1 // SPDX-License-Identifier: GPL-2.0-only
3 * Perf support for the Statistical Profiling Extension, introduced as
6 * Copyright (C) 2016 ARM Limited
8 * Author: Will Deacon <will.deacon@arm.com>
11 #define PMUNAME "arm_spe"
12 #define DRVNAME PMUNAME "_pmu"
13 #define pr_fmt(fmt) DRVNAME ": " fmt
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
40 #include <asm/sysreg.h>
43 * Cache if the event is allowed to trace Context information.
44 * This allows us to perform the check, i.e, perfmon_capable(),
45 * in the context of the event owner, once, during the event_init().
47 #define SPE_PMU_HW_FLAGS_CX 0x00001
49 static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX);
51 static void set_spe_event_has_cx(struct perf_event *event)
53 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
54 event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
57 static bool get_spe_event_has_cx(struct perf_event *event)
59 return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
62 #define ARM_SPE_BUF_PAD_BYTE 0
64 struct arm_spe_pmu_buf {
72 struct platform_device *pdev;
73 cpumask_t supported_cpus;
74 struct hlist_node hotplug_node;
81 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
82 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
83 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
84 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
85 #define SPE_PMU_FEAT_LDS (1UL << 4)
86 #define SPE_PMU_FEAT_ERND (1UL << 5)
87 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
92 struct perf_output_handle __percpu *handle;
95 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
97 /* Convert a free-running index from perf into an SPE buffer offset */
98 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
100 /* Keep track of our dynamic hotplug state */
101 static enum cpuhp_state arm_spe_pmu_online;
103 enum arm_spe_pmu_buf_fault_action {
104 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
105 SPE_PMU_BUF_FAULT_ACT_FATAL,
106 SPE_PMU_BUF_FAULT_ACT_OK,
109 /* This sysfs gunk was really good fun to write. */
110 enum arm_spe_pmu_capabilities {
111 SPE_PMU_CAP_ARCH_INST = 0,
113 SPE_PMU_CAP_FEAT_MAX,
114 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
115 SPE_PMU_CAP_MIN_IVAL,
118 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
119 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
120 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
123 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
125 if (cap < SPE_PMU_CAP_FEAT_MAX)
126 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
129 case SPE_PMU_CAP_CNT_SZ:
130 return spe_pmu->counter_sz;
131 case SPE_PMU_CAP_MIN_IVAL:
132 return spe_pmu->min_period;
134 WARN(1, "unknown cap %d\n", cap);
140 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
141 struct device_attribute *attr,
144 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
145 struct dev_ext_attribute *ea =
146 container_of(attr, struct dev_ext_attribute, attr);
147 int cap = (long)ea->var;
149 return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
152 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
153 &((struct dev_ext_attribute[]) { \
154 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
157 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
158 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
160 static struct attribute *arm_spe_pmu_cap_attr[] = {
161 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
162 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
163 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
164 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
168 static const struct attribute_group arm_spe_pmu_cap_group = {
170 .attrs = arm_spe_pmu_cap_attr,
174 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
175 #define ATTR_CFG_FLD_ts_enable_LO 0
176 #define ATTR_CFG_FLD_ts_enable_HI 0
177 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
178 #define ATTR_CFG_FLD_pa_enable_LO 1
179 #define ATTR_CFG_FLD_pa_enable_HI 1
180 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
181 #define ATTR_CFG_FLD_pct_enable_LO 2
182 #define ATTR_CFG_FLD_pct_enable_HI 2
183 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
184 #define ATTR_CFG_FLD_jitter_LO 16
185 #define ATTR_CFG_FLD_jitter_HI 16
186 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
187 #define ATTR_CFG_FLD_branch_filter_LO 32
188 #define ATTR_CFG_FLD_branch_filter_HI 32
189 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
190 #define ATTR_CFG_FLD_load_filter_LO 33
191 #define ATTR_CFG_FLD_load_filter_HI 33
192 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
193 #define ATTR_CFG_FLD_store_filter_LO 34
194 #define ATTR_CFG_FLD_store_filter_HI 34
196 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
197 #define ATTR_CFG_FLD_event_filter_LO 0
198 #define ATTR_CFG_FLD_event_filter_HI 63
200 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
201 #define ATTR_CFG_FLD_min_latency_LO 0
202 #define ATTR_CFG_FLD_min_latency_HI 11
204 /* Why does everything I do descend into this? */
