ANDROID: staging: ashmem: Add shrinker name
[platform/kernel/linux-rpi.git] / drivers / perf / arm_spe_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Perf support for the Statistical Profiling Extension, introduced as
4  * part of ARMv8.2.
5  *
6  * Copyright (C) 2016 ARM Limited
7  *
8  * Author: Will Deacon <will.deacon@arm.com>
9  */
10
11 #define PMUNAME                                 "arm_spe"
12 #define DRVNAME                                 PMUNAME "_pmu"
13 #define pr_fmt(fmt)                             DRVNAME ": " fmt
14
15 #include <linux/bitfield.h>
16 #include <linux/bitops.h>
17 #include <linux/bug.h>
18 #include <linux/capability.h>
19 #include <linux/cpuhotplug.h>
20 #include <linux/cpumask.h>
21 #include <linux/device.h>
22 #include <linux/errno.h>
23 #include <linux/interrupt.h>
24 #include <linux/irq.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41
42 /*
43  * Cache if the event is allowed to trace Context information.
44  * This allows us to perform the check, i.e, perfmon_capable(),
45  * in the context of the event owner, once, during the event_init().
46  */
47 #define SPE_PMU_HW_FLAGS_CX                     0x00001
48
49 static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX);
50
51 static void set_spe_event_has_cx(struct perf_event *event)
52 {
53         if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
54                 event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
55 }
56
57 static bool get_spe_event_has_cx(struct perf_event *event)
58 {
59         return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
60 }
61
62 #define ARM_SPE_BUF_PAD_BYTE                    0
63
64 struct arm_spe_pmu_buf {
65         int                                     nr_pages;
66         bool                                    snapshot;
67         void                                    *base;
68 };
69
70 struct arm_spe_pmu {
71         struct pmu                              pmu;
72         struct platform_device                  *pdev;
73         cpumask_t                               supported_cpus;
74         struct hlist_node                       hotplug_node;
75
76         int                                     irq; /* PPI */
77         u16                                     pmsver;
78         u16                                     min_period;
79         u16                                     counter_sz;
80
81 #define SPE_PMU_FEAT_FILT_EVT                   (1UL << 0)
82 #define SPE_PMU_FEAT_FILT_TYP                   (1UL << 1)
83 #define SPE_PMU_FEAT_FILT_LAT                   (1UL << 2)
84 #define SPE_PMU_FEAT_ARCH_INST                  (1UL << 3)
85 #define SPE_PMU_FEAT_LDS                        (1UL << 4)
86 #define SPE_PMU_FEAT_ERND                       (1UL << 5)
87 #define SPE_PMU_FEAT_INV_FILT_EVT               (1UL << 6)
88 #define SPE_PMU_FEAT_DEV_PROBED                 (1UL << 63)
89         u64                                     features;
90
91         u16                                     max_record_sz;
92         u16                                     align;
93         struct perf_output_handle __percpu      *handle;
94 };
95
96 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
97
98 /* Convert a free-running index from perf into an SPE buffer offset */
99 #define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
100
101 /* Keep track of our dynamic hotplug state */
102 static enum cpuhp_state arm_spe_pmu_online;
103
104 enum arm_spe_pmu_buf_fault_action {
105         SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
106         SPE_PMU_BUF_FAULT_ACT_FATAL,
107         SPE_PMU_BUF_FAULT_ACT_OK,
108 };
109
110 /* This sysfs gunk was really good fun to write. */
111 enum arm_spe_pmu_capabilities {
112         SPE_PMU_CAP_ARCH_INST = 0,
113         SPE_PMU_CAP_ERND,
114         SPE_PMU_CAP_FEAT_MAX,
115         SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
116         SPE_PMU_CAP_MIN_IVAL,
117 };
118
119 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
120         [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
121         [SPE_PMU_CAP_ERND]      = SPE_PMU_FEAT_ERND,
122 };
123
124 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
125 {
126         if (cap < SPE_PMU_CAP_FEAT_MAX)
127                 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
128
129         switch (cap) {
130         case SPE_PMU_CAP_CNT_SZ:
131                 return spe_pmu->counter_sz;
132         case SPE_PMU_CAP_MIN_IVAL:
133                 return spe_pmu->min_period;
134         default:
135                 WARN(1, "unknown cap %d\n", cap);
136         }
137
138         return 0;
139 }
140
141 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
142                                     struct device_attribute *attr,
143                                     char *buf)
144 {
145         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
146         struct dev_ext_attribute *ea =
147                 container_of(attr, struct dev_ext_attribute, attr);
148         int cap = (long)ea->var;
149
150         return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
151 }
152
153 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)                          \
154         &((struct dev_ext_attribute[]) {                                \
155                 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }   \
156         })[0].attr.attr
157
158 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)                             \
159         SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
160
161 static struct attribute *arm_spe_pmu_cap_attr[] = {
162         SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
163         SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
164         SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
165         SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
166         NULL,
167 };
168
169 static const struct attribute_group arm_spe_pmu_cap_group = {
170         .name   = "caps",
