Merge tag 'trace-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux...
[platform/kernel/linux-starfive.git] / drivers / perf / arm_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/irq_regs.h>
28
29 static int armpmu_count_irq_users(const int irq);
30
31 struct pmu_irq_ops {
32         void (*enable_pmuirq)(unsigned int irq);
33         void (*disable_pmuirq)(unsigned int irq);
34         void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36
37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39         free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41
42 static const struct pmu_irq_ops pmuirq_ops = {
43         .enable_pmuirq = enable_irq,
44         .disable_pmuirq = disable_irq_nosync,
45         .free_pmuirq = armpmu_free_pmuirq
46 };
47
48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50         free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52
53 static const struct pmu_irq_ops pmunmi_ops = {
54         .enable_pmuirq = enable_nmi,
55         .disable_pmuirq = disable_nmi_nosync,
56         .free_pmuirq = armpmu_free_pmunmi
57 };
58
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61         enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63
64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65                                    void __percpu *devid)
66 {
67         if (armpmu_count_irq_users(irq) == 1)
68                 free_percpu_irq(irq, devid);
69 }
70
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72         .enable_pmuirq = armpmu_enable_percpu_pmuirq,
73         .disable_pmuirq = disable_percpu_irq,
74         .free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79         if (!prepare_percpu_nmi(irq))
80                 enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85         disable_percpu_nmi(irq);
86         teardown_percpu_nmi(irq);
87 }
88
89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90                                       void __percpu *devid)
91 {
92         if (armpmu_count_irq_users(irq) == 1)
93                 free_percpu_nmi(irq, devid);
94 }
95
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97         .enable_pmuirq = armpmu_enable_percpu_pmunmi,
98         .disable_pmuirq = armpmu_disable_percpu_pmunmi,
99         .free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105
106 static bool has_nmi;
107
108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110         if (event->hw.flags & ARMPMU_EVT_64BIT)
111                 return GENMASK_ULL(63, 0);
112         else if (event->hw.flags & ARMPMU_EVT_47BIT)
113                 return GENMASK_ULL(46, 0);
114         else
115                 return GENMASK_ULL(31, 0);
116 }
117
118 static int
119 armpmu_map_cache_event(const unsigned (*cache_map)
120                                       [PERF_COUNT_HW_CACHE_MAX]
121                                       [PERF_COUNT_HW_CACHE_OP_MAX]
122                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
123                        u64 config)
124 {
125         unsigned int cache_type, cache_op, cache_result, ret;
126
127         cache_type = (config >>  0) & 0xff;
128         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
129                 return -EINVAL;
130
131         cache_op = (config >>  8) & 0xff;
132         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
133                 return -EINVAL;
134
135         cache_result = (config >> 16) & 0xff;
136         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
137                 return -EINVAL;
138
139         if (!cache_map)
140                 return -ENOENT;
141
142         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
143
144         if (ret == CACHE_OP_UNSUPPORTED)
145                 return -ENOENT;
146
147         return ret;
148 }
149
150 static int
151 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
152 {
153         int mapping;
154
155         if (config >= PERF_COUNT_HW_MAX)
156                 return -EINVAL;
157
158         if (!event_map)
159                 return -ENOENT;
160
161         mapping = (*event_map)[config];
162         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
163 }
164
165 static int
166 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
167 {
168         return (int)(config & raw_event_mask);
169 }
170
171 int
172 armpmu_map_event(struct perf_event *event,
173                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
174                  const unsigned (*cache_map)
175                                 [PERF_COUNT_HW_CACHE_MAX]
176                                 [PERF_COUNT_HW_CACHE_OP_MAX]
177                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
178                  u32 raw_event_mask)
179 {
180         u64 config = event->attr.config;
181         int type = event->attr.type;
182
183         if (type == event->pmu->type)
184                 return armpmu_map_raw_event(raw_event_mask, config);
185
186         switch (type) {
187         case PERF_TYPE_HARDWARE:
188                 return armpmu_map_hw_event(event_map, config);
189         case PERF_TYPE_HW_CACHE:
190                 return armpmu_map_cache_event(cache_map, config);
191         case PERF_TYPE_RAW:
192                 return armpmu_map_raw_event(raw_event_mask, config);
193         }
194
195         return -ENOENT;
196 }
197
198 int armpmu_event_set_period(struct perf_event *event)
199 {
200         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
201         struct hw_perf_event *hwc = &event->hw;
202         s64 left = local64_read(&hwc->period_left);
203         s64 period = hwc->sample_period;
204         u64 max_period;
205         int ret = 0;
206
207         max_period = arm_pmu_event_max_period(event);
208         if (unlikely(left <= -period)) {
209                 left = period;
210                 local64_set(&hwc->period_left, left);
211                 hwc->last_period = period;
212                 ret = 1;
213         }
214
215         if (unlikely(left <= 0)) {
216                 left += period;
217                 local64_set(&hwc->period_left, left);
218                 hwc->last_period = period;
219                 ret = 1;
220         }
221
222         /*
223          * Limit the maximum period to prevent the counter value
224          * from overtaking the one we are about to program. In
225          * effect we are reducing max_period to account for
226          * interrupt latency (and we are being very conservative).
