1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
37 DEFINE_MUTEX(pci_slot_mutex);
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 EXPORT_SYMBOL_GPL(pci_power_names);
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
50 EXPORT_SYMBOL(pci_pci_problems);
52 unsigned int pci_pm_d3hot_delay;
54 static void pci_pme_list_scan(struct work_struct *work);
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
60 struct pci_pme_device {
61 struct list_head list;
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
68 * Following exit from Conventional Reset, devices must be ready within 1 sec
69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
70 * Reset (PCIe r6.0 sec 5.8).
72 #define PCI_RESET_WAIT 1000 /* msec */
75 * Devices may extend the 1 sec period through Request Retry Status
76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
77 * limit, but 60 sec ought to be enough for any device to become
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
82 static void pci_dev_d3_sleep(struct pci_dev *dev)
84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
88 /* Use a 20% upper bound, 1ms minimum */
89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 usleep_range(delay_ms * USEC_PER_MSEC,
91 (delay_ms + upper) * USEC_PER_MSEC);
95 bool pci_reset_supported(struct pci_dev *dev)
97 return dev->reset_methods[0] != 0;
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
104 #define DEFAULT_CARDBUS_IO_SIZE (256)
105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
110 #define DEFAULT_HOTPLUG_IO_SIZE (256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118 * pci=hpmemsize=nnM overrides both
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
123 #define DEFAULT_HOTPLUG_BUS_SIZE 1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
141 * The default CLS is used if arch didn't set CLS explicitly and not
142 * all pci devices agree on the same value. Arch can override either
143 * the dfl or actual value as it sees fit. Don't forget this is
144 * measured in 32-bit words, not bytes.
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
150 * If we set up a device for bus mastering, we need to check the latency
151 * timer as certain BIOSes forget to set it properly.
153 unsigned int pcibios_max_latency = 255;
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
161 /* If set, the PCI config space of each device is printed during boot. */
164 bool pci_ats_disabled(void)
166 return pcie_ats_disabled;
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
175 static int __init pcie_port_pm_setup(char *str)
177 if (!strcmp(str, "off"))
178 pci_bridge_d3_disable = true;
179 else if (!strcmp(str, "force"))
180 pci_bridge_d3_force = true;
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187 * @bus: pointer to PCI bus structure to search
189 * Given a PCI bus, returns the highest PCI bus number present in the set
190 * including the given PCI bus and its list of child PCI buses.
192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
195 unsigned char max, n;
197 max = bus->busn_res.end;
198 list_for_each_entry(tmp, &bus->children, node) {
199 n = pci_bus_max_busnr(tmp);
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209 * @pdev: the PCI device
211 * Returns error bits set in PCI_STATUS and clears them.
213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
218 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 if (ret != PCIBIOS_SUCCESSFUL)
222 status &= PCI_STATUS_ERROR_BITS;
224 pci_write_config_word(pdev, PCI_STATUS, status);
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
230 #ifdef CONFIG_HAS_IOMEM
231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
234 struct resource *res = &pdev->resource[bar];
235 resource_size_t start = res->start;
236 resource_size_t size = resource_size(res);
239 * Make sure the BAR is actually a memory resource, not an IO resource
241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
247 return ioremap_wc(start, size);
249 return ioremap(start, size);
252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
254 return __pci_ioremap_resource(pdev, bar, false);
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
260 return __pci_ioremap_resource(pdev, bar, true);
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
266 * pci_dev_str_match_path - test if a path string matches a device
267 * @dev: the PCI device to test
268 * @path: string to match the device against
269 * @endptr: pointer to the string after the match
271 * Test if a string (typically from a kernel parameter) formatted as a
272 * path of device/function addresses matches a PCI device. The string must
275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
277 * A path for a device can be obtained using 'lspci -t'. Using a path
278 * is more robust against bus renumbering than using only a single bus,
279 * device and function address.
281 * Returns 1 if the string matches the device, 0 if it does not and
282 * a negative error code if it fails to parse the string.
284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
288 unsigned int seg, bus, slot, func;
292 *endptr = strchrnul(path, ';');
294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
299 p = strrchr(wpath, '/');
302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
308 if (dev->devfn != PCI_DEVFN(slot, func)) {
314 * Note: we don't need to get a reference to the upstream
315 * bridge because we hold a reference to the top level
316 * device which should hold a reference to the bridge,
319 dev = pci_upstream_bridge(dev);
328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
339 ret = (seg == pci_domain_nr(dev->bus) &&
340 bus == dev->bus->number &&
341 dev->devfn == PCI_DEVFN(slot, func));
349 * pci_dev_str_match - test if a string matches a device
350 * @dev: the PCI device to test
351 * @p: string to match the device against
352 * @endptr: pointer to the string after the match
354 * Test if a string (typically from a kernel parameter) matches a specified
355 * PCI device. The string may be of one of the following formats:
357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
360 * The first format specifies a PCI bus/device/function address which
361 * may change if new hardware is inserted, if motherboard firmware changes,
362 * or due to changes caused in kernel parameters. If the domain is
363 * left unspecified, it is taken to be 0. In order to be robust against
364 * bus renumbering issues, a path of PCI device/function numbers may be used
365 * to address the specific device. The path for a device can be determined
366 * through the use of 'lspci -t'.
368 * The second format matches devices using IDs in the configuration
369 * space which may match multiple devices in the system. A value of 0
370 * for any field will match all devices. (Note: this differs from
371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372 * legacy reasons and convenience so users don't have to specify
373 * FFFFFFFFs on the command line.)
375 * Returns 1 if the string matches the device, 0 if it does not and
376 * a negative error code if the string cannot be parsed.
378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
383 unsigned short vendor, device, subsystem_vendor, subsystem_device;
385 if (strncmp(p, "pci:", 4) == 0) {
386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 &subsystem_vendor, &subsystem_device, &count);
391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
395 subsystem_vendor = 0;
396 subsystem_device = 0;
401 if ((!vendor || vendor == dev->vendor) &&
402 (!device || device == dev->device) &&
403 (!subsystem_vendor ||
404 subsystem_vendor == dev->subsystem_vendor) &&
405 (!subsystem_device ||
406 subsystem_device == dev->subsystem_device))
410 * PCI Bus, Device, Function IDs are specified
411 * (optionally, may include a path of devfns following it)
413 ret = pci_dev_str_match_path(dev, p, &p);
428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 u8 pos, int cap, int *ttl)
434 pci_bus_read_config_byte(bus, devfn, pos, &pos);
440 pci_bus_read_config_word(bus, devfn, pos, &ent);
452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
455 int ttl = PCI_FIND_CAP_TTL;
457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
462 return __pci_find_next_cap(dev->bus, dev->devfn,
463 pos + PCI_CAP_LIST_NEXT, cap);
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 unsigned int devfn, u8 hdr_type)
472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 if (!(status & PCI_STATUS_CAP_LIST))
477 case PCI_HEADER_TYPE_NORMAL:
478 case PCI_HEADER_TYPE_BRIDGE:
479 return PCI_CAPABILITY_LIST;
480 case PCI_HEADER_TYPE_CARDBUS:
481 return PCI_CB_CAPABILITY_LIST;
488 * pci_find_capability - query for devices' capabilities
489 * @dev: PCI device to query
490 * @cap: capability code
492 * Tell if a device supports a given PCI capability.
493 * Returns the address of the requested capability structure within the
494 * device's PCI configuration space or 0 in case the device does not
495 * support it. Possible values for @cap include:
497 * %PCI_CAP_ID_PM Power Management
498 * %PCI_CAP_ID_AGP Accelerated Graphics Port
499 * %PCI_CAP_ID_VPD Vital Product Data
500 * %PCI_CAP_ID_SLOTID Slot Identification
501 * %PCI_CAP_ID_MSI Message Signalled Interrupts
502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
503 * %PCI_CAP_ID_PCIX PCI-X
504 * %PCI_CAP_ID_EXP PCI Express
506 u8 pci_find_capability(struct pci_dev *dev, int cap)
510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
516 EXPORT_SYMBOL(pci_find_capability);
519 * pci_bus_find_capability - query for devices' capabilities
520 * @bus: the PCI bus to query
521 * @devfn: PCI device to query
522 * @cap: capability code
524 * Like pci_find_capability() but works for PCI devices that do not have a
525 * pci_dev structure set up yet.
527 * Returns the address of the requested capability structure within the
528 * device's PCI configuration space or 0 in case the device does not
531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
539 pos = __pci_find_next_cap(bus, devfn, pos, cap);
543 EXPORT_SYMBOL(pci_bus_find_capability);
546 * pci_find_next_ext_capability - Find an extended capability
547 * @dev: PCI device to query
548 * @start: address at which to start looking (0 to start at beginning of list)
549 * @cap: capability code
551 * Returns the address of the next matching extended capability structure
552 * within the device's PCI configuration space or 0 if the device does
553 * not support it. Some capabilities can occur several times, e.g., the
554 * vendor-specific capability, and this provides a way to find them all.
556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
560 u16 pos = PCI_CFG_SPACE_SIZE;
562 /* minimum 8 bytes per capability */
563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
575 * If we have no capabilities, this is indicated by cap ID,
576 * cap version and next pointer all being 0.
582 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
585 pos = PCI_EXT_CAP_NEXT(header);
586 if (pos < PCI_CFG_SPACE_SIZE)
589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
598 * pci_find_ext_capability - Find an extended capability
599 * @dev: PCI device to query
600 * @cap: capability code
602 * Returns the address of the requested extended capability structure
603 * within the device's PCI configuration space or 0 if the device does
604 * not support it. Possible values for @cap include:
606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
607 * %PCI_EXT_CAP_ID_VC Virtual Channel
608 * %PCI_EXT_CAP_ID_DSN Device Serial Number
609 * %PCI_EXT_CAP_ID_PWR Power Budgeting
611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
613 return pci_find_next_ext_capability(dev, 0, cap);
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
618 * pci_get_dsn - Read and return the 8-byte Device Serial Number
619 * @dev: PCI device to query
621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
624 * Returns the DSN, or zero if the capability does not exist.
626 u64 pci_get_dsn(struct pci_dev *dev)
632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
637 * The Device Serial Number is two dwords offset 4 bytes from the
638 * capability position. The specification says that the first dword is
639 * the lower half, and the second dword is the upper half.
642 pci_read_config_dword(dev, pos, &dword);
644 pci_read_config_dword(dev, pos + 4, &dword);
645 dsn |= ((u64)dword) << 32;
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
653 int rc, ttl = PCI_FIND_CAP_TTL;
656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 mask = HT_3BIT_CAP_MASK;
659 mask = HT_5BIT_CAP_MASK;
661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 PCI_CAP_ID_HT, &ttl);
664 rc = pci_read_config_byte(dev, pos + 3, &cap);
665 if (rc != PCIBIOS_SUCCESSFUL)
668 if ((cap & mask) == ht_cap)
671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 pos + PCI_CAP_LIST_NEXT,
673 PCI_CAP_ID_HT, &ttl);
680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681 * @dev: PCI device to query
682 * @pos: Position from which to continue searching
683 * @ht_cap: HyperTransport capability code
685 * To be used in conjunction with pci_find_ht_capability() to search for
686 * all capabilities matching @ht_cap. @pos should always be a value returned
687 * from pci_find_ht_capability().
689 * NB. To be 100% safe against broken PCI devices, the caller should take
690 * steps to avoid an infinite loop.
692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
699 * pci_find_ht_capability - query a device's HyperTransport capabilities
700 * @dev: PCI device to query
701 * @ht_cap: HyperTransport capability code
703 * Tell if a device supports a given HyperTransport capability.
704 * Returns an address within the device's PCI configuration space
705 * or 0 in case the device does not support the request capability.
706 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707 * which has a HyperTransport capability matching @ht_cap.
709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
722 * pci_find_vsec_capability - Find a vendor-specific extended capability
723 * @dev: PCI device to query
724 * @vendor: Vendor ID for which capability is defined
725 * @cap: Vendor-specific capability ID
727 * If @dev has Vendor ID @vendor, search for a VSEC capability with
728 * VSEC ID @cap. If found, return the capability offset in
729 * config space; otherwise return 0.
731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
736 if (vendor != dev->vendor)
739 while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 PCI_EXT_CAP_ID_VNDR))) {
741 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
742 &header) == PCIBIOS_SUCCESSFUL &&
743 PCI_VNDR_HEADER_ID(header) == cap)
749 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752 * pci_find_dvsec_capability - Find DVSEC for vendor
753 * @dev: PCI device to query
754 * @vendor: Vendor ID to match for the DVSEC
755 * @dvsec: Designated Vendor-specific capability ID
757 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
758 * offset in config space; otherwise return 0.
760 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
771 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
772 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
773 if (vendor == v && dvsec == id)
776 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
781 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784 * pci_find_parent_resource - return resource region of parent bus of given
786 * @dev: PCI device structure contains resources to be searched
787 * @res: child resource record for which parent is sought
789 * For given resource region of given device, return the resource region of
790 * parent bus the given region is contained in.
792 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
793 struct resource *res)
795 const struct pci_bus *bus = dev->bus;
798 pci_bus_for_each_resource(bus, r) {
801 if (resource_contains(r, res)) {
804 * If the window is prefetchable but the BAR is
805 * not, the allocator made a mistake.
807 if (r->flags & IORESOURCE_PREFETCH &&
808 !(res->flags & IORESOURCE_PREFETCH))
812 * If we're below a transparent bridge, there may
813 * be both a positively-decoded aperture and a
814 * subtractively-decoded region that contain the BAR.
815 * We want the positively-decoded one, so this depends
816 * on pci_bus_for_each_resource() giving us those
824 EXPORT_SYMBOL(pci_find_parent_resource);
827 * pci_find_resource - Return matching PCI device resource
828 * @dev: PCI device to query
829 * @res: Resource to look for
831 * Goes over standard PCI resources (BARs) and checks if the given resource
832 * is partially or fully contained in any of them. In that case the
833 * matching resource is returned, %NULL otherwise.
835 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
840 struct resource *r = &dev->resource[i];
842 if (r->start && resource_contains(r, res))
848 EXPORT_SYMBOL(pci_find_resource);
851 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
852 * @dev: the PCI device to operate on
853 * @pos: config space offset of status word
854 * @mask: mask of bit(s) to care about in status word
856 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
858 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
862 /* Wait for Transaction Pending bit clean */
863 for (i = 0; i < 4; i++) {
866 msleep((1 << (i - 1)) * 100);
868 pci_read_config_word(dev, pos, &status);
869 if (!(status & mask))
876 static int pci_acs_enable;
879 * pci_request_acs - ask for ACS to be enabled if supported
881 void pci_request_acs(void)
886 static const char *disable_acs_redir_param;
889 * pci_disable_acs_redir - disable ACS redirect capabilities
890 * @dev: the PCI device
892 * For only devices specified in the disable_acs_redir parameter.
894 static void pci_disable_acs_redir(struct pci_dev *dev)
901 if (!disable_acs_redir_param)
904 p = disable_acs_redir_param;
906 ret = pci_dev_str_match(dev, p, &p);
908 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
909 disable_acs_redir_param);
912 } else if (ret == 1) {
917 if (*p != ';' && *p != ',') {
918 /* End of param or invalid format */
927 if (!pci_dev_specific_disable_acs_redir(dev))
932 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
936 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
938 /* P2P Request & Completion Redirect */
939 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
941 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
943 pci_info(dev, "disabled ACS redirect\n");
947 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
948 * @dev: the PCI device
950 static void pci_std_enable_acs(struct pci_dev *dev)
960 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
961 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
963 /* Source Validation */
964 ctrl |= (cap & PCI_ACS_SV);
966 /* P2P Request Redirect */
967 ctrl |= (cap & PCI_ACS_RR);
969 /* P2P Completion Redirect */
970 ctrl |= (cap & PCI_ACS_CR);
972 /* Upstream Forwarding */
973 ctrl |= (cap & PCI_ACS_UF);
975 /* Enable Translation Blocking for external devices and noats */
976 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
977 ctrl |= (cap & PCI_ACS_TB);
979 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
983 * pci_enable_acs - enable ACS if hardware support it
984 * @dev: the PCI device
986 static void pci_enable_acs(struct pci_dev *dev)
989 goto disable_acs_redir;
991 if (!pci_dev_specific_enable_acs(dev))
992 goto disable_acs_redir;
994 pci_std_enable_acs(dev);
998 * Note: pci_disable_acs_redir() must be called even if ACS was not
999 * enabled by the kernel because it may have been enabled by
1000 * platform firmware. So if we are told to disable it, we should
1001 * always disable it after setting the kernel's default
1004 pci_disable_acs_redir(dev);
1008 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1009 * @dev: PCI device to have its BARs restored
1011 * Restore the BAR values for a given device, so as to make it
1012 * accessible by its driver.
1014 static void pci_restore_bars(struct pci_dev *dev)
1018 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1019 pci_update_resource(dev, i);
1022 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1024 if (pci_use_mid_pm())
1027 return acpi_pci_power_manageable(dev);
1030 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1033 if (pci_use_mid_pm())
1034 return mid_pci_set_power_state(dev, t);
1036 return acpi_pci_set_power_state(dev, t);
1039 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1041 if (pci_use_mid_pm())
1042 return mid_pci_get_power_state(dev);
1044 return acpi_pci_get_power_state(dev);
1047 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1049 if (!pci_use_mid_pm())
1050 acpi_pci_refresh_power_state(dev);
1053 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1055 if (pci_use_mid_pm())
1056 return PCI_POWER_ERROR;
1058 return acpi_pci_choose_state(dev);
1061 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1063 if (pci_use_mid_pm())
1064 return PCI_POWER_ERROR;
1066 return acpi_pci_wakeup(dev, enable);
1069 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1071 if (pci_use_mid_pm())
1074 return acpi_pci_need_resume(dev);
1077 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1079 if (pci_use_mid_pm())
1082 return acpi_pci_bridge_d3(dev);
1086 * pci_update_current_state - Read power state of given device and cache it
1087 * @dev: PCI device to handle.