205 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
206 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
208 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
209 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
211 #define GEN_PMU_FORMAT_ATTR(name) \
212 PMU_FORMAT_ATTR(name, \
213 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
214 ATTR_CFG_FLD_##name##_LO, \
215 ATTR_CFG_FLD_##name##_HI))
217 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
218 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
220 #define ATTR_CFG_GET_FLD(attr, name) \
221 _ATTR_CFG_GET_FLD(attr, \
222 ATTR_CFG_FLD_##name##_CFG, \
223 ATTR_CFG_FLD_##name##_LO, \
224 ATTR_CFG_FLD_##name##_HI)
226 GEN_PMU_FORMAT_ATTR(ts_enable);
227 GEN_PMU_FORMAT_ATTR(pa_enable);
228 GEN_PMU_FORMAT_ATTR(pct_enable);
229 GEN_PMU_FORMAT_ATTR(jitter);
230 GEN_PMU_FORMAT_ATTR(branch_filter);
231 GEN_PMU_FORMAT_ATTR(load_filter);
232 GEN_PMU_FORMAT_ATTR(store_filter);
233 GEN_PMU_FORMAT_ATTR(event_filter);
234 GEN_PMU_FORMAT_ATTR(min_latency);
236 static struct attribute *arm_spe_pmu_formats_attr[] = {
237 &format_attr_ts_enable.attr,
238 &format_attr_pa_enable.attr,
239 &format_attr_pct_enable.attr,
240 &format_attr_jitter.attr,
241 &format_attr_branch_filter.attr,
242 &format_attr_load_filter.attr,
243 &format_attr_store_filter.attr,
244 &format_attr_event_filter.attr,
245 &format_attr_min_latency.attr,
249 static const struct attribute_group arm_spe_pmu_format_group = {
251 .attrs = arm_spe_pmu_formats_attr,
254 static ssize_t cpumask_show(struct device *dev,
255 struct device_attribute *attr, char *buf)
257 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
259 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
261 static DEVICE_ATTR_RO(cpumask);
263 static struct attribute *arm_spe_pmu_attrs[] = {
264 &dev_attr_cpumask.attr,
268 static const struct attribute_group arm_spe_pmu_group = {
269 .attrs = arm_spe_pmu_attrs,
272 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
274 &arm_spe_pmu_cap_group,
275 &arm_spe_pmu_format_group,
279 /* Convert between user ABI and register values */
280 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
282 struct perf_event_attr *attr = &event->attr;
285 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
286 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
287 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
289 if (!attr->exclude_user)
290 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
292 if (!attr->exclude_kernel)
293 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
295 if (get_spe_event_has_cx(event))
296 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
301 static void arm_spe_event_sanitise_period(struct perf_event *event)
303 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
304 u64 period = event->hw.sample_period;
305 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
306 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
308 if (period < spe_pmu->min_period)
309 period = spe_pmu->min_period;
310 else if (period > max_period)
313 period &= max_period;
315 event->hw.sample_period = period;
318 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
320 struct perf_event_attr *attr = &event->attr;
323 arm_spe_event_sanitise_period(event);
325 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
326 reg |= event->hw.sample_period;
331 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
333 struct perf_event_attr *attr = &event->attr;
336 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
337 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
338 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
341 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
343 if (ATTR_CFG_GET_FLD(attr, event_filter))
344 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
346 if (ATTR_CFG_GET_FLD(attr, min_latency))
347 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
352 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
354 struct perf_event_attr *attr = &event->attr;
355 return ATTR_CFG_GET_FLD(attr, event_filter);
358 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
360 struct perf_event_attr *attr = &event->attr;
361 return ATTR_CFG_GET_FLD(attr, min_latency)
362 << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
365 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
367 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
368 u64 head = PERF_IDX2OFF(handle->head, buf);
370 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
372 perf_aux_output_skip(handle, len);
375 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
377 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
378 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
379 u64 head = PERF_IDX2OFF(handle->head, buf);
380 u64 limit = buf->nr_pages * PAGE_SIZE;
383 * The trace format isn't parseable in reverse, so clamp
384 * the limit to half of the buffer size in snapshot mode
385 * so that the worst case is half a buffer of records, as
386 * opposed to a single record.
