Merge tag 'lsm-pr-20220801' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm
[platform/kernel/linux-starfive.git] / drivers / perf / arm_spe_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Perf support for the Statistical Profiling Extension, introduced as
4  * part of ARMv8.2.
5  *
6  * Copyright (C) 2016 ARM Limited
7  *
8  * Author: Will Deacon <will.deacon@arm.com>
9  */
10
11 #define PMUNAME                                 "arm_spe"
12 #define DRVNAME                                 PMUNAME "_pmu"
13 #define pr_fmt(fmt)                             DRVNAME ": " fmt
14
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41
42 /*
43  * Cache if the event is allowed to trace Context information.
44  * This allows us to perform the check, i.e, perfmon_capable(),
45  * in the context of the event owner, once, during the event_init().
46  */
47 #define SPE_PMU_HW_FLAGS_CX                     BIT(0)
48
49 static void set_spe_event_has_cx(struct perf_event *event)
50 {
51         if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
52                 event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
53 }
54
55 static bool get_spe_event_has_cx(struct perf_event *event)
56 {
57         return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
58 }
59
60 #define ARM_SPE_BUF_PAD_BYTE                    0
61
62 struct arm_spe_pmu_buf {
63         int                                     nr_pages;
64         bool                                    snapshot;
65         void                                    *base;
66 };
67
68 struct arm_spe_pmu {
69         struct pmu                              pmu;
70         struct platform_device                  *pdev;
71         cpumask_t                               supported_cpus;
72         struct hlist_node                       hotplug_node;
73
74         int                                     irq; /* PPI */
75         u16                                     pmsver;
76         u16                                     min_period;
77         u16                                     counter_sz;
78
79 #define SPE_PMU_FEAT_FILT_EVT                   (1UL << 0)
80 #define SPE_PMU_FEAT_FILT_TYP                   (1UL << 1)
81 #define SPE_PMU_FEAT_FILT_LAT                   (1UL << 2)
82 #define SPE_PMU_FEAT_ARCH_INST                  (1UL << 3)
83 #define SPE_PMU_FEAT_LDS                        (1UL << 4)
84 #define SPE_PMU_FEAT_ERND                       (1UL << 5)
85 #define SPE_PMU_FEAT_DEV_PROBED                 (1UL << 63)
86         u64                                     features;
87
88         u16                                     max_record_sz;
89         u16                                     align;
90         struct perf_output_handle __percpu      *handle;
91 };
92
93 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
94
95 /* Convert a free-running index from perf into an SPE buffer offset */
96 #define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
97
98 /* Keep track of our dynamic hotplug state */
99 static enum cpuhp_state arm_spe_pmu_online;
100
101 enum arm_spe_pmu_buf_fault_action {
102         SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
103         SPE_PMU_BUF_FAULT_ACT_FATAL,
104         SPE_PMU_BUF_FAULT_ACT_OK,
105 };
106
107 /* This sysfs gunk was really good fun to write. */
108 enum arm_spe_pmu_capabilities {
109         SPE_PMU_CAP_ARCH_INST = 0,
110         SPE_PMU_CAP_ERND,
111         SPE_PMU_CAP_FEAT_MAX,
112         SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
113         SPE_PMU_CAP_MIN_IVAL,
114 };
115
116 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
117         [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
118         [SPE_PMU_CAP_ERND]      = SPE_PMU_FEAT_ERND,
119 };
120
121 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
122 {
123         if (cap < SPE_PMU_CAP_FEAT_MAX)
124                 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
125
126         switch (cap) {
127         case SPE_PMU_CAP_CNT_SZ:
128                 return spe_pmu->counter_sz;
129         case SPE_PMU_CAP_MIN_IVAL:
130                 return spe_pmu->min_period;
131         default:
132                 WARN(1, "unknown cap %d\n", cap);
133         }
134
135         return 0;
136 }
137
138 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
139                                     struct device_attribute *attr,
140                                     char *buf)
141 {
142         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
143         struct dev_ext_attribute *ea =
144                 container_of(attr, struct dev_ext_attribute, attr);
145         int cap = (long)ea->var;
146
147         return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
148 }
149
150 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)                          \
151         &((struct dev_ext_attribute[]) {                                \
152                 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }   \
153         })[0].attr.attr
154
155 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)                             \
156         SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
157
158 static struct attribute *arm_spe_pmu_cap_attr[] = {
159         SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
160         SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
161         SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
162         SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
163         NULL,
164 };
165
166 static const struct attribute_group arm_spe_pmu_cap_group = {
167         .name   = "caps",
168         .attrs  = arm_spe_pmu_cap_attr,
169 };
170
171 /* User ABI */