1088 * @state: State to cache in case the device doesn't have the PM capability
1090 * The power state is read from the PMCSR register, which however is
1091 * inaccessible in D3cold. The platform firmware is therefore queried first
1092 * to detect accessibility of the register. In case the platform firmware
1093 * reports an incorrect state or the device isn't power manageable by the
1094 * platform at all, we try to detect D3cold by testing accessibility of the
1095 * vendor ID in config space.
1097 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1099 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1100 dev->current_state = PCI_D3cold;
1101 } else if (dev->pm_cap) {
1104 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1105 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1106 dev->current_state = PCI_D3cold;
1109 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1111 dev->current_state = state;
1116 * pci_refresh_power_state - Refresh the given device's power state data
1117 * @dev: Target PCI device.
1119 * Ask the platform to refresh the devices power state information and invoke
1120 * pci_update_current_state() to update its current PCI power state.
1122 void pci_refresh_power_state(struct pci_dev *dev)
1124 platform_pci_refresh_power_state(dev);
1125 pci_update_current_state(dev, dev->current_state);
1129 * pci_platform_power_transition - Use platform to change device power state
1130 * @dev: PCI device to handle.
1131 * @state: State to put the device into.
1133 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1137 error = platform_pci_set_power_state(dev, state);
1139 pci_update_current_state(dev, state);
1140 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1141 dev->current_state = PCI_D0;
1145 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1147 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1149 pm_request_resume(&pci_dev->dev);
1154 * pci_resume_bus - Walk given bus and runtime resume devices on it
1155 * @bus: Top bus of the subtree to walk.
1157 void pci_resume_bus(struct pci_bus *bus)
1160 pci_walk_bus(bus, pci_resume_one, NULL);
1163 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1166 bool retrain = false;
1167 struct pci_dev *bridge;
1169 if (pci_is_pcie(dev)) {
1170 bridge = pci_upstream_bridge(dev);
1176 * After reset, the device should not silently discard config
1177 * requests, but it may still indicate that it needs more time by
1178 * responding to them with CRS completions. The Root Port will
1179 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1180 * the read (except when CRS SV is enabled and the read was for the
1181 * Vendor ID; in that case it synthesizes 0x0001 data).
1183 * Wait for the device to return a non-CRS completion. Read the
1184 * Command register instead of Vendor ID so we don't have to
1185 * contend with the CRS SV value.
1190 pci_read_config_dword(dev, PCI_COMMAND, &id);
1191 if (!PCI_POSSIBLE_ERROR(id))
1194 if (delay > timeout) {
1195 pci_warn(dev, "not ready %dms after %s; giving up\n",
1196 delay - 1, reset_type);
1200 if (delay > PCI_RESET_WAIT) {
1203 if (pcie_failed_link_retrain(bridge)) {
1208 pci_info(dev, "not ready %dms after %s; waiting\n",
1209 delay - 1, reset_type);
1216 if (delay > PCI_RESET_WAIT)
1217 pci_info(dev, "ready %dms after %s\n", delay - 1,
1224 * pci_power_up - Put the given device into D0
1225 * @dev: PCI device to power up
1227 * On success, return 0 or 1, depending on whether or not it is necessary to
1228 * restore the device's BARs subsequently (1 is returned in that case).
1230 * On failure, return a negative error code. Always return failure if @dev
1231 * lacks a Power Management Capability, even if the platform was able to
1232 * put the device in D0 via non-PCI means.
1234 int pci_power_up(struct pci_dev *dev)
1240 platform_pci_set_power_state(dev, PCI_D0);
1243 state = platform_pci_get_power_state(dev);
1244 if (state == PCI_UNKNOWN)
1245 dev->current_state = PCI_D0;
1247 dev->current_state = state;
1252 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1253 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1254 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1255 pci_power_name(dev->current_state));
1256 dev->current_state = PCI_D3cold;
1260 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1262 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1263 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1265 if (state == PCI_D0)
1269 * Force the entire word to 0. This doesn't affect PME_Status, disables
1270 * PME_En, and sets PowerState to 0.
1272 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1274 /* Mandatory transition delays; see PCI PM 1.2. */
1275 if (state == PCI_D3hot)
1276 pci_dev_d3_sleep(dev);
1277 else if (state == PCI_D2)
1278 udelay(PCI_PM_D2_DELAY);
1281 dev->current_state = PCI_D0;
1289 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1290 * @dev: PCI device to power up
1292 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1293 * to confirm the state change, restore its BARs if they might be lost and
1294 * reconfigure ASPM in accordance with the new power state.
1296 * If pci_restore_state() is going to be called right after a power state change
1297 * to D0, it is more efficient to use pci_power_up() directly instead of this
1300 static int pci_set_full_power_state(struct pci_dev *dev)
1305 ret = pci_power_up(dev);
1307 if (dev->current_state == PCI_D0)
1313 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1314 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1315 if (dev->current_state != PCI_D0) {
1316 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1317 pci_power_name(dev->current_state));
1318 } else if (ret > 0) {
1320 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1321 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1322 * from D3hot to D0 _may_ perform an internal reset, thereby
1323 * going to "D0 Uninitialized" rather than "D0 Initialized".
1324 * For example, at least some versions of the 3c905B and the
1325 * 3c556B exhibit this behaviour.
1327 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1328 * devices in a D3hot state at boot. Consequently, we need to
1329 * restore at least the BARs so that the device will be
1330 * accessible to its driver.
1332 pci_restore_bars(dev);
1339 * __pci_dev_set_current_state - Set current state of a PCI device
1340 * @dev: Device to handle
1341 * @data: pointer to state to be set
1343 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1345 pci_power_t state = *(pci_power_t *)data;
1347 dev->current_state = state;
1352 * pci_bus_set_current_state - Walk given bus and set current state of devices
1353 * @bus: Top bus of the subtree to walk.
1354 * @state: state to be set
1356 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1359 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1363 * pci_set_low_power_state - Put a PCI device into a low-power state.
1364 * @dev: PCI device to handle.
1365 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1367 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1370 * -EINVAL if the requested state is invalid.
1371 * -EIO if device does not support PCI PM or its PM capabilities register has a
1372 * wrong version, or device doesn't support the requested state.
1373 * 0 if device already is in the requested state.
1374 * 0 if device's power state has been successfully changed.
1376 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1384 * Validate transition: We can enter D0 from any state, but if
1385 * we're already in a low-power state, we can only go deeper. E.g.,
1386 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1387 * we'd have to go from D3 to D0, then to D1.
1389 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1390 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1391 pci_power_name(dev->current_state),
1392 pci_power_name(state));
1396 /* Check if this device supports the desired state */
1397 if ((state == PCI_D1 && !dev->d1_support)
1398 || (state == PCI_D2 && !dev->d2_support))
1401 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1402 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1403 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1404 pci_power_name(dev->current_state),
1405 pci_power_name(state));
1406 dev->current_state = PCI_D3cold;
1410 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1413 /* Enter specified state */
1414 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1416 /* Mandatory power management transition delays; see PCI PM 1.2. */
1417 if (state == PCI_D3hot)
1418 pci_dev_d3_sleep(dev);
1419 else if (state == PCI_D2)
1420 udelay(PCI_PM_D2_DELAY);
1422 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1423 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1424 if (dev->current_state != state)
1425 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1426 pci_power_name(dev->current_state),
1427 pci_power_name(state));
1433 * pci_set_power_state - Set the power state of a PCI device
1434 * @dev: PCI device to handle.
1435 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1437 * Transition a device to a new power state, using the platform firmware and/or
1438 * the device's PCI PM registers.
1441 * -EINVAL if the requested state is invalid.
1442 * -EIO if device does not support PCI PM or its PM capabilities register has a
1443 * wrong version, or device doesn't support the requested state.
1444 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1445 * 0 if device already is in the requested state.
1446 * 0 if the transition is to D3 but D3 is not supported.
1447 * 0 if device's power state has been successfully changed.
1449 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1453 /* Bound the state we're entering */
1454 if (state > PCI_D3cold)
1456 else if (state < PCI_D0)
1458 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1461 * If the device or the parent bridge do not support PCI
1462 * PM, ignore the request if we're doing anything other
1463 * than putting it into D0 (which would only happen on
1468 /* Check if we're already there */
1469 if (dev->current_state == state)
1472 if (state == PCI_D0)
1473 return pci_set_full_power_state(dev);
1476 * This device is quirked not to be put into D3, so don't put it in
1479 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1482 if (state == PCI_D3cold) {
1484 * To put the device in D3cold, put it into D3hot in the native
1485 * way, then put it into D3cold using platform ops.
1487 error = pci_set_low_power_state(dev, PCI_D3hot);
1489 if (pci_platform_power_transition(dev, PCI_D3cold))
1492 /* Powering off a bridge may power off the whole hierarchy */
1493 if (dev->current_state == PCI_D3cold)
1494 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1496 error = pci_set_low_power_state(dev, state);
1498 if (pci_platform_power_transition(dev, state))
1504 EXPORT_SYMBOL(pci_set_power_state);
1506 #define PCI_EXP_SAVE_REGS 7
1508 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1509 u16 cap, bool extended)
1511 struct pci_cap_saved_state *tmp;
1513 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1514 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1520 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1522 return _pci_find_saved_cap(dev, cap, false);
1525 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1527 return _pci_find_saved_cap(dev, cap, true);
1530 static int pci_save_pcie_state(struct pci_dev *dev)
1533 struct pci_cap_saved_state *save_state;
1536 if (!pci_is_pcie(dev))
1539 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1541 pci_err(dev, "buffer not found in %s\n", __func__);
1545 cap = (u16 *)&save_state->cap.data[0];
1546 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1547 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1548 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1549 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1550 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1551 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1552 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1557 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1559 #ifdef CONFIG_PCIEASPM
1560 struct pci_dev *bridge;
1563 bridge = pci_upstream_bridge(dev);
1564 if (bridge && bridge->ltr_path) {
1565 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1566 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1567 pci_dbg(bridge, "re-enabling LTR\n");
1568 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1569 PCI_EXP_DEVCTL2_LTR_EN);
1575 static void pci_restore_pcie_state(struct pci_dev *dev)
1578 struct pci_cap_saved_state *save_state;
1581 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1586 * Downstream ports reset the LTR enable bit when link goes down.
1587 * Check and re-configure the bit here before restoring device.
1588 * PCIe r5.0, sec 7.5.3.16.
1590 pci_bridge_reconfigure_ltr(dev);
1592 cap = (u16 *)&save_state->cap.data[0];
1593 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1594 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1595 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1596 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1597 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1598 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1599 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1602 static int pci_save_pcix_state(struct pci_dev *dev)
1605 struct pci_cap_saved_state *save_state;
1607 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1611 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1613 pci_err(dev, "buffer not found in %s\n", __func__);
1617 pci_read_config_word(dev, pos + PCI_X_CMD,
1618 (u16 *)save_state->cap.data);
1623 static void pci_restore_pcix_state(struct pci_dev *dev)
1626 struct pci_cap_saved_state *save_state;
1629 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1630 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1631 if (!save_state || !pos)
1633 cap = (u16 *)&save_state->cap.data[0];
1635 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1638 static void pci_save_ltr_state(struct pci_dev *dev)
1641 struct pci_cap_saved_state *save_state;
1644 if (!pci_is_pcie(dev))
1647 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1651 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1653 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1657 /* Some broken devices only support dword access to LTR */
1658 cap = &save_state->cap.data[0];
1659 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1662 static void pci_restore_ltr_state(struct pci_dev *dev)
1664 struct pci_cap_saved_state *save_state;
1668 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1669 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1670 if (!save_state || !ltr)
1673 /* Some broken devices only support dword access to LTR */
1674 cap = &save_state->cap.data[0];
1675 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1679 * pci_save_state - save the PCI configuration space of a device before
1681 * @dev: PCI device that we're dealing with
1683 int pci_save_state(struct pci_dev *dev)
1686 /* XXX: 100% dword access ok here? */
1687 for (i = 0; i < 16; i++) {
1688 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1689 pci_dbg(dev, "save config %#04x: %#010x\n",
1690 i * 4, dev->saved_config_space[i]);
1692 dev->state_saved = true;
1694 i = pci_save_pcie_state(dev);
1698 i = pci_save_pcix_state(dev);
1702 pci_save_ltr_state(dev);
1703 pci_save_dpc_state(dev);
1704 pci_save_aer_state(dev);
1705 pci_save_ptm_state(dev);
1706 return pci_save_vc_state(dev);
1708 EXPORT_SYMBOL(pci_save_state);
1710 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1711 u32 saved_val, int retry, bool force)
1715 pci_read_config_dword(pdev, offset, &val);
1716 if (!force && val == saved_val)
1720 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1721 offset, val, saved_val);
1722 pci_write_config_dword(pdev, offset, saved_val);
1726 pci_read_config_dword(pdev, offset, &val);
1727 if (val == saved_val)
1734 static void pci_restore_config_space_range(struct pci_dev *pdev,
1735 int start, int end, int retry,
1740 for (index = end; index >= start; index--)
1741 pci_restore_config_dword(pdev, 4 * index,
1742 pdev->saved_config_space[index],
1746 static void pci_restore_config_space(struct pci_dev *pdev)
1748 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1749 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1750 /* Restore BARs before the command register. */
1751 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1752 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1753 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1754 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1757 * Force rewriting of prefetch registers to avoid S3 resume
1758 * issues on Intel PCI bridges that occur when these
1759 * registers are not explicitly written.
1761 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1762 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1764 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1768 static void pci_restore_rebar_state(struct pci_dev *pdev)
1770 unsigned int pos, nbars, i;
1773 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1777 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1778 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1779 PCI_REBAR_CTRL_NBAR_SHIFT;
1781 for (i = 0; i < nbars; i++, pos += 8) {
1782 struct resource *res;
1785 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1786 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1787 res = pdev->resource + bar_idx;
1788 size = pci_rebar_bytes_to_size(resource_size(res));
1789 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1790 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1791 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1796 * pci_restore_state - Restore the saved state of a PCI device
1797 * @dev: PCI device that we're dealing with
1799 void pci_restore_state(struct pci_dev *dev)
1801 if (!dev->state_saved)
1805 * Restore max latencies (in the LTR capability) before enabling
1806 * LTR itself (in the PCIe capability).
1808 pci_restore_ltr_state(dev);
1810 pci_restore_pcie_state(dev);
1811 pci_restore_pasid_state(dev);
1812 pci_restore_pri_state(dev);
1813 pci_restore_ats_state(dev);
1814 pci_restore_vc_state(dev);
1815 pci_restore_rebar_state(dev);
1816 pci_restore_dpc_state(dev);
1817 pci_restore_ptm_state(dev);
1819 pci_aer_clear_status(dev);
1820 pci_restore_aer_state(dev);
1822 pci_restore_config_space(dev);
1824 pci_restore_pcix_state(dev);
1825 pci_restore_msi_state(dev);
1827 /* Restore ACS and IOV configuration state */
1828 pci_enable_acs(dev);
1829 pci_restore_iov_state(dev);
1831 dev->state_saved = false;
1833 EXPORT_SYMBOL(pci_restore_state);
1835 struct pci_saved_state {
1836 u32 config_space[16];
1837 struct pci_cap_saved_data cap[];
1841 * pci_store_saved_state - Allocate and return an opaque struct containing
1842 * the device saved state.
1843 * @dev: PCI device that we're dealing with
1845 * Return NULL if no state or error.
1847 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1849 struct pci_saved_state *state;
1850 struct pci_cap_saved_state *tmp;
1851 struct pci_cap_saved_data *cap;
1854 if (!dev->state_saved)
1857 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1859 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1860 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1862 state = kzalloc(size, GFP_KERNEL);
1866 memcpy(state->config_space, dev->saved_config_space,
1867 sizeof(state->config_space));
1870 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1871 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1872 memcpy(cap, &tmp->cap, len);
1873 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1875 /* Empty cap_save terminates list */
1879 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1882 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1883 * @dev: PCI device that we're dealing with
1884 * @state: Saved state returned from pci_store_saved_state()
1886 int pci_load_saved_state(struct pci_dev *dev,
1887 struct pci_saved_state *state)
1889 struct pci_cap_saved_data *cap;
1891 dev->state_saved = false;
1896 memcpy(dev->saved_config_space, state->config_space,
1897 sizeof(state->config_space));
1901 struct pci_cap_saved_state *tmp;
1903 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1904 if (!tmp || tmp->cap.size != cap->size)
1907 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1908 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1909 sizeof(struct pci_cap_saved_data) + cap->size);
1912 dev->state_saved = true;
1915 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1918 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1919 * and free the memory allocated for it.
1920 * @dev: PCI device that we're dealing with
1921 * @state: Pointer to saved state returned from pci_store_saved_state()
1923 int pci_load_and_free_saved_state(struct pci_dev *dev,
1924 struct pci_saved_state **state)
1926 int ret = pci_load_saved_state(dev, *state);
1931 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1933 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1935 return pci_enable_resources(dev, bars);
1938 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1941 struct pci_dev *bridge;
1945 err = pci_set_power_state(dev, PCI_D0);
1946 if (err < 0 && err != -EIO)
1949 bridge = pci_upstream_bridge(dev);
1951 pcie_aspm_powersave_config_link(bridge);
1953 err = pcibios_enable_device(dev, bars);
1956 pci_fixup_device(pci_fixup_enable, dev);
1958 if (dev->msi_enabled || dev->msix_enabled)
1961 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1963 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1964 if (cmd & PCI_COMMAND_INTX_DISABLE)
1965 pci_write_config_word(dev, PCI_COMMAND,
1966 cmd & ~PCI_COMMAND_INTX_DISABLE);
1973 * pci_reenable_device - Resume abandoned device
1974 * @dev: PCI device to be resumed
1976 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1977 * to be called by normal code, write proper resume handler and use it instead.
