1 // SPDX-License-Identifier: GPL-2.0-only
3 * Perf support for the Statistical Profiling Extension, introduced as
6 * Copyright (C) 2016 ARM Limited
8 * Author: Will Deacon <will.deacon@arm.com>
11 #define PMUNAME "arm_spe"
12 #define DRVNAME PMUNAME "_pmu"
13 #define pr_fmt(fmt) DRVNAME ": " fmt
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
40 #include <asm/sysreg.h>
43 * Cache if the event is allowed to trace Context information.
44 * This allows us to perform the check, i.e, perfmon_capable(),
45 * in the context of the event owner, once, during the event_init().
47 #define SPE_PMU_HW_FLAGS_CX BIT(0)
49 static void set_spe_event_has_cx(struct perf_event *event)
51 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
52 event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
55 static bool get_spe_event_has_cx(struct perf_event *event)
57 return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
60 #define ARM_SPE_BUF_PAD_BYTE 0
62 struct arm_spe_pmu_buf {
70 struct platform_device *pdev;
71 cpumask_t supported_cpus;
72 struct hlist_node hotplug_node;
79 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
80 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
81 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
82 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
83 #define SPE_PMU_FEAT_LDS (1UL << 4)
84 #define SPE_PMU_FEAT_ERND (1UL << 5)
85 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
90 struct perf_output_handle __percpu *handle;
93 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
95 /* Convert a free-running index from perf into an SPE buffer offset */
96 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
98 /* Keep track of our dynamic hotplug state */
99 static enum cpuhp_state arm_spe_pmu_online;
101 enum arm_spe_pmu_buf_fault_action {
102 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
103 SPE_PMU_BUF_FAULT_ACT_FATAL,
104 SPE_PMU_BUF_FAULT_ACT_OK,
107 /* This sysfs gunk was really good fun to write. */
108 enum arm_spe_pmu_capabilities {
109 SPE_PMU_CAP_ARCH_INST = 0,
111 SPE_PMU_CAP_FEAT_MAX,
112 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
113 SPE_PMU_CAP_MIN_IVAL,
116 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
117 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
118 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
121 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
123 if (cap < SPE_PMU_CAP_FEAT_MAX)
124 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
127 case SPE_PMU_CAP_CNT_SZ:
128 return spe_pmu->counter_sz;
129 case SPE_PMU_CAP_MIN_IVAL:
130 return spe_pmu->min_period;
132 WARN(1, "unknown cap %d\n", cap);
138 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
139 struct device_attribute *attr,
142 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
143 struct dev_ext_attribute *ea =
144 container_of(attr, struct dev_ext_attribute, attr);
145 int cap = (long)ea->var;
147 return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
150 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
151 &((struct dev_ext_attribute[]) { \
152 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
155 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
156 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
158 static struct attribute *arm_spe_pmu_cap_attr[] = {
159 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
160 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
161 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
162 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
166 static const struct attribute_group arm_spe_pmu_cap_group = {
168 .attrs = arm_spe_pmu_cap_attr,
172 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
173 #define ATTR_CFG_FLD_ts_enable_LO 0
174 #define ATTR_CFG_FLD_ts_enable_HI 0
175 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
176 #define ATTR_CFG_FLD_pa_enable_LO 1
177 #define ATTR_CFG_FLD_pa_enable_HI 1
178 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
179 #define ATTR_CFG_FLD_pct_enable_LO 2
180 #define ATTR_CFG_FLD_pct_enable_HI 2
181 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
182 #define ATTR_CFG_FLD_jitter_LO 16
183 #define ATTR_CFG_FLD_jitter_HI 16
184 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
185 #define ATTR_CFG_FLD_branch_filter_LO 32
186 #define ATTR_CFG_FLD_branch_filter_HI 32
187 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
188 #define ATTR_CFG_FLD_load_filter_LO 33
189 #define ATTR_CFG_FLD_load_filter_HI 33
190 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
191 #define ATTR_CFG_FLD_store_filter_LO 34
192 #define ATTR_CFG_FLD_store_filter_HI 34
194 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
195 #define ATTR_CFG_FLD_event_filter_LO 0
196 #define ATTR_CFG_FLD_event_filter_HI 63
198 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
199 #define ATTR_CFG_FLD_min_latency_LO 0
200 #define ATTR_CFG_FLD_min_latency_HI 11
202 /* Why does everything I do descend into this? */
