), so resume
685                  * profiling as long as we didn't detect truncation.
686                  * PMBPTR might be misaligned, but we'll burn that bridge
687                  * when we get to it.
688                  */
689                 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
690                         arm_spe_perf_aux_output_begin(handle, event);
691                         isb();
692                 }
693                 break;
694         case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
695                 /* We've seen you before, but GCC has the memory of a sieve. */
696                 break;
697         }
698
699         /* The buffer pointers are now sane, so resume profiling. */
700         write_sysreg_s(0, SYS_PMBSR_EL1);
701         return IRQ_HANDLED;
702 }
703
704 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
705 {
706         switch (pmsver) {
707         case ID_AA64DFR0_EL1_PMSVer_IMP:
708                 return PMSEVFR_EL1_RES0_IMP;
709         case ID_AA64DFR0_EL1_PMSVer_V1P1:
710                 return PMSEVFR_EL1_RES0_V1P1;
711         case ID_AA64DFR0_EL1_PMSVer_V1P2:
712         /* Return the highest version we support in default */
713         default:
714                 return PMSEVFR_EL1_RES0_V1P2;
715         }
716 }
717
718 /* Perf callbacks */
719 static int arm_spe_pmu_event_init(struct perf_event *event)
720 {
721         u64 reg;
722         struct perf_event_attr *attr = &event->attr;
723         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
724
725         /* This is, of course, deeply driver-specific */
726         if (attr->type != event->pmu->type)
727                 return -ENOENT;
728
729         if (event->cpu >= 0 &&
730             !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
731                 return -ENOENT;
732
733         if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
734                 return -EOPNOTSUPP;
735
736         if (arm_spe_event_to_pmsnevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
737                 return -EOPNOTSUPP;
738
739         if (attr->exclude_idle)
740                 return -EOPNOTSUPP;
741
742         /*
743          * Feedback-directed frequency throttling doesn't work when we
744          * have a buffer of samples. We'd need to manually count the
745          * samples in the buffer when it fills up and adjust the event
746          * count to reflect that. Instead, just force the user to specify
747          * a sample period.
748          */
749         if (attr->freq)
750                 return -EINVAL;
751
752         reg = arm_spe_event_to_pmsfcr(event);
753         if ((FIELD_GET(PMSFCR_EL1_FE, reg)) &&
754             !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
755                 return -EOPNOTSUPP;
756
757         if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) &&
758             !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
759                 return -EOPNOTSUPP;
760
761         if ((FIELD_GET(PMSFCR_EL1_FT, reg)) &&
762             !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
763                 return -EOPNOTSUPP;
764
765         if ((FIELD_GET(PMSFCR_EL1_FL, reg)) &&
766             !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
767                 return -EOPNOTSUPP;
768
769         set_spe_event_has_cx(event);
770         reg = arm_spe_event_to_pmscr(event);
771         if (!perfmon_capable() &&
772             (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT)))
773                 return -EACCES;
774
775         return 0;
776 }
777
778 static void arm_spe_pmu_start(struct perf_event *event, int flags)
779 {
780         u64 reg;
781         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
782         struct hw_perf_event *hwc = &event->hw;
783         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
784
785         hwc->state = 0;
786         arm_spe_perf_aux_output_begin(handle, event);
787         if (hwc->state)
788                 return;
789
790         reg = arm_spe_event_to_pmsfcr(event);
791         write_sysreg_s(reg, SYS_PMSFCR_EL1);
792
793         reg = arm_spe_event_to_pmsevfr(event);
794         write_sysreg_s(reg, SYS_PMSEVFR_EL1);
795
796         if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) {
797                 reg = arm_spe_event_to_pmsnevfr(event);
798                 write_sysreg_s(reg, SYS_PMSNEVFR_EL1);
799         }
800
801         reg = arm_spe_event_to_pmslatfr(event);
802         write_sysreg_s(reg, SYS_PMSLATFR_EL1);
803
804         if (flags & PERF_EF_RELOAD) {
805                 reg = arm_spe_event_to_pmsirr(event);
806                 write_sysreg_s(reg, SYS_PMSIRR_EL1);
807                 isb();
808                 reg = local64_read(&hwc->period_left);
809                 write_sysreg_s(reg, SYS_PMSICR_EL1);
810         }
811
812         reg = arm_spe_event_to_pmscr(event);
813         isb();
814         write_sysreg_s(reg, SYS_PMSCR_EL1);
815 }
816
817 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
818 {
819         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
820         struct hw_perf_event *hwc = &event->hw;
821         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
822
823         /* If we're already stopped, then nothing to do */
824         if (hwc->state & PERF_HES_STOPPED)
825                 return;
826
827         /* Stop all trace generation */
828         arm_spe_pmu_disable_and_drain_local();
829
830         if (flags & PERF_EF_UPDATE) {
831                 /*
832                  * If there's a fault pending then ensure we contain it
833                  * to this buffer, since we might be on the context-switch
834                  * path.
