mediatek: mt76-6e-usb: Copied entire code from v5.18.y
[platform/kernel/linux-rpi.git] / drivers / perf / arm_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/irq_regs.h>
28
29 static int armpmu_count_irq_users(const int irq);
30
31 struct pmu_irq_ops {
32         void (*enable_pmuirq)(unsigned int irq);
33         void (*disable_pmuirq)(unsigned int irq);
34         void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36
37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39         free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41
42 static const struct pmu_irq_ops pmuirq_ops = {
43         .enable_pmuirq = enable_irq,
44         .disable_pmuirq = disable_irq_nosync,
45         .free_pmuirq = armpmu_free_pmuirq
46 };
47
48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50         free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52
53 static const struct pmu_irq_ops pmunmi_ops = {
54         .enable_pmuirq = enable_nmi,
55         .disable_pmuirq = disable_nmi_nosync,
56         .free_pmuirq = armpmu_free_pmunmi
57 };
58
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61         enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63
64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65                                    void __percpu *devid)
66 {
67         if (armpmu_count_irq_users(irq) == 1)
68                 free_percpu_irq(irq, devid);
69 }
70
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72         .enable_pmuirq = armpmu_enable_percpu_pmuirq,
73         .disable_pmuirq = disable_percpu_irq,
74         .free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79         if (!prepare_percpu_nmi(irq))
80                 enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85         disable_percpu_nmi(irq);
86         teardown_percpu_nmi(irq);
87 }
88
89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90                                       void __percpu *devid)
91 {
92         if (armpmu_count_irq_users(irq) == 1)
93                 free_percpu_nmi(irq, devid);
94 }
95
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97         .enable_pmuirq = armpmu_enable_percpu_pmunmi,
98         .disable_pmuirq = armpmu_disable_percpu_pmunmi,
99         .free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105
106 static bool has_nmi;
107
108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110         if (event->hw.flags & ARMPMU_EVT_64BIT)
111                 return GENMASK_ULL(63, 0);
112         else
113                 return GENMASK_ULL(31, 0);
114 }
115
116 static int
117 armpmu_map_cache_event(const unsigned (*cache_map)
118                                       [PERF_COUNT_HW_CACHE_MAX]
119                                       [PERF_COUNT_HW_CACHE_OP_MAX]
120                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
121                        u64 config)
122 {
123         unsigned int cache_type, cache_op, cache_result, ret;
124
125         cache_type = (config >>  0) & 0xff;
126         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
127                 return -EINVAL;
128
129         cache_op = (config >>  8) & 0xff;
130         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
131                 return -EINVAL;
132
133         cache_result = (config >> 16) & 0xff;
134         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
135                 return -EINVAL;
136
137         if (!cache_map)
138                 return -ENOENT;
139
140         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
141
142         if (ret == CACHE_OP_UNSUPPORTED)
143                 return -ENOENT;
144
145         return ret;
146 }
147
148 static int
149 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
150 {
151         int mapping;
152
153         if (config >= PERF_COUNT_HW_MAX)
154                 return -EINVAL;
155
156         if (!event_map)
157                 return -ENOENT;
158
159         mapping = (*event_map)[config];
160         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
161 }
162
163 static int
164 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
165 {
166         return (int)(config & raw_event_mask);
167 }
168
169 int
170 armpmu_map_event(struct perf_event *event,
171                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
172                  const unsigned (*cache_map)
173                                 [PERF_COUNT_HW_CACHE_MAX]
174                                 [PERF_COUNT_HW_CACHE_OP_MAX]
175                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
176                  u32 raw_event_mask)
177 {
178         u64 config = event->attr.config;
179         int type = event->attr.type;
180
181         if (type == event->pmu->type)
182                 return armpmu_map_raw_event(raw_event_mask, config);
183
184         switch (type) {
185         case PERF_TYPE_HARDWARE:
186                 return armpmu_map_hw_event(event_map, config);
187         case PERF_TYPE_HW_CACHE:
188                 return armpmu_map_cache_event(cache_map, config);
189         case PERF_TYPE_RAW:
190                 return armpmu_map_raw_event(raw_event_mask, config);
191         }
192
193         return -ENOENT;
194 }
195
196 int armpmu_event_set_period(struct perf_event *event)
197 {
198         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
199         struct hw_perf_event *hwc = &event->hw;
200         s64 left = local64_read(&hwc->period_left);
201         s64 period = hwc->sample_period;
202         u64 max_period;
203         int ret = 0;
204
205         max_period = arm_pmu_event_max_period(event);
206         if (unlikely(left <= -period)) {
207                 left = period;
208                 local64_set(&hwc->period_left, left);
209                 hwc->last_period = period;
210                 ret = 1;
211         }
212
213         if (unlikely(left <= 0)) {
214                 left += period;
215                 local64_set(&hwc->period_left, left);
216                 hwc->last_period = period;
217                 ret = 1;
218         }
219
220         /*
221          * Limit the maximum period to prevent the counter value
222          * from overtaking the one we are about to program. In
223          * effect we are reducing max_period to account for
224          * interrupt latency (and we are being very conservative).