203 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
204 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
206 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
207 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
209 #define GEN_PMU_FORMAT_ATTR(name) \
210 PMU_FORMAT_ATTR(name, \
211 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
212 ATTR_CFG_FLD_##name##_LO, \
213 ATTR_CFG_FLD_##name##_HI))
215 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
216 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
218 #define ATTR_CFG_GET_FLD(attr, name) \
219 _ATTR_CFG_GET_FLD(attr, \
220 ATTR_CFG_FLD_##name##_CFG, \
221 ATTR_CFG_FLD_##name##_LO, \
222 ATTR_CFG_FLD_##name##_HI)
224 GEN_PMU_FORMAT_ATTR(ts_enable);
225 GEN_PMU_FORMAT_ATTR(pa_enable);
226 GEN_PMU_FORMAT_ATTR(pct_enable);
227 GEN_PMU_FORMAT_ATTR(jitter);
228 GEN_PMU_FORMAT_ATTR(branch_filter);
229 GEN_PMU_FORMAT_ATTR(load_filter);
230 GEN_PMU_FORMAT_ATTR(store_filter);
231 GEN_PMU_FORMAT_ATTR(event_filter);
232 GEN_PMU_FORMAT_ATTR(min_latency);
234 static struct attribute *arm_spe_pmu_formats_attr[] = {
235 &format_attr_ts_enable.attr,
236 &format_attr_pa_enable.attr,
237 &format_attr_pct_enable.attr,
238 &format_attr_jitter.attr,
239 &format_attr_branch_filter.attr,
240 &format_attr_load_filter.attr,
241 &format_attr_store_filter.attr,
242 &format_attr_event_filter.attr,
243 &format_attr_min_latency.attr,
247 static const struct attribute_group arm_spe_pmu_format_group = {
249 .attrs = arm_spe_pmu_formats_attr,
252 static ssize_t cpumask_show(struct device *dev,
253 struct device_attribute *attr, char *buf)
255 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
257 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
259 static DEVICE_ATTR_RO(cpumask);
261 static struct attribute *arm_spe_pmu_attrs[] = {
262 &dev_attr_cpumask.attr,
266 static const struct attribute_group arm_spe_pmu_group = {
267 .attrs = arm_spe_pmu_attrs,
270 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
272 &arm_spe_pmu_cap_group,
273 &arm_spe_pmu_format_group,
277 /* Convert between user ABI and register values */
278 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
280 struct perf_event_attr *attr = &event->attr;
283 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
284 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
285 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
287 if (!attr->exclude_user)
288 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
290 if (!attr->exclude_kernel)
291 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
293 if (get_spe_event_has_cx(event))
294 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
299 static void arm_spe_event_sanitise_period(struct perf_event *event)
301 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
302 u64 period = event->hw.sample_period;
303 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
304 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
306 if (period < spe_pmu->min_period)
307 period = spe_pmu->min_period;
308 else if (period > max_period)
311 period &= max_period;
313 event->hw.sample_period = period;
316 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
318 struct perf_event_attr *attr = &event->attr;
321 arm_spe_event_sanitise_period(event);
323 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
324 reg |= event->hw.sample_period;
329 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
331 struct perf_event_attr *attr = &event->attr;
334 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
335 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
336 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
339 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
341 if (ATTR_CFG_GET_FLD(attr, event_filter))
342 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
344 if (ATTR_CFG_GET_FLD(attr, min_latency))
345 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
350 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
352 struct perf_event_attr *attr = &event->attr;
353 return ATTR_CFG_GET_FLD(attr, event_filter);
356 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
358 struct perf_event_attr *attr = &event->attr;
359 return ATTR_CFG_GET_FLD(attr, min_latency)
360 << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
363 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
365 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
366 u64 head = PERF_IDX2OFF(handle->head, buf);
368 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
370 perf_aux_output_skip(handle, len);
373 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
375 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
376 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
377 u64 head = PERF_IDX2OFF(handle->head, buf);
378 u64 limit = buf->nr_pages * PAGE_SIZE;
381 * The trace format isn't parseable in reverse, so clamp
382 * the limit to half of the buffer size in snapshot mode
383 * so that the worst case is half a buffer of records, as
384 * opposed to a single record.
