Merge tag 'soundwire-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[platform/kernel/linux-rpi.git] / drivers / perf / arm_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/irq_regs.h>
28
29 static int armpmu_count_irq_users(const int irq);
30
31 struct pmu_irq_ops {
32         void (*enable_pmuirq)(unsigned int irq);
33         void (*disable_pmuirq)(unsigned int irq);
34         void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36
37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39         free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41
42 static const struct pmu_irq_ops pmuirq_ops = {
43         .enable_pmuirq = enable_irq,
44         .disable_pmuirq = disable_irq_nosync,
45         .free_pmuirq = armpmu_free_pmuirq
46 };
47
48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50         free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52
53 static const struct pmu_irq_ops pmunmi_ops = {
54         .enable_pmuirq = enable_nmi,
55         .disable_pmuirq = disable_nmi_nosync,
56         .free_pmuirq = armpmu_free_pmunmi
57 };
58
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61         enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63
64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65                                    void __percpu *devid)
66 {
67         if (armpmu_count_irq_users(irq) == 1)
68                 free_percpu_irq(irq, devid);
69 }
70
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72         .enable_pmuirq = armpmu_enable_percpu_pmuirq,
73         .disable_pmuirq = disable_percpu_irq,
74         .free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79         if (!prepare_percpu_nmi(irq))
80                 enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85         disable_percpu_nmi(irq);
86         teardown_percpu_nmi(irq);
87 }
88
89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90                                       void __percpu *devid)
91 {
92         if (armpmu_count_irq_users(irq) == 1)
93                 free_percpu_nmi(irq, devid);
94 }
95
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97         .enable_pmuirq = armpmu_enable_percpu_pmunmi,
98         .disable_pmuirq = armpmu_disable_percpu_pmunmi,
99         .free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105
106 static bool has_nmi;
107
108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110         if (event->hw.flags & ARMPMU_EVT_64BIT)
111                 return GENMASK_ULL(63, 0);
112         else if (event->hw.flags & ARMPMU_EVT_63BIT)
113                 return GENMASK_ULL(62, 0);
114         else if (event->hw.flags & ARMPMU_EVT_47BIT)
115                 return GENMASK_ULL(46, 0);
116         else
117                 return GENMASK_ULL(31, 0);
118 }
119
120 static int
121 armpmu_map_cache_event(const unsigned (*cache_map)
122                                       [PERF_COUNT_HW_CACHE_MAX]
123                                       [PERF_COUNT_HW_CACHE_OP_MAX]
124                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
125                        u64 config)
126 {
127         unsigned int cache_type, cache_op, cache_result, ret;
128
129         cache_type = (config >>  0) & 0xff;
130         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
131                 return -EINVAL;
132
133         cache_op = (config >>  8) & 0xff;
134         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
135                 return -EINVAL;
136
137         cache_result = (config >> 16) & 0xff;
138         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
139                 return -EINVAL;
140
141         if (!cache_map)
142                 return -ENOENT;
143
144         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
145
146         if (ret == CACHE_OP_UNSUPPORTED)
147                 return -ENOENT;
148
149         return ret;
150 }
151
152 static int
153 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
154 {
155         int mapping;
156
157         if (config >= PERF_COUNT_HW_MAX)
158                 return -EINVAL;
159
160         if (!event_map)
161                 return -ENOENT;
162
163         mapping = (*event_map)[config];
164         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
165 }
166
167 static int
168 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
169 {
170         return (int)(config & raw_event_mask);
171 }
172
173 int
174 armpmu_map_event(struct perf_event *event,
175                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
176                  const unsigned (*cache_map)
177                                 [PERF_COUNT_HW_CACHE_MAX]
178                                 [PERF_COUNT_HW_CACHE_OP_MAX]
179                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
180                  u32 raw_event_mask)
181 {
182         u64 config = event->attr.config;
183         int type = event->attr.type;
184
185         if (type == event->pmu->type)
186                 return armpmu_map_raw_event(raw_event_mask, config);
187
188         switch (type) {
189         case PERF_TYPE_HARDWARE:
190                 return armpmu_map_hw_event(event_map, config);
191         case PERF_TYPE_HW_CACHE:
192                 return armpmu_map_cache_event(cache_map, config);
193         case PERF_TYPE_RAW:
194                 return armpmu_map_raw_event(raw_event_mask, config);
195         }
196
197         return -ENOENT;
198 }
199
200 int armpmu_event_set_period(struct perf_event *event)
201 {
202         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203         struct hw_perf_event *hwc = &event->hw;
204         s64 left = local64_read(&hwc->period_left);
205         s64 period = hwc->sample_period;
206         u64 max_period;
207         int ret = 0;
208
209         max_period = arm_pmu_event_max_period(event);
210         if (unlikely(left <= -period)) {
211                 left = period;
212                 local64_set(&hwc->period_left, left);
213                 hwc->last_period = period;
214                 ret = 1;
215         }
216
217         if (unlikely(left <= 0)) {
218                 left += period;
219                 local64_set(&hwc->period_left, left);
220                 hwc->last_period = period;
221                 ret = 1;
222         }
223
224         /*
225          * Limit the maximum period to prevent the counter value
226          * from overtaking the one we are about to program. In
227          * effect we are reducing max_period to account for
228          * interrupt latency (and we are being very conservative).