172 #define ATTR_CFG_FLD_ts_enable_CFG              config  /* PMSCR_EL1.TS */
173 #define ATTR_CFG_FLD_ts_enable_LO               0
174 #define ATTR_CFG_FLD_ts_enable_HI               0
175 #define ATTR_CFG_FLD_pa_enable_CFG              config  /* PMSCR_EL1.PA */
176 #define ATTR_CFG_FLD_pa_enable_LO               1
177 #define ATTR_CFG_FLD_pa_enable_HI               1
178 #define ATTR_CFG_FLD_pct_enable_CFG             config  /* PMSCR_EL1.PCT */
179 #define ATTR_CFG_FLD_pct_enable_LO              2
180 #define ATTR_CFG_FLD_pct_enable_HI              2
181 #define ATTR_CFG_FLD_jitter_CFG                 config  /* PMSIRR_EL1.RND */
182 #define ATTR_CFG_FLD_jitter_LO                  16
183 #define ATTR_CFG_FLD_jitter_HI                  16
184 #define ATTR_CFG_FLD_branch_filter_CFG          config  /* PMSFCR_EL1.B */
185 #define ATTR_CFG_FLD_branch_filter_LO           32
186 #define ATTR_CFG_FLD_branch_filter_HI           32
187 #define ATTR_CFG_FLD_load_filter_CFG            config  /* PMSFCR_EL1.LD */
188 #define ATTR_CFG_FLD_load_filter_LO             33
189 #define ATTR_CFG_FLD_load_filter_HI             33
190 #define ATTR_CFG_FLD_store_filter_CFG           config  /* PMSFCR_EL1.ST */
191 #define ATTR_CFG_FLD_store_filter_LO            34
192 #define ATTR_CFG_FLD_store_filter_HI            34
193
194 #define ATTR_CFG_FLD_event_filter_CFG           config1 /* PMSEVFR_EL1 */
195 #define ATTR_CFG_FLD_event_filter_LO            0
196 #define ATTR_CFG_FLD_event_filter_HI            63
197
198 #define ATTR_CFG_FLD_min_latency_CFG            config2 /* PMSLATFR_EL1.MINLAT */
199 #define ATTR_CFG_FLD_min_latency_LO             0
200 #define ATTR_CFG_FLD_min_latency_HI             11
201
202 /* Why does everything I do descend into this? */
203 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                              \
204         (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
205
206 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                               \
207         __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
208
209 #define GEN_PMU_FORMAT_ATTR(name)                                       \
210         PMU_FORMAT_ATTR(name,                                           \
211         _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,                 \
212                              ATTR_CFG_FLD_##name##_LO,                  \
213                              ATTR_CFG_FLD_##name##_HI))
214
215 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)                            \
216         ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
217
218 #define ATTR_CFG_GET_FLD(attr, name)                                    \
219         _ATTR_CFG_GET_FLD(attr,                                         \
220                           ATTR_CFG_FLD_##name##_CFG,                    \
221                           ATTR_CFG_FLD_##name##_LO,                     \
222                           ATTR_CFG_FLD_##name##_HI)
223
224 GEN_PMU_FORMAT_ATTR(ts_enable);
225 GEN_PMU_FORMAT_ATTR(pa_enable);
226 GEN_PMU_FORMAT_ATTR(pct_enable);
227 GEN_PMU_FORMAT_ATTR(jitter);
228 GEN_PMU_FORMAT_ATTR(branch_filter);
229 GEN_PMU_FORMAT_ATTR(load_filter);
230 GEN_PMU_FORMAT_ATTR(store_filter);
231 GEN_PMU_FORMAT_ATTR(event_filter);
232 GEN_PMU_FORMAT_ATTR(min_latency);
233
234 static struct attribute *arm_spe_pmu_formats_attr[] = {
235         &format_attr_ts_enable.attr,
236         &format_attr_pa_enable.attr,
237         &format_attr_pct_enable.attr,
238         &format_attr_jitter.attr,
239         &format_attr_branch_filter.attr,
240         &format_attr_load_filter.attr,
241         &format_attr_store_filter.attr,
242         &format_attr_event_filter.attr,
243         &format_attr_min_latency.attr,
244         NULL,
245 };
246
247 static const struct attribute_group arm_spe_pmu_format_group = {
248         .name   = "format",
249         .attrs  = arm_spe_pmu_formats_attr,
250 };
251
252 static ssize_t cpumask_show(struct device *dev,
253                             struct device_attribute *attr, char *buf)
254 {
255         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
256
257         return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
258 }
259 static DEVICE_ATTR_RO(cpumask);
260
261 static struct attribute *arm_spe_pmu_attrs[] = {
262         &dev_attr_cpumask.attr,
263         NULL,
264 };
265
266 static const struct attribute_group arm_spe_pmu_group = {
267         .attrs  = arm_spe_pmu_attrs,
268 };
269
270 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
271         &arm_spe_pmu_group,
272         &arm_spe_pmu_cap_group,
273         &arm_spe_pmu_format_group,
274         NULL,
275 };
276
277 /* Convert between user ABI and register values */
278 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
279 {
280         struct perf_event_attr *attr = &event->attr;
281         u64 reg = 0;
282
283         reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
284         reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
285         reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
286
287         if (!attr->exclude_user)
288                 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
289
290         if (!attr->exclude_kernel)
291                 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
292
293         if (get_spe_event_has_cx(event))
294                 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
295
296         return reg;
297 }
298
299 static void arm_spe_event_sanitise_period(struct perf_event *event)
300 {
301         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
302         u64 period = event->hw.sample_period;
303         u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