386 if (head < limit >> 1)
390 * If we're within max_record_sz of the limit, we must
391 * pad, move the head index and recompute the limit.
393 if (limit - head < spe_pmu->max_record_sz) {
394 arm_spe_pmu_pad_buf(handle, limit - head);
395 handle->head = PERF_IDX2OFF(limit, buf);
396 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
402 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
404 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
405 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
406 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
408 u64 head, tail, wakeup;
411 * The head can be misaligned for two reasons:
413 * 1. The hardware left PMBPTR pointing to the first byte after
414 * a record when generating a buffer management event.
416 * 2. We used perf_aux_output_skip to consume handle->size bytes
417 * and CIRC_SPACE was used to compute the size, which always
418 * leaves one entry free.
420 * Deal with this by padding to the next alignment boundary and
421 * moving the head index. If we run out of buffer space, we'll
422 * reduce handle->size to zero and end up reporting truncation.
424 head = PERF_IDX2OFF(handle->head, buf);
425 if (!IS_ALIGNED(head, spe_pmu->align)) {
426 unsigned long delta = roundup(head, spe_pmu->align) - head;
428 delta = min(delta, handle->size);
429 arm_spe_pmu_pad_buf(handle, delta);
430 head = PERF_IDX2OFF(handle->head, buf);
433 /* If we've run out of free space, then nothing more to do */
437 /* Compute the tail and wakeup indices now that we've aligned head */
438 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
439 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
442 * Avoid clobbering unconsumed data. We know we have space, so
443 * if we see head == tail we know that the buffer is empty. If
444 * head > tail, then there's nothing to clobber prior to
448 limit = round_down(tail, PAGE_SIZE);
451 * Wakeup may be arbitrarily far into the future. If it's not in
452 * the current generation, either we'll wrap before hitting it,
453 * or it's in the past and has been handled already.
455 * If there's a wakeup before we wrap, arrange to be woken up by
456 * the page boundary following it. Keep the tail boundary if
459 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
460 limit = min(limit, round_up(wakeup, PAGE_SIZE));
465 arm_spe_pmu_pad_buf(handle, handle->size);
467 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
468 perf_aux_output_end(handle, 0);
472 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
474 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
475 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
476 u64 limit = __arm_spe_pmu_next_off(handle);
477 u64 head = PERF_IDX2OFF(handle->head, buf);
480 * If the head has come too close to the end of the buffer,
481 * then pad to the end and recompute the limit.
483 if (limit && (limit - head < spe_pmu->max_record_sz)) {
484 arm_spe_pmu_pad_buf(handle, limit - head);
485 limit = __arm_spe_pmu_next_off(handle);
491 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
492 struct perf_event *event)
495 struct arm_spe_pmu_buf *buf;
497 /* Start a new aux session */
498 buf = perf_aux_output_begin(handle, event);
500 event->hw.state |= PERF_HES_STOPPED;
502 * We still need to clear the limit pointer, since the
503 * profiler might only be disabled by virtue of a fault.