229          */
230         if (left > (max_period >> 1))
231                 left = (max_period >> 1);
232
233         local64_set(&hwc->prev_count, (u64)-left);
234
235         armpmu->write_counter(event, (u64)(-left) & max_period);
236
237         perf_event_update_userpage(event);
238
239         return ret;
240 }
241
242 u64 armpmu_event_update(struct perf_event *event)
243 {
244         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
245         struct hw_perf_event *hwc = &event->hw;
246         u64 delta, prev_raw_count, new_raw_count;
247         u64 max_period = arm_pmu_event_max_period(event);
248
249 again:
250         prev_raw_count = local64_read(&hwc->prev_count);
251         new_raw_count = armpmu->read_counter(event);
252
253         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
254                              new_raw_count) != prev_raw_count)
255                 goto again;
256
257         delta = (new_raw_count - prev_raw_count) & max_period;
258
259         local64_add(delta, &event->count);
260         local64_sub(delta, &hwc->period_left);
261
262         return new_raw_count;
263 }
264
265 static void
266 armpmu_read(struct perf_event *event)
267 {
268         armpmu_event_update(event);
269 }
270
271 static void
272 armpmu_stop(struct perf_event *event, int flags)
273 {
274         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
275         struct hw_perf_event *hwc = &event->hw;
276
277         /*
278          * ARM pmu always has to update the counter, so ignore
279          * PERF_EF_UPDATE, see comments in armpmu_start().
280          */
281         if (!(hwc->state & PERF_HES_STOPPED)) {
282                 armpmu->disable(event);
283                 armpmu_event_update(event);
284                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
285         }
286 }
287
288 static void armpmu_start(struct perf_event *event, int flags)
289 {
290         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
291         struct hw_perf_event *hwc = &event->hw;
292
293         /*
294          * ARM pmu always has to reprogram the period, so ignore
295          * PERF_EF_RELOAD, see the comment below.
296          */
297         if (flags & PERF_EF_RELOAD)
298                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
299
300         hwc->state = 0;
301         /*
302          * Set the period again. Some counters can't be stopped, so when we
303          * were stopped we simply disabled the IRQ source and the counter
304          * may have been left counting. If we don't do this step then we may
305          * get an interrupt too soon or *way* too late if the overflow has
306          * happened since disabling.
307          */
308         armpmu_event_set_period(event);
309         armpmu->enable(event);
310 }
311
312 static void
313 armpmu_del(struct perf_event *event, int flags)
314 {
315         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
316         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
317         struct hw_perf_event *hwc = &event->hw;
318         int idx = hwc->idx;
319
320         armpmu_stop(event, PERF_EF_UPDATE);
321         hw_events->events[idx] = NULL;
322         armpmu->clear_event_idx(hw_events, event);
323         perf_event_update_userpage(event);
324         /* Clear the allocated counter */
325         hwc->idx = -1;
326 }
327
328 static int
329 armpmu_add(struct perf_event *event, int flags)
330 {
331         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
332         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
333         struct hw_perf_event *hwc = &event->hw;
334         int idx;
335
336         /* An event following a process won't be stopped earlier */
337         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
338                 return -ENOENT;
339
340         /* If we don't have a space for the counter then finish early. */
341         idx = armpmu->get_event_idx(hw_events, event);
342         if (idx < 0)
343                 return idx;
344
345         /*
346          * If there is an event in the counter we are going to use then make
347          * sure it is disabled.