225          */
226         if (left > (max_period >> 1))
227                 left = (max_period >> 1);
228
229         local64_set(&hwc->prev_count, (u64)-left);
230
231         armpmu->write_counter(event, (u64)(-left) & max_period);
232
233         perf_event_update_userpage(event);
234
235         return ret;
236 }
237
238 u64 armpmu_event_update(struct perf_event *event)
239 {
240         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241         struct hw_perf_event *hwc = &event->hw;
242         u64 delta, prev_raw_count, new_raw_count;
243         u64 max_period = arm_pmu_event_max_period(event);
244
245 again:
246         prev_raw_count = local64_read(&hwc->prev_count);
247         new_raw_count = armpmu->read_counter(event);
248
249         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
250                              new_raw_count) != prev_raw_count)
251                 goto again;
252
253         delta = (new_raw_count - prev_raw_count) & max_period;
254
255         local64_add(delta, &event->count);
256         local64_sub(delta, &hwc->period_left);
257
258         return new_raw_count;
259 }
260
261 static void
262 armpmu_read(struct perf_event *event)
263 {
264         armpmu_event_update(event);
265 }
266
267 static void
268 armpmu_stop(struct perf_event *event, int flags)
269 {
270         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
271         struct hw_perf_event *hwc = &event->hw;
272
273         /*
274          * ARM pmu always has to update the counter, so ignore
275          * PERF_EF_UPDATE, see comments in armpmu_start().
276          */
277         if (!(hwc->state & PERF_HES_STOPPED)) {
278                 armpmu->disable(event);
279                 armpmu_event_update(event);
280                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
281         }
282 }
283
284 static void armpmu_start(struct perf_event *event, int flags)
285 {
286         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
287         struct hw_perf_event *hwc = &event->hw;
288
289         /*
290          * ARM pmu always has to reprogram the period, so ignore
291          * PERF_EF_RELOAD, see the comment below.
292          */
293         if (flags & PERF_EF_RELOAD)
294                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
295
296         hwc->state = 0;
297         /*
298          * Set the period again. Some counters can't be stopped, so when we
299          * were stopped we simply disabled the IRQ source and the counter
300          * may have been left counting. If we don't do this step then we may
301          * get an interrupt too soon or *way* too late if the overflow has
302          * happened since disabling.
303          */
304         armpmu_event_set_period(event);
305         armpmu->enable(event);
306 }
307
308 static void
309 armpmu_del(struct perf_event *event, int flags)
310 {
311         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
312         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
313         struct hw_perf_event *hwc = &event->hw;
314         int idx = hwc->idx;
315
316         armpmu_stop(event, PERF_EF_UPDATE);
317         hw_events->events[idx] = NULL;
318         armpmu->clear_event_idx(hw_events, event);
319         perf_event_update_userpage(event);
320         /* Clear the allocated counter */
321         hwc->idx = -1;
322 }
323
324 static int
325 armpmu_add(struct perf_event *event, int flags)
326 {
327         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
328         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
329         struct hw_perf_event *hwc = &event->hw;
330         int idx;
331
332         /* An event following a process won't be stopped earlier */
333         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
334                 return -ENOENT;
335
336         /* If we don't have a space for the counter then finish early. */
337         idx = armpmu->get_event_idx(hw_events, event);
338         if (idx < 0)
339                 return idx;
340
341         /*
342          * If there is an event in the counter we are going to use then make
343          * sure it is disabled.
