1 // SPDX-License-Identifier: GPL-2.0-only
3 * ACPI probing code for ARM performance counters.
5 * Copyright (C) 2017 ARM Ltd.
8 #include <linux/acpi.h>
9 #include <linux/cpumask.h>
10 #include <linux/init.h>
11 #include <linux/irq.h>
12 #include <linux/irqdesc.h>
13 #include <linux/percpu.h>
14 #include <linux/perf/arm_pmu.h>
16 #include <asm/cputype.h>
18 static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus);
19 static DEFINE_PER_CPU(int, pmu_irqs);
21 static int arm_pmu_acpi_register_irq(int cpu)
23 struct acpi_madt_generic_interrupt *gicc;
26 gicc = acpi_cpu_get_madt_gicc(cpu);
28 gsi = gicc->performance_interrupt;
31 * Per the ACPI spec, the MADT cannot describe a PMU that doesn't
32 * have an interrupt. QEMU advertises this by using a GSI of zero,
33 * which is not known to be valid on any hardware despite being
34 * valid per the spec. Take the pragmatic approach and reject a
35 * GSI of zero for now.
40 if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
41 trigger = ACPI_EDGE_SENSITIVE;
43 trigger = ACPI_LEVEL_SENSITIVE;
46 * Helpfully, the MADT GICC doesn't have a polarity flag for the
47 * "performance interrupt". Luckily, on compliant GICs the polarity is
48 * a fixed value in HW (for both SPIs and PPIs) that we cannot change
51 * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This
52 * may not match the real polarity, but that should not matter.
54 * Other interrupt controllers are not supported with ACPI.
56 return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH);
59 static void arm_pmu_acpi_unregister_irq(int cpu)
61 struct acpi_madt_generic_interrupt *gicc;
64 gicc = acpi_cpu_get_madt_gicc(cpu);
66 gsi = gicc->performance_interrupt;
68 acpi_unregister_gsi(gsi);
71 #if IS_ENABLED(CONFIG_ARM_SPE_PMU)
72 static struct resource spe_resources[] = {
75 .flags = IORESOURCE_IRQ,
79 static struct platform_device spe_dev = {
80 .name = ARMV8_SPE_PDEV_NAME,
82 .resource = spe_resources,
83 .num_resources = ARRAY_SIZE(spe_resources)
87 * For lack of a better place, hook the normal PMU MADT walk
88 * and create a SPE device if we detect a recent MADT with
89 * a homogeneous PPI mapping.
91 static void arm_spe_acpi_register_device(void)
93 int cpu, hetid, irq, ret;
98 * Sanity check all the GICC tables for the same interrupt number.
99 * For now, we only support homogeneous ACPI/SPE machines.
101 for_each_possible_cpu(cpu) {
102 struct acpi_madt_generic_interrupt *gicc;
104 gicc = acpi_cpu_get_madt_gicc(cpu);
105 if (gicc->header.length < ACPI_MADT_GICC_SPE)
109 gsi = gicc->spe_interrupt;
112 hetid = find_acpi_cpu_topology_hetero_id(cpu);
114 } else if ((gsi != gicc->spe_interrupt) ||
115 (hetid != find_acpi_cpu_topology_hetero_id(cpu))) {
116 pr_warn("ACPI: SPE must be homogeneous\n");
121 irq = acpi_register_gsi(NULL, gsi, ACPI_LEVEL_SENSITIVE,
124 pr_warn("ACPI: SPE Unable to register interrupt: %d\n", gsi);
128 spe_resources[0].start = irq;
129 ret = platform_device_register(&spe_dev);
131 pr_warn("ACPI: SPE: Unable to register device\n");
132 acpi_unregister_gsi(gsi);
136 static inline void arm_spe_acpi_register_device(void)
139 #endif /* CONFIG_ARM_SPE_PMU */
141 static int arm_pmu_acpi_parse_irqs(void)
143 int irq, cpu, irq_cpu, err;
145 for_each_possible_cpu(cpu) {
146 irq = arm_pmu_acpi_register_irq(cpu);
149 pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n",
152 } else if (irq == 0) {
153 pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu);
157 * Log and request the IRQ so the core arm_pmu code can manage
158 * it. We'll have to sanity-check IRQs later when we associate
159 * them with their PMUs.