171         .attrs  = arm_spe_pmu_cap_attr,
172 };
173
174 /* User ABI */
175 #define ATTR_CFG_FLD_ts_enable_CFG              config  /* PMSCR_EL1.TS */
176 #define ATTR_CFG_FLD_ts_enable_LO               0
177 #define ATTR_CFG_FLD_ts_enable_HI               0
178 #define ATTR_CFG_FLD_pa_enable_CFG              config  /* PMSCR_EL1.PA */
179 #define ATTR_CFG_FLD_pa_enable_LO               1
180 #define ATTR_CFG_FLD_pa_enable_HI               1
181 #define ATTR_CFG_FLD_pct_enable_CFG             config  /* PMSCR_EL1.PCT */
182 #define ATTR_CFG_FLD_pct_enable_LO              2
183 #define ATTR_CFG_FLD_pct_enable_HI              2
184 #define ATTR_CFG_FLD_jitter_CFG                 config  /* PMSIRR_EL1.RND */
185 #define ATTR_CFG_FLD_jitter_LO                  16
186 #define ATTR_CFG_FLD_jitter_HI                  16
187 #define ATTR_CFG_FLD_branch_filter_CFG          config  /* PMSFCR_EL1.B */
188 #define ATTR_CFG_FLD_branch_filter_LO           32
189 #define ATTR_CFG_FLD_branch_filter_HI           32
190 #define ATTR_CFG_FLD_load_filter_CFG            config  /* PMSFCR_EL1.LD */
191 #define ATTR_CFG_FLD_load_filter_LO             33
192 #define ATTR_CFG_FLD_load_filter_HI             33
193 #define ATTR_CFG_FLD_store_filter_CFG           config  /* PMSFCR_EL1.ST */
194 #define ATTR_CFG_FLD_store_filter_LO            34
195 #define ATTR_CFG_FLD_store_filter_HI            34
196
197 #define ATTR_CFG_FLD_event_filter_CFG           config1 /* PMSEVFR_EL1 */
198 #define ATTR_CFG_FLD_event_filter_LO            0
199 #define ATTR_CFG_FLD_event_filter_HI            63
200
201 #define ATTR_CFG_FLD_min_latency_CFG            config2 /* PMSLATFR_EL1.MINLAT */
202 #define ATTR_CFG_FLD_min_latency_LO             0
203 #define ATTR_CFG_FLD_min_latency_HI             11
204
205 #define ATTR_CFG_FLD_inv_event_filter_CFG       config3 /* PMSNEVFR_EL1 */
206 #define ATTR_CFG_FLD_inv_event_filter_LO        0
207 #define ATTR_CFG_FLD_inv_event_filter_HI        63
208
209 /* Why does everything I do descend into this? */
210 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                              \
211         (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
212
213 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                               \
214         __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
215
216 #define GEN_PMU_FORMAT_ATTR(name)                                       \
217         PMU_FORMAT_ATTR(name,                                           \
218         _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,                 \
219                              ATTR_CFG_FLD_##name##_LO,                  \
220                              ATTR_CFG_FLD_##name##_HI))
221
222 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)                            \
223         ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
224
225 #define ATTR_CFG_GET_FLD(attr, name)                                    \
226         _ATTR_CFG_GET_FLD(attr,                                         \
227                           ATTR_CFG_FLD_##name##_CFG,                    \
228                           ATTR_CFG_FLD_##name##_LO,                     \
229                           ATTR_CFG_FLD_##name##_HI)
230
231 GEN_PMU_FORMAT_ATTR(ts_enable);
232 GEN_PMU_FORMAT_ATTR(pa_enable);
233 GEN_PMU_FORMAT_ATTR(pct_enable);
234 GEN_PMU_FORMAT_ATTR(jitter);
235 GEN_PMU_FORMAT_ATTR(branch_filter);
236 GEN_PMU_FORMAT_ATTR(load_filter);
237 GEN_PMU_FORMAT_ATTR(store_filter);
238 GEN_PMU_FORMAT_ATTR(event_filter);
239 GEN_PMU_FORMAT_ATTR(inv_event_filter);
240 GEN_PMU_FORMAT_ATTR(min_latency);
241
242 static struct attribute *arm_spe_pmu_formats_attr[] = {
243         &format_attr_ts_enable.attr,
244         &format_attr_pa_enable.attr,
245         &format_attr_pct_enable.attr,
246         &format_attr_jitter.attr,
247         &format_attr_branch_filter.attr,
248         &format_attr_load_filter.attr,
249         &format_attr_store_filter.attr,
250         &format_attr_event_filter.attr,
251         &format_attr_inv_event_filter.attr,
252         &format_attr_min_latency.attr,
253         NULL,
254 };
255
256 static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj,
257                                                   struct attribute *attr,
258                                                   int unused)
259         {
260         struct device *dev = kobj_to_dev(kobj);
261         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
262
263         if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
264                 return 0;
265
266         return attr->mode;
267 }
268
269 static const struct attribute_group arm_spe_pmu_format_group = {
270         .name   = "format",
271         .is_visible = arm_spe_pmu_format_attr_is_visible,
272         .attrs  = arm_spe_pmu_formats_attr,
273 };
274
275 static ssize_t cpumask_show(struct device *dev,
276                             struct device_attribute *attr, char *buf)
277 {
278         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
279
280         return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
281 }
282 static DEVICE_ATTR_RO(cpumask);
283
284 static struct attribute *arm_spe_pmu_attrs[] = {
285         &dev_attr_cpumask.attr,
286         NULL,
287 };
288
289 static const struct attribute_group arm_spe_pmu_group = {
290         .attrs  = arm_spe_pmu_attrs,
291 };
292
293 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
294         &arm_spe_pmu_group,
295         &arm_spe_pmu_cap_group,
296         &arm_spe_pmu_format_group,
297         NULL,
298 };
299
300 /* Convert between user ABI and register values */
301 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
302 {
303         struct perf_event_attr *attr = &event->attr;
304         u64 reg = 0;
305
306         reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable));
307         reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable));
308         reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable));
309
310         if (!attr->exclude_user)