344          */
345         event->hw.idx = idx;
346         armpmu->disable(event);
347         hw_events->events[idx] = event;
348
349         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
350         if (flags & PERF_EF_START)
351                 armpmu_start(event, PERF_EF_RELOAD);
352
353         /* Propagate our changes to the userspace mapping. */
354         perf_event_update_userpage(event);
355
356         return 0;
357 }
358
359 static int
360 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
361                                struct perf_event *event)
362 {
363         struct arm_pmu *armpmu;
364
365         if (is_software_event(event))
366                 return 1;
367
368         /*
369          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
370          * core perf code won't check that the pmu->ctx == leader->ctx
371          * until after pmu->event_init(event).
372          */
373         if (event->pmu != pmu)
374                 return 0;
375
376         if (event->state < PERF_EVENT_STATE_OFF)
377                 return 1;
378
379         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
380                 return 1;
381
382         armpmu = to_arm_pmu(event->pmu);
383         return armpmu->get_event_idx(hw_events, event) >= 0;
384 }
385
386 static int
387 validate_group(struct perf_event *event)
388 {
389         struct perf_event *sibling, *leader = event->group_leader;
390         struct pmu_hw_events fake_pmu;
391
392         /*
393          * Initialise the fake PMU. We only need to populate the
394          * used_mask for the purposes of validation.
395          */
396         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
397
398         if (!validate_event(event->pmu, &fake_pmu, leader))
399                 return -EINVAL;
400
401         if (event == leader)
402                 return 0;
403
404         for_each_sibling_event(sibling, leader) {
405                 if (!validate_event(event->pmu, &fake_pmu, sibling))
406                         return -EINVAL;
407         }
408
409         if (!validate_event(event->pmu, &fake_pmu, event))
410                 return -EINVAL;
411
412         return 0;
413 }
414
415 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
416 {
417         struct arm_pmu *armpmu;
418         int ret;
419         u64 start_clock, finish_clock;
420
421         /*
422          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
423          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
424          * do any necessary shifting, we just need to perform the first
425          * dereference.
426          */
427         armpmu = *(void **)dev;
428         if (WARN_ON_ONCE(!armpmu))
429                 return IRQ_NONE;
430
431         start_clock = sched_clock();
432         ret = armpmu->handle_irq(armpmu);
433         finish_clock = sched_clock();
434
435         perf_sample_event_took(finish_clock - start_clock);
436         return ret;
437 }
438
439 static int
440 __hw_perf_event_init(struct perf_event *event)
441 {
442         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
443         struct hw_perf_event *hwc = &event->hw;
444         int mapping;
445
446         hwc->flags = 0;
447         mapping = armpmu->map_event(event);
448
449         if (mapping < 0) {
450                 pr_debug("event %x:%llx not supported\n", event->attr.type,
451                          event->attr.config);
452                 return mapping;
453         }
454
455         /*
456          * We don't assign an index until we actually place the event onto
457          * hardware. Use -1 to signify that we haven't decided where to put it
458          * yet. For SMP systems, each core has it's own PMU so we can't do any
459          * clever allocation or constraints checking at this point.
460          */
461         hwc->idx                = -1;
462         hwc->config_base        = 0;
463         hwc->config             = 0;
464         hwc->event_base         = 0;
465
466         /*
467          * Check whether we need to exclude the counter from certain modes.
468          */
469         if (armpmu->set_event_filter &&
470             armpmu->set_event_filter(hwc, &event->attr)) {
471                 pr_debug("ARM performance counters do not support "
472                          "mode exclusion\n");
473                 return -EOPNOTSUPP;
474         }
475
476         /*
477          * Store the event encoding into the config_base field.
478          */
479         hwc->config_base            |= (unsigned long)mapping;
480
481         if (!is_sampling_event(event)) {
482                 /*
483                  * For non-sampling runs, limit the sample_period to half
484                  * of the counter width. That way, the new counter value
485                  * is far less likely to overtake the previous one unless
486                  * you have some serious IRQ latency issues.