304                          << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
305
306         if (period < spe_pmu->min_period)
307                 period = spe_pmu->min_period;
308         else if (period > max_period)
309                 period = max_period;
310         else
311                 period &= max_period;
312
313         event->hw.sample_period = period;
314 }
315
316 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
317 {
318         struct perf_event_attr *attr = &event->attr;
319         u64 reg = 0;
320
321         arm_spe_event_sanitise_period(event);
322
323         reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
324         reg |= event->hw.sample_period;
325
326         return reg;
327 }
328
329 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
330 {
331         struct perf_event_attr *attr = &event->attr;
332         u64 reg = 0;
333
334         reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
335         reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
336         reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
337
338         if (reg)
339                 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
340
341         if (ATTR_CFG_GET_FLD(attr, event_filter))
342                 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
343
344         if (ATTR_CFG_GET_FLD(attr, min_latency))
345                 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
346
347         return reg;
348 }
349
350 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
351 {
352         struct perf_event_attr *attr = &event->attr;
353         return ATTR_CFG_GET_FLD(attr, event_filter);
354 }
355
356 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
357 {
358         struct perf_event_attr *attr = &event->attr;
359         return ATTR_CFG_GET_FLD(attr, min_latency)
360                << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
361 }
362
363 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
364 {
365         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
366         u64 head = PERF_IDX2OFF(handle->head, buf);
367
368         memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
369         if (!buf->snapshot)
370                 perf_aux_output_skip(handle, len);
371 }
372
373 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
374 {
375         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
376         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
377         u64 head = PERF_IDX2OFF(handle->head, buf);
378         u64 limit = buf->nr_pages * PAGE_SIZE;
379
380         /*
381          * The trace format isn't parseable in reverse, so clamp
382          * the limit to half of the buffer size in snapshot mode
383          * so that the worst case is half a buffer of records, as
384          * opposed to a single record.
385          */
386         if (head < limit >> 1)
387                 limit >>= 1;
388
389         /*
390          * If we're within max_record_sz of the limit, we must
391          * pad, move the head index and recompute the limit.
392          */
393         if (limit - head < spe_pmu->max_record_sz) {
394                 arm_spe_pmu_pad_buf(handle, limit - head);
395                 handle->head = PERF_IDX2OFF(limit, buf);
396                 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
397         }
398
399         return limit;
400 }
401
402 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
403 {
404         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
405         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
406         const u64 bufsize = buf->nr_pages * PAGE_SIZE;
407         u64 limit = bufsize;
408         u64 head, tail, wakeup;
409
410         /*
411          * The head can be misaligned for two reasons:
412          *
413          * 1. The hardware left PMBPTR pointing to the first byte after
414          *    a record when generating a buffer management event.
415          *
416          * 2. We used perf_aux_output_skip to consume handle->size bytes
417          *    and CIRC_SPACE was used to compute the size, which always
418          *    leaves one entry free.
419          *
420          * Deal with this by padding to the next alignment boundary and
421          * moving the head index. If we run out of buffer space, we'll
422          * reduce handle->size to zero and end up reporting truncation.
423          */
424         head = PERF_IDX2OFF(handle->head, buf);
425         if (!IS_ALIGNED(head, spe_pmu->align)) {
426                 unsigned long delta = roundup(head, spe_pmu->align) - head;
427
428                 delta = min(delta, handle->size);
429                 arm_spe_pmu_pad_buf(handle, delta);
430                 head = PERF_IDX2OFF(handle->head, buf);
431         }
432
433         /* If we've run out of free space, then nothing more to do */
434         if (!handle->size)
435                 goto no_space;
436
437         /* Compute the tail and wakeup indices now that we've aligned head */
438         tail = PERF_IDX2OFF(handle->head + handle->size, buf);
439         wakeup = PERF_IDX2OFF(handle->wakeup, buf);
440
441         /*
442          * Avoid clobbering unconsumed data. We know we have space, so
443          * if we see head == tail we know that the buffer is empty. If
444          * head > tail, then there's nothing to clobber prior to
445          * wrapping.
446          */
447         if (head < tail)
448                 limit = round_down(tail, PAGE_SIZE);
449
450         /*
451          * Wakeup may be arbitrarily far into the future. If it's not in
452          * the current generation, either we'll wrap before hitting it,
453          * or it's in the past and has been handled already.