506 goto out_write_limit;
509 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
510 : arm_spe_pmu_next_off(handle);
512 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
514 limit += (u64)buf->base;
515 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
516 write_sysreg_s(base, SYS_PMBPTR_EL1);
519 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
522 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
524 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
527 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
528 size = offset - PERF_IDX2OFF(handle->head, buf);
531 handle->head = offset;
533 perf_aux_output_end(handle, size);
536 static void arm_spe_pmu_disable_and_drain_local(void)
538 /* Disable profiling at EL0 and EL1 */
539 write_sysreg_s(0, SYS_PMSCR_EL1);
542 /* Drain any buffered data */
546 /* Disable the profiling buffer */
547 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
552 static enum arm_spe_pmu_buf_fault_action
553 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
557 enum arm_spe_pmu_buf_fault_action ret;
560 * Ensure new profiling data is visible to the CPU and any external
561 * aborts have been resolved.
566 /* Ensure hardware updates to PMBPTR_EL1 are visible */
569 /* Service required? */
570 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
571 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
572 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
575 * If we've lost data, disable profiling and also set the PARTIAL
576 * flag to indicate that the last record is corrupted.
578 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
579 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
580 PERF_AUX_FLAG_PARTIAL);
582 /* Report collisions to userspace so that it can up the period */
583 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
584 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
586 /* We only expect buffer management events */
587 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
588 case SYS_PMBSR_EL1_EC_BUF:
591 case SYS_PMBSR_EL1_EC_FAULT_S1:
592 case SYS_PMBSR_EL1_EC_FAULT_S2:
593 err_str = "Unexpected buffer fault";
596 err_str = "Unknown error code";
600 /* Buffer management event */
602 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
603 case SYS_PMBSR_EL1_BUF_BSC_FULL:
604 ret = SPE_PMU_BUF_FAULT_ACT_OK;
607 err_str = "Unknown buffer status code";
611 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
612 err_str, smp_processor_id(), pmbsr,
613 read_sysreg_s(SYS_PMBPTR_EL1),
614 read_sysreg_s(SYS_PMBLIMITR_EL1));
615 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
618 arm_spe_perf_aux_output_end(handle);
622 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
624 struct perf_output_handle *handle = dev;
625 struct perf_event *event = handle->event;
626 enum arm_spe_pmu_buf_fault_action act;
628 if (!perf_get_aux(handle))
631 act = arm_spe_pmu_buf_get_fault_act(handle);
632 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
636 * Ensure perf callbacks have completed, which may disable the
637 * profiling buffer in response to a TRUNCATION flag.
642 case SPE_PMU_BUF_FAULT_ACT_FATAL:
644 * If a fatal exception occurred then leaving the profiling
645 * buffer enabled is a recipe waiting to happen. Since
646 * fatal faults don't always imply truncation, make sure
647 * that the profiling buffer is disabled explicitly before
648 * clearing the syndrome register.
650 arm_spe_pmu_disable_and_drain_local();
652 case SPE_PMU_BUF_FAULT_ACT_OK:
654 * We handled the fault (the buffer was full), so resume
655 * profiling as long as we didn't detect truncation.