1979 int pci_reenable_device(struct pci_dev *dev)
1981 if (pci_is_enabled(dev))
1982 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1985 EXPORT_SYMBOL(pci_reenable_device);
1987 static void pci_enable_bridge(struct pci_dev *dev)
1989 struct pci_dev *bridge;
1992 bridge = pci_upstream_bridge(dev);
1994 pci_enable_bridge(bridge);
1996 if (pci_is_enabled(dev)) {
1997 if (!dev->is_busmaster)
1998 pci_set_master(dev);
2002 retval = pci_enable_device(dev);
2004 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2006 pci_set_master(dev);
2009 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2011 struct pci_dev *bridge;
2016 * Power state could be unknown at this point, either due to a fresh
2017 * boot or a device removal call. So get the current power state
2018 * so that things like MSI message writing will behave as expected
2019 * (e.g. if the device really is in D0 at enable time).
2021 pci_update_current_state(dev, dev->current_state);
2023 if (atomic_inc_return(&dev->enable_cnt) > 1)
2024 return 0; /* already enabled */
2026 bridge = pci_upstream_bridge(dev);
2028 pci_enable_bridge(bridge);
2030 /* only skip sriov related */
2031 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2032 if (dev->resource[i].flags & flags)
2034 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2035 if (dev->resource[i].flags & flags)
2038 err = do_pci_enable_device(dev, bars);
2040 atomic_dec(&dev->enable_cnt);
2045 * pci_enable_device_io - Initialize a device for use with IO space
2046 * @dev: PCI device to be initialized
2048 * Initialize device before it's used by a driver. Ask low-level code
2049 * to enable I/O resources. Wake up the device if it was suspended.
2050 * Beware, this function can fail.
2052 int pci_enable_device_io(struct pci_dev *dev)
2054 return pci_enable_device_flags(dev, IORESOURCE_IO);
2056 EXPORT_SYMBOL(pci_enable_device_io);
2059 * pci_enable_device_mem - Initialize a device for use with Memory space
2060 * @dev: PCI device to be initialized
2062 * Initialize device before it's used by a driver. Ask low-level code
2063 * to enable Memory resources. Wake up the device if it was suspended.
2064 * Beware, this function can fail.
2066 int pci_enable_device_mem(struct pci_dev *dev)
2068 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2070 EXPORT_SYMBOL(pci_enable_device_mem);
2073 * pci_enable_device - Initialize device before it's used by a driver.
2074 * @dev: PCI device to be initialized
2076 * Initialize device before it's used by a driver. Ask low-level code
2077 * to enable I/O and memory. Wake up the device if it was suspended.
2078 * Beware, this function can fail.
2080 * Note we don't actually enable the device many times if we call
2081 * this function repeatedly (we just increment the count).
2083 int pci_enable_device(struct pci_dev *dev)
2085 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2087 EXPORT_SYMBOL(pci_enable_device);
2090 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2091 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2092 * there's no need to track it separately. pci_devres is initialized
2093 * when a device is enabled using managed PCI device enable interface.
2096 unsigned int enabled:1;
2097 unsigned int pinned:1;
2098 unsigned int orig_intx:1;
2099 unsigned int restore_intx:1;
2104 static void pcim_release(struct device *gendev, void *res)
2106 struct pci_dev *dev = to_pci_dev(gendev);
2107 struct pci_devres *this = res;
2110 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2111 if (this->region_mask & (1 << i))
2112 pci_release_region(dev, i);
2117 if (this->restore_intx)
2118 pci_intx(dev, this->orig_intx);
2120 if (this->enabled && !this->pinned)
2121 pci_disable_device(dev);
2124 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2126 struct pci_devres *dr, *new_dr;
2128 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2132 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2135 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2138 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2140 if (pci_is_managed(pdev))
2141 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2146 * pcim_enable_device - Managed pci_enable_device()
2147 * @pdev: PCI device to be initialized
2149 * Managed pci_enable_device().
2151 int pcim_enable_device(struct pci_dev *pdev)
2153 struct pci_devres *dr;
2156 dr = get_pci_dr(pdev);
2162 rc = pci_enable_device(pdev);
2164 pdev->is_managed = 1;
2169 EXPORT_SYMBOL(pcim_enable_device);
2172 * pcim_pin_device - Pin managed PCI device
2173 * @pdev: PCI device to pin
2175 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2176 * driver detach. @pdev must have been enabled with
2177 * pcim_enable_device().
2179 void pcim_pin_device(struct pci_dev *pdev)
2181 struct pci_devres *dr;
2183 dr = find_pci_dr(pdev);
2184 WARN_ON(!dr || !dr->enabled);
2188 EXPORT_SYMBOL(pcim_pin_device);
2191 * pcibios_device_add - provide arch specific hooks when adding device dev
2192 * @dev: the PCI device being added
2194 * Permits the platform to provide architecture specific functionality when
2195 * devices are added. This is the default implementation. Architecture
2196 * implementations can override this.
2198 int __weak pcibios_device_add(struct pci_dev *dev)
2204 * pcibios_release_device - provide arch specific hooks when releasing
2206 * @dev: the PCI device being released
2208 * Permits the platform to provide architecture specific functionality when
2209 * devices are released. This is the default implementation. Architecture
2210 * implementations can override this.
2212 void __weak pcibios_release_device(struct pci_dev *dev) {}
2215 * pcibios_disable_device - disable arch specific PCI resources for device dev
2216 * @dev: the PCI device to disable
2218 * Disables architecture specific PCI resources for the device. This
2219 * is the default implementation. Architecture implementations can
2222 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2225 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2226 * @irq: ISA IRQ to penalize
2227 * @active: IRQ active or not
2229 * Permits the platform to provide architecture-specific functionality when
2230 * penalizing ISA IRQs. This is the default implementation. Architecture
2231 * implementations can override this.
2233 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2235 static void do_pci_disable_device(struct pci_dev *dev)
2239 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2240 if (pci_command & PCI_COMMAND_MASTER) {
2241 pci_command &= ~PCI_COMMAND_MASTER;
2242 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2245 pcibios_disable_device(dev);
2249 * pci_disable_enabled_device - Disable device without updating enable_cnt
2250 * @dev: PCI device to disable
2252 * NOTE: This function is a backend of PCI power management routines and is
2253 * not supposed to be called drivers.
2255 void pci_disable_enabled_device(struct pci_dev *dev)
2257 if (pci_is_enabled(dev))
2258 do_pci_disable_device(dev);
2262 * pci_disable_device - Disable PCI device after use
2263 * @dev: PCI device to be disabled
2265 * Signal to the system that the PCI device is not in use by the system
2266 * anymore. This only involves disabling PCI bus-mastering, if active.
2268 * Note we don't actually disable the device until all callers of
2269 * pci_enable_device() have called pci_disable_device().
2271 void pci_disable_device(struct pci_dev *dev)
2273 struct pci_devres *dr;
2275 dr = find_pci_dr(dev);
2279 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2280 "disabling already-disabled device");
2282 if (atomic_dec_return(&dev->enable_cnt) != 0)
2285 do_pci_disable_device(dev);
2287 dev->is_busmaster = 0;
2289 EXPORT_SYMBOL(pci_disable_device);
2292 * pcibios_set_pcie_reset_state - set reset state for device dev
2293 * @dev: the PCIe device reset
2294 * @state: Reset state to enter into
2296 * Set the PCIe reset state for the device. This is the default
2297 * implementation. Architecture implementations can override this.
2299 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2300 enum pcie_reset_state state)
2306 * pci_set_pcie_reset_state - set reset state for device dev
2307 * @dev: the PCIe device reset
2308 * @state: Reset state to enter into
2310 * Sets the PCI reset state for the device.
2312 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2314 return pcibios_set_pcie_reset_state(dev, state);
2316 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2318 #ifdef CONFIG_PCIEAER
2319 void pcie_clear_device_status(struct pci_dev *dev)
2323 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2324 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2329 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2330 * @dev: PCIe root port or event collector.
2332 void pcie_clear_root_pme_status(struct pci_dev *dev)
2334 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2338 * pci_check_pme_status - Check if given device has generated PME.
2339 * @dev: Device to check.
2341 * Check the PME status of the device and if set, clear it and clear PME enable
2342 * (if set). Return 'true' if PME status and PME enable were both set or
2343 * 'false' otherwise.
2345 bool pci_check_pme_status(struct pci_dev *dev)
2354 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2355 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2356 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2359 /* Clear PME status. */
2360 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2361 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2362 /* Disable PME to avoid interrupt flood. */
2363 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2367 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2373 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2374 * @dev: Device to handle.
2375 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2377 * Check if @dev has generated PME and queue a resume request for it in that
2380 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2382 if (pme_poll_reset && dev->pme_poll)
2383 dev->pme_poll = false;
2385 if (pci_check_pme_status(dev)) {
2386 pci_wakeup_event(dev);
2387 pm_request_resume(&dev->dev);
2393 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2394 * @bus: Top bus of the subtree to walk.
2396 void pci_pme_wakeup_bus(struct pci_bus *bus)
2399 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2404 * pci_pme_capable - check the capability of PCI device to generate PME#
2405 * @dev: PCI device to handle.
2406 * @state: PCI state from which device will issue PME#.
2408 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2413 return !!(dev->pme_support & (1 << state));
2415 EXPORT_SYMBOL(pci_pme_capable);
2417 static void pci_pme_list_scan(struct work_struct *work)
2419 struct pci_pme_device *pme_dev, *n;
2421 mutex_lock(&pci_pme_list_mutex);
2422 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2423 struct pci_dev *pdev = pme_dev->dev;
2425 if (pdev->pme_poll) {
2426 struct pci_dev *bridge = pdev->bus->self;
2427 struct device *dev = &pdev->dev;
2431 * If bridge is in low power state, the
2432 * configuration space of subordinate devices
2433 * may be not accessible
2435 if (bridge && bridge->current_state != PCI_D0)
2439 * If the device is in a low power state it
2440 * should not be polled either.
2442 pm_status = pm_runtime_get_if_active(dev, true);
2446 if (pdev->current_state != PCI_D3cold)
2447 pci_pme_wakeup(pdev, NULL);
2450 pm_runtime_put(dev);
2452 list_del(&pme_dev->list);
2456 if (!list_empty(&pci_pme_list))
2457 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2458 msecs_to_jiffies(PME_TIMEOUT));
2459 mutex_unlock(&pci_pme_list_mutex);
2462 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2466 if (!dev->pme_support)
2469 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2470 /* Clear PME_Status by writing 1 to it and enable PME# */
2471 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2473 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2475 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2479 * pci_pme_restore - Restore PME configuration after config space restore.
2480 * @dev: PCI device to update.
2482 void pci_pme_restore(struct pci_dev *dev)
2486 if (!dev->pme_support)
2489 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2490 if (dev->wakeup_prepared) {
2491 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2492 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2494 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2495 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2497 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2501 * pci_pme_active - enable or disable PCI device's PME# function
2502 * @dev: PCI device to handle.
2503 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2505 * The caller must verify that the device is capable of generating PME# before
2506 * calling this function with @enable equal to 'true'.
2508 void pci_pme_active(struct pci_dev *dev, bool enable)
2510 __pci_pme_active(dev, enable);
2513 * PCI (as opposed to PCIe) PME requires that the device have
2514 * its PME# line hooked up correctly. Not all hardware vendors
2515 * do this, so the PME never gets delivered and the device
2516 * remains asleep. The easiest way around this is to
2517 * periodically walk the list of suspended devices and check
2518 * whether any have their PME flag set. The assumption is that
2519 * we'll wake up often enough anyway that this won't be a huge
2520 * hit, and the power savings from the devices will still be a
2523 * Although PCIe uses in-band PME message instead of PME# line
2524 * to report PME, PME does not work for some PCIe devices in
2525 * reality. For example, there are devices that set their PME
2526 * status bits, but don't really bother to send a PME message;
2527 * there are PCI Express Root Ports that don't bother to
2528 * trigger interrupts when they receive PME messages from the
2529 * devices below. So PME poll is used for PCIe devices too.
2532 if (dev->pme_poll) {
2533 struct pci_pme_device *pme_dev;
2535 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2538 pci_warn(dev, "can't enable PME#\n");
2542 mutex_lock(&pci_pme_list_mutex);
2543 list_add(&pme_dev->list, &pci_pme_list);
2544 if (list_is_singular(&pci_pme_list))
2545 queue_delayed_work(system_freezable_wq,
2547 msecs_to_jiffies(PME_TIMEOUT));
2548 mutex_unlock(&pci_pme_list_mutex);
2550 mutex_lock(&pci_pme_list_mutex);
2551 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2552 if (pme_dev->dev == dev) {
2553 list_del(&pme_dev->list);
2558 mutex_unlock(&pci_pme_list_mutex);
2562 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2564 EXPORT_SYMBOL(pci_pme_active);
2567 * __pci_enable_wake - enable PCI device as wakeup event source
2568 * @dev: PCI device affected
2569 * @state: PCI state from which device will issue wakeup events
2570 * @enable: True to enable event generation; false to disable
2572 * This enables the device as a wakeup event source, or disables it.
2573 * When such events involves platform-specific hooks, those hooks are
2574 * called automatically by this routine.
2576 * Devices with legacy power management (no standard PCI PM capabilities)
2577 * always require such platform hooks.
2580 * 0 is returned on success
2581 * -EINVAL is returned if device is not supposed to wake up the system
2582 * Error code depending on the platform is returned if both the platform and
2583 * the native mechanism fail to enable the generation of wake-up events
2585 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2590 * Bridges that are not power-manageable directly only signal
2591 * wakeup on behalf of subordinate devices which is set up
2592 * elsewhere, so skip them. However, bridges that are
2593 * power-manageable may signal wakeup for themselves (for example,
2594 * on a hotplug event) and they need to be covered here.
2596 if (!pci_power_manageable(dev))
2599 /* Don't do the same thing twice in a row for one device. */
2600 if (!!enable == !!dev->wakeup_prepared)
2604 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2605 * Anderson we should be doing PME# wake enable followed by ACPI wake
2606 * enable. To disable wake-up we call the platform first, for symmetry.
2613 * Enable PME signaling if the device can signal PME from
2614 * D3cold regardless of whether or not it can signal PME from
2615 * the current target state, because that will allow it to
2616 * signal PME when the hierarchy above it goes into D3cold and
2617 * the device itself ends up in D3cold as a result of that.
2619 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2620 pci_pme_active(dev, true);
2623 error = platform_pci_set_wakeup(dev, true);
2627 dev->wakeup_prepared = true;
2629 platform_pci_set_wakeup(dev, false);
2630 pci_pme_active(dev, false);
2631 dev->wakeup_prepared = false;
2638 * pci_enable_wake - change wakeup settings for a PCI device
2639 * @pci_dev: Target device
2640 * @state: PCI state from which device will issue wakeup events
2641 * @enable: Whether or not to enable event generation
2643 * If @enable is set, check device_may_wakeup() for the device before calling
2644 * __pci_enable_wake() for it.
2646 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2648 if (enable && !device_may_wakeup(&pci_dev->dev))
2651 return __pci_enable_wake(pci_dev, state, enable);
2653 EXPORT_SYMBOL(pci_enable_wake);
2656 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2657 * @dev: PCI device to prepare
2658 * @enable: True to enable wake-up event generation; false to disable
2660 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2661 * and this function allows them to set that up cleanly - pci_enable_wake()
2662 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2663 * ordering constraints.
2665 * This function only returns error code if the device is not allowed to wake
2666 * up the system from sleep or it is not capable of generating PME# from both
2667 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2669 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2671 return pci_pme_capable(dev, PCI_D3cold) ?
2672 pci_enable_wake(dev, PCI_D3cold, enable) :
2673 pci_enable_wake(dev, PCI_D3hot, enable);
2675 EXPORT_SYMBOL(pci_wake_from_d3);
2678 * pci_target_state - find an appropriate low power state for a given PCI dev
2680 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2682 * Use underlying platform code to find a supported low power state for @dev.
2683 * If the platform can't manage @dev, return the deepest state from which it
2684 * can generate wake events, based on any available PME info.
2686 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2688 if (platform_pci_power_manageable(dev)) {
2690 * Call the platform to find the target state for the device.
2692 pci_power_t state = platform_pci_choose_state(dev);
2695 case PCI_POWER_ERROR:
2701 if (pci_no_d1d2(dev))
2709 * If the device is in D3cold even though it's not power-manageable by
2710 * the platform, it may have been powered down by non-standard means.
2711 * Best to let it slumber.
2713 if (dev->current_state == PCI_D3cold)
2715 else if (!dev->pm_cap)
2718 if (wakeup && dev->pme_support) {
2719 pci_power_t state = PCI_D3hot;
2722 * Find the deepest state from which the device can generate
2725 while (state && !(dev->pme_support & (1 << state)))
2730 else if (dev->pme_support & 1)
2738 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2739 * into a sleep state
2740 * @dev: Device to handle.
2742 * Choose the power state appropriate for the device depending on whether
2743 * it can wake up the system and/or is power manageable by the platform
2744 * (PCI_D3hot is the default) and put the device into that state.
2746 int pci_prepare_to_sleep(struct pci_dev *dev)
2748 bool wakeup = device_may_wakeup(&dev->dev);
2749 pci_power_t target_state = pci_target_state(dev, wakeup);
2752 if (target_state == PCI_POWER_ERROR)
2755 pci_enable_wake(dev, target_state, wakeup);
2757 error = pci_set_power_state(dev, target_state);
2760 pci_enable_wake(dev, target_state, false);
2764 EXPORT_SYMBOL(pci_prepare_to_sleep);
2767 * pci_back_from_sleep - turn PCI device on during system-wide transition
2768 * into working state
2769 * @dev: Device to handle.
2771 * Disable device's system wake-up capability and put it into D0.