454          *
455          * If there's a wakeup before we wrap, arrange to be woken up by
456          * the page boundary following it. Keep the tail boundary if
457          * that's lower.
458          */
459         if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
460                 limit = min(limit, round_up(wakeup, PAGE_SIZE));
461
462         if (limit > head)
463                 return limit;
464
465         arm_spe_pmu_pad_buf(handle, handle->size);
466 no_space:
467         perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
468         perf_aux_output_end(handle, 0);
469         return 0;
470 }
471
472 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
473 {
474         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
475         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
476         u64 limit = __arm_spe_pmu_next_off(handle);
477         u64 head = PERF_IDX2OFF(handle->head, buf);
478
479         /*
480          * If the head has come too close to the end of the buffer,
481          * then pad to the end and recompute the limit.
482          */
483         if (limit && (limit - head < spe_pmu->max_record_sz)) {
484                 arm_spe_pmu_pad_buf(handle, limit - head);
485                 limit = __arm_spe_pmu_next_off(handle);
486         }
487
488         return limit;
489 }
490
491 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
492                                           struct perf_event *event)
493 {
494         u64 base, limit;
495         struct arm_spe_pmu_buf *buf;
496
497         /* Start a new aux session */
498         buf = perf_aux_output_begin(handle, event);
499         if (!buf) {
500                 event->hw.state |= PERF_HES_STOPPED;
501                 /*
502                  * We still need to clear the limit pointer, since the
503                  * profiler might only be disabled by virtue of a fault.
504                  */
505                 limit = 0;
506                 goto out_write_limit;
507         }
508
509         limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
510                               : arm_spe_pmu_next_off(handle);
511         if (limit)
512                 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
513
514         limit += (u64)buf->base;
515         base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
516         write_sysreg_s(base, SYS_PMBPTR_EL1);
517
518 out_write_limit:
519         write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
520 }
521
522 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
523 {
524         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
525         u64 offset, size;
526
527         offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
528         size = offset - PERF_IDX2OFF(handle->head, buf);
529
530         if (buf->snapshot)
531                 handle->head = offset;
532
533         perf_aux_output_end(handle, size);
534 }
535
536 static void arm_spe_pmu_disable_and_drain_local(void)
537 {
538         /* Disable profiling at EL0 and EL1 */
539         write_sysreg_s(0, SYS_PMSCR_EL1);
540         isb();
541
542         /* Drain any buffered data */
543         psb_csync();
544         dsb(nsh);
545
546         /* Disable the profiling buffer */
547         write_sysreg_s(0, SYS_PMBLIMITR_EL1);
548         isb();
549 }
550
551 /* IRQ handling */
552 static enum arm_spe_pmu_buf_fault_action
553 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
554 {
555         const char *err_str;
556         u64 pmbsr;
557         enum arm_spe_pmu_buf_fault_action ret;
558
559         /*
560          * Ensure new profiling data is visible to the CPU and any external
561          * aborts have been resolved.
562          */
563         psb_csync();
564         dsb(nsh);
565
566         /* Ensure hardware updates to PMBPTR_EL1 are visible */
567         isb();
568
569         /* Service required? */
570         pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
571         if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
572                 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
573
574         /*
575          * If we've lost data, disable profiling and also set the PARTIAL
576          * flag to indicate that the last record is corrupted.
577          */
578         if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
579                 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
580                                              PERF_AUX_FLAG_PARTIAL);
581
582         /* Report collisions to userspace so that it can up the period */
583         if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
584                 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
585
586         /* We only expect buffer management events */
587         switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
588         case SYS_PMBSR_EL1_EC_BUF:
589                 /* Handled below */
590                 break;
591         case SYS_PMBSR_EL1_EC_FAULT_S1:
592         case SYS_PMBSR_EL1_EC_FAULT_S2:
593                 err_str = "Unexpected buffer fault";
594                 goto out_err;
595         default:
596                 err_str = "Unknown error code";
597                 goto out_err;
598         }
599
600         /* Buffer management event */
601         switch (pmbsr &
602                 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
603         case SYS_PMBSR_EL1_BUF_BSC_FULL:
604                 ret = SPE_PMU_BUF_FAULT_ACT_OK;
605                 goto out_stop;
606         default:
607                 err_str = "Unknown buffer status code";
608         }
609
610 out_err:
611         pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
612                            err_str, smp_processor_id(), pmbsr,
613                            read_sysreg_s(SYS_PMBPTR_EL1),
614                            read_sysreg_s(SYS_PMBLIMITR_EL1));
615         ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
616
617 out_stop:
618         arm_spe_perf_aux_output_end(handle);
619         return ret;
620 }
621
622 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
623 {
624         struct perf_output_handle *handle = dev;
625         struct perf_event *event = handle->event;
626         enum arm_spe_pmu_buf_fault_action act;
627
628         if (!perf_get_aux(handle))
629                 return IRQ_NONE;
630
631         act = arm_spe_pmu_buf_get_fault_act(handle);
632         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
633                 return IRQ_NONE;
634
635         /*
636          * Ensure perf callbacks have completed, which may disable the
637          * profiling buffer in response to a TRUNCATION flag.