656 * PMBPTR might be misaligned, but we'll burn that bridge
659 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
660 arm_spe_perf_aux_output_begin(handle, event);
664 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
665 /* We've seen you before, but GCC has the memory of a sieve. */
669 /* The buffer pointers are now sane, so resume profiling. */
670 write_sysreg_s(0, SYS_PMBSR_EL1);
674 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
677 case ID_AA64DFR0_PMSVER_8_2:
678 return SYS_PMSEVFR_EL1_RES0_8_2;
679 case ID_AA64DFR0_PMSVER_8_3:
680 /* Return the highest version we support in default */
682 return SYS_PMSEVFR_EL1_RES0_8_3;
687 static int arm_spe_pmu_event_init(struct perf_event *event)
690 struct perf_event_attr *attr = &event->attr;
691 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
693 /* This is, of course, deeply driver-specific */
694 if (attr->type != event->pmu->type)
697 if (event->cpu >= 0 &&
698 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
701 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
704 if (attr->exclude_idle)
708 * Feedback-directed frequency throttling doesn't work when we
709 * have a buffer of samples. We'd need to manually count the
710 * samples in the buffer when it fills up and adjust the event
711 * count to reflect that. Instead, just force the user to specify
717 reg = arm_spe_event_to_pmsfcr(event);
718 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
719 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
722 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
723 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
726 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
727 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
730 set_spe_event_has_cx(event);
731 reg = arm_spe_event_to_pmscr(event);
732 if (!perfmon_capable() &&
733 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
734 BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
740 static void arm_spe_pmu_start(struct perf_event *event, int flags)
743 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
744 struct hw_perf_event *hwc = &event->hw;
745 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
748 arm_spe_perf_aux_output_begin(handle, event);
752 reg = arm_spe_event_to_pmsfcr(event);
753 write_sysreg_s(reg, SYS_PMSFCR_EL1);
755 reg = arm_spe_event_to_pmsevfr(event);
756 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
758 reg = arm_spe_event_to_pmslatfr(event);
759 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
761 if (flags & PERF_EF_RELOAD) {
762 reg = arm_spe_event_to_pmsirr(event);
763 write_sysreg_s(reg, SYS_PMSIRR_EL1);
765 reg = local64_read(&hwc->period_left);
766 write_sysreg_s(reg, SYS_PMSICR_EL1);
769 reg = arm_spe_event_to_pmscr(event);
771 write_sysreg_s(reg, SYS_PMSCR_EL1);
774 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
776 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
777 struct hw_perf_event *hwc = &event->hw;
778 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
780 /* If we're already stopped, then nothing to do */
781 if (hwc->state & PERF_HES_STOPPED)
784 /* Stop all trace generation */
785 arm_spe_pmu_disable_and_drain_local();
787 if (flags & PERF_EF_UPDATE) {
789 * If there's a fault pending then ensure we contain it
790 * to this buffer, since we might be on the context-switch
793 if (perf_get_aux(handle)) {
794 enum arm_spe_pmu_buf_fault_action act;
796 act = arm_spe_pmu_buf_get_fault_act(handle);
797 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
798 arm_spe_perf_aux_output_end(handle);
800 write_sysreg_s(0, SYS_PMBSR_EL1);
804 * This may also contain ECOUNT, but nobody else should
805 * be looking at period_left, since we forbid frequency
808 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
809 hwc->state |= PERF_HES_UPTODATE;
812 hwc->state |= PERF_HES_STOPPED;
815 static int arm_spe_pmu_add(struct perf_event *event, int flags)
818 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
819 struct hw_perf_event *hwc = &event->hw;
820 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
822 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
825 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
827 if (flags & PERF_EF_START) {
828 arm_spe_pmu_start(event, PERF_EF_RELOAD);
829 if (hwc->state & PERF_HES_STOPPED)
836 static void arm_spe_pmu_del(struct perf_event *event, int flags)
838 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
841 static void arm_spe_pmu_read(struct perf_event *event)
845 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
846 int nr_pages, bool snapshot)
848 int i, cpu = event->cpu;
849 struct page **pglist;
850 struct arm_spe_pmu_buf *buf;
852 /* We need at least two pages for this to work. */
857 * We require an even number of pages for snapshot mode, so that
858 * we can effectively treat the buffer as consisting of two equal
859 * parts and give userspace a fighting chance of getting some
860 * useful data out of it.