388 if (head < limit >> 1)
392 * If we're within max_record_sz of the limit, we must
393 * pad, move the head index and recompute the limit.
395 if (limit - head < spe_pmu->max_record_sz) {
396 arm_spe_pmu_pad_buf(handle, limit - head);
397 handle->head = PERF_IDX2OFF(limit, buf);
398 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
404 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
406 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
407 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
408 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
410 u64 head, tail, wakeup;
413 * The head can be misaligned for two reasons:
415 * 1. The hardware left PMBPTR pointing to the first byte after
416 * a record when generating a buffer management event.
418 * 2. We used perf_aux_output_skip to consume handle->size bytes
419 * and CIRC_SPACE was used to compute the size, which always
420 * leaves one entry free.
422 * Deal with this by padding to the next alignment boundary and
423 * moving the head index. If we run out of buffer space, we'll
424 * reduce handle->size to zero and end up reporting truncation.
426 head = PERF_IDX2OFF(handle->head, buf);
427 if (!IS_ALIGNED(head, spe_pmu->align)) {
428 unsigned long delta = roundup(head, spe_pmu->align) - head;
430 delta = min(delta, handle->size);
431 arm_spe_pmu_pad_buf(handle, delta);
432 head = PERF_IDX2OFF(handle->head, buf);
435 /* If we've run out of free space, then nothing more to do */
439 /* Compute the tail and wakeup indices now that we've aligned head */
440 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
441 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
444 * Avoid clobbering unconsumed data. We know we have space, so
445 * if we see head == tail we know that the buffer is empty. If
446 * head > tail, then there's nothing to clobber prior to
450 limit = round_down(tail, PAGE_SIZE);
453 * Wakeup may be arbitrarily far into the future. If it's not in
454 * the current generation, either we'll wrap before hitting it,
455 * or it's in the past and has been handled already.
457 * If there's a wakeup before we wrap, arrange to be woken up by
458 * the page boundary following it. Keep the tail boundary if
461 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
462 limit = min(limit, round_up(wakeup, PAGE_SIZE));
467 arm_spe_pmu_pad_buf(handle, handle->size);
469 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
470 perf_aux_output_end(handle, 0);
474 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
476 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
477 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
478 u64 limit = __arm_spe_pmu_next_off(handle);
479 u64 head = PERF_IDX2OFF(handle->head, buf);
482 * If the head has come too close to the end of the buffer,
483 * then pad to the end and recompute the limit.
485 if (limit && (limit - head < spe_pmu->max_record_sz)) {
486 arm_spe_pmu_pad_buf(handle, limit - head);
487 limit = __arm_spe_pmu_next_off(handle);
493 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
494 struct perf_event *event)
497 struct arm_spe_pmu_buf *buf;
499 /* Start a new aux session */
500 buf = perf_aux_output_begin(handle, event);
502 event->hw.state |= PERF_HES_STOPPED;
504 * We still need to clear the limit pointer, since the
505 * profiler might only be disabled by virtue of a fault.