227          */
228         if (left > (max_period >> 1))
229                 left = (max_period >> 1);
230
231         local64_set(&hwc->prev_count, (u64)-left);
232
233         armpmu->write_counter(event, (u64)(-left) & max_period);
234
235         perf_event_update_userpage(event);
236
237         return ret;
238 }
239
240 u64 armpmu_event_update(struct perf_event *event)
241 {
242         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
243         struct hw_perf_event *hwc = &event->hw;
244         u64 delta, prev_raw_count, new_raw_count;
245         u64 max_period = arm_pmu_event_max_period(event);
246
247 again:
248         prev_raw_count = local64_read(&hwc->prev_count);
249         new_raw_count = armpmu->read_counter(event);
250
251         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
252                              new_raw_count) != prev_raw_count)
253                 goto again;
254
255         delta = (new_raw_count - prev_raw_count) & max_period;
256
257         local64_add(delta, &event->count);
258         local64_sub(delta, &hwc->period_left);
259
260         return new_raw_count;
261 }
262
263 static void
264 armpmu_read(struct perf_event *event)
265 {
266         armpmu_event_update(event);
267 }
268
269 static void
270 armpmu_stop(struct perf_event *event, int flags)
271 {
272         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
273         struct hw_perf_event *hwc = &event->hw;
274
275         /*
276          * ARM pmu always has to update the counter, so ignore
277          * PERF_EF_UPDATE, see comments in armpmu_start().
278          */
279         if (!(hwc->state & PERF_HES_STOPPED)) {
280                 armpmu->disable(event);
281                 armpmu_event_update(event);
282                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
283         }
284 }
285
286 static void armpmu_start(struct perf_event *event, int flags)
287 {
288         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
289         struct hw_perf_event *hwc = &event->hw;
290
291         /*
292          * ARM pmu always has to reprogram the period, so ignore
293          * PERF_EF_RELOAD, see the comment below.
294          */
295         if (flags & PERF_EF_RELOAD)
296                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
297
298         hwc->state = 0;
299         /*
300          * Set the period again. Some counters can't be stopped, so when we
301          * were stopped we simply disabled the IRQ source and the counter
302          * may have been left counting. If we don't do this step then we may
303          * get an interrupt too soon or *way* too late if the overflow has
304          * happened since disabling.
305          */
306         armpmu_event_set_period(event);
307         armpmu->enable(event);
308 }
309
310 static void
311 armpmu_del(struct perf_event *event, int flags)
312 {
313         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
314         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
315         struct hw_perf_event *hwc = &event->hw;
316         int idx = hwc->idx;
317
318         armpmu_stop(event, PERF_EF_UPDATE);
319         hw_events->events[idx] = NULL;
320         armpmu->clear_event_idx(hw_events, event);
321         perf_event_update_userpage(event);
322         /* Clear the allocated counter */
323         hwc->idx = -1;
324 }
325
326 static int
327 armpmu_add(struct perf_event *event, int flags)
328 {
329         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
330         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
331         struct hw_perf_event *hwc = &event->hw;
332         int idx;
333
334         /* An event following a process won't be stopped earlier */
335         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
336                 return -ENOENT;
337
338         /* If we don't have a space for the counter then finish early. */
339         idx = armpmu->get_event_idx(hw_events, event);
340         if (idx < 0)
341                 return idx;
342
343         /*
344          * If there is an event in the counter we are going to use then make
345          * sure it is disabled.