311                 reg |= PMSCR_EL1_E0SPE;
312
313         if (!attr->exclude_kernel)
314                 reg |= PMSCR_EL1_E1SPE;
315
316         if (get_spe_event_has_cx(event))
317                 reg |= PMSCR_EL1_CX;
318
319         return reg;
320 }
321
322 static void arm_spe_event_sanitise_period(struct perf_event *event)
323 {
324         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
325         u64 period = event->hw.sample_period;
326         u64 max_period = PMSIRR_EL1_INTERVAL_MASK;
327
328         if (period < spe_pmu->min_period)
329                 period = spe_pmu->min_period;
330         else if (period > max_period)
331                 period = max_period;
332         else
333                 period &= max_period;
334
335         event->hw.sample_period = period;
336 }
337
338 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
339 {
340         struct perf_event_attr *attr = &event->attr;
341         u64 reg = 0;
342
343         arm_spe_event_sanitise_period(event);
344
345         reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter));
346         reg |= event->hw.sample_period;
347
348         return reg;
349 }
350
351 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
352 {
353         struct perf_event_attr *attr = &event->attr;
354         u64 reg = 0;
355
356         reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter));
357         reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter));
358         reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter));
359
360         if (reg)
361                 reg |= PMSFCR_EL1_FT;
362
363         if (ATTR_CFG_GET_FLD(attr, event_filter))
364                 reg |= PMSFCR_EL1_FE;
365
366         if (ATTR_CFG_GET_FLD(attr, inv_event_filter))
367                 reg |= PMSFCR_EL1_FnE;
368
369         if (ATTR_CFG_GET_FLD(attr, min_latency))
370                 reg |= PMSFCR_EL1_FL;
371
372         return reg;
373 }
374
375 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
376 {
377         struct perf_event_attr *attr = &event->attr;
378         return ATTR_CFG_GET_FLD(attr, event_filter);
379 }
380
381 static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event)
382 {
383         struct perf_event_attr *attr = &event->attr;
384         return ATTR_CFG_GET_FLD(attr, inv_event_filter);
385 }
386
387 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
388 {
389         struct perf_event_attr *attr = &event->attr;
390         return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency));
391 }
392
393 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
394 {
395         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
396         u64 head = PERF_IDX2OFF(handle->head, buf);
397
398         memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
399         if (!buf->snapshot)
400                 perf_aux_output_skip(handle, len);
401 }
402
403 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
404 {
405         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
406         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
407         u64 head = PERF_IDX2OFF(handle->head, buf);
408         u64 limit = buf->nr_pages * PAGE_SIZE;
409
410         /*
411          * The trace format isn't parseable in reverse, so clamp
412          * the limit to half of the buffer size in snapshot mode
413          * so that the worst case is half a buffer of records, as
414          * opposed to a single record.
415          */
416         if (head < limit >> 1)
417                 limit >>= 1;
418
419         /*
420          * If we're within max_record_sz of the limit, we must
421          * pad, move the head index and recompute the limit.
422          */
423         if (limit - head < spe_pmu->max_record_sz) {
424                 arm_spe_pmu_pad_buf(handle, limit - head);
425                 handle->head = PERF_IDX2OFF(limit, buf);
426                 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
427         }
428
429         return limit;
430 }
431
432 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
433 {
434         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
435         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
436         const u64 bufsize = buf->nr_pages * PAGE_SIZE;
437         u64 limit = bufsize;
438         u64 head, tail, wakeup;
439
440         /*
441          * The head can be misaligned for two reasons:
442          *
443          * 1. The hardware left PMBPTR pointing to the first byte after
444          *    a record when generating a buffer management event.
445          *
446          * 2. We used perf_aux_output_skip to consume handle->size bytes
447          *    and CIRC_SPACE was used to compute the size, which always
448          *    leaves one entry free.
449          *
450          * Deal with this by padding to the next alignment boundary and
451          * moving the head index. If we run out of buffer space, we'll
452          * reduce handle->size to zero and end up reporting truncation.
453          */
454         head = PERF_IDX2OFF(handle->head, buf);
455         if (!IS_ALIGNED(head, spe_pmu->align)) {
456                 unsigned long delta = roundup(head, spe_pmu->align) - head;
457
458                 delta = min(delta, handle->size);
459                 arm_spe_pmu_pad_buf(handle, delta);
460                 head = PERF_IDX2OFF(handle->head, buf);
461         }
462
463         /* If we've run out of free space, then nothing more to do */
464         if (!handle->size)
465                 goto no_space;
466
467         /* Compute the tail and wakeup indices now that we've aligned head */
468         tail = PERF_IDX2OFF(handle->head + handle->size, buf);
469         wakeup = PERF_IDX2OFF(handle->wakeup, buf);
470
471         /*
472          * Avoid clobbering unconsumed data. We know we have space, so
473          * if we see head == tail we know that the buffer is empty. If
474          * head > tail, then there's nothing to clobber prior to
475          * wrapping.