161 per_cpu(pmu_irqs, cpu) = irq;
162 err = armpmu_request_irq(irq, cpu);
170 for_each_possible_cpu(cpu) {
171 irq = per_cpu(pmu_irqs, cpu);
175 arm_pmu_acpi_unregister_irq(cpu);
178 * Blat all copies of the IRQ so that we only unregister the
179 * corresponding GSI once (e.g. when we have PPIs).
181 for_each_possible_cpu(irq_cpu) {
182 if (per_cpu(pmu_irqs, irq_cpu) == irq)
183 per_cpu(pmu_irqs, irq_cpu) = 0;
190 static struct arm_pmu *arm_pmu_acpi_find_alloc_pmu(void)
192 unsigned long cpuid = read_cpuid_id();
196 for_each_possible_cpu(cpu) {
197 pmu = per_cpu(probed_pmus, cpu);
198 if (!pmu || pmu->acpi_cpuid != cpuid)
204 pmu = armpmu_alloc_atomic();
206 pr_warn("Unable to allocate PMU for CPU%d\n",
211 pmu->acpi_cpuid = cpuid;
217 * Check whether the new IRQ is compatible with those already associated with
218 * the PMU (e.g. we don't have mismatched PPIs).
220 static bool pmu_irq_matches(struct arm_pmu *pmu, int irq)
222 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
228 for_each_cpu(cpu, &pmu->supported_cpus) {
229 int other_irq = per_cpu(hw_events->irq, cpu);
233 if (irq == other_irq)
235 if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq))
238 pr_warn("mismatched PPIs detected\n");
246 * This must run before the common arm_pmu hotplug logic, so that we can
247 * associate a CPU and its interrupt before the common code tries to manage the
248 * affinity and so on.
250 * Note that hotplug events are serialized, so we cannot race with another CPU
251 * coming up. The perf core won't open events while a hotplug event is in
254 static int arm_pmu_acpi_cpu_starting(unsigned int cpu)
257 struct pmu_hw_events __percpu *hw_events;
260 /* If we've already probed this CPU, we have nothing to do */
261 if (per_cpu(probed_pmus, cpu))
264 irq = per_cpu(pmu_irqs, cpu);
266 pmu = arm_pmu_acpi_find_alloc_pmu();
270 per_cpu(probed_pmus, cpu) = pmu;
272 if (pmu_irq_matches(pmu, irq)) {
273 hw_events = pmu->hw_events;
274 per_cpu(hw_events->irq, cpu) = irq;
277 cpumask_set_cpu(cpu, &pmu->supported_cpus);
280 * Ideally, we'd probe the PMU here when we find the first matching
281 * CPU. We can't do that for several reasons; see the comment in
282 * arm_pmu_acpi_init().
284 * So for the time being, we're done.
289 int arm_pmu_acpi_probe(armpmu_init_fn init_fn)
295 * Initialise and register the set of PMUs which we know about right
296 * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we
297 * could handle late hotplug, but this may lead to deadlock since we
298 * might try to register a hotplug notifier instance from within a
301 * There's also the problem of having access to the right init_fn,
302 * without tying this too deeply into the "real" PMU driver.
304 * For the moment, as with the platform/DT case, we need at least one
305 * of a PMU's CPUs to be online at probe time.
307 for_each_possible_cpu(cpu) {
308 struct arm_pmu *pmu = per_cpu(probed_pmus, cpu);
311 if (!pmu || pmu->name)
315 if (ret == -ENODEV) {
316 /* PMU not handled by this driver, or not present */
319 pr_warn("Unable to initialise PMU for CPU%d\n", cpu);
323 base_name = pmu->name;
324 pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++);
326 pr_warn("Unable to allocate PMU name for CPU%d\n", cpu);
330 ret = armpmu_register(pmu);
332 pr_warn("Failed to register PMU for CPU%d\n", cpu);
341 static int arm_pmu_acpi_init(void)
348 arm_spe_acpi_register_device();
350 ret = arm_pmu_acpi_parse_irqs();
354 ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_ACPI_STARTING,
355 "perf/arm/pmu_acpi:starting",
356 arm_pmu_acpi_cpu_starting, NULL);
360 subsys_initcall(arm_pmu_acpi_init)