2773 int pci_back_from_sleep(struct pci_dev *dev)
2775 int ret = pci_set_power_state(dev, PCI_D0);
2780 pci_enable_wake(dev, PCI_D0, false);
2783 EXPORT_SYMBOL(pci_back_from_sleep);
2786 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2787 * @dev: PCI device being suspended.
2789 * Prepare @dev to generate wake-up events at run time and put it into a low
2792 int pci_finish_runtime_suspend(struct pci_dev *dev)
2794 pci_power_t target_state;
2797 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2798 if (target_state == PCI_POWER_ERROR)
2801 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2803 error = pci_set_power_state(dev, target_state);
2806 pci_enable_wake(dev, target_state, false);
2812 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2813 * @dev: Device to check.
2815 * Return true if the device itself is capable of generating wake-up events
2816 * (through the platform or using the native PCIe PME) or if the device supports
2817 * PME and one of its upstream bridges can generate wake-up events.
2819 bool pci_dev_run_wake(struct pci_dev *dev)
2821 struct pci_bus *bus = dev->bus;
2823 if (!dev->pme_support)
2826 /* PME-capable in principle, but not from the target power state */
2827 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2830 if (device_can_wakeup(&dev->dev))
2833 while (bus->parent) {
2834 struct pci_dev *bridge = bus->self;
2836 if (device_can_wakeup(&bridge->dev))
2842 /* We have reached the root bus. */
2844 return device_can_wakeup(bus->bridge);
2848 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2851 * pci_dev_need_resume - Check if it is necessary to resume the device.
2852 * @pci_dev: Device to check.
2854 * Return 'true' if the device is not runtime-suspended or it has to be
2855 * reconfigured due to wakeup settings difference between system and runtime
2856 * suspend, or the current power state of it is not suitable for the upcoming
2857 * (system-wide) transition.
2859 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2861 struct device *dev = &pci_dev->dev;
2862 pci_power_t target_state;
2864 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2867 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2870 * If the earlier platform check has not triggered, D3cold is just power
2871 * removal on top of D3hot, so no need to resume the device in that
2874 return target_state != pci_dev->current_state &&
2875 target_state != PCI_D3cold &&
2876 pci_dev->current_state != PCI_D3hot;
2880 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2881 * @pci_dev: Device to check.
2883 * If the device is suspended and it is not configured for system wakeup,
2884 * disable PME for it to prevent it from waking up the system unnecessarily.
2886 * Note that if the device's power state is D3cold and the platform check in
2887 * pci_dev_need_resume() has not triggered, the device's configuration need not
2890 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2892 struct device *dev = &pci_dev->dev;
2894 spin_lock_irq(&dev->power.lock);
2896 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2897 pci_dev->current_state < PCI_D3cold)
2898 __pci_pme_active(pci_dev, false);
2900 spin_unlock_irq(&dev->power.lock);
2904 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2905 * @pci_dev: Device to handle.
2907 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2908 * it might have been disabled during the prepare phase of system suspend if
2909 * the device was not configured for system wakeup.
2911 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2913 struct device *dev = &pci_dev->dev;
2915 if (!pci_dev_run_wake(pci_dev))
2918 spin_lock_irq(&dev->power.lock);
2920 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2921 __pci_pme_active(pci_dev, true);
2923 spin_unlock_irq(&dev->power.lock);
2927 * pci_choose_state - Choose the power state of a PCI device.
2928 * @dev: Target PCI device.
2929 * @state: Target state for the whole system.
2931 * Returns PCI power state suitable for @dev and @state.
2933 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2935 if (state.event == PM_EVENT_ON)
2938 return pci_target_state(dev, false);
2940 EXPORT_SYMBOL(pci_choose_state);
2942 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2944 struct device *dev = &pdev->dev;
2945 struct device *parent = dev->parent;
2948 pm_runtime_get_sync(parent);
2949 pm_runtime_get_noresume(dev);
2951 * pdev->current_state is set to PCI_D3cold during suspending,
2952 * so wait until suspending completes
2954 pm_runtime_barrier(dev);
2956 * Only need to resume devices in D3cold, because config
2957 * registers are still accessible for devices suspended but
2960 if (pdev->current_state == PCI_D3cold)
2961 pm_runtime_resume(dev);
2964 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2966 struct device *dev = &pdev->dev;
2967 struct device *parent = dev->parent;
2969 pm_runtime_put(dev);
2971 pm_runtime_put_sync(parent);
2974 static const struct dmi_system_id bridge_d3_blacklist[] = {
2978 * Gigabyte X299 root port is not marked as hotplug capable
2979 * which allows Linux to power manage it. However, this
2980 * confuses the BIOS SMI handler so don't power manage root
2981 * ports on that system.
2983 .ident = "X299 DESIGNARE EX-CF",
2985 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2986 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2991 * Downstream device is not accessible after putting a root port
2992 * into D3cold and back into D0 on Elo Continental Z2 board
2994 .ident = "Elo Continental Z2",
2996 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2997 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2998 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3006 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3007 * @bridge: Bridge to check
3009 * This function checks if it is possible to move the bridge to D3.
3010 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3012 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3014 if (!pci_is_pcie(bridge))
3017 switch (pci_pcie_type(bridge)) {
3018 case PCI_EXP_TYPE_ROOT_PORT:
3019 case PCI_EXP_TYPE_UPSTREAM:
3020 case PCI_EXP_TYPE_DOWNSTREAM:
3021 if (pci_bridge_d3_disable)
3025 * Hotplug ports handled by firmware in System Management Mode
3026 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3028 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3031 if (pci_bridge_d3_force)
3034 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3035 if (bridge->is_thunderbolt)
3038 /* Platform might know better if the bridge supports D3 */
3039 if (platform_pci_bridge_d3(bridge))
3043 * Hotplug ports handled natively by the OS were not validated
3044 * by vendors for runtime D3 at least until 2018 because there
3045 * was no OS support.
3047 if (bridge->is_hotplug_bridge)
3050 if (dmi_check_system(bridge_d3_blacklist))
3054 * It should be safe to put PCIe ports from 2015 or newer
3057 if (dmi_get_bios_year() >= 2015)
3065 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3067 bool *d3cold_ok = data;
3069 if (/* The device needs to be allowed to go D3cold ... */
3070 dev->no_d3cold || !dev->d3cold_allowed ||
3072 /* ... and if it is wakeup capable to do so from D3cold. */
3073 (device_may_wakeup(&dev->dev) &&
3074 !pci_pme_capable(dev, PCI_D3cold)) ||
3076 /* If it is a bridge it must be allowed to go to D3. */
3077 !pci_power_manageable(dev))
3085 * pci_bridge_d3_update - Update bridge D3 capabilities
3086 * @dev: PCI device which is changed
3088 * Update upstream bridge PM capabilities accordingly depending on if the
3089 * device PM configuration was changed or the device is being removed. The
3090 * change is also propagated upstream.
3092 void pci_bridge_d3_update(struct pci_dev *dev)
3094 bool remove = !device_is_registered(&dev->dev);
3095 struct pci_dev *bridge;
3096 bool d3cold_ok = true;
3098 bridge = pci_upstream_bridge(dev);
3099 if (!bridge || !pci_bridge_d3_possible(bridge))
3103 * If D3 is currently allowed for the bridge, removing one of its
3104 * children won't change that.
3106 if (remove && bridge->bridge_d3)
3110 * If D3 is currently allowed for the bridge and a child is added or
3111 * changed, disallowance of D3 can only be caused by that child, so
3112 * we only need to check that single device, not any of its siblings.
3114 * If D3 is currently not allowed for the bridge, checking the device
3115 * first may allow us to skip checking its siblings.
3118 pci_dev_check_d3cold(dev, &d3cold_ok);
3121 * If D3 is currently not allowed for the bridge, this may be caused
3122 * either by the device being changed/removed or any of its siblings,
3123 * so we need to go through all children to find out if one of them
3124 * continues to block D3.
3126 if (d3cold_ok && !bridge->bridge_d3)
3127 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3130 if (bridge->bridge_d3 != d3cold_ok) {
3131 bridge->bridge_d3 = d3cold_ok;
3132 /* Propagate change to upstream bridges */
3133 pci_bridge_d3_update(bridge);
3138 * pci_d3cold_enable - Enable D3cold for device
3139 * @dev: PCI device to handle
3141 * This function can be used in drivers to enable D3cold from the device
3142 * they handle. It also updates upstream PCI bridge PM capabilities
3145 void pci_d3cold_enable(struct pci_dev *dev)
3147 if (dev->no_d3cold) {
3148 dev->no_d3cold = false;
3149 pci_bridge_d3_update(dev);
3152 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3155 * pci_d3cold_disable - Disable D3cold for device
3156 * @dev: PCI device to handle
3158 * This function can be used in drivers to disable D3cold from the device
3159 * they handle. It also updates upstream PCI bridge PM capabilities
3162 void pci_d3cold_disable(struct pci_dev *dev)
3164 if (!dev->no_d3cold) {
3165 dev->no_d3cold = true;
3166 pci_bridge_d3_update(dev);
3169 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3172 * pci_pm_init - Initialize PM functions of given PCI device
3173 * @dev: PCI device to handle.
3175 void pci_pm_init(struct pci_dev *dev)
3181 pm_runtime_forbid(&dev->dev);
3182 pm_runtime_set_active(&dev->dev);
3183 pm_runtime_enable(&dev->dev);
3184 device_enable_async_suspend(&dev->dev);
3185 dev->wakeup_prepared = false;
3188 dev->pme_support = 0;
3190 /* find PCI PM capability in list */
3191 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3194 /* Check device's ability to generate PME# */
3195 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3197 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3198 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3199 pmc & PCI_PM_CAP_VER_MASK);
3204 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3205 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3206 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3207 dev->d3cold_allowed = true;
3209 dev->d1_support = false;
3210 dev->d2_support = false;
3211 if (!pci_no_d1d2(dev)) {
3212 if (pmc & PCI_PM_CAP_D1)
3213 dev->d1_support = true;
3214 if (pmc & PCI_PM_CAP_D2)
3215 dev->d2_support = true;
3217 if (dev->d1_support || dev->d2_support)
3218 pci_info(dev, "supports%s%s\n",
3219 dev->d1_support ? " D1" : "",
3220 dev->d2_support ? " D2" : "");
3223 pmc &= PCI_PM_CAP_PME_MASK;
3225 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3226 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3227 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3228 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3229 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3230 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3231 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3232 dev->pme_poll = true;
3234 * Make device's PM flags reflect the wake-up capability, but
3235 * let the user space enable it to wake up the system as needed.
3237 device_set_wakeup_capable(&dev->dev, true);
3238 /* Disable the PME# generation functionality */
3239 pci_pme_active(dev, false);
3242 pci_read_config_word(dev, PCI_STATUS, &status);
3243 if (status & PCI_STATUS_IMM_READY)
3247 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3249 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3253 case PCI_EA_P_VF_MEM:
3254 flags |= IORESOURCE_MEM;
3256 case PCI_EA_P_MEM_PREFETCH:
3257 case PCI_EA_P_VF_MEM_PREFETCH:
3258 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3261 flags |= IORESOURCE_IO;
3270 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3273 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3274 return &dev->resource[bei];
3275 #ifdef CONFIG_PCI_IOV
3276 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3277 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3278 return &dev->resource[PCI_IOV_RESOURCES +
3279 bei - PCI_EA_BEI_VF_BAR0];
3281 else if (bei == PCI_EA_BEI_ROM)
3282 return &dev->resource[PCI_ROM_RESOURCE];
3287 /* Read an Enhanced Allocation (EA) entry */
3288 static int pci_ea_read(struct pci_dev *dev, int offset)
3290 struct resource *res;
3291 int ent_size, ent_offset = offset;
3292 resource_size_t start, end;
3293 unsigned long flags;
3294 u32 dw0, bei, base, max_offset;
3296 bool support_64 = (sizeof(resource_size_t) >= 8);
3298 pci_read_config_dword(dev, ent_offset, &dw0);
3301 /* Entry size field indicates DWORDs after 1st */
3302 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3304 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3307 bei = (dw0 & PCI_EA_BEI) >> 4;
3308 prop = (dw0 & PCI_EA_PP) >> 8;
3311 * If the Property is in the reserved range, try the Secondary
3314 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3315 prop = (dw0 & PCI_EA_SP) >> 16;
3316 if (prop > PCI_EA_P_BRIDGE_IO)
3319 res = pci_ea_get_resource(dev, bei, prop);
3321 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3325 flags = pci_ea_flags(dev, prop);
3327 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3332 pci_read_config_dword(dev, ent_offset, &base);
3333 start = (base & PCI_EA_FIELD_MASK);
3336 /* Read MaxOffset */
3337 pci_read_config_dword(dev, ent_offset, &max_offset);
3340 /* Read Base MSBs (if 64-bit entry) */
3341 if (base & PCI_EA_IS_64) {
3344 pci_read_config_dword(dev, ent_offset, &base_upper);
3347 flags |= IORESOURCE_MEM_64;
3349 /* entry starts above 32-bit boundary, can't use */
3350 if (!support_64 && base_upper)
3354 start |= ((u64)base_upper << 32);
3357 end = start + (max_offset | 0x03);
3359 /* Read MaxOffset MSBs (if 64-bit entry) */
3360 if (max_offset & PCI_EA_IS_64) {
3361 u32 max_offset_upper;
3363 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3366 flags |= IORESOURCE_MEM_64;
3368 /* entry too big, can't use */
3369 if (!support_64 && max_offset_upper)
3373 end += ((u64)max_offset_upper << 32);
3377 pci_err(dev, "EA Entry crosses address boundary\n");
3381 if (ent_size != ent_offset - offset) {
3382 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3383 ent_size, ent_offset - offset);
3387 res->name = pci_name(dev);
3392 if (bei <= PCI_EA_BEI_BAR5)
3393 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3395 else if (bei == PCI_EA_BEI_ROM)
3396 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3398 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3399 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3400 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3402 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3406 return offset + ent_size;
3409 /* Enhanced Allocation Initialization */
3410 void pci_ea_init(struct pci_dev *dev)
3417 /* find PCI EA capability in list */
3418 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3422 /* determine the number of entries */
3423 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3425 num_ent &= PCI_EA_NUM_ENT_MASK;
3427 offset = ea + PCI_EA_FIRST_ENT;
3429 /* Skip DWORD 2 for type 1 functions */
3430 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3433 /* parse each EA entry */
3434 for (i = 0; i < num_ent; ++i)
3435 offset = pci_ea_read(dev, offset);
3438 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3439 struct pci_cap_saved_state *new_cap)
3441 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3445 * _pci_add_cap_save_buffer - allocate buffer for saving given
3446 * capability registers
3447 * @dev: the PCI device
3448 * @cap: the capability to allocate the buffer for
3449 * @extended: Standard or Extended capability ID
3450 * @size: requested size of the buffer
3452 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3453 bool extended, unsigned int size)
3456 struct pci_cap_saved_state *save_state;
3459 pos = pci_find_ext_capability(dev, cap);
3461 pos = pci_find_capability(dev, cap);
3466 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3470 save_state->cap.cap_nr = cap;
3471 save_state->cap.cap_extended = extended;
3472 save_state->cap.size = size;
3473 pci_add_saved_cap(dev, save_state);
3478 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3480 return _pci_add_cap_save_buffer(dev, cap, false, size);
3483 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3485 return _pci_add_cap_save_buffer(dev, cap, true, size);
3489 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3490 * @dev: the PCI device
3492 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3496 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3497 PCI_EXP_SAVE_REGS * sizeof(u16));
3499 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3501 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3503 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3505 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3508 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3510 pci_allocate_vc_save_buffers(dev);
3513 void pci_free_cap_save_buffers(struct pci_dev *dev)
3515 struct pci_cap_saved_state *tmp;
3516 struct hlist_node *n;
3518 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3523 * pci_configure_ari - enable or disable ARI forwarding
3524 * @dev: the PCI device
3526 * If @dev and its upstream bridge both support ARI, enable ARI in the
3527 * bridge. Otherwise, disable ARI in the bridge.
3529 void pci_configure_ari(struct pci_dev *dev)
3532 struct pci_dev *bridge;
3534 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3537 bridge = dev->bus->self;
3541 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3542 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3545 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3546 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3547 PCI_EXP_DEVCTL2_ARI);
3548 bridge->ari_enabled = 1;
3550 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3551 PCI_EXP_DEVCTL2_ARI);
3552 bridge->ari_enabled = 0;
3556 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3561 pos = pdev->acs_cap;
3566 * Except for egress control, capabilities are either required
3567 * or only required if controllable. Features missing from the
3568 * capability field can therefore be assumed as hard-wired enabled.
3570 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3571 acs_flags &= (cap | PCI_ACS_EC);
3573 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3574 return (ctrl & acs_flags) == acs_flags;
3578 * pci_acs_enabled - test ACS against required flags for a given device
3579 * @pdev: device to test
3580 * @acs_flags: required PCI ACS flags
3582 * Return true if the device supports the provided flags. Automatically
3583 * filters out flags that are not implemented on multifunction devices.
3585 * Note that this interface checks the effective ACS capabilities of the
3586 * device rather than the actual capabilities. For instance, most single
3587 * function endpoints are not required to support ACS because they have no
3588 * opportunity for peer-to-peer access. We therefore return 'true'
3589 * regardless of whether the device exposes an ACS capability. This makes
3590 * it much easier for callers of this function to ignore the actual type
3591 * or topology of the device when testing ACS support.
3593 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3597 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3602 * Conventional PCI and PCI-X devices never support ACS, either
3603 * effectively or actually. The shared bus topology implies that
3604 * any device on the bus can receive or snoop DMA.
3606 if (!pci_is_pcie(pdev))
3609 switch (pci_pcie_type(pdev)) {
3611 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3612 * but since their primary interface is PCI/X, we conservatively
3613 * handle them as we would a non-PCIe device.
3615 case PCI_EXP_TYPE_PCIE_BRIDGE:
3617 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3618 * applicable... must never implement an ACS Extended Capability...".