638          */
639         irq_work_run();
640
641         switch (act) {
642         case SPE_PMU_BUF_FAULT_ACT_FATAL:
643                 /*
644                  * If a fatal exception occurred then leaving the profiling
645                  * buffer enabled is a recipe waiting to happen. Since
646                  * fatal faults don't always imply truncation, make sure
647                  * that the profiling buffer is disabled explicitly before
648                  * clearing the syndrome register.
649                  */
650                 arm_spe_pmu_disable_and_drain_local();
651                 break;
652         case SPE_PMU_BUF_FAULT_ACT_OK:
653                 /*
654                  * We handled the fault (the buffer was full), so resume
655                  * profiling as long as we didn't detect truncation.
656                  * PMBPTR might be misaligned, but we'll burn that bridge
657                  * when we get to it.
658                  */
659                 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
660                         arm_spe_perf_aux_output_begin(handle, event);
661                         isb();
662                 }
663                 break;
664         case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
665                 /* We've seen you before, but GCC has the memory of a sieve. */
666                 break;
667         }
668
669         /* The buffer pointers are now sane, so resume profiling. */
670         write_sysreg_s(0, SYS_PMBSR_EL1);
671         return IRQ_HANDLED;
672 }
673
674 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
675 {
676         switch (pmsver) {
677         case ID_AA64DFR0_PMSVER_8_2:
678                 return SYS_PMSEVFR_EL1_RES0_8_2;
679         case ID_AA64DFR0_PMSVER_8_3:
680         /* Return the highest version we support in default */
681         default:
682                 return SYS_PMSEVFR_EL1_RES0_8_3;
683         }
684 }
685
686 /* Perf callbacks */
687 static int arm_spe_pmu_event_init(struct perf_event *event)
688 {
689         u64 reg;
690         struct perf_event_attr *attr = &event->attr;
691         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
692
693         /* This is, of course, deeply driver-specific */
694         if (attr->type != event->pmu->type)
695                 return -ENOENT;
696
697         if (event->cpu >= 0 &&
698             !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
699                 return -ENOENT;
700
701         if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
702                 return -EOPNOTSUPP;
703
704         if (attr->exclude_idle)
705                 return -EOPNOTSUPP;
706
707         /*
708          * Feedback-directed frequency throttling doesn't work when we
709          * have a buffer of samples. We'd need to manually count the
710          * samples in the buffer when it fills up and adjust the event
711          * count to reflect that. Instead, just force the user to specify
712          * a sample period.
713          */
714         if (attr->freq)
715                 return -EINVAL;
716
717         reg = arm_spe_event_to_pmsfcr(event);
718         if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
719             !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
720                 return -EOPNOTSUPP;
721
722         if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
723             !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
724                 return -EOPNOTSUPP;
725
726         if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
727             !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
728                 return -EOPNOTSUPP;
729
730         set_spe_event_has_cx(event);
731         reg = arm_spe_event_to_pmscr(event);
732         if (!perfmon_capable() &&
733             (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
734                     BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
735                 return -EACCES;
736
737         return 0;
738 }
739
740 static void arm_spe_pmu_start(struct perf_event *event, int flags)
741 {
742         u64 reg;
743         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
744         struct hw_perf_event *hwc = &event->hw;
745         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
746
747         hwc->state = 0;
748         arm_spe_perf_aux_output_begin(handle, event);
749         if (hwc->state)
750                 return;
751
752         reg = arm_spe_event_to_pmsfcr(event);
753         write_sysreg_s(reg, SYS_PMSFCR_EL1);
754
755         reg = arm_spe_event_to_pmsevfr(event);
756         write_sysreg_s(reg, SYS_PMSEVFR_EL1);
757
758         reg = arm_spe_event_to_pmslatfr(event);
759         write_sysreg_s(reg, SYS_PMSLATFR_EL1);
760
761         if (flags & PERF_EF_RELOAD) {
762                 reg = arm_spe_event_to_pmsirr(event);
763                 write_sysreg_s(reg, SYS_PMSIRR_EL1);
764                 isb();
765                 reg = local64_read(&hwc->period_left);
766                 write_sysreg_s(reg, SYS_PMSICR_EL1);
767         }
768
769         reg = arm_spe_event_to_pmscr(event);
770         isb();
771         write_sysreg_s(reg, SYS_PMSCR_EL1);
772 }
773
774 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
775 {
776         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
777         struct hw_perf_event *hwc = &event->hw;
778         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
779
780         /* If we're already stopped, then nothing to do */
781         if (hwc->state & PERF_HES_STOPPED)
782                 return;
783
784         /* Stop all trace generation */
785         arm_spe_pmu_disable_and_drain_local();
786
787         if (flags & PERF_EF_UPDATE) {
788                 /*
789                  * If there's a fault pending then ensure we contain it
790                  * to this buffer, since we might be on the context-switch
791                  * path.