508 goto out_write_limit;
511 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
512 : arm_spe_pmu_next_off(handle);
514 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
516 limit += (u64)buf->base;
517 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
518 write_sysreg_s(base, SYS_PMBPTR_EL1);
521 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
524 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
526 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
529 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
530 size = offset - PERF_IDX2OFF(handle->head, buf);
533 handle->head = offset;
535 perf_aux_output_end(handle, size);
538 static void arm_spe_pmu_disable_and_drain_local(void)
540 /* Disable profiling at EL0 and EL1 */
541 write_sysreg_s(0, SYS_PMSCR_EL1);
544 /* Drain any buffered data */
548 /* Disable the profiling buffer */
549 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
554 static enum arm_spe_pmu_buf_fault_action
555 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
559 enum arm_spe_pmu_buf_fault_action ret;
562 * Ensure new profiling data is visible to the CPU and any external
563 * aborts have been resolved.
568 /* Ensure hardware updates to PMBPTR_EL1 are visible */
571 /* Service required? */
572 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
573 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
574 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
577 * If we've lost data, disable profiling and also set the PARTIAL
578 * flag to indicate that the last record is corrupted.
580 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
581 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
582 PERF_AUX_FLAG_PARTIAL);
584 /* Report collisions to userspace so that it can up the period */
585 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
586 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
588 /* We only expect buffer management events */
589 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
590 case SYS_PMBSR_EL1_EC_BUF:
593 case SYS_PMBSR_EL1_EC_FAULT_S1:
594 case SYS_PMBSR_EL1_EC_FAULT_S2:
595 err_str = "Unexpected buffer fault";
598 err_str = "Unknown error code";
602 /* Buffer management event */
604 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
605 case SYS_PMBSR_EL1_BUF_BSC_FULL:
606 ret = SPE_PMU_BUF_FAULT_ACT_OK;
609 err_str = "Unknown buffer status code";
613 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
614 err_str, smp_processor_id(), pmbsr,
615 read_sysreg_s(SYS_PMBPTR_EL1),
616 read_sysreg_s(SYS_PMBLIMITR_EL1));
617 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
620 arm_spe_perf_aux_output_end(handle);
624 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
626 struct perf_output_handle *handle = dev;
627 struct perf_event *event = handle->event;
628 enum arm_spe_pmu_buf_fault_action act;
630 if (!perf_get_aux(handle))
633 act = arm_spe_pmu_buf_get_fault_act(handle);
634 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
638 * Ensure perf callbacks have completed, which may disable the
639 * profiling buffer in response to a TRUNCATION flag.
644 case SPE_PMU_BUF_FAULT_ACT_FATAL:
646 * If a fatal exception occurred then leaving the profiling
647 * buffer enabled is a recipe waiting to happen. Since
648 * fatal faults don't always imply truncation, make sure
649 * that the profiling buffer is disabled explicitly before
650 * clearing the syndrome register.
652 arm_spe_pmu_disable_and_drain_local();
654 case SPE_PMU_BUF_FAULT_ACT_OK:
656 * We handled the fault (the buffer was full), so resume
657 * profiling as long as we didn't detect truncation.