862 if (snapshot && (nr_pages & 1))
866 cpu = raw_smp_processor_id();
868 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
872 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
876 for (i = 0; i < nr_pages; ++i)
877 pglist[i] = virt_to_page(pages[i]);
879 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
881 goto out_free_pglist;
883 buf->nr_pages = nr_pages;
884 buf->snapshot = snapshot;
896 static void arm_spe_pmu_free_aux(void *aux)
898 struct arm_spe_pmu_buf *buf = aux;
904 /* Initialisation and teardown functions */
905 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
907 static atomic_t pmu_idx = ATOMIC_INIT(-1);
911 struct device *dev = &spe_pmu->pdev->dev;
913 spe_pmu->pmu = (struct pmu) {
914 .module = THIS_MODULE,
915 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
916 .attr_groups = arm_spe_pmu_attr_groups,
918 * We hitch a ride on the software context here, so that
919 * we can support per-task profiling (which is not possible
920 * with the invalid context as it doesn't get sched callbacks).
921 * This requires that userspace either uses a dummy event for
922 * perf_event_open, since the aux buffer is not setup until
923 * a subsequent mmap, or creates the profiling event in a
924 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
925 * once the buffer has been created.
927 .task_ctx_nr = perf_sw_context,
928 .event_init = arm_spe_pmu_event_init,
929 .add = arm_spe_pmu_add,
930 .del = arm_spe_pmu_del,
931 .start = arm_spe_pmu_start,
932 .stop = arm_spe_pmu_stop,
933 .read = arm_spe_pmu_read,
934 .setup_aux = arm_spe_pmu_setup_aux,
935 .free_aux = arm_spe_pmu_free_aux,
938 idx = atomic_inc_return(&pmu_idx);
939 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
941 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
945 return perf_pmu_register(&spe_pmu->pmu, name, -1);
948 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
950 perf_pmu_unregister(&spe_pmu->pmu);
953 static void __arm_spe_pmu_dev_probe(void *info)
957 struct arm_spe_pmu *spe_pmu = info;
958 struct device *dev = &spe_pmu->pdev->dev;
960 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
961 ID_AA64DFR0_PMSVER_SHIFT);
964 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
965 fld, smp_processor_id());
968 spe_pmu->pmsver = (u16)fld;
970 /* Read PMBIDR first to determine whether or not we have access */
971 reg = read_sysreg_s(SYS_PMBIDR_EL1);
972 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
974 "profiling buffer owned by higher exception level\n");
978 /* Minimum alignment. If it's out-of-range, then fail the probe */
979 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
980 spe_pmu->align = 1 << fld;
981 if (spe_pmu->align > SZ_2K) {
982 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
983 fld, smp_processor_id());
987 /* It's now safe to read PMSIDR and figure out what we've got */
988 reg = read_sysreg_s(SYS_PMSIDR_EL1);
989 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
990 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
992 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
993 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
995 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
996 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
998 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
999 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1001 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
1002 spe_pmu->features |= SPE_PMU_FEAT_LDS;
1004 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
1005 spe_pmu->features |= SPE_PMU_FEAT_ERND;
1007 /* This field has a spaced out encoding, so just use a look-up */
1008 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
1011 spe_pmu->min_period = 256;
1014 spe_pmu->min_period = 512;
1017 spe_pmu->min_period = 768;
1020 spe_pmu->min_period = 1024;
1023 spe_pmu->min_period = 1536;
1026 spe_pmu->min_period = 2048;
1029 spe_pmu->min_period = 3072;
1032 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1036 spe_pmu->min_period = 4096;
1039 /* Maximum record size. If it's out-of-range, then fail the probe */
1040 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1041 spe_pmu->max_record_sz = 1 << fld;
1042 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1043 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1044 fld, smp_processor_id());
1048 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1051 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1055 spe_pmu->counter_sz = 12;
1058 spe_pmu->counter_sz = 16;
1062 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1063 cpumask_pr_args(&spe_pmu->supported_cpus),
1064 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1066 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1069 static void __arm_spe_pmu_reset_local(void)
1072 * This is probably overkill, as we have no idea where we're
1073 * draining any buffered data to...