346          */
347         event->hw.idx = idx;
348         armpmu->disable(event);
349         hw_events->events[idx] = event;
350
351         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
352         if (flags & PERF_EF_START)
353                 armpmu_start(event, PERF_EF_RELOAD);
354
355         /* Propagate our changes to the userspace mapping. */
356         perf_event_update_userpage(event);
357
358         return 0;
359 }
360
361 static int
362 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
363                                struct perf_event *event)
364 {
365         struct arm_pmu *armpmu;
366
367         if (is_software_event(event))
368                 return 1;
369
370         /*
371          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
372          * core perf code won't check that the pmu->ctx == leader->ctx
373          * until after pmu->event_init(event).
374          */
375         if (event->pmu != pmu)
376                 return 0;
377
378         if (event->state < PERF_EVENT_STATE_OFF)
379                 return 1;
380
381         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
382                 return 1;
383
384         armpmu = to_arm_pmu(event->pmu);
385         return armpmu->get_event_idx(hw_events, event) >= 0;
386 }
387
388 static int
389 validate_group(struct perf_event *event)
390 {
391         struct perf_event *sibling, *leader = event->group_leader;
392         struct pmu_hw_events fake_pmu;
393
394         /*
395          * Initialise the fake PMU. We only need to populate the
396          * used_mask for the purposes of validation.
397          */
398         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
399
400         if (!validate_event(event->pmu, &fake_pmu, leader))
401                 return -EINVAL;
402
403         if (event == leader)
404                 return 0;
405
406         for_each_sibling_event(sibling, leader) {
407                 if (!validate_event(event->pmu, &fake_pmu, sibling))
408                         return -EINVAL;
409         }
410
411         if (!validate_event(event->pmu, &fake_pmu, event))
412                 return -EINVAL;
413
414         return 0;
415 }
416
417 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
418 {
419         struct arm_pmu *armpmu;
420         int ret;
421         u64 start_clock, finish_clock;
422
423         /*
424          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
425          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
426          * do any necessary shifting, we just need to perform the first
427          * dereference.
428          */
429         armpmu = *(void **)dev;
430         if (WARN_ON_ONCE(!armpmu))
431                 return IRQ_NONE;
432
433         start_clock = sched_clock();
434         ret = armpmu->handle_irq(armpmu);
435         finish_clock = sched_clock();
436
437         perf_sample_event_took(finish_clock - start_clock);
438         return ret;
439 }
440
441 static int
442 __hw_perf_event_init(struct perf_event *event)
443 {
444         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
445         struct hw_perf_event *hwc = &event->hw;
446         int mapping;
447
448         hwc->flags = 0;
449         mapping = armpmu->map_event(event);
450
451         if (mapping < 0) {
452                 pr_debug("event %x:%llx not supported\n", event->attr.type,
453                          event->attr.config);
454                 return mapping;
455         }
456
457         /*
458          * We don't assign an index until we actually place the event onto
459          * hardware. Use -1 to signify that we haven't decided where to put it
460          * yet. For SMP systems, each core has it's own PMU so we can't do any
461          * clever allocation or constraints checking at this point.
462          */
463         hwc->idx                = -1;
464         hwc->config_base        = 0;
465         hwc->config             = 0;
466         hwc->event_base         = 0;
467
468         /*
469          * Check whether we need to exclude the counter from certain modes.
470          */
471         if (armpmu->set_event_filter &&
472             armpmu->set_event_filter(hwc, &event->attr)) {
473                 pr_debug("ARM performance counters do not support "
474                          "mode exclusion\n");
475                 return -EOPNOTSUPP;
476         }
477
478         /*
479          * Store the event encoding into the config_base field.
480          */
481         hwc->config_base            |= (unsigned long)mapping;
482
483         if (!is_sampling_event(event)) {
484                 /*
485                  * For non-sampling runs, limit the sample_period to half
486                  * of the counter width. That way, the new counter value
487                  * is far less likely to overtake the previous one unless
488                  * you have some serious IRQ latency issues.