792                  */
793                 if (perf_get_aux(handle)) {
794                         enum arm_spe_pmu_buf_fault_action act;
795
796                         act = arm_spe_pmu_buf_get_fault_act(handle);
797                         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
798                                 arm_spe_perf_aux_output_end(handle);
799                         else
800                                 write_sysreg_s(0, SYS_PMBSR_EL1);
801                 }
802
803                 /*
804                  * This may also contain ECOUNT, but nobody else should
805                  * be looking at period_left, since we forbid frequency
806                  * based sampling.
807                  */
808                 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
809                 hwc->state |= PERF_HES_UPTODATE;
810         }
811
812         hwc->state |= PERF_HES_STOPPED;
813 }
814
815 static int arm_spe_pmu_add(struct perf_event *event, int flags)
816 {
817         int ret = 0;
818         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
819         struct hw_perf_event *hwc = &event->hw;
820         int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
821
822         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
823                 return -ENOENT;
824
825         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
826
827         if (flags & PERF_EF_START) {
828                 arm_spe_pmu_start(event, PERF_EF_RELOAD);
829                 if (hwc->state & PERF_HES_STOPPED)
830                         ret = -EINVAL;
831         }
832
833         return ret;
834 }
835
836 static void arm_spe_pmu_del(struct perf_event *event, int flags)
837 {
838         arm_spe_pmu_stop(event, PERF_EF_UPDATE);
839 }
840
841 static void arm_spe_pmu_read(struct perf_event *event)
842 {
843 }
844
845 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
846                                    int nr_pages, bool snapshot)
847 {
848         int i, cpu = event->cpu;
849         struct page **pglist;
850         struct arm_spe_pmu_buf *buf;
851
852         /* We need at least two pages for this to work. */
853         if (nr_pages < 2)
854                 return NULL;
855
856         /*
857          * We require an even number of pages for snapshot mode, so that
858          * we can effectively treat the buffer as consisting of two equal
859          * parts and give userspace a fighting chance of getting some
860          * useful data out of it.
861          */
862         if (snapshot && (nr_pages & 1))
863                 return NULL;
864
865         if (cpu == -1)
866                 cpu = raw_smp_processor_id();
867
868         buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
869         if (!buf)
870                 return NULL;
871
872         pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
873         if (!pglist)
874                 goto out_free_buf;
875
876         for (i = 0; i < nr_pages; ++i)
877                 pglist[i] = virt_to_page(pages[i]);
878
879         buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
880         if (!buf->base)
881                 goto out_free_pglist;
882
883         buf->nr_pages   = nr_pages;
884         buf->snapshot   = snapshot;
885
886         kfree(pglist);
887         return buf;
888
889 out_free_pglist:
890         kfree(pglist);
891 out_free_buf:
892         kfree(buf);
893         return NULL;
894 }
895
896 static void arm_spe_pmu_free_aux(void *aux)
897 {
898         struct arm_spe_pmu_buf *buf = aux;
899
900         vunmap(buf->base);
901         kfree(buf);
902 }
903
904 /* Initialisation and teardown functions */
905 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
906 {
907         static atomic_t pmu_idx = ATOMIC_INIT(-1);
908
909         int idx;
910         char *name;
911         struct device *dev = &spe_pmu->pdev->dev;
912
913         spe_pmu->pmu = (struct pmu) {
914                 .module = THIS_MODULE,
915                 .capabilities   = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
916                 .attr_groups    = arm_spe_pmu_attr_groups,
917                 /*
918                  * We hitch a ride on the software context here, so that
919                  * we can support per-task profiling (which is not possible
920                  * with the invalid context as it doesn't get sched callbacks).
921                  * This requires that userspace either uses a dummy event for
922                  * perf_event_open, since the aux buffer is not setup until
923                  * a subsequent mmap, or creates the profiling event in a
924                  * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
925                  * once the buffer has been created.