835                  */
836                 if (perf_get_aux(handle)) {
837                         enum arm_spe_pmu_buf_fault_action act;
838
839                         act = arm_spe_pmu_buf_get_fault_act(handle);
840                         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
841                                 arm_spe_perf_aux_output_end(handle);
842                         else
843                                 write_sysreg_s(0, SYS_PMBSR_EL1);
844                 }
845
846                 /*
847                  * This may also contain ECOUNT, but nobody else should
848                  * be looking at period_left, since we forbid frequency
849                  * based sampling.
850                  */
851                 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
852                 hwc->state |= PERF_HES_UPTODATE;
853         }
854
855         hwc->state |= PERF_HES_STOPPED;
856 }
857
858 static int arm_spe_pmu_add(struct perf_event *event, int flags)
859 {
860         int ret = 0;
861         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
862         struct hw_perf_event *hwc = &event->hw;
863         int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
864
865         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
866                 return -ENOENT;
867
868         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
869
870         if (flags & PERF_EF_START) {
871                 arm_spe_pmu_start(event, PERF_EF_RELOAD);
872                 if (hwc->state & PERF_HES_STOPPED)
873                         ret = -EINVAL;
874         }
875
876         return ret;
877 }
878
879 static void arm_spe_pmu_del(struct perf_event *event, int flags)
880 {
881         arm_spe_pmu_stop(event, PERF_EF_UPDATE);
882 }
883
884 static void arm_spe_pmu_read(struct perf_event *event)
885 {
886 }
887
888 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
889                                    int nr_pages, bool snapshot)
890 {
891         int i, cpu = event->cpu;
892         struct page **pglist;
893         struct arm_spe_pmu_buf *buf;
894
895         /* We need at least two pages for this to work. */
896         if (nr_pages < 2)
897                 return NULL;
898
899         /*
900          * We require an even number of pages for snapshot mode, so that
901          * we can effectively treat the buffer as consisting of two equal
902          * parts and give userspace a fighting chance of getting some
903          * useful data out of it.
904          */
905         if (snapshot && (nr_pages & 1))
906                 return NULL;
907
908         if (cpu == -1)
909                 cpu = raw_smp_processor_id();
910
911         buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
912         if (!buf)
913                 return NULL;
914
915         pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
916         if (!pglist)
917                 goto out_free_buf;
918
919         for (i = 0; i < nr_pages; ++i)
920                 pglist[i] = virt_to_page(pages[i]);
921
922         buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
923         if (!buf->base)
924                 goto out_free_pglist;
925
926         buf->nr_pages   = nr_pages;
927         buf->snapshot   = snapshot;
928
929         kfree(pglist);
930         return buf;
931
932 out_free_pglist:
933         kfree(pglist);
934 out_free_buf:
935         kfree(buf);
936         return NULL;
937 }
938
939 static void arm_spe_pmu_free_aux(void *aux)
940 {
941         struct arm_spe_pmu_buf *buf = aux;
942
943         vunmap(buf->base);
944         kfree(buf);
945 }
946
947 /* Initialisation and teardown functions */
948 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
949 {
950         static atomic_t pmu_idx = ATOMIC_INIT(-1);
951
952         int idx;
953         char *name;
954         struct device *dev = &spe_pmu->pdev->dev;
955
956         spe_pmu->pmu = (struct pmu) {
957                 .module = THIS_MODULE,
958                 .capabilities   = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
959                 .attr_groups    = arm_spe_pmu_attr_groups,
960                 /*
961                  * We hitch a ride on the software context here, so that
962                  * we can support per-task profiling (which is not possible
963                  * with the invalid context as it doesn't get sched callbacks).