489                  */
490                 hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
491                 hwc->last_period    = hwc->sample_period;
492                 local64_set(&hwc->period_left, hwc->sample_period);
493         }
494
495         return validate_group(event);
496 }
497
498 static int armpmu_event_init(struct perf_event *event)
499 {
500         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
501
502         /*
503          * Reject CPU-affine events for CPUs that are of a different class to
504          * that which this PMU handles. Process-following events (where
505          * event->cpu == -1) can be migrated between CPUs, and thus we have to
506          * reject them later (in armpmu_add) if they're scheduled on a
507          * different class of CPU.
508          */
509         if (event->cpu != -1 &&
510                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
511                 return -ENOENT;
512
513         /* does not support taken branch sampling */
514         if (has_branch_stack(event))
515                 return -EOPNOTSUPP;
516
517         if (armpmu->map_event(event) == -ENOENT)
518                 return -ENOENT;
519
520         return __hw_perf_event_init(event);
521 }
522
523 static void armpmu_enable(struct pmu *pmu)
524 {
525         struct arm_pmu *armpmu = to_arm_pmu(pmu);
526         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
527         bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
528
529         /* For task-bound events we may be called on other CPUs */
530         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
531                 return;
532
533         if (enabled)
534                 armpmu->start(armpmu);
535 }
536
537 static void armpmu_disable(struct pmu *pmu)
538 {
539         struct arm_pmu *armpmu = to_arm_pmu(pmu);
540
541         /* For task-bound events we may be called on other CPUs */
542         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
543                 return;
544
545         armpmu->stop(armpmu);
546 }
547
548 /*
549  * In heterogeneous systems, events are specific to a particular
550  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
551  * the same microarchitecture.
552  */
553 static int armpmu_filter_match(struct perf_event *event)
554 {
555         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
556         unsigned int cpu = smp_processor_id();
557         int ret;
558
559         ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
560         if (ret && armpmu->filter_match)
561                 return armpmu->filter_match(event);
562
563         return ret;
564 }
565
566 static ssize_t cpus_show(struct device *dev,
567                          struct device_attribute *attr, char *buf)
568 {
569         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
570         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
571 }
572
573 static DEVICE_ATTR_RO(cpus);
574
575 static struct attribute *armpmu_common_attrs[] = {
576         &dev_attr_cpus.attr,
577         NULL,
578 };
579
580 static const struct attribute_group armpmu_common_attr_group = {
581         .attrs = armpmu_common_attrs,
582 };
583
584 static int armpmu_count_irq_users(const int irq)
585 {
586         int cpu, count = 0;
587
588         for_each_possible_cpu(cpu) {
589                 if (per_cpu(cpu_irq, cpu) == irq)
590                         count++;
591         }
592
593         return count;
594 }
595
596 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
597 {
598         const struct pmu_irq_ops *ops = NULL;
599         int cpu;
600
601         for_each_possible_cpu(cpu) {
602                 if (per_cpu(cpu_irq, cpu) != irq)
603                         continue;
604
605                 ops = per_cpu(cpu_irq_ops, cpu);
606                 if (ops)
607                         break;
608         }
609
610         return ops;
611 }
612
613 void armpmu_free_irq(int irq, int cpu)
614 {
615         if (per_cpu(cpu_irq, cpu) == 0)
616                 return;
617         if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
618                 return;
619
620         per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
621
622         per_cpu(cpu_irq, cpu) = 0;
623         per_cpu(cpu_irq_ops, cpu) = NULL;
624 }
625
626 int armpmu_request_irq(int irq, int cpu)
627 {
628         int err = 0;
629         const irq_handler_t handler = armpmu_dispatch_irq;
630         const struct pmu_irq_ops *irq_ops;
631
632         if (!irq)
633                 return 0;
634
635         if (!irq_is_percpu_devid(irq)) {
636                 unsigned long irq_flags;
637
638                 err = irq_force_affinity(irq, cpumask_of(cpu));
639
640                 if (err && num_possible_cpus() > 1) {
641                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
642                                 irq, cpu);
643                         goto err_out;
644                 }
645
646                 irq_flags = IRQF_PERCPU |
647                             IRQF_NOBALANCING | IRQF_NO_AUTOEN |
648                             IRQF_NO_THREAD;
649
650                 err = request_nmi(irq, handler, irq_flags, "arm-pmu",
651                                   per_cpu_ptr(&cpu_armpmu, cpu));