487                  */
488                 hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
489                 hwc->last_period    = hwc->sample_period;
490                 local64_set(&hwc->period_left, hwc->sample_period);
491         }
492
493         return validate_group(event);
494 }
495
496 static int armpmu_event_init(struct perf_event *event)
497 {
498         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
499
500         /*
501          * Reject CPU-affine events for CPUs that are of a different class to
502          * that which this PMU handles. Process-following events (where
503          * event->cpu == -1) can be migrated between CPUs, and thus we have to
504          * reject them later (in armpmu_add) if they're scheduled on a
505          * different class of CPU.
506          */
507         if (event->cpu != -1 &&
508                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
509                 return -ENOENT;
510
511         /* does not support taken branch sampling */
512         if (has_branch_stack(event))
513                 return -EOPNOTSUPP;
514
515         if (armpmu->map_event(event) == -ENOENT)
516                 return -ENOENT;
517
518         return __hw_perf_event_init(event);
519 }
520
521 static void armpmu_enable(struct pmu *pmu)
522 {
523         struct arm_pmu *armpmu = to_arm_pmu(pmu);
524         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
525         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
526
527         /* For task-bound events we may be called on other CPUs */
528         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
529                 return;
530
531         if (enabled)
532                 armpmu->start(armpmu);
533 }
534
535 static void armpmu_disable(struct pmu *pmu)
536 {
537         struct arm_pmu *armpmu = to_arm_pmu(pmu);
538
539         /* For task-bound events we may be called on other CPUs */
540         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
541                 return;
542
543         armpmu->stop(armpmu);
544 }
545
546 /*
547  * In heterogeneous systems, events are specific to a particular
548  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
549  * the same microarchitecture.
550  */
551 static int armpmu_filter_match(struct perf_event *event)
552 {
553         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
554         unsigned int cpu = smp_processor_id();
555         int ret;
556
557         ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
558         if (ret && armpmu->filter_match)
559                 return armpmu->filter_match(event);
560
561         return ret;
562 }
563
564 static ssize_t cpus_show(struct device *dev,
565                          struct device_attribute *attr, char *buf)
566 {
567         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
568         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
569 }
570
571 static DEVICE_ATTR_RO(cpus);
572
573 static struct attribute *armpmu_common_attrs[] = {
574         &dev_attr_cpus.attr,
575         NULL,
576 };
577
578 static const struct attribute_group armpmu_common_attr_group = {
579         .attrs = armpmu_common_attrs,
580 };
581
582 static int armpmu_count_irq_users(const int irq)
583 {
584         int cpu, count = 0;
585
586         for_each_possible_cpu(cpu) {
587                 if (per_cpu(cpu_irq, cpu) == irq)
588                         count++;
589         }
590
591         return count;
592 }
593
594 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
595 {
596         const struct pmu_irq_ops *ops = NULL;
597         int cpu;
598
599         for_each_possible_cpu(cpu) {
600                 if (per_cpu(cpu_irq, cpu) != irq)
601                         continue;
602
603                 ops = per_cpu(cpu_irq_ops, cpu);
604                 if (ops)
605                         break;
606         }
607
608         return ops;
609 }
610
611 void armpmu_free_irq(int irq, int cpu)
612 {
613         if (per_cpu(cpu_irq, cpu) == 0)
614                 return;
615         if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
616                 return;
617
618         per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
619
620         per_cpu(cpu_irq, cpu) = 0;
621         per_cpu(cpu_irq_ops, cpu) = NULL;
622 }
623
624 int armpmu_request_irq(int irq, int cpu)
625 {
626         int err = 0;
627         const irq_handler_t handler = armpmu_dispatch_irq;
628         const struct pmu_irq_ops *irq_ops;
629
630         if (!irq)
631                 return 0;
632
633         if (!irq_is_percpu_devid(irq)) {
634                 unsigned long irq_flags;
635
636                 err = irq_force_affinity(irq, cpumask_of(cpu));
637
638                 if (err && num_possible_cpus() > 1) {
639                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
640                                 irq, cpu);
641                         goto err_out;
642                 }
643
644                 irq_flags = IRQF_PERCPU |
645                             IRQF_NOBALANCING | IRQF_NO_AUTOEN |
646                             IRQF_NO_THREAD;
647
648                 err = request_nmi(irq, handler, irq_flags, "arm-pmu",
649                                   per_cpu_ptr(&cpu_armpmu, cpu));