476          */
477         if (head < tail)
478                 limit = round_down(tail, PAGE_SIZE);
479
480         /*
481          * Wakeup may be arbitrarily far into the future. If it's not in
482          * the current generation, either we'll wrap before hitting it,
483          * or it's in the past and has been handled already.
484          *
485          * If there's a wakeup before we wrap, arrange to be woken up by
486          * the page boundary following it. Keep the tail boundary if
487          * that's lower.
488          */
489         if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
490                 limit = min(limit, round_up(wakeup, PAGE_SIZE));
491
492         if (limit > head)
493                 return limit;
494
495         arm_spe_pmu_pad_buf(handle, handle->size);
496 no_space:
497         perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
498         perf_aux_output_end(handle, 0);
499         return 0;
500 }
501
502 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
503 {
504         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
505         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
506         u64 limit = __arm_spe_pmu_next_off(handle);
507         u64 head = PERF_IDX2OFF(handle->head, buf);
508
509         /*
510          * If the head has come too close to the end of the buffer,
511          * then pad to the end and recompute the limit.
512          */
513         if (limit && (limit - head < spe_pmu->max_record_sz)) {
514                 arm_spe_pmu_pad_buf(handle, limit - head);
515                 limit = __arm_spe_pmu_next_off(handle);
516         }
517
518         return limit;
519 }
520
521 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
522                                           struct perf_event *event)
523 {
524         u64 base, limit;
525         struct arm_spe_pmu_buf *buf;
526
527         /* Start a new aux session */
528         buf = perf_aux_output_begin(handle, event);
529         if (!buf) {
530                 event->hw.state |= PERF_HES_STOPPED;
531                 /*
532                  * We still need to clear the limit pointer, since the
533                  * profiler might only be disabled by virtue of a fault.
534                  */
535                 limit = 0;
536                 goto out_write_limit;
537         }
538
539         limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
540                               : arm_spe_pmu_next_off(handle);
541         if (limit)
542                 limit |= PMBLIMITR_EL1_E;
543
544         limit += (u64)buf->base;
545         base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
546         write_sysreg_s(base, SYS_PMBPTR_EL1);
547
548 out_write_limit:
549         write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
550 }
551
552 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
553 {
554         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
555         u64 offset, size;
556
557         offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
558         size = offset - PERF_IDX2OFF(handle->head, buf);
559
560         if (buf->snapshot)
561                 handle->head = offset;
562
563         perf_aux_output_end(handle, size);
564 }
565
566 static void arm_spe_pmu_disable_and_drain_local(void)
567 {
568         /* Disable profiling at EL0 and EL1 */
569         write_sysreg_s(0, SYS_PMSCR_EL1);
570         isb();
571
572         /* Drain any buffered data */
573         psb_csync();
574         dsb(nsh);
575
576         /* Disable the profiling buffer */
577         write_sysreg_s(0, SYS_PMBLIMITR_EL1);
578         isb();
579 }
580
581 /* IRQ handling */
582 static enum arm_spe_pmu_buf_fault_action
583 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
584 {
585         const char *err_str;
586         u64 pmbsr;
587         enum arm_spe_pmu_buf_fault_action ret;
588
589         /*
590          * Ensure new profiling data is visible to the CPU and any external
591          * aborts have been resolved.
592          */
593         psb_csync();
594         dsb(nsh);
595
596         /* Ensure hardware updates to PMBPTR_EL1 are visible */
597         isb();
598
599         /* Service required? */
600         pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
601         if (!FIELD_GET(PMBSR_EL1_S, pmbsr))
602                 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
603
604         /*
605          * If we've lost data, disable profiling and also set the PARTIAL
606          * flag to indicate that the last record is corrupted.
607          */
608         if (FIELD_GET(PMBSR_EL1_DL, pmbsr))
609                 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
610                                              PERF_AUX_FLAG_PARTIAL);
611
612         /* Report collisions to userspace so that it can up the period */
613         if (FIELD_GET(PMBSR_EL1_COLL, pmbsr))
614                 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
615
616         /* We only expect buffer management events */
617         switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) {
618         case PMBSR_EL1_EC_BUF:
619                 /* Handled below */
620                 break;
621         case PMBSR_EL1_EC_FAULT_S1:
622         case PMBSR_EL1_EC_FAULT_S2:
623                 err_str = "Unexpected buffer fault";
624                 goto out_err;
625         default:
626                 err_str = "Unknown error code";
627                 goto out_err;
628         }
629
630         /* Buffer management event */
631         switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) {
632         case PMBSR_EL1_BUF_BSC_FULL:
633                 ret = SPE_PMU_BUF_FAULT_ACT_OK;
634                 goto out_stop;
635         default:
636                 err_str = "Unknown buffer status code";
637         }
638
639 out_err:
640         pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
641                            err_str, smp_processor_id(), pmbsr,
642                            read_sysreg_s(SYS_PMBPTR_EL1),
643                            read_sysreg_s(SYS_PMBLIMITR_EL1));
644         ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
645
646 out_stop:
647         arm_spe_perf_aux_output_end(handle);
648         return ret;
649 }
650
651 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
652 {
653         struct perf_output_handle *handle = dev;
654         struct perf_event *event = handle->event;
655         enum arm_spe_pmu_buf_fault_action act;
656
657         if (!perf_get_aux(handle))
658                 return IRQ_NONE;
659
660         act = arm_spe_pmu_buf_get_fault_act(handle);
661         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
662                 return IRQ_NONE;
663
664         /*
665          * Ensure perf callbacks have completed, which may disable the
666          * profiling buffer in response to a TRUNCATION flag.