652
653                 /* If cannot get an NMI, get a normal interrupt */
654                 if (err) {
655                         err = request_irq(irq, handler, irq_flags, "arm-pmu",
656                                           per_cpu_ptr(&cpu_armpmu, cpu));
657                         irq_ops = &pmuirq_ops;
658                 } else {
659                         has_nmi = true;
660                         irq_ops = &pmunmi_ops;
661                 }
662         } else if (armpmu_count_irq_users(irq) == 0) {
663                 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
664
665                 /* If cannot get an NMI, get a normal interrupt */
666                 if (err) {
667                         err = request_percpu_irq(irq, handler, "arm-pmu",
668                                                  &cpu_armpmu);
669                         irq_ops = &percpu_pmuirq_ops;
670                 } else {
671                         has_nmi = true;
672                         irq_ops = &percpu_pmunmi_ops;
673                 }
674         } else {
675                 /* Per cpudevid irq was already requested by another CPU */
676                 irq_ops = armpmu_find_irq_ops(irq);
677
678                 if (WARN_ON(!irq_ops))
679                         err = -EINVAL;
680         }
681
682         if (err)
683                 goto err_out;
684
685         per_cpu(cpu_irq, cpu) = irq;
686         per_cpu(cpu_irq_ops, cpu) = irq_ops;
687         return 0;
688
689 err_out:
690         pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
691         return err;
692 }
693
694 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
695 {
696         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
697         return per_cpu(hw_events->irq, cpu);
698 }
699
700 /*
701  * PMU hardware loses all context when a CPU goes offline.
702  * When a CPU is hotplugged back in, since some hardware registers are
703  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
704  * junk values out of them.
705  */
706 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
707 {
708         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
709         int irq;
710
711         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
712                 return 0;
713         if (pmu->reset)
714                 pmu->reset(pmu);
715
716         per_cpu(cpu_armpmu, cpu) = pmu;
717
718         irq = armpmu_get_cpu_irq(pmu, cpu);
719         if (irq)
720                 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
721
722         return 0;
723 }
724
725 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
726 {
727         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
728         int irq;
729
730         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
731                 return 0;
732
733         irq = armpmu_get_cpu_irq(pmu, cpu);
734         if (irq)
735                 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
736
737         per_cpu(cpu_armpmu, cpu) = NULL;
738
739         return 0;
740 }
741
742 #ifdef CONFIG_CPU_PM
743 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
744 {
745         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
746         struct perf_event *event;
747         int idx;
748
749         for (idx = 0; idx < armpmu->num_events; idx++) {
750                 event = hw_events->events[idx];
751                 if (!event)
752                         continue;
753
754                 switch (cmd) {
755                 case CPU_PM_ENTER:
756                         /*
757                          * Stop and update the counter
758                          */
759                         armpmu_stop(event, PERF_EF_UPDATE);
760                         break;
761                 case CPU_PM_EXIT:
762                 case CPU_PM_ENTER_FAILED:
763                          /*
764                           * Restore and enable the counter.
765                           * armpmu_start() indirectly calls
766                           *
767                           * perf_event_update_userpage()
768                           *
769                           * that requires RCU read locking to be functional,
770                           * wrap the call within RCU_NONIDLE to make the
771                           * RCU subsystem aware this cpu is not idle from
772                           * an RCU perspective for the armpmu_start() call
773                           * duration.
774                           */
775                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
776                         break;
777                 default:
778                         break;
779                 }
780         }
781 }
782
783 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
784                              void *v)
785 {
786         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
787         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
788         bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
789
790         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
791                 return NOTIFY_DONE;
792
793         /*
794          * Always reset the PMU registers on power-up even if
795          * there are no events running.