964                  * This requires that userspace either uses a dummy event for
965                  * perf_event_open, since the aux buffer is not setup until
966                  * a subsequent mmap, or creates the profiling event in a
967                  * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
968                  * once the buffer has been created.
969                  */
970                 .task_ctx_nr    = perf_sw_context,
971                 .event_init     = arm_spe_pmu_event_init,
972                 .add            = arm_spe_pmu_add,
973                 .del            = arm_spe_pmu_del,
974                 .start          = arm_spe_pmu_start,
975                 .stop           = arm_spe_pmu_stop,
976                 .read           = arm_spe_pmu_read,
977                 .setup_aux      = arm_spe_pmu_setup_aux,
978                 .free_aux       = arm_spe_pmu_free_aux,
979         };
980
981         idx = atomic_inc_return(&pmu_idx);
982         name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
983         if (!name) {
984                 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
985                 return -ENOMEM;
986         }
987
988         return perf_pmu_register(&spe_pmu->pmu, name, -1);
989 }
990
991 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
992 {
993         perf_pmu_unregister(&spe_pmu->pmu);
994 }
995
996 static void __arm_spe_pmu_dev_probe(void *info)
997 {
998         int fld;
999         u64 reg;
1000         struct arm_spe_pmu *spe_pmu = info;
1001         struct device *dev = &spe_pmu->pdev->dev;
1002
1003         fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
1004                                                    ID_AA64DFR0_EL1_PMSVer_SHIFT);
1005         if (!fld) {
1006                 dev_err(dev,
1007                         "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
1008                         fld, smp_processor_id());
1009                 return;
1010         }
1011         spe_pmu->pmsver = (u16)fld;
1012
1013         /* Read PMBIDR first to determine whether or not we have access */
1014         reg = read_sysreg_s(SYS_PMBIDR_EL1);
1015         if (FIELD_GET(PMBIDR_EL1_P, reg)) {
1016                 dev_err(dev,
1017                         "profiling buffer owned by higher exception level\n");
1018                 return;
1019         }
1020
1021         /* Minimum alignment. If it's out-of-range, then fail the probe */
1022         fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg);
1023         spe_pmu->align = 1 << fld;
1024         if (spe_pmu->align > SZ_2K) {
1025                 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
1026                         fld, smp_processor_id());
1027                 return;
1028         }
1029
1030         /* It's now safe to read PMSIDR and figure out what we've got */
1031         reg = read_sysreg_s(SYS_PMSIDR_EL1);
1032         if (FIELD_GET(PMSIDR_EL1_FE, reg))
1033                 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
1034
1035         if (FIELD_GET(PMSIDR_EL1_FnE, reg))
1036                 spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT;
1037
1038         if (FIELD_GET(PMSIDR_EL1_FT, reg))
1039                 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
1040
1041         if (FIELD_GET(PMSIDR_EL1_FL, reg))
1042                 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
1043
1044         if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg))
1045                 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1046
1047         if (FIELD_GET(PMSIDR_EL1_LDS, reg))
1048                 spe_pmu->features |= SPE_PMU_FEAT_LDS;
1049
1050         if (FIELD_GET(PMSIDR_EL1_ERND, reg))
1051                 spe_pmu->features |= SPE_PMU_FEAT_ERND;
1052
1053         /* This field has a spaced out encoding, so just use a look-up */
1054         fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg);
1055         switch (fld) {
1056         case PMSIDR_EL1_INTERVAL_256:
1057                 spe_pmu->min_period = 256;
1058                 break;
1059         case PMSIDR_EL1_INTERVAL_512:
1060                 spe_pmu->min_period = 512;
1061                 break;
1062         case PMSIDR_EL1_INTERVAL_768:
1063                 spe_pmu->min_period = 768;
1064                 break;
1065         case PMSIDR_EL1_INTERVAL_1024:
1066                 spe_pmu->min_period = 1024;
1067                 break;
1068         case PMSIDR_EL1_INTERVAL_1536:
1069                 spe_pmu->min_period = 1536;
1070                 break;
1071         case PMSIDR_EL1_INTERVAL_2048:
1072                 spe_pmu->min_period = 2048;
1073                 break;
1074         case PMSIDR_EL1_INTERVAL_3072:
1075                 spe_pmu->min_period = 3072;
1076                 break;
1077         default:
1078                 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1079                          fld);
1080                 fallthrough;
1081         case PMSIDR_EL1_INTERVAL_4096:
1082                 spe_pmu->min_period = 4096;
1083         }
1084
1085         /* Maximum record size. If it's out-of-range, then fail the probe */
1086         fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg);
1087         spe_pmu->max_record_sz = 1 << fld;
1088         if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1089                 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1090                         fld, smp_processor_id());
1091                 return;
1092         }
1093
1094         fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg);
1095         switch (fld) {
1096         default:
1097                 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1098                          fld);
1099                 fallthrough;
1100         case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT:
1101                 spe_pmu->counter_sz = 12;
1102                 break;
1103         case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT:
1104                 spe_pmu->counter_sz = 16;
1105         }
1106
1107         dev_info(dev,
1108                  "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1109                  spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus),
1110                  spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1111
1112         spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1113 }
1114
1115 static void __arm_spe_pmu_reset_local(void)
1116 {
1117         /*
1118          * This is probably overkill, as we have no idea where we're
1119          * draining any buffered data to...
1120          */
1121         arm_spe_pmu_disable_and_drain_local();
1122
1123         /* Reset the buffer base pointer */
1124         write_sysreg_s(0, SYS_PMBPTR_EL1);
1125         isb();
1126
1127         /* Clear any pending management interrupts */
1128         write_sysreg_s(0, SYS_PMBSR_EL1);
1129         isb();
1130 }
1131
1132 static void __arm_spe_pmu_setup_one(void *info)
1133 {
1134         struct arm_spe_pmu *spe_pmu = info;
1135
1136         __arm_spe_pmu_reset_local();
1137         enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1138 }
1139
1140 static void __arm_spe_pmu_stop_one(void *info)
1141 {
1142         struct arm_spe_pmu *spe_pmu = info;
1143
1144         disable_percpu_irq(spe_pmu->irq);
1145         __arm_spe_pmu_reset_local();
1146 }
1147
1148 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1149 {
1150         struct arm_spe_pmu *spe_pmu;
1151
1152         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1153         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1154                 return 0;
1155
1156         __arm_spe_pmu_setup_one(spe_pmu);
1157         return 0;
1158 }
1159
1160 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1161 {
1162         struct arm_spe_pmu *spe_pmu;
1163
1164         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1165         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1166                 return 0;
1167
1168         __arm_spe_pmu_stop_one(spe_pmu);
1169         return 0;
1170 }
1171
1172 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1173 {
1174         int ret;
1175         cpumask_t *mask = &spe_pmu->supported_cpus;
1176
1177         /* Make sure we probe the hardware on a relevant CPU */
1178         ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1179         if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1180                 return -ENXIO;
1181
1182         /* Request our PPIs (note that the IRQ is still disabled) */
1183         ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1184                                  spe_pmu->handle);
1185         if (ret)
1186                 return ret;
1187
1188         /*
1189          * Register our hotplug notifier now so we don't miss any events.
1190          * This will enable the IRQ for any supported CPUs that are already
1191          * up.