658 * PMBPTR might be misaligned, but we'll burn that bridge
661 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
662 arm_spe_perf_aux_output_begin(handle, event);
666 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
667 /* We've seen you before, but GCC has the memory of a sieve. */
671 /* The buffer pointers are now sane, so resume profiling. */
672 write_sysreg_s(0, SYS_PMBSR_EL1);
676 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
679 case ID_AA64DFR0_EL1_PMSVer_IMP:
680 return SYS_PMSEVFR_EL1_RES0_8_2;
681 case ID_AA64DFR0_EL1_PMSVer_V1P1:
682 /* Return the highest version we support in default */
684 return SYS_PMSEVFR_EL1_RES0_8_3;
689 static int arm_spe_pmu_event_init(struct perf_event *event)
692 struct perf_event_attr *attr = &event->attr;
693 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
695 /* This is, of course, deeply driver-specific */
696 if (attr->type != event->pmu->type)
699 if (event->cpu >= 0 &&
700 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
703 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
706 if (attr->exclude_idle)
710 * Feedback-directed frequency throttling doesn't work when we
711 * have a buffer of samples. We'd need to manually count the
712 * samples in the buffer when it fills up and adjust the event
713 * count to reflect that. Instead, just force the user to specify
719 reg = arm_spe_event_to_pmsfcr(event);
720 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
721 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
724 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
725 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
728 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
729 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
732 set_spe_event_has_cx(event);
733 reg = arm_spe_event_to_pmscr(event);
734 if (!perfmon_capable() &&
735 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
736 BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
742 static void arm_spe_pmu_start(struct perf_event *event, int flags)
745 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
746 struct hw_perf_event *hwc = &event->hw;
747 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
750 arm_spe_perf_aux_output_begin(handle, event);
754 reg = arm_spe_event_to_pmsfcr(event);
755 write_sysreg_s(reg, SYS_PMSFCR_EL1);
757 reg = arm_spe_event_to_pmsevfr(event);
758 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
760 reg = arm_spe_event_to_pmslatfr(event);
761 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
763 if (flags & PERF_EF_RELOAD) {
764 reg = arm_spe_event_to_pmsirr(event);
765 write_sysreg_s(reg, SYS_PMSIRR_EL1);
767 reg = local64_read(&hwc->period_left);
768 write_sysreg_s(reg, SYS_PMSICR_EL1);
771 reg = arm_spe_event_to_pmscr(event);
773 write_sysreg_s(reg, SYS_PMSCR_EL1);
776 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
778 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
779 struct hw_perf_event *hwc = &event->hw;
780 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
782 /* If we're already stopped, then nothing to do */
783 if (hwc->state & PERF_HES_STOPPED)
786 /* Stop all trace generation */
787 arm_spe_pmu_disable_and_drain_local();
789 if (flags & PERF_EF_UPDATE) {
791 * If there's a fault pending then ensure we contain it
792 * to this buffer, since we might be on the context-switch
795 if (perf_get_aux(handle)) {
796 enum arm_spe_pmu_buf_fault_action act;
798 act = arm_spe_pmu_buf_get_fault_act(handle);
799 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
800 arm_spe_perf_aux_output_end(handle);
802 write_sysreg_s(0, SYS_PMBSR_EL1);
806 * This may also contain ECOUNT, but nobody else should
807 * be looking at period_left, since we forbid frequency
810 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
811 hwc->state |= PERF_HES_UPTODATE;
814 hwc->state |= PERF_HES_STOPPED;
817 static int arm_spe_pmu_add(struct perf_event *event, int flags)
820 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
821 struct hw_perf_event *hwc = &event->hw;
822 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
824 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
827 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
829 if (flags & PERF_EF_START) {
830 arm_spe_pmu_start(event, PERF_EF_RELOAD);
831 if (hwc->state & PERF_HES_STOPPED)
838 static void arm_spe_pmu_del(struct perf_event *event, int flags)
840 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
843 static void arm_spe_pmu_read(struct perf_event *event)
847 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
848 int nr_pages, bool snapshot)
850 int i, cpu = event->cpu;
851 struct page **pglist;
852 struct arm_spe_pmu_buf *buf;
854 /* We need at least two pages for this to work. */
859 * We require an even number of pages for snapshot mode, so that
860 * we can effectively treat the buffer as consisting of two equal
861 * parts and give userspace a fighting chance of getting some
862 * useful data out of it.