3619 * This seems arbitrary, but we take a conservative interpretation
3620 * of this statement.
3622 case PCI_EXP_TYPE_PCI_BRIDGE:
3623 case PCI_EXP_TYPE_RC_EC:
3626 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3627 * implement ACS in order to indicate their peer-to-peer capabilities,
3628 * regardless of whether they are single- or multi-function devices.
3630 case PCI_EXP_TYPE_DOWNSTREAM:
3631 case PCI_EXP_TYPE_ROOT_PORT:
3632 return pci_acs_flags_enabled(pdev, acs_flags);
3634 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3635 * implemented by the remaining PCIe types to indicate peer-to-peer
3636 * capabilities, but only when they are part of a multifunction
3637 * device. The footnote for section 6.12 indicates the specific
3638 * PCIe types included here.
3640 case PCI_EXP_TYPE_ENDPOINT:
3641 case PCI_EXP_TYPE_UPSTREAM:
3642 case PCI_EXP_TYPE_LEG_END:
3643 case PCI_EXP_TYPE_RC_END:
3644 if (!pdev->multifunction)
3647 return pci_acs_flags_enabled(pdev, acs_flags);
3651 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3652 * to single function devices with the exception of downstream ports.
3658 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3659 * @start: starting downstream device
3660 * @end: ending upstream device or NULL to search to the root bus
3661 * @acs_flags: required flags
3663 * Walk up a device tree from start to end testing PCI ACS support. If
3664 * any step along the way does not support the required flags, return false.
3666 bool pci_acs_path_enabled(struct pci_dev *start,
3667 struct pci_dev *end, u16 acs_flags)
3669 struct pci_dev *pdev, *parent = start;
3674 if (!pci_acs_enabled(pdev, acs_flags))
3677 if (pci_is_root_bus(pdev->bus))
3678 return (end == NULL);
3680 parent = pdev->bus->self;
3681 } while (pdev != end);
3687 * pci_acs_init - Initialize ACS if hardware supports it
3688 * @dev: the PCI device
3690 void pci_acs_init(struct pci_dev *dev)
3692 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3695 * Attempt to enable ACS regardless of capability because some Root
3696 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3697 * the standard ACS capability but still support ACS via those
3700 pci_enable_acs(dev);
3704 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3708 * Helper to find the position of the ctrl register for a BAR.
3709 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3710 * Returns -ENOENT if no ctrl register for the BAR could be found.
3712 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3714 unsigned int pos, nbars, i;
3717 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3721 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3722 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3723 PCI_REBAR_CTRL_NBAR_SHIFT;
3725 for (i = 0; i < nbars; i++, pos += 8) {
3728 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3729 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3738 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3740 * @bar: BAR to query
3742 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3743 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3745 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3750 pos = pci_rebar_find_pos(pdev, bar);
3754 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3755 cap &= PCI_REBAR_CAP_SIZES;
3757 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3758 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3759 bar == 0 && cap == 0x7000)
3764 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3767 * pci_rebar_get_current_size - get the current size of a BAR
3769 * @bar: BAR to set size to
3771 * Read the size of a BAR from the resizable BAR config.
3772 * Returns size if found or negative error code.
3774 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3779 pos = pci_rebar_find_pos(pdev, bar);
3783 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3784 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3788 * pci_rebar_set_size - set a new size for a BAR
3790 * @bar: BAR to set size to
3791 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3793 * Set the new size of a BAR as defined in the spec.
3794 * Returns zero if resizing was successful, error code otherwise.
3796 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3801 pos = pci_rebar_find_pos(pdev, bar);
3805 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3806 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3807 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3808 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3813 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3814 * @dev: the PCI device
3815 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3816 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3817 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3818 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3820 * Return 0 if all upstream bridges support AtomicOp routing, egress
3821 * blocking is disabled on all upstream ports, and the root port supports
3822 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3823 * AtomicOp completion), or negative otherwise.
3825 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3827 struct pci_bus *bus = dev->bus;
3828 struct pci_dev *bridge;
3832 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3833 * in Device Control 2 is reserved in VFs and the PF value applies
3834 * to all associated VFs.
3839 if (!pci_is_pcie(dev))
3843 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3844 * AtomicOp requesters. For now, we only support endpoints as
3845 * requesters and root ports as completers. No endpoints as
3846 * completers, and no peer-to-peer.
3849 switch (pci_pcie_type(dev)) {
3850 case PCI_EXP_TYPE_ENDPOINT:
3851 case PCI_EXP_TYPE_LEG_END:
3852 case PCI_EXP_TYPE_RC_END:
3858 while (bus->parent) {
3861 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3863 switch (pci_pcie_type(bridge)) {
3864 /* Ensure switch ports support AtomicOp routing */
3865 case PCI_EXP_TYPE_UPSTREAM:
3866 case PCI_EXP_TYPE_DOWNSTREAM:
3867 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3871 /* Ensure root port supports all the sizes we care about */
3872 case PCI_EXP_TYPE_ROOT_PORT:
3873 if ((cap & cap_mask) != cap_mask)
3878 /* Ensure upstream ports don't block AtomicOps on egress */
3879 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3880 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3882 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3889 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3890 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3893 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3896 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3897 * @dev: the PCI device
3898 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3900 * Perform INTx swizzling for a device behind one level of bridge. This is
3901 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3902 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3903 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3904 * the PCI Express Base Specification, Revision 2.1)
3906 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3910 if (pci_ari_enabled(dev->bus))
3913 slot = PCI_SLOT(dev->devfn);
3915 return (((pin - 1) + slot) % 4) + 1;
3918 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3926 while (!pci_is_root_bus(dev->bus)) {
3927 pin = pci_swizzle_interrupt_pin(dev, pin);
3928 dev = dev->bus->self;
3935 * pci_common_swizzle - swizzle INTx all the way to root bridge
3936 * @dev: the PCI device
3937 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3939 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3940 * bridges all the way up to a PCI root bus.
3942 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3946 while (!pci_is_root_bus(dev->bus)) {
3947 pin = pci_swizzle_interrupt_pin(dev, pin);
3948 dev = dev->bus->self;
3951 return PCI_SLOT(dev->devfn);
3953 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3956 * pci_release_region - Release a PCI bar
3957 * @pdev: PCI device whose resources were previously reserved by
3958 * pci_request_region()
3959 * @bar: BAR to release
3961 * Releases the PCI I/O and memory resources previously reserved by a
3962 * successful call to pci_request_region(). Call this function only
3963 * after all use of the PCI regions has ceased.
3965 void pci_release_region(struct pci_dev *pdev, int bar)
3967 struct pci_devres *dr;
3969 if (pci_resource_len(pdev, bar) == 0)
3971 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3972 release_region(pci_resource_start(pdev, bar),
3973 pci_resource_len(pdev, bar));
3974 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3975 release_mem_region(pci_resource_start(pdev, bar),
3976 pci_resource_len(pdev, bar));
3978 dr = find_pci_dr(pdev);
3980 dr->region_mask &= ~(1 << bar);
3982 EXPORT_SYMBOL(pci_release_region);
3985 * __pci_request_region - Reserved PCI I/O and memory resource
3986 * @pdev: PCI device whose resources are to be reserved
3987 * @bar: BAR to be reserved
3988 * @res_name: Name to be associated with resource.
3989 * @exclusive: whether the region access is exclusive or not
3991 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3992 * being reserved by owner @res_name. Do not access any
3993 * address inside the PCI regions unless this call returns
3996 * If @exclusive is set, then the region is marked so that userspace
3997 * is explicitly not allowed to map the resource via /dev/mem or
3998 * sysfs MMIO access.
4000 * Returns 0 on success, or %EBUSY on error. A warning
4001 * message is also printed on failure.
4003 static int __pci_request_region(struct pci_dev *pdev, int bar,
4004 const char *res_name, int exclusive)
4006 struct pci_devres *dr;
4008 if (pci_resource_len(pdev, bar) == 0)
4011 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4012 if (!request_region(pci_resource_start(pdev, bar),
4013 pci_resource_len(pdev, bar), res_name))
4015 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4016 if (!__request_mem_region(pci_resource_start(pdev, bar),
4017 pci_resource_len(pdev, bar), res_name,
4022 dr = find_pci_dr(pdev);
4024 dr->region_mask |= 1 << bar;
4029 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4030 &pdev->resource[bar]);
4035 * pci_request_region - Reserve PCI I/O and memory resource
4036 * @pdev: PCI device whose resources are to be reserved
4037 * @bar: BAR to be reserved
4038 * @res_name: Name to be associated with resource
4040 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4041 * being reserved by owner @res_name. Do not access any
4042 * address inside the PCI regions unless this call returns
4045 * Returns 0 on success, or %EBUSY on error. A warning
4046 * message is also printed on failure.
4048 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4050 return __pci_request_region(pdev, bar, res_name, 0);
4052 EXPORT_SYMBOL(pci_request_region);
4055 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4056 * @pdev: PCI device whose resources were previously reserved
4057 * @bars: Bitmask of BARs to be released
4059 * Release selected PCI I/O and memory resources previously reserved.
4060 * Call this function only after all use of the PCI regions has ceased.
4062 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4066 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4067 if (bars & (1 << i))
4068 pci_release_region(pdev, i);
4070 EXPORT_SYMBOL(pci_release_selected_regions);
4072 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4073 const char *res_name, int excl)
4077 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4078 if (bars & (1 << i))
4079 if (__pci_request_region(pdev, i, res_name, excl))
4085 if (bars & (1 << i))
4086 pci_release_region(pdev, i);
4093 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4094 * @pdev: PCI device whose resources are to be reserved
4095 * @bars: Bitmask of BARs to be requested
4096 * @res_name: Name to be associated with resource
4098 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4099 const char *res_name)
4101 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4103 EXPORT_SYMBOL(pci_request_selected_regions);
4105 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4106 const char *res_name)
4108 return __pci_request_selected_regions(pdev, bars, res_name,
4109 IORESOURCE_EXCLUSIVE);
4111 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4114 * pci_release_regions - Release reserved PCI I/O and memory resources
4115 * @pdev: PCI device whose resources were previously reserved by
4116 * pci_request_regions()
4118 * Releases all PCI I/O and memory resources previously reserved by a
4119 * successful call to pci_request_regions(). Call this function only
4120 * after all use of the PCI regions has ceased.
4123 void pci_release_regions(struct pci_dev *pdev)
4125 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4127 EXPORT_SYMBOL(pci_release_regions);
4130 * pci_request_regions - Reserve PCI I/O and memory resources
4131 * @pdev: PCI device whose resources are to be reserved
4132 * @res_name: Name to be associated with resource.
4134 * Mark all PCI regions associated with PCI device @pdev as
4135 * being reserved by owner @res_name. Do not access any
4136 * address inside the PCI regions unless this call returns
4139 * Returns 0 on success, or %EBUSY on error. A warning
4140 * message is also printed on failure.
4142 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4144 return pci_request_selected_regions(pdev,
4145 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4147 EXPORT_SYMBOL(pci_request_regions);
4150 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4151 * @pdev: PCI device whose resources are to be reserved
4152 * @res_name: Name to be associated with resource.
4154 * Mark all PCI regions associated with PCI device @pdev as being reserved
4155 * by owner @res_name. Do not access any address inside the PCI regions
4156 * unless this call returns successfully.
4158 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4159 * and the sysfs MMIO access will not be allowed.
4161 * Returns 0 on success, or %EBUSY on error. A warning message is also
4162 * printed on failure.
4164 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4166 return pci_request_selected_regions_exclusive(pdev,
4167 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4169 EXPORT_SYMBOL(pci_request_regions_exclusive);
4172 * Record the PCI IO range (expressed as CPU physical address + size).
4173 * Return a negative value if an error has occurred, zero otherwise
4175 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4176 resource_size_t size)
4180 struct logic_pio_hwaddr *range;
4182 if (!size || addr + size < addr)
4185 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4189 range->fwnode = fwnode;
4191 range->hw_start = addr;
4192 range->flags = LOGIC_PIO_CPU_MMIO;
4194 ret = logic_pio_register_range(range);
4198 /* Ignore duplicates due to deferred probing */
4206 phys_addr_t pci_pio_to_address(unsigned long pio)
4209 if (pio < MMIO_UPPER_LIMIT)
4210 return logic_pio_to_hwaddr(pio);
4213 return (phys_addr_t) OF_BAD_ADDR;
4215 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4217 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4220 return logic_pio_trans_cpuaddr(address);
4222 if (address > IO_SPACE_LIMIT)
4223 return (unsigned long)-1;
4225 return (unsigned long) address;
4230 * pci_remap_iospace - Remap the memory mapped I/O space
4231 * @res: Resource describing the I/O space
4232 * @phys_addr: physical address of range to be mapped
4234 * Remap the memory mapped I/O space described by the @res and the CPU
4235 * physical address @phys_addr into virtual address space. Only
4236 * architectures that have memory mapped IO functions defined (and the
4237 * PCI_IOBASE value defined) should call this function.
4239 #ifndef pci_remap_iospace
4240 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4242 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4243 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4245 if (!(res->flags & IORESOURCE_IO))
4248 if (res->end > IO_SPACE_LIMIT)
4251 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4252 pgprot_device(PAGE_KERNEL));
4255 * This architecture does not have memory mapped I/O space,
4256 * so this function should never be called
4258 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4262 EXPORT_SYMBOL(pci_remap_iospace);
4266 * pci_unmap_iospace - Unmap the memory mapped I/O space
4267 * @res: resource to be unmapped
4269 * Unmap the CPU virtual address @res from virtual address space. Only
4270 * architectures that have memory mapped IO functions defined (and the
4271 * PCI_IOBASE value defined) should call this function.
4273 void pci_unmap_iospace(struct resource *res)
4275 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4276 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4278 vunmap_range(vaddr, vaddr + resource_size(res));
4281 EXPORT_SYMBOL(pci_unmap_iospace);
4283 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4285 struct resource **res = ptr;
4287 pci_unmap_iospace(*res);
4291 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4292 * @dev: Generic device to remap IO address for
4293 * @res: Resource describing the I/O space
4294 * @phys_addr: physical address of range to be mapped
4296 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4299 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4300 phys_addr_t phys_addr)
4302 const struct resource **ptr;
4305 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4309 error = pci_remap_iospace(res, phys_addr);
4314 devres_add(dev, ptr);
4319 EXPORT_SYMBOL(devm_pci_remap_iospace);
4322 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4323 * @dev: Generic device to remap IO address for
4324 * @offset: Resource address to map
4325 * @size: Size of map
4327 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4330 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4331 resource_size_t offset,
4332 resource_size_t size)
4334 void __iomem **ptr, *addr;
4336 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4340 addr = pci_remap_cfgspace(offset, size);
4343 devres_add(dev, ptr);
4349 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4352 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4353 * @dev: generic device to handle the resource for
4354 * @res: configuration space resource to be handled
4356 * Checks that a resource is a valid memory region, requests the memory
4357 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4358 * proper PCI configuration space memory attributes are guaranteed.
4360 * All operations are managed and will be undone on driver detach.
4362 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4363 * on failure. Usage example::
4365 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4366 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4368 * return PTR_ERR(base);
4370 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4371 struct resource *res)
4373 resource_size_t size;
4375 void __iomem *dest_ptr;
4379 if (!res || resource_type(res) != IORESOURCE_MEM) {
4380 dev_err(dev, "invalid resource\n");
4381 return IOMEM_ERR_PTR(-EINVAL);
4384 size = resource_size(res);
4387 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4390 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4392 return IOMEM_ERR_PTR(-ENOMEM);
4394 if (!devm_request_mem_region(dev, res->start, size, name)) {
4395 dev_err(dev, "can't request region for resource %pR\n", res);
4396 return IOMEM_ERR_PTR(-EBUSY);
4399 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4401 dev_err(dev, "ioremap failed for resource %pR\n", res);
4402 devm_release_mem_region(dev, res->start, size);
4403 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4408 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4410 static void __pci_set_master(struct pci_dev *dev, bool enable)
4414 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4416 cmd = old_cmd | PCI_COMMAND_MASTER;
4418 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4419 if (cmd != old_cmd) {
4420 pci_dbg(dev, "%s bus mastering\n",
4421 enable ? "enabling" : "disabling");
4422 pci_write_config_word(dev, PCI_COMMAND, cmd);
4424 dev->is_busmaster = enable;
4428 * pcibios_setup - process "pci=" kernel boot arguments
4429 * @str: string used to pass in "pci=" kernel boot arguments
4431 * Process kernel boot arguments. This is the default implementation.
4432 * Architecture specific implementations can override this as necessary.
4434 char * __weak __init pcibios_setup(char *str)
4440 * pcibios_set_master - enable PCI bus-mastering for device dev
4441 * @dev: the PCI device to enable
4443 * Enables PCI bus-mastering for the device. This is the default
4444 * implementation. Architecture specific implementations can override
4445 * this if necessary.
4447 void __weak pcibios_set_master(struct pci_dev *dev)
4451 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4452 if (pci_is_pcie(dev))
4455 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4457 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4458 else if (lat > pcibios_max_latency)
4459 lat = pcibios_max_latency;
4463 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4467 * pci_set_master - enables bus-mastering for device dev
4468 * @dev: the PCI device to enable
4470 * Enables bus-mastering on the device and calls pcibios_set_master()
4471 * to do the needed arch specific settings.
4473 void pci_set_master(struct pci_dev *dev)
4475 __pci_set_master(dev, true);
4476 pcibios_set_master(dev);
4478 EXPORT_SYMBOL(pci_set_master);
4481 * pci_clear_master - disables bus-mastering for device dev
4482 * @dev: the PCI device to disable
4484 void pci_clear_master(struct pci_dev *dev)
4486 __pci_set_master(dev, false);
4488 EXPORT_SYMBOL(pci_clear_master);
4491 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4492 * @dev: the PCI device for which MWI is to be enabled
4494 * Helper function for pci_set_mwi.