348          */
349         event->hw.idx = idx;
350         armpmu->disable(event);
351         hw_events->events[idx] = event;
352
353         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
354         if (flags & PERF_EF_START)
355                 armpmu_start(event, PERF_EF_RELOAD);
356
357         /* Propagate our changes to the userspace mapping. */
358         perf_event_update_userpage(event);
359
360         return 0;
361 }
362
363 static int
364 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
365                                struct perf_event *event)
366 {
367         struct arm_pmu *armpmu;
368
369         if (is_software_event(event))
370                 return 1;
371
372         /*
373          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
374          * core perf code won't check that the pmu->ctx == leader->ctx
375          * until after pmu->event_init(event).
376          */
377         if (event->pmu != pmu)
378                 return 0;
379
380         if (event->state < PERF_EVENT_STATE_OFF)
381                 return 1;
382
383         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
384                 return 1;
385
386         armpmu = to_arm_pmu(event->pmu);
387         return armpmu->get_event_idx(hw_events, event) >= 0;
388 }
389
390 static int
391 validate_group(struct perf_event *event)
392 {
393         struct perf_event *sibling, *leader = event->group_leader;
394         struct pmu_hw_events fake_pmu;
395
396         /*
397          * Initialise the fake PMU. We only need to populate the
398          * used_mask for the purposes of validation.
399          */
400         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
401
402         if (!validate_event(event->pmu, &fake_pmu, leader))
403                 return -EINVAL;
404
405         if (event == leader)
406                 return 0;
407
408         for_each_sibling_event(sibling, leader) {
409                 if (!validate_event(event->pmu, &fake_pmu, sibling))
410                         return -EINVAL;
411         }
412
413         if (!validate_event(event->pmu, &fake_pmu, event))
414                 return -EINVAL;
415
416         return 0;
417 }
418
419 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
420 {
421         struct arm_pmu *armpmu;
422         int ret;
423         u64 start_clock, finish_clock;
424
425         /*
426          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
427          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
428          * do any necessary shifting, we just need to perform the first
429          * dereference.
430          */
431         armpmu = *(void **)dev;
432         if (WARN_ON_ONCE(!armpmu))
433                 return IRQ_NONE;
434
435         start_clock = sched_clock();
436         ret = armpmu->handle_irq(armpmu);
437         finish_clock = sched_clock();
438
439         perf_sample_event_took(finish_clock - start_clock);
440         return ret;
441 }
442
443 static int
444 __hw_perf_event_init(struct perf_event *event)
445 {
446         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
447         struct hw_perf_event *hwc = &event->hw;
448         int mapping;
449
450         hwc->flags = 0;
451         mapping = armpmu->map_event(event);
452
453         if (mapping < 0) {
454                 pr_debug("event %x:%llx not supported\n", event->attr.type,
455                          event->attr.config);
456                 return mapping;
457         }
458
459         /*
460          * We don't assign an index until we actually place the event onto
461          * hardware. Use -1 to signify that we haven't decided where to put it
462          * yet. For SMP systems, each core has it's own PMU so we can't do any
463          * clever allocation or constraints checking at this point.
464          */
465         hwc->idx                = -1;
466         hwc->config_base        = 0;
467         hwc->config             = 0;
468         hwc->event_base         = 0;
469
470         /*
471          * Check whether we need to exclude the counter from certain modes.
472          */
473         if (armpmu->set_event_filter &&
474             armpmu->set_event_filter(hwc, &event->attr)) {
475                 pr_debug("ARM performance counters do not support "
476                          "mode exclusion\n");
477                 return -EOPNOTSUPP;
478         }
479
480         /*
481          * Store the event encoding into the config_base field.