864 if (snapshot && (nr_pages & 1))
868 cpu = raw_smp_processor_id();
870 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
874 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
878 for (i = 0; i < nr_pages; ++i)
879 pglist[i] = virt_to_page(pages[i]);
881 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
883 goto out_free_pglist;
885 buf->nr_pages = nr_pages;
886 buf->snapshot = snapshot;
898 static void arm_spe_pmu_free_aux(void *aux)
900 struct arm_spe_pmu_buf *buf = aux;
906 /* Initialisation and teardown functions */
907 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
909 static atomic_t pmu_idx = ATOMIC_INIT(-1);
913 struct device *dev = &spe_pmu->pdev->dev;
915 spe_pmu->pmu = (struct pmu) {
916 .module = THIS_MODULE,
917 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
918 .attr_groups = arm_spe_pmu_attr_groups,
920 * We hitch a ride on the software context here, so that
921 * we can support per-task profiling (which is not possible
922 * with the invalid context as it doesn't get sched callbacks).
923 * This requires that userspace either uses a dummy event for
924 * perf_event_open, since the aux buffer is not setup until
925 * a subsequent mmap, or creates the profiling event in a
926 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
927 * once the buffer has been created.
929 .task_ctx_nr = perf_sw_context,
930 .event_init = arm_spe_pmu_event_init,
931 .add = arm_spe_pmu_add,
932 .del = arm_spe_pmu_del,
933 .start = arm_spe_pmu_start,
934 .stop = arm_spe_pmu_stop,
935 .read = arm_spe_pmu_read,
936 .setup_aux = arm_spe_pmu_setup_aux,
937 .free_aux = arm_spe_pmu_free_aux,
940 idx = atomic_inc_return(&pmu_idx);
941 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
943 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
947 return perf_pmu_register(&spe_pmu->pmu, name, -1);
950 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
952 perf_pmu_unregister(&spe_pmu->pmu);
955 static void __arm_spe_pmu_dev_probe(void *info)
959 struct arm_spe_pmu *spe_pmu = info;
960 struct device *dev = &spe_pmu->pdev->dev;
962 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
963 ID_AA64DFR0_EL1_PMSVer_SHIFT);
966 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
967 fld, smp_processor_id());
970 spe_pmu->pmsver = (u16)fld;
972 /* Read PMBIDR first to determine whether or not we have access */
973 reg = read_sysreg_s(SYS_PMBIDR_EL1);
974 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
976 "profiling buffer owned by higher exception level\n");
980 /* Minimum alignment. If it's out-of-range, then fail the probe */
981 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
982 spe_pmu->align = 1 << fld;
983 if (spe_pmu->align > SZ_2K) {
984 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
985 fld, smp_processor_id());
989 /* It's now safe to read PMSIDR and figure out what we've got */
990 reg = read_sysreg_s(SYS_PMSIDR_EL1);
991 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
992 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
994 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
995 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
997 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
998 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
1000 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
1001 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1003 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
1004 spe_pmu->features |= SPE_PMU_FEAT_LDS;
1006 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
1007 spe_pmu->features |= SPE_PMU_FEAT_ERND;
1009 /* This field has a spaced out encoding, so just use a look-up */
1010 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
1013 spe_pmu->min_period = 256;
1016 spe_pmu->min_period = 512;
1019 spe_pmu->min_period = 768;
1022 spe_pmu->min_period = 1024;
1025 spe_pmu->min_period = 1536;
1028 spe_pmu->min_period = 2048;
1031 spe_pmu->min_period = 3072;
1034 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1038 spe_pmu->min_period = 4096;
1041 /* Maximum record size. If it's out-of-range, then fail the probe */
1042 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1043 spe_pmu->max_record_sz = 1 << fld;
1044 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1045 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1046 fld, smp_processor_id());
1050 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1053 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1057 spe_pmu->counter_sz = 12;
1060 spe_pmu->counter_sz = 16;
1064 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1065 cpumask_pr_args(&spe_pmu->supported_cpus),
1066 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1068 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1071 static void __arm_spe_pmu_reset_local(void)
1074 * This is probably overkill, as we have no idea where we're
1075 * draining any buffered data to...