1075 arm_spe_pmu_disable_and_drain_local();
1077 /* Reset the buffer base pointer */
1078 write_sysreg_s(0, SYS_PMBPTR_EL1);
1081 /* Clear any pending management interrupts */
1082 write_sysreg_s(0, SYS_PMBSR_EL1);
1086 static void __arm_spe_pmu_setup_one(void *info)
1088 struct arm_spe_pmu *spe_pmu = info;
1090 __arm_spe_pmu_reset_local();
1091 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1094 static void __arm_spe_pmu_stop_one(void *info)
1096 struct arm_spe_pmu *spe_pmu = info;
1098 disable_percpu_irq(spe_pmu->irq);
1099 __arm_spe_pmu_reset_local();
1102 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1104 struct arm_spe_pmu *spe_pmu;
1106 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1107 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1110 __arm_spe_pmu_setup_one(spe_pmu);
1114 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1116 struct arm_spe_pmu *spe_pmu;
1118 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1119 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1122 __arm_spe_pmu_stop_one(spe_pmu);
1126 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1129 cpumask_t *mask = &spe_pmu->supported_cpus;
1131 /* Make sure we probe the hardware on a relevant CPU */
1132 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1133 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1136 /* Request our PPIs (note that the IRQ is still disabled) */
1137 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1143 * Register our hotplug notifier now so we don't miss any events.
1144 * This will enable the IRQ for any supported CPUs that are already
1147 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1148 &spe_pmu->hotplug_node);
1150 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1155 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1157 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1158 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1161 /* Driver and device probing */
1162 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1164 struct platform_device *pdev = spe_pmu->pdev;
1165 int irq = platform_get_irq(pdev, 0);
1170 if (!irq_is_percpu(irq)) {
1171 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1175 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1176 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1184 static const struct of_device_id arm_spe_pmu_of_match[] = {
1185 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1188 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1190 static const struct platform_device_id arm_spe_match[] = {
1191 { ARMV8_SPE_PDEV_NAME, 0},
1194 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1196 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1199 struct arm_spe_pmu *spe_pmu;
1200 struct device *dev = &pdev->dev;
1203 * If kernelspace is unmapped when running at EL0, then the SPE
1204 * buffer will fault and prematurely terminate the AUX session.
1206 if (arm64_kernel_unmapped_at_el0()) {
1207 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1211 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1215 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1216 if (!spe_pmu->handle)
1219 spe_pmu->pdev = pdev;
1220 platform_set_drvdata(pdev, spe_pmu);
1222 ret = arm_spe_pmu_irq_probe(spe_pmu);
1224 goto out_free_handle;
1226 ret = arm_spe_pmu_dev_init(spe_pmu);
1228 goto out_free_handle;
1230 ret = arm_spe_pmu_perf_init(spe_pmu);
1232 goto out_teardown_dev;
1237 arm_spe_pmu_dev_teardown(spe_pmu);
1239 free_percpu(spe_pmu->handle);
1243 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1245 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1247 arm_spe_pmu_perf_destroy(spe_pmu);
1248 arm_spe_pmu_dev_teardown(spe_pmu);
1249 free_percpu(spe_pmu->handle);
1253 static struct platform_driver arm_spe_pmu_driver = {
1254 .id_table = arm_spe_match,
1257 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1258 .suppress_bind_attrs = true,
1260 .probe = arm_spe_pmu_device_probe,
1261 .remove = arm_spe_pmu_device_remove,
1264 static int __init arm_spe_pmu_init(void)
1268 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1269 arm_spe_pmu_cpu_startup,
1270 arm_spe_pmu_cpu_teardown);
1273 arm_spe_pmu_online = ret;
1275 ret = platform_driver_register(&arm_spe_pmu_driver);
1277 cpuhp_remove_multi_state(arm_spe_pmu_online);
1282 static void __exit arm_spe_pmu_exit(void)
1284 platform_driver_unregister(&arm_spe_pmu_driver);
1285 cpuhp_remove_multi_state(arm_spe_pmu_online);
1288 module_init(arm_spe_pmu_init);
1289 module_exit(arm_spe_pmu_exit);
1291 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1292 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1293 MODULE_LICENSE("GPL v2");