650
651                 /* If cannot get an NMI, get a normal interrupt */
652                 if (err) {
653                         err = request_irq(irq, handler, irq_flags, "arm-pmu",
654                                           per_cpu_ptr(&cpu_armpmu, cpu));
655                         irq_ops = &pmuirq_ops;
656                 } else {
657                         has_nmi = true;
658                         irq_ops = &pmunmi_ops;
659                 }
660         } else if (armpmu_count_irq_users(irq) == 0) {
661                 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
662
663                 /* If cannot get an NMI, get a normal interrupt */
664                 if (err) {
665                         err = request_percpu_irq(irq, handler, "arm-pmu",
666                                                  &cpu_armpmu);
667                         irq_ops = &percpu_pmuirq_ops;
668                 } else {
669                         has_nmi = true;
670                         irq_ops = &percpu_pmunmi_ops;
671                 }
672         } else {
673                 /* Per cpudevid irq was already requested by another CPU */
674                 irq_ops = armpmu_find_irq_ops(irq);
675
676                 if (WARN_ON(!irq_ops))
677                         err = -EINVAL;
678         }
679
680         if (err)
681                 goto err_out;
682
683         per_cpu(cpu_irq, cpu) = irq;
684         per_cpu(cpu_irq_ops, cpu) = irq_ops;
685         return 0;
686
687 err_out:
688         pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
689         return err;
690 }
691
692 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
693 {
694         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
695         return per_cpu(hw_events->irq, cpu);
696 }
697
698 /*
699  * PMU hardware loses all context when a CPU goes offline.
700  * When a CPU is hotplugged back in, since some hardware registers are
701  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
702  * junk values out of them.
703  */
704 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
705 {
706         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
707         int irq;
708
709         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
710                 return 0;
711         if (pmu->reset)
712                 pmu->reset(pmu);
713
714         per_cpu(cpu_armpmu, cpu) = pmu;
715
716         irq = armpmu_get_cpu_irq(pmu, cpu);
717         if (irq)
718                 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
719
720         return 0;
721 }
722
723 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
724 {
725         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
726         int irq;
727
728         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
729                 return 0;
730
731         irq = armpmu_get_cpu_irq(pmu, cpu);
732         if (irq)
733                 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
734
735         per_cpu(cpu_armpmu, cpu) = NULL;
736
737         return 0;
738 }
739
740 #ifdef CONFIG_CPU_PM
741 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
742 {
743         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
744         struct perf_event *event;
745         int idx;
746
747         for (idx = 0; idx < armpmu->num_events; idx++) {
748                 event = hw_events->events[idx];
749                 if (!event)
750                         continue;
751
752                 switch (cmd) {
753                 case CPU_PM_ENTER:
754                         /*
755                          * Stop and update the counter
756                          */
757                         armpmu_stop(event, PERF_EF_UPDATE);
758                         break;
759                 case CPU_PM_EXIT:
760                 case CPU_PM_ENTER_FAILED:
761                          /*
762                           * Restore and enable the counter.
763                           * armpmu_start() indirectly calls
764                           *
765                           * perf_event_update_userpage()
766                           *
767                           * that requires RCU read locking to be functional,
768                           * wrap the call within RCU_NONIDLE to make the
769                           * RCU subsystem aware this cpu is not idle from
770                           * an RCU perspective for the armpmu_start() call
771                           * duration.
772                           */
773                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
774                         break;
775                 default:
776                         break;
777                 }
778         }
779 }
780
781 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
782                              void *v)
783 {
784         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
785         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
786         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
787
788         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
789                 return NOTIFY_DONE;
790
791         /*
792          * Always reset the PMU registers on power-up even if
793          * there are no events running.