482          */
483         hwc->config_base            |= (unsigned long)mapping;
484
485         if (!is_sampling_event(event)) {
486                 /*
487                  * For non-sampling runs, limit the sample_period to half
488                  * of the counter width. That way, the new counter value
489                  * is far less likely to overtake the previous one unless
490                  * you have some serious IRQ latency issues.
491                  */
492                 hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
493                 hwc->last_period    = hwc->sample_period;
494                 local64_set(&hwc->period_left, hwc->sample_period);
495         }
496
497         return validate_group(event);
498 }
499
500 static int armpmu_event_init(struct perf_event *event)
501 {
502         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
503
504         /*
505          * Reject CPU-affine events for CPUs that are of a different class to
506          * that which this PMU handles. Process-following events (where
507          * event->cpu == -1) can be migrated between CPUs, and thus we have to
508          * reject them later (in armpmu_add) if they're scheduled on a
509          * different class of CPU.
510          */
511         if (event->cpu != -1 &&
512                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
513                 return -ENOENT;
514
515         /* does not support taken branch sampling */
516         if (has_branch_stack(event))
517                 return -EOPNOTSUPP;
518
519         return __hw_perf_event_init(event);
520 }
521
522 static void armpmu_enable(struct pmu *pmu)
523 {
524         struct arm_pmu *armpmu = to_arm_pmu(pmu);
525         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
526         bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
527
528         /* For task-bound events we may be called on other CPUs */
529         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
530                 return;
531
532         if (enabled)
533                 armpmu->start(armpmu);
534 }
535
536 static void armpmu_disable(struct pmu *pmu)
537 {
538         struct arm_pmu *armpmu = to_arm_pmu(pmu);
539
540         /* For task-bound events we may be called on other CPUs */
541         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
542                 return;
543
544         armpmu->stop(armpmu);
545 }
546
547 /*
548  * In heterogeneous systems, events are specific to a particular
549  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
550  * the same microarchitecture.
551  */
552 static bool armpmu_filter(struct pmu *pmu, int cpu)
553 {
554         struct arm_pmu *armpmu = to_arm_pmu(pmu);
555         return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
556 }
557
558 static ssize_t cpus_show(struct device *dev,
559                          struct device_attribute *attr, char *buf)
560 {
561         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
562         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
563 }
564
565 static DEVICE_ATTR_RO(cpus);
566
567 static struct attribute *armpmu_common_attrs[] = {
568         &dev_attr_cpus.attr,
569         NULL,
570 };
571
572 static const struct attribute_group armpmu_common_attr_group = {
573         .attrs = armpmu_common_attrs,
574 };
575
576 static int armpmu_count_irq_users(const int irq)
577 {
578         int cpu, count = 0;
579
580         for_each_possible_cpu(cpu) {
581                 if (per_cpu(cpu_irq, cpu) == irq)
582                         count++;
583         }
584
585         return count;
586 }
587
588 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
589 {
590         const struct pmu_irq_ops *ops = NULL;
591         int cpu;
592
593         for_each_possible_cpu(cpu) {
594                 if (per_cpu(cpu_irq, cpu) != irq)
595                         continue;
596
597                 ops = per_cpu(cpu_irq_ops, cpu);
598                 if (ops)
599                         break;
600         }
601
602         return ops;
603 }
604
605 void armpmu_free_irq(int irq, int cpu)
606 {
607         if (per_cpu(cpu_irq, cpu) == 0)
608                 return;
609         if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
610                 return;
611
612         per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
613
614         per_cpu(cpu_irq, cpu) = 0;
615         per_cpu(cpu_irq_ops, cpu) = NULL;
616 }
617
618 int armpmu_request_irq(int irq, int cpu)
619 {
620         int err = 0;
621         const irq_handler_t handler = armpmu_dispatch_irq;
622         const struct pmu_irq_ops *irq_ops;
623
624         if (!irq)
625                 return 0;
626
627         if (!irq_is_percpu_devid(irq)) {
628                 unsigned long irq_flags;
629
630                 err = irq_force_affinity(irq, cpumask_of(cpu));
631
632                 if (err && num_possible_cpus() > 1) {
633                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
634                                 irq, cpu);
635                         goto err_out;
636                 }