796          */
797         if (cmd == CPU_PM_EXIT && armpmu->reset)
798                 armpmu->reset(armpmu);
799
800         if (!enabled)
801                 return NOTIFY_OK;
802
803         switch (cmd) {
804         case CPU_PM_ENTER:
805                 armpmu->stop(armpmu);
806                 cpu_pm_pmu_setup(armpmu, cmd);
807                 break;
808         case CPU_PM_EXIT:
809         case CPU_PM_ENTER_FAILED:
810                 cpu_pm_pmu_setup(armpmu, cmd);
811                 armpmu->start(armpmu);
812                 break;
813         default:
814                 return NOTIFY_DONE;
815         }
816
817         return NOTIFY_OK;
818 }
819
820 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
821 {
822         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
823         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
824 }
825
826 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
827 {
828         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
829 }
830 #else
831 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
832 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
833 #endif
834
835 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
836 {
837         int err;
838
839         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
840                                        &cpu_pmu->node);
841         if (err)
842                 goto out;
843
844         err = cpu_pm_pmu_register(cpu_pmu);
845         if (err)
846                 goto out_unregister;
847
848         return 0;
849
850 out_unregister:
851         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
852                                             &cpu_pmu->node);
853 out:
854         return err;
855 }
856
857 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
858 {
859         cpu_pm_pmu_unregister(cpu_pmu);
860         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
861                                             &cpu_pmu->node);
862 }
863
864 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
865 {
866         struct arm_pmu *pmu;
867         int cpu;
868
869         pmu = kzalloc(sizeof(*pmu), flags);
870         if (!pmu)
871                 goto out;
872
873         pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
874         if (!pmu->hw_events) {
875                 pr_info("failed to allocate per-cpu PMU data.\n");
876                 goto out_free_pmu;
877         }
878
879         pmu->pmu = (struct pmu) {
880                 .pmu_enable     = armpmu_enable,
881                 .pmu_disable    = armpmu_disable,
882                 .event_init     = armpmu_event_init,
883                 .add            = armpmu_add,
884                 .del            = armpmu_del,
885                 .start          = armpmu_start,
886                 .stop           = armpmu_stop,
887                 .read           = armpmu_read,
888                 .filter_match   = armpmu_filter_match,
889                 .attr_groups    = pmu->attr_groups,
890                 /*
891                  * This is a CPU PMU potentially in a heterogeneous
892                  * configuration (e.g. big.LITTLE). This is not an uncore PMU,
893                  * and we have taken ctx sharing into account (e.g. with our
894                  * pmu::filter_match callback and pmu::event_init group
895                  * validation).
896                  */
897                 .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS | PERF_PMU_CAP_EXTENDED_REGS,
898         };
899
900         pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
901                 &armpmu_common_attr_group;
902
903         for_each_possible_cpu(cpu) {
904                 struct pmu_hw_events *events;
905
906                 events = per_cpu_ptr(pmu->hw_events, cpu);
907                 raw_spin_lock_init(&events->pmu_lock);
908                 events->percpu_pmu = pmu;
909         }
910
911         return pmu;
912
913 out_free_pmu:
914         kfree(pmu);
915 out:
916         return NULL;
917 }
918
919 struct arm_pmu *armpmu_alloc(void)
920 {
921         return __armpmu_alloc(GFP_KERNEL);
922 }
923
924 struct arm_pmu *armpmu_alloc_atomic(void)
925 {
926         return __armpmu_alloc(GFP_ATOMIC);
927 }
928
929
930 void armpmu_free(struct arm_pmu *pmu)
931 {
932         free_percpu(pmu->hw_events);
933         kfree(pmu);
934 }
935
936 int armpmu_register(struct arm_pmu *pmu)
937 {
938         int ret;
939
940         ret = cpu_pmu_init(pmu);
941         if (ret)
942                 return ret;
943
944         if (!pmu->set_event_filter)
945                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
946
947         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
948         if (ret)
949                 goto out_destroy;
950
951         pr_info("enabled with %s PMU driver, %d counters available%s\n",
952                 pmu->name, pmu->num_events,
953                 has_nmi ? ", using NMIs" : "");
954
955         kvm_host_pmu_init(pmu);
956
957         return 0;
958
959 out_destroy:
960         cpu_pmu_destroy(pmu);
961         return ret;
962 }
963
964 static int arm_pmu_hp_init(void)
965 {
966         int ret;
967
968         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
969                                       "perf/arm/pmu:starting",
970                                       arm_perf_starting_cpu,
971                                       arm_perf_teardown_cpu);
972         if (ret)
973                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
974                        ret);
975         return ret;
976 }
977 subsys_initcall(arm_pmu_hp_init);