4495 * Originally copied from drivers/net/acenic.c.
4496 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4498 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4500 int pci_set_cacheline_size(struct pci_dev *dev)
4504 if (!pci_cache_line_size)
4507 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4508 equal to or multiple of the right value. */
4509 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4510 if (cacheline_size >= pci_cache_line_size &&
4511 (cacheline_size % pci_cache_line_size) == 0)
4514 /* Write the correct value. */
4515 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4517 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4518 if (cacheline_size == pci_cache_line_size)
4521 pci_dbg(dev, "cache line size of %d is not supported\n",
4522 pci_cache_line_size << 2);
4526 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4529 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4530 * @dev: the PCI device for which MWI is enabled
4532 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4534 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4536 int pci_set_mwi(struct pci_dev *dev)
4538 #ifdef PCI_DISABLE_MWI
4544 rc = pci_set_cacheline_size(dev);
4548 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4549 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4550 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4551 cmd |= PCI_COMMAND_INVALIDATE;
4552 pci_write_config_word(dev, PCI_COMMAND, cmd);
4557 EXPORT_SYMBOL(pci_set_mwi);
4560 * pcim_set_mwi - a device-managed pci_set_mwi()
4561 * @dev: the PCI device for which MWI is enabled
4563 * Managed pci_set_mwi().
4565 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4567 int pcim_set_mwi(struct pci_dev *dev)
4569 struct pci_devres *dr;
4571 dr = find_pci_dr(dev);
4576 return pci_set_mwi(dev);
4578 EXPORT_SYMBOL(pcim_set_mwi);
4581 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4582 * @dev: the PCI device for which MWI is enabled
4584 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4585 * Callers are not required to check the return value.
4587 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4589 int pci_try_set_mwi(struct pci_dev *dev)
4591 #ifdef PCI_DISABLE_MWI
4594 return pci_set_mwi(dev);
4597 EXPORT_SYMBOL(pci_try_set_mwi);
4600 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4601 * @dev: the PCI device to disable
4603 * Disables PCI Memory-Write-Invalidate transaction on the device
4605 void pci_clear_mwi(struct pci_dev *dev)
4607 #ifndef PCI_DISABLE_MWI
4610 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4611 if (cmd & PCI_COMMAND_INVALIDATE) {
4612 cmd &= ~PCI_COMMAND_INVALIDATE;
4613 pci_write_config_word(dev, PCI_COMMAND, cmd);
4617 EXPORT_SYMBOL(pci_clear_mwi);
4620 * pci_disable_parity - disable parity checking for device
4621 * @dev: the PCI device to operate on
4623 * Disable parity checking for device @dev
4625 void pci_disable_parity(struct pci_dev *dev)
4629 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4630 if (cmd & PCI_COMMAND_PARITY) {
4631 cmd &= ~PCI_COMMAND_PARITY;
4632 pci_write_config_word(dev, PCI_COMMAND, cmd);
4637 * pci_intx - enables/disables PCI INTx for device dev
4638 * @pdev: the PCI device to operate on
4639 * @enable: boolean: whether to enable or disable PCI INTx
4641 * Enables/disables PCI INTx for device @pdev
4643 void pci_intx(struct pci_dev *pdev, int enable)
4645 u16 pci_command, new;
4647 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4650 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4652 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4654 if (new != pci_command) {
4655 struct pci_devres *dr;
4657 pci_write_config_word(pdev, PCI_COMMAND, new);
4659 dr = find_pci_dr(pdev);
4660 if (dr && !dr->restore_intx) {
4661 dr->restore_intx = 1;
4662 dr->orig_intx = !enable;
4666 EXPORT_SYMBOL_GPL(pci_intx);
4668 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4670 struct pci_bus *bus = dev->bus;
4671 bool mask_updated = true;
4672 u32 cmd_status_dword;
4673 u16 origcmd, newcmd;
4674 unsigned long flags;
4678 * We do a single dword read to retrieve both command and status.
4679 * Document assumptions that make this possible.
4681 BUILD_BUG_ON(PCI_COMMAND % 4);
4682 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4684 raw_spin_lock_irqsave(&pci_lock, flags);
4686 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4688 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4691 * Check interrupt status register to see whether our device
4692 * triggered the interrupt (when masking) or the next IRQ is
4693 * already pending (when unmasking).
4695 if (mask != irq_pending) {
4696 mask_updated = false;
4700 origcmd = cmd_status_dword;
4701 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4703 newcmd |= PCI_COMMAND_INTX_DISABLE;
4704 if (newcmd != origcmd)
4705 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4708 raw_spin_unlock_irqrestore(&pci_lock, flags);
4710 return mask_updated;
4714 * pci_check_and_mask_intx - mask INTx on pending interrupt
4715 * @dev: the PCI device to operate on
4717 * Check if the device dev has its INTx line asserted, mask it and return
4718 * true in that case. False is returned if no interrupt was pending.
4720 bool pci_check_and_mask_intx(struct pci_dev *dev)
4722 return pci_check_and_set_intx_mask(dev, true);
4724 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4727 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4728 * @dev: the PCI device to operate on
4730 * Check if the device dev has its INTx line asserted, unmask it if not and
4731 * return true. False is returned and the mask remains active if there was
4732 * still an interrupt pending.
4734 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4736 return pci_check_and_set_intx_mask(dev, false);
4738 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4741 * pci_wait_for_pending_transaction - wait for pending transaction
4742 * @dev: the PCI device to operate on
4744 * Return 0 if transaction is pending 1 otherwise.
4746 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4748 if (!pci_is_pcie(dev))
4751 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4752 PCI_EXP_DEVSTA_TRPND);
4754 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4757 * pcie_flr - initiate a PCIe function level reset
4758 * @dev: device to reset
4760 * Initiate a function level reset unconditionally on @dev without
4761 * checking any flags and DEVCAP
4763 int pcie_flr(struct pci_dev *dev)
4765 if (!pci_wait_for_pending_transaction(dev))
4766 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4768 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4774 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4775 * 100ms, but may silently discard requests while the FLR is in
4776 * progress. Wait 100ms before trying to access the device.
4780 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4782 EXPORT_SYMBOL_GPL(pcie_flr);
4785 * pcie_reset_flr - initiate a PCIe function level reset
4786 * @dev: device to reset
4787 * @probe: if true, return 0 if device can be reset this way
4789 * Initiate a function level reset on @dev.
4791 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4793 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4796 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4802 return pcie_flr(dev);
4804 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4806 static int pci_af_flr(struct pci_dev *dev, bool probe)
4811 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4815 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4818 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4819 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4826 * Wait for Transaction Pending bit to clear. A word-aligned test
4827 * is used, so we use the control offset rather than status and shift
4828 * the test bit to match.
4830 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4831 PCI_AF_STATUS_TP << 8))
4832 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4834 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4840 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4841 * updated 27 July 2006; a device must complete an FLR within
4842 * 100ms, but may silently discard requests while the FLR is in
4843 * progress. Wait 100ms before trying to access the device.
4847 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4851 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4852 * @dev: Device to reset.
4853 * @probe: if true, return 0 if the device can be reset this way.
4855 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4856 * unset, it will be reinitialized internally when going from PCI_D3hot to
4857 * PCI_D0. If that's the case and the device is not in a low-power state
4858 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4860 * NOTE: This causes the caller to sleep for twice the device power transition
4861 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4862 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4863 * Moreover, only devices in D0 can be reset by this function.
4865 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4869 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4872 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4873 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4879 if (dev->current_state != PCI_D0)
4882 csr &= ~PCI_PM_CTRL_STATE_MASK;
4884 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4885 pci_dev_d3_sleep(dev);
4887 csr &= ~PCI_PM_CTRL_STATE_MASK;
4889 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4890 pci_dev_d3_sleep(dev);
4892 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4896 * pcie_wait_for_link_status - Wait for link status change
4897 * @pdev: Device whose link to wait for.
4898 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4899 * @active: Waiting for active or inactive?
4901 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4902 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4904 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4905 bool use_lt, bool active)
4907 u16 lnksta_mask, lnksta_match;
4908 unsigned long end_jiffies;
4911 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4912 lnksta_match = active ? lnksta_mask : 0;
4914 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4916 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4917 if ((lnksta & lnksta_mask) == lnksta_match)
4920 } while (time_before(jiffies, end_jiffies));
4926 * pcie_retrain_link - Request a link retrain and wait for it to complete
4927 * @pdev: Device whose link to retrain.
4928 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4930 * Retrain completion status is retrieved from the Link Status Register
4931 * according to @use_lt. It is not verified whether the use of the DLLLA
4934 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4935 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4937 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4942 * Ensure the updated LNKCTL parameters are used during link
4943 * training by checking that there is no ongoing link training to
4944 * avoid LTSSM race as recommended in Implementation Note at the
4945 * end of PCIe r6.0.1 sec 7.5.3.7.
4947 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4951 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4952 if (pdev->clear_retrain_link) {
4954 * Due to an erratum in some devices the Retrain Link bit
4955 * needs to be cleared again manually to allow the link
4956 * training to succeed.
4958 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4961 return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4965 * pcie_wait_for_link_delay - Wait until link is active or inactive
4966 * @pdev: Bridge device
4967 * @active: waiting for active or inactive?
4968 * @delay: Delay to wait after link has become active (in ms)
4970 * Use this to wait till link becomes active or inactive.
4972 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4978 * Some controllers might not implement link active reporting. In this
4979 * case, we wait for 1000 ms + any delay requested by the caller.
4981 if (!pdev->link_active_reporting) {
4982 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4987 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4988 * after which we should expect an link active if the reset was
4989 * successful. If so, software must wait a minimum 100ms before sending
4990 * configuration requests to devices downstream this port.
4992 * If the link fails to activate, either the device was physically
4993 * removed or the link is permanently failed.
4997 rc = pcie_wait_for_link_status(pdev, false, active);
5000 rc = pcie_failed_link_retrain(pdev);
5015 * pcie_wait_for_link - Wait until link is active or inactive
5016 * @pdev: Bridge device
5017 * @active: waiting for active or inactive?
5019 * Use this to wait till link becomes active or inactive.
5021 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5023 return pcie_wait_for_link_delay(pdev, active, 100);
5027 * Find maximum D3cold delay required by all the devices on the bus. The
5028 * spec says 100 ms, but firmware can lower it and we allow drivers to
5029 * increase it as well.
5031 * Called with @pci_bus_sem locked for reading.
5033 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5035 const struct pci_dev *pdev;
5036 int min_delay = 100;
5039 list_for_each_entry(pdev, &bus->devices, bus_list) {
5040 if (pdev->d3cold_delay < min_delay)
5041 min_delay = pdev->d3cold_delay;
5042 if (pdev->d3cold_delay > max_delay)
5043 max_delay = pdev->d3cold_delay;
5046 return max(min_delay, max_delay);
5050 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5052 * @reset_type: reset type in human-readable form
5054 * Handle necessary delays before access to the devices on the secondary
5055 * side of the bridge are permitted after D3cold to D0 transition
5056 * or Conventional Reset.
5058 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5059 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5062 * Return 0 on success or -ENOTTY if the first device on the secondary bus
5063 * failed to become accessible.
5065 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5067 struct pci_dev *child;
5070 if (pci_dev_is_disconnected(dev))
5073 if (!pci_is_bridge(dev))
5076 down_read(&pci_bus_sem);
5079 * We only deal with devices that are present currently on the bus.
5080 * For any hot-added devices the access delay is handled in pciehp
5081 * board_added(). In case of ACPI hotplug the firmware is expected
5082 * to configure the devices before OS is notified.
5084 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5085 up_read(&pci_bus_sem);
5089 /* Take d3cold_delay requirements into account */
5090 delay = pci_bus_max_d3cold_delay(dev->subordinate);
5092 up_read(&pci_bus_sem);
5096 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5098 up_read(&pci_bus_sem);
5101 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5102 * accessing the device after reset (that is 1000 ms + 100 ms).
5104 if (!pci_is_pcie(dev)) {
5105 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5106 msleep(1000 + delay);
5111 * For PCIe downstream and root ports that do not support speeds
5112 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5113 * speeds (gen3) we need to wait first for the data link layer to
5116 * However, 100 ms is the minimum and the PCIe spec says the
5117 * software must allow at least 1s before it can determine that the
5118 * device that did not respond is a broken device. Also device can
5119 * take longer than that to respond if it indicates so through Request
5120 * Retry Status completions.
5122 * Therefore we wait for 100 ms and check for the device presence
5123 * until the timeout expires.
5125 if (!pcie_downstream_port(dev))
5128 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5131 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5134 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5138 * If the port supports active link reporting we now check
5139 * whether the link is active and if not bail out early with
5140 * the assumption that the device is not present anymore.
5142 if (!dev->link_active_reporting)
5145 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5146 if (!(status & PCI_EXP_LNKSTA_DLLLA))
5149 return pci_dev_wait(child, reset_type,
5150 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5153 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5155 if (!pcie_wait_for_link_delay(dev, true, delay)) {
5156 /* Did not train, no need to wait any further */
5157 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5161 return pci_dev_wait(child, reset_type,
5162 PCIE_RESET_READY_POLL_MS - delay);
5165 void pci_reset_secondary_bus(struct pci_dev *dev)
5169 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5170 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5171 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5174 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5175 * this to 2ms to ensure that we meet the minimum requirement.
5179 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5180 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5183 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5185 pci_reset_secondary_bus(dev);
5189 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5190 * @dev: Bridge device
5192 * Use the bridge control register to assert reset on the secondary bus.
5193 * Devices on the secondary bus are left in power-on state.
5195 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5197 pcibios_reset_secondary_bus(dev);
5199 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5201 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5203 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5205 struct pci_dev *pdev;
5207 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5208 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5211 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5218 return pci_bridge_secondary_bus_reset(dev->bus->self);
5221 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5225 if (!hotplug || !try_module_get(hotplug->owner))
5228 if (hotplug->ops->reset_slot)
5229 rc = hotplug->ops->reset_slot(hotplug, probe);
5231 module_put(hotplug->owner);
5236 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5238 if (dev->multifunction || dev->subordinate || !dev->slot ||
5239 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5242 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5245 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5249 rc = pci_dev_reset_slot_function(dev, probe);
5252 return pci_parent_bus_reset(dev, probe);
5255 void pci_dev_lock(struct pci_dev *dev)
5257 /* block PM suspend, driver probe, etc. */
5258 device_lock(&dev->dev);
5259 pci_cfg_access_lock(dev);
5261 EXPORT_SYMBOL_GPL(pci_dev_lock);
5263 /* Return 1 on successful lock, 0 on contention */
5264 int pci_dev_trylock(struct pci_dev *dev)
5266 if (device_trylock(&dev->dev)) {
5267 if (pci_cfg_access_trylock(dev))
5269 device_unlock(&dev->dev);
5274 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5276 void pci_dev_unlock(struct pci_dev *dev)
5278 pci_cfg_access_unlock(dev);
5279 device_unlock(&dev->dev);
5281 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5283 static void pci_dev_save_and_disable(struct pci_dev *dev)
5285 const struct pci_error_handlers *err_handler =
5286 dev->driver ? dev->driver->err_handler : NULL;
5289 * dev->driver->err_handler->reset_prepare() is protected against
5290 * races with ->remove() by the device lock, which must be held by
5293 if (err_handler && err_handler->reset_prepare)
5294 err_handler->reset_prepare(dev);
5297 * Wake-up device prior to save. PM registers default to D0 after
5298 * reset and a simple register restore doesn't reliably return
5299 * to a non-D0 state anyway.
5301 pci_set_power_state(dev, PCI_D0);
5303 pci_save_state(dev);
5305 * Disable the device by clearing the Command register, except for
5306 * INTx-disable which is set. This not only disables MMIO and I/O port
5307 * BARs, but also prevents the device from being Bus Master, preventing
5308 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5309 * compliant devices, INTx-disable prevents legacy interrupts.
5311 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5314 static void pci_dev_restore(struct pci_dev *dev)
5316 const struct pci_error_handlers *err_handler =
5317 dev->driver ? dev->driver->err_handler : NULL;
5319 pci_restore_state(dev);
5322 * dev->driver->err_handler->reset_done() is protected against
5323 * races with ->remove() by the device lock, which must be held by
5326 if (err_handler && err_handler->reset_done)
5327 err_handler->reset_done(dev);
5330 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5331 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5333 { pci_dev_specific_reset, .name = "device_specific" },
5334 { pci_dev_acpi_reset, .name = "acpi" },
5335 { pcie_reset_flr, .name = "flr" },
5336 { pci_af_flr, .name = "af_flr" },
5337 { pci_pm_reset, .name = "pm" },
5338 { pci_reset_bus_function, .name = "bus" },
5341 static ssize_t reset_method_show(struct device *dev,
5342 struct device_attribute *attr, char *buf)
5344 struct pci_dev *pdev = to_pci_dev(dev);
5348 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5349 m = pdev->reset_methods[i];
5353 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5354 pci_reset_fn_methods[m].name);
5358 len += sysfs_emit_at(buf, len, "\n");
5363 static int reset_method_lookup(const char *name)
5367 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5368 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5372 return 0; /* not found */
5375 static ssize_t reset_method_store(struct device *dev,
5376 struct device_attribute *attr,
5377 const char *buf, size_t count)
5379 struct pci_dev *pdev = to_pci_dev(dev);
5380 char *options, *name;
5382 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5384 if (sysfs_streq(buf, "")) {
5385 pdev->reset_methods[0] = 0;
5386 pci_warn(pdev, "All device reset methods disabled by user");
5390 if (sysfs_streq(buf, "default")) {
5391 pci_init_reset_methods(pdev);
5395 options = kstrndup(buf, count, GFP_KERNEL);
5400 while ((name = strsep(&options, " ")) != NULL) {
5401 if (sysfs_streq(name, ""))
5406 m = reset_method_lookup(name);
5408 pci_err(pdev, "Invalid reset method '%s'", name);
5412 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5413 pci_err(pdev, "Unsupported reset method '%s'", name);
5417 if (n == PCI_NUM_RESET_METHODS - 1) {
5418 pci_err(pdev, "Too many reset methods\n");
5422 reset_methods[n++] = m;
5425 reset_methods[n] = 0;
5427 /* Warn if dev-specific supported but not highest priority */
5428 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5429 reset_methods[0] != 1)
5430 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5431 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5436 /* Leave previous methods unchanged */
5440 static DEVICE_ATTR_RW(reset_method);
5442 static struct attribute *pci_dev_reset_method_attrs[] = {
5443 &dev_attr_reset_method.attr,
5447 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5448 struct attribute *a, int n)
5450 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5452 if (!pci_reset_supported(pdev))
5458 const struct attribute_group pci_dev_reset_method_attr_group = {
5459 .attrs = pci_dev_reset_method_attrs,
5460 .is_visible = pci_dev_reset_method_attr_is_visible,
5464 * __pci_reset_function_locked - reset a PCI device function while holding
5465 * the @dev mutex lock.