637
638                 irq_flags = IRQF_PERCPU |
639                             IRQF_NOBALANCING | IRQF_NO_AUTOEN |
640                             IRQF_NO_THREAD;
641
642                 err = request_nmi(irq, handler, irq_flags, "arm-pmu",
643                                   per_cpu_ptr(&cpu_armpmu, cpu));
644
645                 /* If cannot get an NMI, get a normal interrupt */
646                 if (err) {
647                         err = request_irq(irq, handler, irq_flags, "arm-pmu",
648                                           per_cpu_ptr(&cpu_armpmu, cpu));
649                         irq_ops = &pmuirq_ops;
650                 } else {
651                         has_nmi = true;
652                         irq_ops = &pmunmi_ops;
653                 }
654         } else if (armpmu_count_irq_users(irq) == 0) {
655                 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
656
657                 /* If cannot get an NMI, get a normal interrupt */
658                 if (err) {
659                         err = request_percpu_irq(irq, handler, "arm-pmu",
660                                                  &cpu_armpmu);
661                         irq_ops = &percpu_pmuirq_ops;
662                 } else {
663                         has_nmi = true;
664                         irq_ops = &percpu_pmunmi_ops;
665                 }
666         } else {
667                 /* Per cpudevid irq was already requested by another CPU */
668                 irq_ops = armpmu_find_irq_ops(irq);
669
670                 if (WARN_ON(!irq_ops))
671                         err = -EINVAL;
672         }
673
674         if (err)
675                 goto err_out;
676
677         per_cpu(cpu_irq, cpu) = irq;
678         per_cpu(cpu_irq_ops, cpu) = irq_ops;
679         return 0;
680
681 err_out:
682         pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
683         return err;
684 }
685
686 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
687 {
688         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
689         return per_cpu(hw_events->irq, cpu);
690 }
691
692 bool arm_pmu_irq_is_nmi(void)
693 {
694         return has_nmi;
695 }
696
697 /*
698  * PMU hardware loses all context when a CPU goes offline.
699  * When a CPU is hotplugged back in, since some hardware registers are
700  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
701  * junk values out of them.
702  */
703 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
704 {
705         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
706         int irq;
707
708         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
709                 return 0;
710         if (pmu->reset)
711                 pmu->reset(pmu);
712
713         per_cpu(cpu_armpmu, cpu) = pmu;
714
715         irq = armpmu_get_cpu_irq(pmu, cpu);
716         if (irq)
717                 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
718
719         return 0;
720 }
721
722 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
723 {
724         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
725         int irq;
726
727         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
728                 return 0;
729
730         irq = armpmu_get_cpu_irq(pmu, cpu);
731         if (irq)
732                 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
733
734         per_cpu(cpu_armpmu, cpu) = NULL;
735
736         return 0;
737 }
738
739 #ifdef CONFIG_CPU_PM
740 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
741 {
742         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
743         struct perf_event *event;
744         int idx;
745
746         for (idx = 0; idx < armpmu->num_events; idx++) {
747                 event = hw_events->events[idx];
748                 if (!event)
749                         continue;
750
751                 switch (cmd) {
752                 case CPU_PM_ENTER:
753                         /*
754                          * Stop and update the counter
755                          */
756                         armpmu_stop(event, PERF_EF_UPDATE);
757                         break;
758                 case CPU_PM_EXIT:
759                 case CPU_PM_ENTER_FAILED:
760                          /*
761                           * Restore and enable the counter.
762                           */
763                         armpmu_start(event, PERF_EF_RELOAD);
764                         break;
765                 default:
766                         break;
767                 }
768         }
769 }
770
771 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
772                              void *v)
773 {
774         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
775         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
776         bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
777
778         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
779                 return NOTIFY_DONE;
780
781         /*
782          * Always reset the PMU registers on power-up even if
783          * there are no events running.