1077 arm_spe_pmu_disable_and_drain_local();
1079 /* Reset the buffer base pointer */
1080 write_sysreg_s(0, SYS_PMBPTR_EL1);
1083 /* Clear any pending management interrupts */
1084 write_sysreg_s(0, SYS_PMBSR_EL1);
1088 static void __arm_spe_pmu_setup_one(void *info)
1090 struct arm_spe_pmu *spe_pmu = info;
1092 __arm_spe_pmu_reset_local();
1093 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1096 static void __arm_spe_pmu_stop_one(void *info)
1098 struct arm_spe_pmu *spe_pmu = info;
1100 disable_percpu_irq(spe_pmu->irq);
1101 __arm_spe_pmu_reset_local();
1104 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1106 struct arm_spe_pmu *spe_pmu;
1108 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1109 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1112 __arm_spe_pmu_setup_one(spe_pmu);
1116 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1118 struct arm_spe_pmu *spe_pmu;
1120 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1121 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1124 __arm_spe_pmu_stop_one(spe_pmu);
1128 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1131 cpumask_t *mask = &spe_pmu->supported_cpus;
1133 /* Make sure we probe the hardware on a relevant CPU */
1134 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1135 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1138 /* Request our PPIs (note that the IRQ is still disabled) */
1139 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1145 * Register our hotplug notifier now so we don't miss any events.
1146 * This will enable the IRQ for any supported CPUs that are already
1149 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1150 &spe_pmu->hotplug_node);
1152 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1157 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1159 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1160 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1163 /* Driver and device probing */
1164 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1166 struct platform_device *pdev = spe_pmu->pdev;
1167 int irq = platform_get_irq(pdev, 0);
1172 if (!irq_is_percpu(irq)) {
1173 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1177 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1178 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1186 static const struct of_device_id arm_spe_pmu_of_match[] = {
1187 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1190 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1192 static const struct platform_device_id arm_spe_match[] = {
1193 { ARMV8_SPE_PDEV_NAME, 0},
1196 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1198 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1201 struct arm_spe_pmu *spe_pmu;
1202 struct device *dev = &pdev->dev;
1205 * If kernelspace is unmapped when running at EL0, then the SPE
1206 * buffer will fault and prematurely terminate the AUX session.
1208 if (arm64_kernel_unmapped_at_el0()) {
1209 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1213 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1217 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1218 if (!spe_pmu->handle)
1221 spe_pmu->pdev = pdev;
1222 platform_set_drvdata(pdev, spe_pmu);
1224 ret = arm_spe_pmu_irq_probe(spe_pmu);
1226 goto out_free_handle;
1228 ret = arm_spe_pmu_dev_init(spe_pmu);
1230 goto out_free_handle;
1232 ret = arm_spe_pmu_perf_init(spe_pmu);
1234 goto out_teardown_dev;
1239 arm_spe_pmu_dev_teardown(spe_pmu);
1241 free_percpu(spe_pmu->handle);
1245 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1247 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1249 arm_spe_pmu_perf_destroy(spe_pmu);
1250 arm_spe_pmu_dev_teardown(spe_pmu);
1251 free_percpu(spe_pmu->handle);
1255 static struct platform_driver arm_spe_pmu_driver = {
1256 .id_table = arm_spe_match,
1259 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1260 .suppress_bind_attrs = true,
1262 .probe = arm_spe_pmu_device_probe,
1263 .remove = arm_spe_pmu_device_remove,
1266 static int __init arm_spe_pmu_init(void)
1270 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1271 arm_spe_pmu_cpu_startup,
1272 arm_spe_pmu_cpu_teardown);
1275 arm_spe_pmu_online = ret;
1277 ret = platform_driver_register(&arm_spe_pmu_driver);
1279 cpuhp_remove_multi_state(arm_spe_pmu_online);
1284 static void __exit arm_spe_pmu_exit(void)
1286 platform_driver_unregister(&arm_spe_pmu_driver);
1287 cpuhp_remove_multi_state(arm_spe_pmu_online);
1290 module_init(arm_spe_pmu_init);
1291 module_exit(arm_spe_pmu_exit);
1293 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1294 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1295 MODULE_LICENSE("GPL v2");