926                  */
927                 .task_ctx_nr    = perf_sw_context,
928                 .event_init     = arm_spe_pmu_event_init,
929                 .add            = arm_spe_pmu_add,
930                 .del            = arm_spe_pmu_del,
931                 .start          = arm_spe_pmu_start,
932                 .stop           = arm_spe_pmu_stop,
933                 .read           = arm_spe_pmu_read,
934                 .setup_aux      = arm_spe_pmu_setup_aux,
935                 .free_aux       = arm_spe_pmu_free_aux,
936         };
937
938         idx = atomic_inc_return(&pmu_idx);
939         name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
940         if (!name) {
941                 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
942                 return -ENOMEM;
943         }
944
945         return perf_pmu_register(&spe_pmu->pmu, name, -1);
946 }
947
948 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
949 {
950         perf_pmu_unregister(&spe_pmu->pmu);
951 }
952
953 static void __arm_spe_pmu_dev_probe(void *info)
954 {
955         int fld;
956         u64 reg;
957         struct arm_spe_pmu *spe_pmu = info;
958         struct device *dev = &spe_pmu->pdev->dev;
959
960         fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
961                                                    ID_AA64DFR0_PMSVER_SHIFT);
962         if (!fld) {
963                 dev_err(dev,
964                         "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
965                         fld, smp_processor_id());
966                 return;
967         }
968         spe_pmu->pmsver = (u16)fld;
969
970         /* Read PMBIDR first to determine whether or not we have access */
971         reg = read_sysreg_s(SYS_PMBIDR_EL1);
972         if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
973                 dev_err(dev,
974                         "profiling buffer owned by higher exception level\n");
975                 return;
976         }
977
978         /* Minimum alignment. If it's out-of-range, then fail the probe */
979         fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
980         spe_pmu->align = 1 << fld;
981         if (spe_pmu->align > SZ_2K) {
982                 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
983                         fld, smp_processor_id());
984                 return;
985         }
986
987         /* It's now safe to read PMSIDR and figure out what we've got */
988         reg = read_sysreg_s(SYS_PMSIDR_EL1);
989         if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
990                 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
991
992         if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
993                 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
994
995         if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
996                 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
997
998         if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
999                 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1000
1001         if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
1002                 spe_pmu->features |= SPE_PMU_FEAT_LDS;
1003
1004         if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
1005                 spe_pmu->features |= SPE_PMU_FEAT_ERND;
1006
1007         /* This field has a spaced out encoding, so just use a look-up */
1008         fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
1009         switch (fld) {
1010         case 0:
1011                 spe_pmu->min_period = 256;
1012                 break;
1013         case 2:
1014                 spe_pmu->min_period = 512;
1015                 break;
1016         case 3:
1017                 spe_pmu->min_period = 768;
1018                 break;
1019         case 4:
1020                 spe_pmu->min_period = 1024;
1021                 break;
1022         case 5:
1023                 spe_pmu->min_period = 1536;
1024                 break;
1025         case 6:
1026                 spe_pmu->min_period = 2048;
1027                 break;
1028         case 7:
1029                 spe_pmu->min_period = 3072;
1030                 break;
1031         default:
1032                 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1033                          fld);
1034                 fallthrough;
1035         case 8:
1036                 spe_pmu->min_period = 4096;
1037         }
1038
1039         /* Maximum record size. If it's out-of-range, then fail the probe */
1040         fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1041         spe_pmu->max_record_sz = 1 << fld;
1042         if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1043                 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1044                         fld, smp_processor_id());
1045                 return;
1046         }
1047
1048         fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1049         switch (fld) {
1050         default:
1051                 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1052                          fld);
1053                 fallthrough;
1054         case 2:
1055                 spe_pmu->counter_sz = 12;
1056                 break;
1057         case 3:
1058                 spe_pmu->counter_sz = 16;
1059         }
1060
1061         dev_info(dev,
1062                  "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1063                  cpumask_pr_args(&spe_pmu->supported_cpus),
1064                  spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1065
1066         spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1067 }
1068
1069 static void __arm_spe_pmu_reset_local(void)
1070 {
1071         /*
1072          * This is probably overkill, as we have no idea where we're
1073          * draining any buffered data to...
1074          */
1075         arm_spe_pmu_disable_and_drain_local();
1076
1077         /* Reset the buffer base pointer */
1078         write_sysreg_s(0, SYS_PMBPTR_EL1);
1079         isb();
1080
1081         /* Clear any pending management interrupts */
1082         write_sysreg_s(0, SYS_PMBSR_EL1);
1083         isb();
1084 }
1085
1086 static void __arm_spe_pmu_setup_one(void *info)
1087 {
1088         struct arm_spe_pmu *spe_pmu = info;
1089
1090         __arm_spe_pmu_reset_local();
1091         enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1092 }
1093
1094 static void __arm_spe_pmu_stop_one(void *info)
1095 {
1096         struct arm_spe_pmu *spe_pmu = info;
1097
1098         disable_percpu_irq(spe_pmu->irq);
1099         __arm_spe_pmu_reset_local();
1100 }
1101
1102 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1103 {
1104         struct arm_spe_pmu *spe_pmu;
1105
1106         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1107         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1108                 return 0;
1109
1110         __arm_spe_pmu_setup_one(spe_pmu);
1111         return 0;
1112 }
1113
1114 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1115 {
1116         struct arm_spe_pmu *spe_pmu;
1117
1118         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1119         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1120                 return 0;
1121
1122         __arm_spe_pmu_stop_one(spe_pmu);
1123         return 0;
1124 }
1125
1126 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1127 {
1128         int ret;
1129         cpumask_t *mask = &spe_pmu->supported_cpus;
1130
1131         /* Make sure we probe the hardware on a relevant CPU */
1132         ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1133         if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1134                 return -ENXIO;
1135
1136         /* Request our PPIs (note that the IRQ is still disabled) */
1137         ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1138                                  spe_pmu->handle);
1139         if (ret)
1140                 return ret;
1141
1142         /*
1143          * Register our hotplug notifier now so we don't miss any events.