784          */
785         if (cmd == CPU_PM_EXIT && armpmu->reset)
786                 armpmu->reset(armpmu);
787
788         if (!enabled)
789                 return NOTIFY_OK;
790
791         switch (cmd) {
792         case CPU_PM_ENTER:
793                 armpmu->stop(armpmu);
794                 cpu_pm_pmu_setup(armpmu, cmd);
795                 break;
796         case CPU_PM_EXIT:
797         case CPU_PM_ENTER_FAILED:
798                 cpu_pm_pmu_setup(armpmu, cmd);
799                 armpmu->start(armpmu);
800                 break;
801         default:
802                 return NOTIFY_DONE;
803         }
804
805         return NOTIFY_OK;
806 }
807
808 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
809 {
810         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
811         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
812 }
813
814 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
815 {
816         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
817 }
818 #else
819 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
820 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
821 #endif
822
823 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
824 {
825         int err;
826
827         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
828                                        &cpu_pmu->node);
829         if (err)
830                 goto out;
831
832         err = cpu_pm_pmu_register(cpu_pmu);
833         if (err)
834                 goto out_unregister;
835
836         return 0;
837
838 out_unregister:
839         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
840                                             &cpu_pmu->node);
841 out:
842         return err;
843 }
844
845 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
846 {
847         cpu_pm_pmu_unregister(cpu_pmu);
848         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
849                                             &cpu_pmu->node);
850 }
851
852 struct arm_pmu *armpmu_alloc(void)
853 {
854         struct arm_pmu *pmu;
855         int cpu;
856
857         pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
858         if (!pmu)
859                 goto out;
860
861         pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
862         if (!pmu->hw_events) {
863                 pr_info("failed to allocate per-cpu PMU data.\n");
864                 goto out_free_pmu;
865         }
866
867         pmu->pmu = (struct pmu) {
868                 .pmu_enable     = armpmu_enable,
869                 .pmu_disable    = armpmu_disable,
870                 .event_init     = armpmu_event_init,
871                 .add            = armpmu_add,
872                 .del            = armpmu_del,
873                 .start          = armpmu_start,
874                 .stop           = armpmu_stop,
875                 .read           = armpmu_read,
876                 .filter         = armpmu_filter,
877                 .attr_groups    = pmu->attr_groups,
878                 /*
879                  * This is a CPU PMU potentially in a heterogeneous
880                  * configuration (e.g. big.LITTLE) so
881                  * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
882                  * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
883                  * specific PMU.
884                  */
885                 .capabilities   = PERF_PMU_CAP_EXTENDED_REGS |
886                                   PERF_PMU_CAP_EXTENDED_HW_TYPE,
887         };
888
889         pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
890                 &armpmu_common_attr_group;
891
892         for_each_possible_cpu(cpu) {
893                 struct pmu_hw_events *events;
894
895                 events = per_cpu_ptr(pmu->hw_events, cpu);
896                 raw_spin_lock_init(&events->pmu_lock);
897                 events->percpu_pmu = pmu;
898         }
899
900         return pmu;
901
902 out_free_pmu:
903         kfree(pmu);
904 out:
905         return NULL;
906 }
907
908 void armpmu_free(struct arm_pmu *pmu)
909 {
910         free_percpu(pmu->hw_events);
911         kfree(pmu);
912 }
913
914 int armpmu_register(struct arm_pmu *pmu)
915 {
916         int ret;
917
918         ret = cpu_pmu_init(pmu);
919         if (ret)
920                 return ret;
921
922         if (!pmu->set_event_filter)
923                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
924
925         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
926         if (ret)
927                 goto out_destroy;
928
929         pr_info("enabled with %s PMU driver, %d counters available%s\n",
930                 pmu->name, pmu->num_events,
931                 has_nmi ? ", using NMIs" : "");
932
933         kvm_host_pmu_init(pmu);
934
935         return 0;
936
937 out_destroy:
938         cpu_pmu_destroy(pmu);
939         return ret;
940 }
941
942 static int arm_pmu_hp_init(void)
943 {
944         int ret;
945
946         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
947                                       "perf/arm/pmu:starting",
948                                       arm_perf_starting_cpu,
949                                       arm_perf_teardown_cpu);
950         if (ret)
951                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
952                        ret);
953         return ret;
954 }
955 subsys_initcall(arm_pmu_hp_init);