794          */
795         if (cmd == CPU_PM_EXIT && armpmu->reset)
796                 armpmu->reset(armpmu);
797
798         if (!enabled)
799                 return NOTIFY_OK;
800
801         switch (cmd) {
802         case CPU_PM_ENTER:
803                 armpmu->stop(armpmu);
804                 cpu_pm_pmu_setup(armpmu, cmd);
805                 break;
806         case CPU_PM_EXIT:
807         case CPU_PM_ENTER_FAILED:
808                 cpu_pm_pmu_setup(armpmu, cmd);
809                 armpmu->start(armpmu);
810                 break;
811         default:
812                 return NOTIFY_DONE;
813         }
814
815         return NOTIFY_OK;
816 }
817
818 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
819 {
820         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
821         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
822 }
823
824 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
825 {
826         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
827 }
828 #else
829 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
830 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
831 #endif
832
833 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
834 {
835         int err;
836
837         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
838                                        &cpu_pmu->node);
839         if (err)
840                 goto out;
841
842         err = cpu_pm_pmu_register(cpu_pmu);
843         if (err)
844                 goto out_unregister;
845
846         return 0;
847
848 out_unregister:
849         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
850                                             &cpu_pmu->node);
851 out:
852         return err;
853 }
854
855 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
856 {
857         cpu_pm_pmu_unregister(cpu_pmu);
858         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
859                                             &cpu_pmu->node);
860 }
861
862 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
863 {
864         struct arm_pmu *pmu;
865         int cpu;
866
867         pmu = kzalloc(sizeof(*pmu), flags);
868         if (!pmu)
869                 goto out;
870
871         pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
872         if (!pmu->hw_events) {
873                 pr_info("failed to allocate per-cpu PMU data.\n");
874                 goto out_free_pmu;
875         }
876
877         pmu->pmu = (struct pmu) {
878                 .pmu_enable     = armpmu_enable,
879                 .pmu_disable    = armpmu_disable,
880                 .event_init     = armpmu_event_init,
881                 .add            = armpmu_add,
882                 .del            = armpmu_del,
883                 .start          = armpmu_start,
884                 .stop           = armpmu_stop,
885                 .read           = armpmu_read,
886                 .filter_match   = armpmu_filter_match,
887                 .attr_groups    = pmu->attr_groups,
888                 /*
889                  * This is a CPU PMU potentially in a heterogeneous
890                  * configuration (e.g. big.LITTLE). This is not an uncore PMU,
891                  * and we have taken ctx sharing into account (e.g. with our
892                  * pmu::filter_match callback and pmu::event_init group
893                  * validation).
894                  */
895                 .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
896         };
897
898         pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
899                 &armpmu_common_attr_group;
900
901         for_each_possible_cpu(cpu) {
902                 struct pmu_hw_events *events;
903
904                 events = per_cpu_ptr(pmu->hw_events, cpu);
905                 raw_spin_lock_init(&events->pmu_lock);
906                 events->percpu_pmu = pmu;
907         }
908
909         return pmu;
910
911 out_free_pmu:
912         kfree(pmu);
913 out:
914         return NULL;
915 }
916
917 struct arm_pmu *armpmu_alloc(void)
918 {
919         return __armpmu_alloc(GFP_KERNEL);
920 }
921
922 struct arm_pmu *armpmu_alloc_atomic(void)
923 {
924         return __armpmu_alloc(GFP_ATOMIC);
925 }
926
927
928 void armpmu_free(struct arm_pmu *pmu)
929 {
930         free_percpu(pmu->hw_events);
931         kfree(pmu);
932 }
933
934 int armpmu_register(struct arm_pmu *pmu)
935 {
936         int ret;
937
938         ret = cpu_pmu_init(pmu);
939         if (ret)
940                 return ret;
941
942         if (!pmu->set_event_filter)
943                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
944
945         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
946         if (ret)
947                 goto out_destroy;
948
949         pr_info("enabled with %s PMU driver, %d counters available%s\n",
950                 pmu->name, pmu->num_events,
951                 has_nmi ? ", using NMIs" : "");
952
953         kvm_host_pmu_init(pmu);
954
955         return 0;
956
957 out_destroy:
958         cpu_pmu_destroy(pmu);
959         return ret;
960 }
961
962 static int arm_pmu_hp_init(void)
963 {
964         int ret;
965
966         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
967                                       "perf/arm/pmu:starting",
968                                       arm_perf_starting_cpu,
969                                       arm_perf_teardown_cpu);
970         if (ret)
971                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
972                        ret);
973         return ret;
974 }
975 subsys_initcall(arm_pmu_hp_init);