1144          * This will enable the IRQ for any supported CPUs that are already
1145          * up.
1146          */
1147         ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1148                                        &spe_pmu->hotplug_node);
1149         if (ret)
1150                 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1151
1152         return ret;
1153 }
1154
1155 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1156 {
1157         cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1158         free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1159 }
1160
1161 /* Driver and device probing */
1162 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1163 {
1164         struct platform_device *pdev = spe_pmu->pdev;
1165         int irq = platform_get_irq(pdev, 0);
1166
1167         if (irq < 0)
1168                 return -ENXIO;
1169
1170         if (!irq_is_percpu(irq)) {
1171                 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1172                 return -EINVAL;
1173         }
1174
1175         if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1176                 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1177                 return -EINVAL;
1178         }
1179
1180         spe_pmu->irq = irq;
1181         return 0;
1182 }
1183
1184 static const struct of_device_id arm_spe_pmu_of_match[] = {
1185         { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1186         { /* Sentinel */ },
1187 };
1188 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1189
1190 static const struct platform_device_id arm_spe_match[] = {
1191         { ARMV8_SPE_PDEV_NAME, 0},
1192         { }
1193 };
1194 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1195
1196 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1197 {
1198         int ret;
1199         struct arm_spe_pmu *spe_pmu;
1200         struct device *dev = &pdev->dev;
1201
1202         /*
1203          * If kernelspace is unmapped when running at EL0, then the SPE
1204          * buffer will fault and prematurely terminate the AUX session.
1205          */
1206         if (arm64_kernel_unmapped_at_el0()) {
1207                 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1208                 return -EPERM;
1209         }
1210
1211         spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1212         if (!spe_pmu)
1213                 return -ENOMEM;
1214
1215         spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1216         if (!spe_pmu->handle)
1217                 return -ENOMEM;
1218
1219         spe_pmu->pdev = pdev;
1220         platform_set_drvdata(pdev, spe_pmu);
1221
1222         ret = arm_spe_pmu_irq_probe(spe_pmu);
1223         if (ret)
1224                 goto out_free_handle;
1225
1226         ret = arm_spe_pmu_dev_init(spe_pmu);
1227         if (ret)
1228                 goto out_free_handle;
1229
1230         ret = arm_spe_pmu_perf_init(spe_pmu);
1231         if (ret)
1232                 goto out_teardown_dev;
1233
1234         return 0;
1235
1236 out_teardown_dev:
1237         arm_spe_pmu_dev_teardown(spe_pmu);
1238 out_free_handle:
1239         free_percpu(spe_pmu->handle);
1240         return ret;
1241 }
1242
1243 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1244 {
1245         struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1246
1247         arm_spe_pmu_perf_destroy(spe_pmu);
1248         arm_spe_pmu_dev_teardown(spe_pmu);
1249         free_percpu(spe_pmu->handle);
1250         return 0;
1251 }
1252
1253 static struct platform_driver arm_spe_pmu_driver = {
1254         .id_table = arm_spe_match,
1255         .driver = {
1256                 .name           = DRVNAME,
1257                 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1258                 .suppress_bind_attrs = true,
1259         },
1260         .probe  = arm_spe_pmu_device_probe,
1261         .remove = arm_spe_pmu_device_remove,
1262 };
1263
1264 static int __init arm_spe_pmu_init(void)
1265 {
1266         int ret;
1267
1268         ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1269                                       arm_spe_pmu_cpu_startup,
1270                                       arm_spe_pmu_cpu_teardown);
1271         if (ret < 0)
1272                 return ret;
1273         arm_spe_pmu_online = ret;
1274
1275         ret = platform_driver_register(&arm_spe_pmu_driver);
1276         if (ret)
1277                 cpuhp_remove_multi_state(arm_spe_pmu_online);
1278
1279         return ret;
1280 }
1281
1282 static void __exit arm_spe_pmu_exit(void)
1283 {
1284         platform_driver_unregister(&arm_spe_pmu_driver);
1285         cpuhp_remove_multi_state(arm_spe_pmu_online);
1286 }
1287
1288 module_init(arm_spe_pmu_init);
1289 module_exit(arm_spe_pmu_exit);
1290
1291 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1292 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1293 MODULE_LICENSE("GPL v2");