667          */
668         irq_work_run();
669
670         switch (act) {
671         case SPE_PMU_BUF_FAULT_ACT_FATAL:
672                 /*
673                  * If a fatal exception occurred then leaving the profiling
674                  * buffer enabled is a recipe waiting to happen. Since
675                  * fatal faults don't always imply truncation, make sure
676                  * that the profiling buffer is disabled explicitly before
677                  * clearing the syndrome register.
678                  */
679                 arm_spe_pmu_disable_and_drain_local();
680                 break;
681         case SPE_PMU_BUF_FAULT_ACT_OK:
682                 /*
683                  * We handled the fault (the buffer was full), so resume
684                  * profiling as long as we didn't detect truncation.
685                  * PMBPTR might be misaligned, but we'll burn that bridge
686                  * when we get to it.
687                  */
688                 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
689                         arm_spe_perf_aux_output_begin(handle, event);
690                         isb();
691                 }
692                 break;
693         case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
694                 /* We've seen you before, but GCC has the memory of a sieve. */
695                 break;
696         }
697
698         /* The buffer pointers are now sane, so resume profiling. */
699         write_sysreg_s(0, SYS_PMBSR_EL1);
700         return IRQ_HANDLED;
701 }
702
703 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
704 {
705         switch (pmsver) {
706         case ID_AA64DFR0_EL1_PMSVer_IMP:
707                 return PMSEVFR_EL1_RES0_IMP;
708         case ID_AA64DFR0_EL1_PMSVer_V1P1:
709                 return PMSEVFR_EL1_RES0_V1P1;
710         case ID_AA64DFR0_EL1_PMSVer_V1P2:
711         /* Return the highest version we support in default */
712         default:
713                 return PMSEVFR_EL1_RES0_V1P2;
714         }
715 }
716
717 /* Perf callbacks */
718 static int arm_spe_pmu_event_init(struct perf_event *event)
719 {
720         u64 reg;
721         struct perf_event_attr *attr = &event->attr;
722         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
723
724         /* This is, of course, deeply driver-specific */
725         if (attr->type != event->pmu->type)
726                 return -ENOENT;
727
728         if (event->cpu >= 0 &&
729             !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
730                 return -ENOENT;
731
732         if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
733                 return -EOPNOTSUPP;
734
735         if (arm_spe_event_to_pmsnevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
736                 return -EOPNOTSUPP;
737
738         if (attr->exclude_idle)
739                 return -EOPNOTSUPP;
740
741         /*
742          * Feedback-directed frequency throttling doesn't work when we
743          * have a buffer of samples. We'd need to manually count the
744          * samples in the buffer when it fills up and adjust the event
745          * count to reflect that. Instead, just force the user to specify
746          * a sample period.
747          */
748         if (attr->freq)
749                 return -EINVAL;
750
751         reg = arm_spe_event_to_pmsfcr(event);
752         if ((FIELD_GET(PMSFCR_EL1_FE, reg)) &&
753             !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
754                 return -EOPNOTSUPP;
755
756         if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) &&
757             !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
758                 return -EOPNOTSUPP;
759
760         if ((FIELD_GET(PMSFCR_EL1_FT, reg)) &&
761             !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
762                 return -EOPNOTSUPP;
763
764         if ((FIELD_GET(PMSFCR_EL1_FL, reg)) &&
765             !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
766                 return -EOPNOTSUPP;
767
768         set_spe_event_has_cx(event);
769         reg = arm_spe_event_to_pmscr(event);
770         if (!perfmon_capable() &&
771             (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT)))
772                 return -EACCES;
773
774         return 0;
775 }
776
777 static void arm_spe_pmu_start(struct perf_event *event, int flags)
778 {
779         u64 reg;
780         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
781         struct hw_perf_event *hwc = &event->hw;
782         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
783
784         hwc->state = 0;
785         arm_spe_perf_aux_output_begin(handle, event);
786         if (hwc->state)
787                 return;
788
789         reg = arm_spe_event_to_pmsfcr(event);
790         write_sysreg_s(reg, SYS_PMSFCR_EL1);
791
792         reg = arm_spe_event_to_pmsevfr(event);
793         write_sysreg_s(reg, SYS_PMSEVFR_EL1);
794
795         if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) {
796                 reg = arm_spe_event_to_pmsnevfr(event);
797                 write_sysreg_s(reg, SYS_PMSNEVFR_EL1);
798         }
799
800         reg = arm_spe_event_to_pmslatfr(event);
801         write_sysreg_s(reg, SYS_PMSLATFR_EL1);
802
803         if (flags & PERF_EF_RELOAD) {
804                 reg = arm_spe_event_to_pmsirr(event);
805                 write_sysreg_s(reg, SYS_PMSIRR_EL1);
806                 isb();
807                 reg = local64_read(&hwc->period_left);
808                 write_sysreg_s(reg, SYS_PMSICR_EL1);
809         }
810
811         reg = arm_spe_event_to_pmscr(event);
812         isb();
813         write_sysreg_s(reg, SYS_PMSCR_EL1);
814 }
815
816 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
817 {
818         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
819         struct hw_perf_event *hwc = &event->hw;
820         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
821
822         /* If we're already stopped, then nothing to do */
823         if (hwc->state & PERF_HES_STOPPED)
824                 return;
825
826         /* Stop all trace generation */
827         arm_spe_pmu_disable_and_drain_local();
828
829         if (flags & PERF_EF_UPDATE) {
830                 /*
831                  * If there's a fault pending then ensure we contain it
832                  * to this buffer, since we might be on the context-switch
833                  * path.