1192          */
1193         ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1194                                        &spe_pmu->hotplug_node);
1195         if (ret)
1196                 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1197
1198         return ret;
1199 }
1200
1201 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1202 {
1203         cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1204         free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1205 }
1206
1207 /* Driver and device probing */
1208 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1209 {
1210         struct platform_device *pdev = spe_pmu->pdev;
1211         int irq = platform_get_irq(pdev, 0);
1212
1213         if (irq < 0)
1214                 return -ENXIO;
1215
1216         if (!irq_is_percpu(irq)) {
1217                 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1218                 return -EINVAL;
1219         }
1220
1221         if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1222                 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1223                 return -EINVAL;
1224         }
1225
1226         spe_pmu->irq = irq;
1227         return 0;
1228 }
1229
1230 static const struct of_device_id arm_spe_pmu_of_match[] = {
1231         { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1232         { /* Sentinel */ },
1233 };
1234 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1235
1236 static const struct platform_device_id arm_spe_match[] = {
1237         { ARMV8_SPE_PDEV_NAME, 0},
1238         { }
1239 };
1240 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1241
1242 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1243 {
1244         int ret;
1245         struct arm_spe_pmu *spe_pmu;
1246         struct device *dev = &pdev->dev;
1247
1248         /*
1249          * If kernelspace is unmapped when running at EL0, then the SPE
1250          * buffer will fault and prematurely terminate the AUX session.
1251          */
1252         if (arm64_kernel_unmapped_at_el0()) {
1253                 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1254                 return -EPERM;
1255         }
1256
1257         spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1258         if (!spe_pmu)
1259                 return -ENOMEM;
1260
1261         spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1262         if (!spe_pmu->handle)
1263                 return -ENOMEM;
1264
1265         spe_pmu->pdev = pdev;
1266         platform_set_drvdata(pdev, spe_pmu);
1267
1268         ret = arm_spe_pmu_irq_probe(spe_pmu);
1269         if (ret)
1270                 goto out_free_handle;
1271
1272         ret = arm_spe_pmu_dev_init(spe_pmu);
1273         if (ret)
1274                 goto out_free_handle;
1275
1276         ret = arm_spe_pmu_perf_init(spe_pmu);
1277         if (ret)
1278                 goto out_teardown_dev;
1279
1280         return 0;
1281
1282 out_teardown_dev:
1283         arm_spe_pmu_dev_teardown(spe_pmu);
1284 out_free_handle:
1285         free_percpu(spe_pmu->handle);
1286         return ret;
1287 }
1288
1289 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1290 {
1291         struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1292
1293         arm_spe_pmu_perf_destroy(spe_pmu);
1294         arm_spe_pmu_dev_teardown(spe_pmu);
1295         free_percpu(spe_pmu->handle);
1296         return 0;
1297 }
1298
1299 static struct platform_driver arm_spe_pmu_driver = {
1300         .id_table = arm_spe_match,
1301         .driver = {
1302                 .name           = DRVNAME,
1303                 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1304                 .suppress_bind_attrs = true,
1305         },
1306         .probe  = arm_spe_pmu_device_probe,
1307         .remove = arm_spe_pmu_device_remove,
1308 };
1309
1310 static int __init arm_spe_pmu_init(void)
1311 {
1312         int ret;
1313
1314         ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1315                                       arm_spe_pmu_cpu_startup,
1316                                       arm_spe_pmu_cpu_teardown);
1317         if (ret < 0)
1318                 return ret;
1319         arm_spe_pmu_online = ret;
1320
1321         ret = platform_driver_register(&arm_spe_pmu_driver);
1322         if (ret)
1323                 cpuhp_remove_multi_state(arm_spe_pmu_online);
1324
1325         return ret;
1326 }
1327
1328 static void __exit arm_spe_pmu_exit(void)
1329 {
1330         platform_driver_unregister(&arm_spe_pmu_driver);
1331         cpuhp_remove_multi_state(arm_spe_pmu_online);
1332 }
1333
1334 module_init(arm_spe_pmu_init);
1335 module_exit(arm_spe_pmu_exit);
1336
1337 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1338 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1339 MODULE_LICENSE("GPL v2");