5466 * @dev: PCI device to reset
5468 * Some devices allow an individual function to be reset without affecting
5469 * other functions in the same device. The PCI device must be responsive
5470 * to PCI config space in order to use this function.
5472 * The device function is presumed to be unused and the caller is holding
5473 * the device mutex lock when this function is called.
5475 * Resetting the device will make the contents of PCI configuration space
5476 * random, so any caller of this must be prepared to reinitialise the
5477 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5480 * Returns 0 if the device function was successfully reset or negative if the
5481 * device doesn't support resetting a single function.
5483 int __pci_reset_function_locked(struct pci_dev *dev)
5490 * A reset method returns -ENOTTY if it doesn't support this device and
5491 * we should try the next method.
5493 * If it returns 0 (success), we're finished. If it returns any other
5494 * error, we're also finished: this indicates that further reset
5495 * mechanisms might be broken on the device.
5497 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5498 m = dev->reset_methods[i];
5502 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5511 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5514 * pci_init_reset_methods - check whether device can be safely reset
5515 * and store supported reset mechanisms.
5516 * @dev: PCI device to check for reset mechanisms
5518 * Some devices allow an individual function to be reset without affecting
5519 * other functions in the same device. The PCI device must be in D0-D3hot
5522 * Stores reset mechanisms supported by device in reset_methods byte array
5523 * which is a member of struct pci_dev.
5525 void pci_init_reset_methods(struct pci_dev *dev)
5529 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5534 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5535 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5537 dev->reset_methods[i++] = m;
5538 else if (rc != -ENOTTY)
5542 dev->reset_methods[i] = 0;
5546 * pci_reset_function - quiesce and reset a PCI device function
5547 * @dev: PCI device to reset
5549 * Some devices allow an individual function to be reset without affecting
5550 * other functions in the same device. The PCI device must be responsive
5551 * to PCI config space in order to use this function.
5553 * This function does not just reset the PCI portion of a device, but
5554 * clears all the state associated with the device. This function differs
5555 * from __pci_reset_function_locked() in that it saves and restores device state
5556 * over the reset and takes the PCI device lock.
5558 * Returns 0 if the device function was successfully reset or negative if the
5559 * device doesn't support resetting a single function.
5561 int pci_reset_function(struct pci_dev *dev)
5565 if (!pci_reset_supported(dev))
5569 pci_dev_save_and_disable(dev);
5571 rc = __pci_reset_function_locked(dev);
5573 pci_dev_restore(dev);
5574 pci_dev_unlock(dev);
5578 EXPORT_SYMBOL_GPL(pci_reset_function);
5581 * pci_reset_function_locked - quiesce and reset a PCI device function
5582 * @dev: PCI device to reset
5584 * Some devices allow an individual function to be reset without affecting
5585 * other functions in the same device. The PCI device must be responsive
5586 * to PCI config space in order to use this function.
5588 * This function does not just reset the PCI portion of a device, but
5589 * clears all the state associated with the device. This function differs
5590 * from __pci_reset_function_locked() in that it saves and restores device state
5591 * over the reset. It also differs from pci_reset_function() in that it
5592 * requires the PCI device lock to be held.
5594 * Returns 0 if the device function was successfully reset or negative if the
5595 * device doesn't support resetting a single function.
5597 int pci_reset_function_locked(struct pci_dev *dev)
5601 if (!pci_reset_supported(dev))
5604 pci_dev_save_and_disable(dev);
5606 rc = __pci_reset_function_locked(dev);
5608 pci_dev_restore(dev);
5612 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5615 * pci_try_reset_function - quiesce and reset a PCI device function
5616 * @dev: PCI device to reset
5618 * Same as above, except return -EAGAIN if unable to lock device.
5620 int pci_try_reset_function(struct pci_dev *dev)
5624 if (!pci_reset_supported(dev))
5627 if (!pci_dev_trylock(dev))
5630 pci_dev_save_and_disable(dev);
5631 rc = __pci_reset_function_locked(dev);
5632 pci_dev_restore(dev);
5633 pci_dev_unlock(dev);
5637 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5639 /* Do any devices on or below this bus prevent a bus reset? */
5640 static bool pci_bus_resettable(struct pci_bus *bus)
5642 struct pci_dev *dev;
5645 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5648 list_for_each_entry(dev, &bus->devices, bus_list) {
5649 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5650 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5657 /* Lock devices from the top of the tree down */
5658 static void pci_bus_lock(struct pci_bus *bus)
5660 struct pci_dev *dev;
5662 list_for_each_entry(dev, &bus->devices, bus_list) {
5664 if (dev->subordinate)
5665 pci_bus_lock(dev->subordinate);
5669 /* Unlock devices from the bottom of the tree up */
5670 static void pci_bus_unlock(struct pci_bus *bus)
5672 struct pci_dev *dev;
5674 list_for_each_entry(dev, &bus->devices, bus_list) {
5675 if (dev->subordinate)
5676 pci_bus_unlock(dev->subordinate);
5677 pci_dev_unlock(dev);
5681 /* Return 1 on successful lock, 0 on contention */
5682 static int pci_bus_trylock(struct pci_bus *bus)
5684 struct pci_dev *dev;
5686 list_for_each_entry(dev, &bus->devices, bus_list) {
5687 if (!pci_dev_trylock(dev))
5689 if (dev->subordinate) {
5690 if (!pci_bus_trylock(dev->subordinate)) {
5691 pci_dev_unlock(dev);
5699 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5700 if (dev->subordinate)
5701 pci_bus_unlock(dev->subordinate);
5702 pci_dev_unlock(dev);
5707 /* Do any devices on or below this slot prevent a bus reset? */
5708 static bool pci_slot_resettable(struct pci_slot *slot)
5710 struct pci_dev *dev;
5712 if (slot->bus->self &&
5713 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5716 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5717 if (!dev->slot || dev->slot != slot)
5719 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5720 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5727 /* Lock devices from the top of the tree down */
5728 static void pci_slot_lock(struct pci_slot *slot)
5730 struct pci_dev *dev;
5732 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5733 if (!dev->slot || dev->slot != slot)
5736 if (dev->subordinate)
5737 pci_bus_lock(dev->subordinate);
5741 /* Unlock devices from the bottom of the tree up */
5742 static void pci_slot_unlock(struct pci_slot *slot)
5744 struct pci_dev *dev;
5746 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5747 if (!dev->slot || dev->slot != slot)
5749 if (dev->subordinate)
5750 pci_bus_unlock(dev->subordinate);
5751 pci_dev_unlock(dev);
5755 /* Return 1 on successful lock, 0 on contention */
5756 static int pci_slot_trylock(struct pci_slot *slot)
5758 struct pci_dev *dev;
5760 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5761 if (!dev->slot || dev->slot != slot)
5763 if (!pci_dev_trylock(dev))
5765 if (dev->subordinate) {
5766 if (!pci_bus_trylock(dev->subordinate)) {
5767 pci_dev_unlock(dev);
5775 list_for_each_entry_continue_reverse(dev,
5776 &slot->bus->devices, bus_list) {
5777 if (!dev->slot || dev->slot != slot)
5779 if (dev->subordinate)
5780 pci_bus_unlock(dev->subordinate);
5781 pci_dev_unlock(dev);
5787 * Save and disable devices from the top of the tree down while holding
5788 * the @dev mutex lock for the entire tree.
5790 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5792 struct pci_dev *dev;
5794 list_for_each_entry(dev, &bus->devices, bus_list) {
5795 pci_dev_save_and_disable(dev);
5796 if (dev->subordinate)
5797 pci_bus_save_and_disable_locked(dev->subordinate);
5802 * Restore devices from top of the tree down while holding @dev mutex lock
5803 * for the entire tree. Parent bridges need to be restored before we can
5804 * get to subordinate devices.
5806 static void pci_bus_restore_locked(struct pci_bus *bus)
5808 struct pci_dev *dev;
5810 list_for_each_entry(dev, &bus->devices, bus_list) {
5811 pci_dev_restore(dev);
5812 if (dev->subordinate)
5813 pci_bus_restore_locked(dev->subordinate);
5818 * Save and disable devices from the top of the tree down while holding
5819 * the @dev mutex lock for the entire tree.
5821 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5823 struct pci_dev *dev;
5825 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5826 if (!dev->slot || dev->slot != slot)
5828 pci_dev_save_and_disable(dev);
5829 if (dev->subordinate)
5830 pci_bus_save_and_disable_locked(dev->subordinate);
5835 * Restore devices from top of the tree down while holding @dev mutex lock
5836 * for the entire tree. Parent bridges need to be restored before we can
5837 * get to subordinate devices.
5839 static void pci_slot_restore_locked(struct pci_slot *slot)
5841 struct pci_dev *dev;
5843 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5844 if (!dev->slot || dev->slot != slot)
5846 pci_dev_restore(dev);
5847 if (dev->subordinate)
5848 pci_bus_restore_locked(dev->subordinate);
5852 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5856 if (!slot || !pci_slot_resettable(slot))
5860 pci_slot_lock(slot);
5864 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5867 pci_slot_unlock(slot);
5873 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5874 * @slot: PCI slot to probe
5876 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5878 int pci_probe_reset_slot(struct pci_slot *slot)
5880 return pci_slot_reset(slot, PCI_RESET_PROBE);
5882 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5885 * __pci_reset_slot - Try to reset a PCI slot
5886 * @slot: PCI slot to reset
5888 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5889 * independent of other slots. For instance, some slots may support slot power
5890 * control. In the case of a 1:1 bus to slot architecture, this function may
5891 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5892 * Generally a slot reset should be attempted before a bus reset. All of the
5893 * function of the slot and any subordinate buses behind the slot are reset
5894 * through this function. PCI config space of all devices in the slot and
5895 * behind the slot is saved before and restored after reset.
5897 * Same as above except return -EAGAIN if the slot cannot be locked
5899 static int __pci_reset_slot(struct pci_slot *slot)
5903 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5907 if (pci_slot_trylock(slot)) {
5908 pci_slot_save_and_disable_locked(slot);
5910 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5911 pci_slot_restore_locked(slot);
5912 pci_slot_unlock(slot);
5919 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5923 if (!bus->self || !pci_bus_resettable(bus))
5933 ret = pci_bridge_secondary_bus_reset(bus->self);
5935 pci_bus_unlock(bus);
5941 * pci_bus_error_reset - reset the bridge's subordinate bus
5942 * @bridge: The parent device that connects to the bus to reset
5944 * This function will first try to reset the slots on this bus if the method is
5945 * available. If slot reset fails or is not available, this will fall back to a
5946 * secondary bus reset.
5948 int pci_bus_error_reset(struct pci_dev *bridge)
5950 struct pci_bus *bus = bridge->subordinate;
5951 struct pci_slot *slot;
5956 mutex_lock(&pci_slot_mutex);
5957 if (list_empty(&bus->slots))
5960 list_for_each_entry(slot, &bus->slots, list)
5961 if (pci_probe_reset_slot(slot))
5964 list_for_each_entry(slot, &bus->slots, list)
5965 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5968 mutex_unlock(&pci_slot_mutex);
5971 mutex_unlock(&pci_slot_mutex);
5972 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5976 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5977 * @bus: PCI bus to probe
5979 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5981 int pci_probe_reset_bus(struct pci_bus *bus)
5983 return pci_bus_reset(bus, PCI_RESET_PROBE);
5985 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5988 * __pci_reset_bus - Try to reset a PCI bus
5989 * @bus: top level PCI bus to reset
5991 * Same as above except return -EAGAIN if the bus cannot be locked
5993 static int __pci_reset_bus(struct pci_bus *bus)
5997 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6001 if (pci_bus_trylock(bus)) {
6002 pci_bus_save_and_disable_locked(bus);
6004 rc = pci_bridge_secondary_bus_reset(bus->self);
6005 pci_bus_restore_locked(bus);
6006 pci_bus_unlock(bus);
6014 * pci_reset_bus - Try to reset a PCI bus
6015 * @pdev: top level PCI device to reset via slot/bus
6017 * Same as above except return -EAGAIN if the bus cannot be locked
6019 int pci_reset_bus(struct pci_dev *pdev)
6021 return (!pci_probe_reset_slot(pdev->slot)) ?
6022 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6024 EXPORT_SYMBOL_GPL(pci_reset_bus);
6027 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6028 * @dev: PCI device to query
6030 * Returns mmrbc: maximum designed memory read count in bytes or
6031 * appropriate error value.
6033 int pcix_get_max_mmrbc(struct pci_dev *dev)
6038 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6042 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6045 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
6047 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6050 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6051 * @dev: PCI device to query
6053 * Returns mmrbc: maximum memory read count in bytes or appropriate error
6056 int pcix_get_mmrbc(struct pci_dev *dev)
6061 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6065 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6068 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
6070 EXPORT_SYMBOL(pcix_get_mmrbc);
6073 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6074 * @dev: PCI device to query
6075 * @mmrbc: maximum memory read count in bytes
6076 * valid values are 512, 1024, 2048, 4096
6078 * If possible sets maximum memory read byte count, some bridges have errata
6079 * that prevent this.
6081 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6087 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6090 v = ffs(mmrbc) - 10;
6092 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6096 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6099 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6102 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6105 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6107 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6110 cmd &= ~PCI_X_CMD_MAX_READ;
6112 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6117 EXPORT_SYMBOL(pcix_set_mmrbc);
6120 * pcie_get_readrq - get PCI Express read request size
6121 * @dev: PCI device to query
6123 * Returns maximum memory read request in bytes or appropriate error value.
6125 int pcie_get_readrq(struct pci_dev *dev)
6129 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6131 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6133 EXPORT_SYMBOL(pcie_get_readrq);
6136 * pcie_set_readrq - set PCI Express maximum memory read request
6137 * @dev: PCI device to query
6138 * @rq: maximum memory read count in bytes
6139 * valid values are 128, 256, 512, 1024, 2048, 4096
6141 * If possible sets maximum memory read request in bytes
6143 int pcie_set_readrq(struct pci_dev *dev, int rq)
6147 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6149 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6153 * If using the "performance" PCIe config, we clamp the read rq
6154 * size to the max packet size to keep the host bridge from
6155 * generating requests larger than we can cope with.
6157 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6158 int mps = pcie_get_mps(dev);
6164 v = (ffs(rq) - 8) << 12;
6166 if (bridge->no_inc_mrrs) {
6167 int max_mrrs = pcie_get_readrq(dev);
6169 if (rq > max_mrrs) {
6170 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6175 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6176 PCI_EXP_DEVCTL_READRQ, v);
6178 return pcibios_err_to_errno(ret);
6180 EXPORT_SYMBOL(pcie_set_readrq);
6183 * pcie_get_mps - get PCI Express maximum payload size
6184 * @dev: PCI device to query
6186 * Returns maximum payload size in bytes
6188 int pcie_get_mps(struct pci_dev *dev)
6192 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6194 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6196 EXPORT_SYMBOL(pcie_get_mps);
6199 * pcie_set_mps - set PCI Express maximum payload size
6200 * @dev: PCI device to query
6201 * @mps: maximum payload size in bytes
6202 * valid values are 128, 256, 512, 1024, 2048, 4096
6204 * If possible sets maximum payload size
6206 int pcie_set_mps(struct pci_dev *dev, int mps)
6211 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6215 if (v > dev->pcie_mpss)
6219 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6220 PCI_EXP_DEVCTL_PAYLOAD, v);
6222 return pcibios_err_to_errno(ret);
6224 EXPORT_SYMBOL(pcie_set_mps);
6227 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6228 * device and its bandwidth limitation
6229 * @dev: PCI device to query
6230 * @limiting_dev: storage for device causing the bandwidth limitation
6231 * @speed: storage for speed of limiting device
6232 * @width: storage for width of limiting device
6234 * Walk up the PCI device chain and find the point where the minimum
6235 * bandwidth is available. Return the bandwidth available there and (if
6236 * limiting_dev, speed, and width pointers are supplied) information about
6237 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6240 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6241 enum pci_bus_speed *speed,
6242 enum pcie_link_width *width)
6245 enum pci_bus_speed next_speed;
6246 enum pcie_link_width next_width;
6250 *speed = PCI_SPEED_UNKNOWN;
6252 *width = PCIE_LNK_WIDTH_UNKNOWN;
6257 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6259 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6260 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6261 PCI_EXP_LNKSTA_NLW_SHIFT;
6263 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6265 /* Check if current device limits the total bandwidth */
6266 if (!bw || next_bw <= bw) {
6270 *limiting_dev = dev;
6272 *speed = next_speed;
6274 *width = next_width;
6277 dev = pci_upstream_bridge(dev);
6282 EXPORT_SYMBOL(pcie_bandwidth_available);
6285 * pcie_get_speed_cap - query for the PCI device's link speed capability
6286 * @dev: PCI device to query
6288 * Query the PCI device speed capability. Return the maximum link speed
6289 * supported by the device.