834                  */
835                 if (perf_get_aux(handle)) {
836                         enum arm_spe_pmu_buf_fault_action act;
837
838                         act = arm_spe_pmu_buf_get_fault_act(handle);
839                         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
840                                 arm_spe_perf_aux_output_end(handle);
841                         else
842                                 write_sysreg_s(0, SYS_PMBSR_EL1);
843                 }
844
845                 /*
846                  * This may also contain ECOUNT, but nobody else should
847                  * be looking at period_left, since we forbid frequency
848                  * based sampling.
849                  */
850                 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
851                 hwc->state |= PERF_HES_UPTODATE;
852         }
853
854         hwc->state |= PERF_HES_STOPPED;
855 }
856
857 static int arm_spe_pmu_add(struct perf_event *event, int flags)
858 {
859         int ret = 0;
860         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
861         struct hw_perf_event *hwc = &event->hw;
862         int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
863
864         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
865                 return -ENOENT;
866
867         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
868
869         if (flags & PERF_EF_START) {
870                 arm_spe_pmu_start(event, PERF_EF_RELOAD);
871                 if (hwc->state & PERF_HES_STOPPED)
872                         ret = -EINVAL;
873         }
874
875         return ret;
876 }
877
878 static void arm_spe_pmu_del(struct perf_event *event, int flags)
879 {
880         arm_spe_pmu_stop(event, PERF_EF_UPDATE);
881 }
882
883 static void arm_spe_pmu_read(struct perf_event *event)
884 {
885 }
886
887 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
888                                    int nr_pages, bool snapshot)
889 {
890         int i, cpu = event->cpu;
891         struct page **pglist;
892         struct arm_spe_pmu_buf *buf;
893
894         /* We need at least two pages for this to work. */
895         if (nr_pages < 2)
896                 return NULL;
897
898         /*
899          * We require an even number of pages for snapshot mode, so that
900          * we can effectively treat the buffer as consisting of two equal
901          * parts and give userspace a fighting chance of getting some
902          * useful data out of it.
903          */
904         if (snapshot && (nr_pages & 1))
905                 return NULL;
906
907         if (cpu == -1)
908                 cpu = raw_smp_processor_id();
909
910         buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
911         if (!buf)
912                 return NULL;
913
914         pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
915         if (!pglist)
916                 goto out_free_buf;
917
918         for (i = 0; i < nr_pages; ++i)
919                 pglist[i] = virt_to_page(pages[i]);
920
921         buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
922         if (!buf->base)
923                 goto out_free_pglist;
924
925         buf->nr_pages   = nr_pages;
926         buf->snapshot   = snapshot;
927
928         kfree(pglist);
929         return buf;
930
931 out_free_pglist:
932         kfree(pglist);
933 out_free_buf:
934         kfree(buf);
935         return NULL;
936 }
937
938 static void arm_spe_pmu_free_aux(void *aux)
939 {
940         struct arm_spe_pmu_buf *buf = aux;
941
942         vunmap(buf->base);
943         kfree(buf);
944 }
945
946 /* Initialisation and teardown functions */
947 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
948 {
949         static atomic_t pmu_idx = ATOMIC_INIT(-1);
950
951         int idx;
952         char *name;
953         struct device *dev = &spe_pmu->pdev->dev;
954
955         spe_pmu->pmu = (struct pmu) {
956                 .module = THIS_MODULE,
957                 .capabilities   = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
958                 .attr_groups    = arm_spe_pmu_attr_groups,
959                 /*
960                  * We hitch a ride on the software context here, so that
961                  * we can support per-task profiling (which is not possible
962                  * with the invalid context as it doesn't get sched callbacks).
963                  * This requires that userspace either uses a dummy event for
964                  * perf_event_open, since the aux buffer is not setup until
965                  * a subsequent mmap, or creates the profiling event in a
966                  * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
967                  * once the buffer has been created.