6291 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6293 u32 lnkcap2, lnkcap;
6296 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6297 * implementation note there recommends using the Supported Link
6298 * Speeds Vector in Link Capabilities 2 when supported.
6300 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6301 * should use the Supported Link Speeds field in Link Capabilities,
6302 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6304 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6306 /* PCIe r3.0-compliant */
6308 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6310 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6311 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6312 return PCIE_SPEED_5_0GT;
6313 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6314 return PCIE_SPEED_2_5GT;
6316 return PCI_SPEED_UNKNOWN;
6318 EXPORT_SYMBOL(pcie_get_speed_cap);
6321 * pcie_get_width_cap - query for the PCI device's link width capability
6322 * @dev: PCI device to query
6324 * Query the PCI device width capability. Return the maximum link width
6325 * supported by the device.
6327 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6331 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6333 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6335 return PCIE_LNK_WIDTH_UNKNOWN;
6337 EXPORT_SYMBOL(pcie_get_width_cap);
6340 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6342 * @speed: storage for link speed
6343 * @width: storage for link width
6345 * Calculate a PCI device's link bandwidth by querying for its link speed
6346 * and width, multiplying them, and applying encoding overhead. The result
6347 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6349 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6350 enum pcie_link_width *width)
6352 *speed = pcie_get_speed_cap(dev);
6353 *width = pcie_get_width_cap(dev);
6355 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6358 return *width * PCIE_SPEED2MBS_ENC(*speed);
6362 * __pcie_print_link_status - Report the PCI device's link speed and width
6363 * @dev: PCI device to query
6364 * @verbose: Print info even when enough bandwidth is available
6366 * If the available bandwidth at the device is less than the device is
6367 * capable of, report the device's maximum possible bandwidth and the
6368 * upstream link that limits its performance. If @verbose, always print
6369 * the available bandwidth, even if the device isn't constrained.
6371 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6373 enum pcie_link_width width, width_cap;
6374 enum pci_bus_speed speed, speed_cap;
6375 struct pci_dev *limiting_dev = NULL;
6376 u32 bw_avail, bw_cap;
6378 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6379 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6381 if (bw_avail >= bw_cap && verbose)
6382 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6383 bw_cap / 1000, bw_cap % 1000,
6384 pci_speed_string(speed_cap), width_cap);
6385 else if (bw_avail < bw_cap)
6386 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6387 bw_avail / 1000, bw_avail % 1000,
6388 pci_speed_string(speed), width,
6389 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6390 bw_cap / 1000, bw_cap % 1000,
6391 pci_speed_string(speed_cap), width_cap);
6395 * pcie_print_link_status - Report the PCI device's link speed and width
6396 * @dev: PCI device to query
6398 * Report the available bandwidth at the device.
6400 void pcie_print_link_status(struct pci_dev *dev)
6402 __pcie_print_link_status(dev, true);
6404 EXPORT_SYMBOL(pcie_print_link_status);
6407 * pci_select_bars - Make BAR mask from the type of resource
6408 * @dev: the PCI device for which BAR mask is made
6409 * @flags: resource type mask to be selected
6411 * This helper routine makes bar mask from the type of resource.
6413 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6416 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6417 if (pci_resource_flags(dev, i) & flags)
6421 EXPORT_SYMBOL(pci_select_bars);
6423 /* Some architectures require additional programming to enable VGA */
6424 static arch_set_vga_state_t arch_set_vga_state;
6426 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6428 arch_set_vga_state = func; /* NULL disables */
6431 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6432 unsigned int command_bits, u32 flags)
6434 if (arch_set_vga_state)
6435 return arch_set_vga_state(dev, decode, command_bits,
6441 * pci_set_vga_state - set VGA decode state on device and parents if requested
6442 * @dev: the PCI device
6443 * @decode: true = enable decoding, false = disable decoding
6444 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6445 * @flags: traverse ancestors and change bridges
6446 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6448 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6449 unsigned int command_bits, u32 flags)
6451 struct pci_bus *bus;
6452 struct pci_dev *bridge;
6456 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6458 /* ARCH specific VGA enables */
6459 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6463 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6464 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6466 cmd |= command_bits;
6468 cmd &= ~command_bits;
6469 pci_write_config_word(dev, PCI_COMMAND, cmd);
6472 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6479 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6482 cmd |= PCI_BRIDGE_CTL_VGA;
6484 cmd &= ~PCI_BRIDGE_CTL_VGA;
6485 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6494 bool pci_pr3_present(struct pci_dev *pdev)
6496 struct acpi_device *adev;
6501 adev = ACPI_COMPANION(&pdev->dev);
6505 return adev->power.flags.power_resources &&
6506 acpi_has_method(adev->handle, "_PR3");
6508 EXPORT_SYMBOL_GPL(pci_pr3_present);
6512 * pci_add_dma_alias - Add a DMA devfn alias for a device
6513 * @dev: the PCI device for which alias is added
6514 * @devfn_from: alias slot and function
6515 * @nr_devfns: number of subsequent devfns to alias
6517 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6518 * which is used to program permissible bus-devfn source addresses for DMA
6519 * requests in an IOMMU. These aliases factor into IOMMU group creation
6520 * and are useful for devices generating DMA requests beyond or different
6521 * from their logical bus-devfn. Examples include device quirks where the
6522 * device simply uses the wrong devfn, as well as non-transparent bridges
6523 * where the alias may be a proxy for devices in another domain.
6525 * IOMMU group creation is performed during device discovery or addition,
6526 * prior to any potential DMA mapping and therefore prior to driver probing
6527 * (especially for userspace assigned devices where IOMMU group definition
6528 * cannot be left as a userspace activity). DMA aliases should therefore
6529 * be configured via quirks, such as the PCI fixup header quirk.
6531 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6532 unsigned int nr_devfns)
6536 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6537 devfn_to = devfn_from + nr_devfns - 1;
6539 if (!dev->dma_alias_mask)
6540 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6541 if (!dev->dma_alias_mask) {
6542 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6546 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6549 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6550 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6551 else if (nr_devfns > 1)
6552 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6553 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6554 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6557 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6559 return (dev1->dma_alias_mask &&
6560 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6561 (dev2->dma_alias_mask &&
6562 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6563 pci_real_dma_dev(dev1) == dev2 ||
6564 pci_real_dma_dev(dev2) == dev1;
6567 bool pci_device_is_present(struct pci_dev *pdev)
6571 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6572 pdev = pci_physfn(pdev);
6573 if (pci_dev_is_disconnected(pdev))
6575 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6577 EXPORT_SYMBOL_GPL(pci_device_is_present);
6579 void pci_ignore_hotplug(struct pci_dev *dev)
6581 struct pci_dev *bridge = dev->bus->self;
6583 dev->ignore_hotplug = 1;
6584 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6586 bridge->ignore_hotplug = 1;
6588 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6591 * pci_real_dma_dev - Get PCI DMA device for PCI device
6592 * @dev: the PCI device that may have a PCI DMA alias
6594 * Permits the platform to provide architecture-specific functionality to
6595 * devices needing to alias DMA to another PCI device on another PCI bus. If
6596 * the PCI device is on the same bus, it is recommended to use
6597 * pci_add_dma_alias(). This is the default implementation. Architecture
6598 * implementations can override this.
6600 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6605 resource_size_t __weak pcibios_default_alignment(void)
6611 * Arches that don't want to expose struct resource to userland as-is in
6612 * sysfs and /proc can implement their own pci_resource_to_user().
6614 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6615 const struct resource *rsrc,
6616 resource_size_t *start, resource_size_t *end)
6618 *start = rsrc->start;
6622 static char *resource_alignment_param;
6623 static DEFINE_SPINLOCK(resource_alignment_lock);
6626 * pci_specified_resource_alignment - get resource alignment specified by user.
6627 * @dev: the PCI device to get
6628 * @resize: whether or not to change resources' size when reassigning alignment
6630 * RETURNS: Resource alignment if it is specified.
6631 * Zero if it is not specified.
6633 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6636 int align_order, count;
6637 resource_size_t align = pcibios_default_alignment();
6641 spin_lock(&resource_alignment_lock);
6642 p = resource_alignment_param;
6645 if (pci_has_flag(PCI_PROBE_ONLY)) {
6647 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6653 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6656 if (align_order > 63) {
6657 pr_err("PCI: Invalid requested alignment (order %d)\n",
6659 align_order = PAGE_SHIFT;
6662 align_order = PAGE_SHIFT;
6665 ret = pci_dev_str_match(dev, p, &p);
6668 align = 1ULL << align_order;
6670 } else if (ret < 0) {
6671 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6676 if (*p != ';' && *p != ',') {
6677 /* End of param or invalid format */
6683 spin_unlock(&resource_alignment_lock);
6687 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6688 resource_size_t align, bool resize)
6690 struct resource *r = &dev->resource[bar];
6691 resource_size_t size;
6693 if (!(r->flags & IORESOURCE_MEM))
6696 if (r->flags & IORESOURCE_PCI_FIXED) {
6697 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6698 bar, r, (unsigned long long)align);
6702 size = resource_size(r);
6707 * Increase the alignment of the resource. There are two ways we
6710 * 1) Increase the size of the resource. BARs are aligned on their
6711 * size, so when we reallocate space for this resource, we'll
6712 * allocate it with the larger alignment. This also prevents
6713 * assignment of any other BARs inside the alignment region, so
6714 * if we're requesting page alignment, this means no other BARs
6715 * will share the page.
6717 * The disadvantage is that this makes the resource larger than
6718 * the hardware BAR, which may break drivers that compute things
6719 * based on the resource size, e.g., to find registers at a
6720 * fixed offset before the end of the BAR.
6722 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6723 * set r->start to the desired alignment. By itself this
6724 * doesn't prevent other BARs being put inside the alignment
6725 * region, but if we realign *every* resource of every device in
6726 * the system, none of them will share an alignment region.
6728 * When the user has requested alignment for only some devices via
6729 * the "pci=resource_alignment" argument, "resize" is true and we
6730 * use the first method. Otherwise we assume we're aligning all
6731 * devices and we use the second.
6734 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6735 bar, r, (unsigned long long)align);
6741 r->flags &= ~IORESOURCE_SIZEALIGN;
6742 r->flags |= IORESOURCE_STARTALIGN;
6744 r->end = r->start + size - 1;
6746 r->flags |= IORESOURCE_UNSET;
6750 * This function disables memory decoding and releases memory resources
6751 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6752 * It also rounds up size to specified alignment.
6753 * Later on, the kernel will assign page-aligned memory resource back
6756 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6760 resource_size_t align;
6762 bool resize = false;
6765 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6766 * 3.4.1.11. Their resources are allocated from the space
6767 * described by the VF BARx register in the PF's SR-IOV capability.
6768 * We can't influence their alignment here.
6773 /* check if specified PCI is target device to reassign */
6774 align = pci_specified_resource_alignment(dev, &resize);
6778 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6779 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6780 pci_warn(dev, "Can't reassign resources to host bridge\n");
6784 pci_read_config_word(dev, PCI_COMMAND, &command);
6785 command &= ~PCI_COMMAND_MEMORY;
6786 pci_write_config_word(dev, PCI_COMMAND, command);
6788 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6789 pci_request_resource_alignment(dev, i, align, resize);
6792 * Need to disable bridge's resource window,
6793 * to enable the kernel to reassign new resource
6796 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6797 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6798 r = &dev->resource[i];
6799 if (!(r->flags & IORESOURCE_MEM))
6801 r->flags |= IORESOURCE_UNSET;
6802 r->end = resource_size(r) - 1;
6805 pci_disable_bridge_window(dev);
6809 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6813 spin_lock(&resource_alignment_lock);
6814 if (resource_alignment_param)
6815 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6816 spin_unlock(&resource_alignment_lock);
6821 static ssize_t resource_alignment_store(const struct bus_type *bus,
6822 const char *buf, size_t count)
6824 char *param, *old, *end;
6826 if (count >= (PAGE_SIZE - 1))
6829 param = kstrndup(buf, count, GFP_KERNEL);
6833 end = strchr(param, '\n');
6837 spin_lock(&resource_alignment_lock);
6838 old = resource_alignment_param;
6839 if (strlen(param)) {
6840 resource_alignment_param = param;
6843 resource_alignment_param = NULL;
6845 spin_unlock(&resource_alignment_lock);
6852 static BUS_ATTR_RW(resource_alignment);
6854 static int __init pci_resource_alignment_sysfs_init(void)
6856 return bus_create_file(&pci_bus_type,
6857 &bus_attr_resource_alignment);
6859 late_initcall(pci_resource_alignment_sysfs_init);
6861 static void pci_no_domains(void)
6863 #ifdef CONFIG_PCI_DOMAINS
6864 pci_domains_supported = 0;
6868 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6869 static DEFINE_IDA(pci_domain_nr_static_ida);
6870 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6872 static void of_pci_reserve_static_domain_nr(void)
6874 struct device_node *np;
6877 for_each_node_by_type(np, "pci") {
6878 domain_nr = of_get_pci_domain_nr(np);
6882 * Permanently allocate domain_nr in dynamic_ida
6883 * to prevent it from dynamic allocation.
6885 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6886 domain_nr, domain_nr, GFP_KERNEL);
6890 static int of_pci_bus_find_domain_nr(struct device *parent)
6892 static bool static_domains_reserved = false;
6895 /* On the first call scan device tree for static allocations. */
6896 if (!static_domains_reserved) {
6897 of_pci_reserve_static_domain_nr();
6898 static_domains_reserved = true;
6903 * If domain is in DT, allocate it in static IDA. This
6904 * prevents duplicate static allocations in case of errors
6907 domain_nr = of_get_pci_domain_nr(parent->of_node);
6909 return ida_alloc_range(&pci_domain_nr_static_ida,
6910 domain_nr, domain_nr,
6915 * If domain was not specified in DT, choose a free ID from dynamic
6916 * allocations. All domain numbers from DT are permanently in
6917 * dynamic allocations to prevent assigning them to other DT nodes
6918 * without static domain.
6920 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6923 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6925 if (bus->domain_nr < 0)
6928 /* Release domain from IDA where it was allocated. */
6929 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6930 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6932 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6935 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6937 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6938 acpi_pci_bus_find_domain_nr(bus);
6941 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6945 of_pci_bus_release_domain_nr(bus, parent);
6950 * pci_ext_cfg_avail - can we access extended PCI config space?
6952 * Returns 1 if we can access PCI extended config space (offsets
6953 * greater than 0xff). This is the default implementation. Architecture
6954 * implementations can override this.
6956 int __weak pci_ext_cfg_avail(void)
6961 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6964 EXPORT_SYMBOL(pci_fixup_cardbus);
6966 static int __init pci_setup(char *str)
6969 char *k = strchr(str, ',');
6972 if (*str && (str = pcibios_setup(str)) && *str) {
6973 if (!strcmp(str, "nomsi")) {
6975 } else if (!strncmp(str, "noats", 5)) {
6976 pr_info("PCIe: ATS is disabled\n");
6977 pcie_ats_disabled = true;
6978 } else if (!strcmp(str, "noaer")) {
6980 } else if (!strcmp(str, "earlydump")) {
6981 pci_early_dump = true;
6982 } else if (!strncmp(str, "realloc=", 8)) {
6983 pci_realloc_get_opt(str + 8);
6984 } else if (!strncmp(str, "realloc", 7)) {
6985 pci_realloc_get_opt("on");
6986 } else if (!strcmp(str, "nodomains")) {
6988 } else if (!strncmp(str, "noari", 5)) {
6989 pcie_ari_disabled = true;
6990 } else if (!strncmp(str, "cbiosize=", 9)) {
6991 pci_cardbus_io_size = memparse(str + 9, &str);
6992 } else if (!strncmp(str, "cbmemsize=", 10)) {
6993 pci_cardbus_mem_size = memparse(str + 10, &str);
6994 } else if (!strncmp(str, "resource_alignment=", 19)) {
6995 resource_alignment_param = str + 19;
6996 } else if (!strncmp(str, "ecrc=", 5)) {
6997 pcie_ecrc_get_policy(str + 5);
6998 } else if (!strncmp(str, "hpiosize=", 9)) {
6999 pci_hotplug_io_size = memparse(str + 9, &str);
7000 } else if (!strncmp(str, "hpmmiosize=", 11)) {
7001 pci_hotplug_mmio_size = memparse(str + 11, &str);
7002 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7003 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7004 } else if (!strncmp(str, "hpmemsize=", 10)) {
7005 pci_hotplug_mmio_size = memparse(str + 10, &str);
7006 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7007 } else if (!strncmp(str, "hpbussize=", 10)) {
7008 pci_hotplug_bus_size =
7009 simple_strtoul(str + 10, &str, 0);
7010 if (pci_hotplug_bus_size > 0xff)
7011 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7012 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7013 pcie_bus_config = PCIE_BUS_TUNE_OFF;
7014 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
7015 pcie_bus_config = PCIE_BUS_SAFE;
7016 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
7017 pcie_bus_config = PCIE_BUS_PERFORMANCE;
7018 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7019 pcie_bus_config = PCIE_BUS_PEER2PEER;
7020 } else if (!strncmp(str, "pcie_scan_all", 13)) {
7021 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7022 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
7023 disable_acs_redir_param = str + 18;
7025 pr_err("PCI: Unknown option `%s'\n", str);
7032 early_param("pci", pci_setup);
7035 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7036 * in pci_setup(), above, to point to data in the __initdata section which
7037 * will be freed after the init sequence is complete. We can't allocate memory
7038 * in pci_setup() because some architectures do not have any memory allocation
7039 * service available during an early_param() call. So we allocate memory and
7040 * copy the variable here before the init section is freed.
7043 static int __init pci_realloc_setup_params(void)
7045 resource_alignment_param = kstrdup(resource_alignment_param,
7047 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7051 pure_initcall(pci_realloc_setup_params);