968                  */
969                 .task_ctx_nr    = perf_sw_context,
970                 .event_init     = arm_spe_pmu_event_init,
971                 .add            = arm_spe_pmu_add,
972                 .del            = arm_spe_pmu_del,
973                 .start          = arm_spe_pmu_start,
974                 .stop           = arm_spe_pmu_stop,
975                 .read           = arm_spe_pmu_read,
976                 .setup_aux      = arm_spe_pmu_setup_aux,
977                 .free_aux       = arm_spe_pmu_free_aux,
978         };
979
980         idx = atomic_inc_return(&pmu_idx);
981         name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
982         if (!name) {
983                 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
984                 return -ENOMEM;
985         }
986
987         return perf_pmu_register(&spe_pmu->pmu, name, -1);
988 }
989
990 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
991 {
992         perf_pmu_unregister(&spe_pmu->pmu);
993 }
994
995 static void __arm_spe_pmu_dev_probe(void *info)
996 {
997         int fld;
998         u64 reg;
999         struct arm_spe_pmu *spe_pmu = info;
1000         struct device *dev = &spe_pmu->pdev->dev;
1001
1002         fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
1003                                                    ID_AA64DFR0_EL1_PMSVer_SHIFT);
1004         if (!fld) {
1005                 dev_err(dev,
1006                         "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
1007                         fld, smp_processor_id());
1008                 return;
1009         }
1010         spe_pmu->pmsver = (u16)fld;
1011
1012         /* Read PMBIDR first to determine whether or not we have access */
1013         reg = read_sysreg_s(SYS_PMBIDR_EL1);
1014         if (FIELD_GET(PMBIDR_EL1_P, reg)) {
1015                 dev_err(dev,
1016                         "profiling buffer owned by higher exception level\n");
1017                 return;
1018         }
1019
1020         /* Minimum alignment. If it's out-of-range, then fail the probe */
1021         fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg);
1022         spe_pmu->align = 1 << fld;
1023         if (spe_pmu->align > SZ_2K) {
1024                 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
1025                         fld, smp_processor_id());
1026                 return;
1027         }
1028
1029         /* It's now safe to read PMSIDR and figure out what we've got */
1030         reg = read_sysreg_s(SYS_PMSIDR_EL1);
1031         if (FIELD_GET(PMSIDR_EL1_FE, reg))
1032                 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
1033
1034         if (FIELD_GET(PMSIDR_EL1_FnE, reg))
1035                 spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT;
1036
1037         if (FIELD_GET(PMSIDR_EL1_FT, reg))
1038                 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
1039
1040         if (FIELD_GET(PMSIDR_EL1_FL, reg))
1041                 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
1042
1043         if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg))
1044                 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1045
1046         if (FIELD_GET(PMSIDR_EL1_LDS, reg))
1047                 spe_pmu->features |= SPE_PMU_FEAT_LDS;
1048
1049         if (FIELD_GET(PMSIDR_EL1_ERND, reg))
1050                 spe_pmu->features |= SPE_PMU_FEAT_ERND;
1051
1052         /* This field has a spaced out encoding, so just use a look-up */
1053         fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg);
1054         switch (fld) {
1055         case PMSIDR_EL1_INTERVAL_256:
1056                 spe_pmu->min_period = 256;
1057                 break;
1058         case PMSIDR_EL1_INTERVAL_512:
1059                 spe_pmu->min_period = 512;
1060                 break;
1061         case PMSIDR_EL1_INTERVAL_768:
1062                 spe_pmu->min_period = 768;
1063                 break;
1064         case PMSIDR_EL1_INTERVAL_1024:
1065                 spe_pmu->min_period = 1024;
1066                 break;
1067         case PMSIDR_EL1_INTERVAL_1536:
1068                 spe_pmu->min_period = 1536;
1069                 break;
1070         case PMSIDR_EL1_INTERVAL_2048:
1071                 spe_pmu->min_period = 2048;
1072                 break;
1073         case PMSIDR_EL1_INTERVAL_3072:
1074                 spe_pmu->min_period = 3072;
1075                 break;
1076         default:
1077                 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1078                          fld);
1079                 fallthrough;
1080         case PMSIDR_EL1_INTERVAL_4096:
1081                 spe_pmu->min_period = 4096;
1082         }
1083
1084         /* Maximum record size. If it's out-of-range, then fail the probe */
1085         fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg);
1086         spe_pmu->max_record_sz = 1 << fld;
1087         if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1088                 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1089                         fld, smp_processor_id());
1090                 return;
1091         }
1092
1093         fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg);
1094         switch (fld) {
1095         default:
1096                 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1097                          fld);
1098                 fallthrough;
1099         case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT:
1100                 spe_pmu->counter_sz = 12;
1101                 break;
1102         case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT:
1103                 spe_pmu->counter_sz = 16;
1104         }
1105
1106         dev_info(dev,
1107                  "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1108                  spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus),
1109                  spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1110
1111         spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1112 }
1113
1114 static void __arm_spe_pmu_reset_local(void)
1115 {
1116         /*
1117          * This is probably overkill, as we have no idea where we're
1118          * draining any buffered data to...
1119          */
1120         arm_spe_pmu_disable_and_drain_local();
1121
1122         /* Reset the buffer base pointer */
1123         write_sysreg_s(0, SYS_PMBPTR_EL1);
1124         isb();
1125
1126         /* Clear any pending management interrupts */
1127         write_sysreg_s(0, SYS_PMBSR_EL1);
1128         isb();
1129 }
1130
1131 static void __arm_spe_pmu_setup_one(void *info)
1132 {
1133         struct arm_spe_pmu *spe_pmu = info;
1134
1135         __arm_spe_pmu_reset_local();
1136         enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1137 }
1138
1139 static void __arm_spe_pmu_stop_one(void *info)
1140 {
1141         struct arm_spe_pmu *spe_pmu = info;
1142
1143         disable_percpu_irq(spe_pmu->irq);
1144         __arm_spe_pmu_reset_local();
1145 }
1146
1147 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1148 {
1149         struct arm_spe_pmu *spe_pmu;
1150
1151         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1152         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1153                 return 0;
1154
1155         __arm_spe_pmu_setup_one(spe_pmu);
1156         return 0;
1157 }
1158
1159 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1160 {
1161         struct arm_spe_pmu *spe_pmu;
1162
1163         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1164         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1165                 return 0;
1166
1167         __arm_spe_pmu_stop_one(spe_pmu);
1168         return 0;
1169 }
1170
1171 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1172 {
1173         int ret;
1174         cpumask_t *mask = &spe_pmu->supported_cpus;
1175
1176         /* Make sure we probe the hardware on a relevant CPU */
1177         ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1178         if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1179                 return -ENXIO;
1180
1181         /* Request our PPIs (note that the IRQ is still disabled) */
1182         ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1183                                  spe_pmu->handle);
1184         if (ret)
1185                 return ret;
1186
1187         /*
1188          * Register our hotplug notifier now so we don't miss any events.
1189          * This will enable the IRQ for any supported CPUs that are already
1190          * up.
1191          */
1192         ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1193                                        &spe_pmu->hotplug_node);
1194         if (ret)
1195                 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1196
1197         return ret;
1198 }
1199
1200 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1201 {
1202         cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1203         free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1204 }
1205
1206 /* Driver and device probing */
1207 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1208 {
1209         struct platform_device *pdev = spe_pmu->pdev;
1210         int irq = platform_get_irq(pdev, 0);
1211
1212         if (irq < 0)
1213                 return -ENXIO;
1214
1215         if (!irq_is_percpu(irq)) {
1216                 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1217                 return -EINVAL;
1218         }
1219
1220         if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1221                 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1222                 return -EINVAL;
1223         }
1224
1225         spe_pmu->irq = irq;
1226         return 0;
1227 }
1228
1229 static const struct of_device_id arm_spe_pmu_of_match[] = {
1230         { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1231         { /* Sentinel */ },
1232 };
1233 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1234
1235 static const struct platform_device_id arm_spe_match[] = {
1236         { ARMV8_SPE_PDEV_NAME, 0},
1237         { }
1238 };
1239 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1240
1241 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1242 {
1243         int ret;
1244         struct arm_spe_pmu *spe_pmu;
1245         struct device *dev = &pdev->dev;
1246
1247         /*
1248          * If kernelspace is unmapped when running at EL0, then the SPE
1249          * buffer will fault and prematurely terminate the AUX session.
1250          */
1251         if (arm64_kernel_unmapped_at_el0()) {
1252                 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1253                 return -EPERM;
1254         }
1255
1256         spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1257         if (!spe_pmu)
1258                 return -ENOMEM;
1259
1260         spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1261         if (!spe_pmu->handle)
1262                 return -ENOMEM;
1263
1264         spe_pmu->pdev = pdev;
1265         platform_set_drvdata(pdev, spe_pmu);
1266
1267         ret = arm_spe_pmu_irq_probe(spe_pmu);
1268         if (ret)
1269                 goto out_free_handle;
1270
1271         ret = arm_spe_pmu_dev_init(spe_pmu);
1272         if (ret)
1273                 goto out_free_handle;
1274
1275         ret = arm_spe_pmu_perf_init(spe_pmu);
1276         if (ret)
1277                 goto out_teardown_dev;
1278
1279         return 0;
1280
1281 out_teardown_dev:
1282         arm_spe_pmu_dev_teardown(spe_pmu);
1283 out_free_handle:
1284         free_percpu(spe_pmu->handle);
1285         return ret;
1286 }
1287
1288 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1289 {
1290         struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1291
1292         arm_spe_pmu_perf_destroy(spe_pmu);
1293         arm_spe_pmu_dev_teardown(spe_pmu);
1294         free_percpu(spe_pmu->handle);
1295         return 0;
1296 }
1297
1298 static struct platform_driver arm_spe_pmu_driver = {
1299         .id_table = arm_spe_match,
1300         .driver = {
1301                 .name           = DRVNAME,
1302                 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1303                 .suppress_bind_attrs = true,
1304         },
1305         .probe  = arm_spe_pmu_device_probe,
1306         .remove = arm_spe_pmu_device_remove,
1307 };
1308
1309 static int __init arm_spe_pmu_init(void)
1310 {
1311         int ret;
1312
1313         ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1314                                       arm_spe_pmu_cpu_startup,
1315                                       arm_spe_pmu_cpu_teardown);
1316         if (ret < 0)
1317                 return ret;
1318         arm_spe_pmu_online = ret;
1319
1320         ret = platform_driver_register(&arm_spe_pmu_driver);
1321         if (ret)
1322                 cpuhp_remove_multi_state(arm_spe_pmu_online);
1323
1324         return ret;
1325 }
1326
1327 static void __exit arm_spe_pmu_exit(void)
1328 {
1329         platform_driver_unregister(&arm_spe_pmu_driver);
1330         cpuhp_remove_multi_state(arm_spe_pmu_online);
1331 }
1332
1333 module_init(arm_spe_pmu_init);
1334 module_exit(arm_spe_pmu_exit);
1335
1336 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1337 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1338 MODULE_LICENSE("GPL v2");