2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
33 #include <linux/aer.h>
36 const char *pci_power_names[] = {
37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39 EXPORT_SYMBOL_GPL(pci_power_names);
41 int isa_dma_bridge_buggy;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45 EXPORT_SYMBOL(pci_pci_problems);
47 unsigned int pci_pm_d3_delay;
49 static void pci_pme_list_scan(struct work_struct *work);
51 static LIST_HEAD(pci_pme_list);
52 static DEFINE_MUTEX(pci_pme_list_mutex);
53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
55 struct pci_pme_device {
56 struct list_head list;
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
62 static void pci_dev_d3_sleep(struct pci_dev *dev)
64 unsigned int delay = dev->d3_delay;
66 if (delay < pci_pm_d3_delay)
67 delay = pci_pm_d3_delay;
73 #ifdef CONFIG_PCI_DOMAINS
74 int pci_domains_supported = 1;
77 #define DEFAULT_CARDBUS_IO_SIZE (256)
78 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
79 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
80 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
81 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
83 #define DEFAULT_HOTPLUG_IO_SIZE (256)
84 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
85 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
86 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
87 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
89 #define DEFAULT_HOTPLUG_BUS_SIZE 1
90 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
92 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
95 * The default CLS is used if arch didn't set CLS explicitly and not
96 * all pci devices agree on the same value. Arch can override either
97 * the dfl or actual value as it sees fit. Don't forget this is
98 * measured in 32-bit words, not bytes.
100 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
101 u8 pci_cache_line_size;
104 * If we set up a device for bus mastering, we need to check the latency
105 * timer as certain BIOSes forget to set it properly.
107 unsigned int pcibios_max_latency = 255;
109 /* If set, the PCIe ARI capability will not be used. */
110 static bool pcie_ari_disabled;
112 /* Disable bridge_d3 for all PCIe ports */
113 static bool pci_bridge_d3_disable;
114 /* Force bridge_d3 for all PCIe ports */
115 static bool pci_bridge_d3_force;
117 static int __init pcie_port_pm_setup(char *str)
119 if (!strcmp(str, "off"))
120 pci_bridge_d3_disable = true;
121 else if (!strcmp(str, "force"))
122 pci_bridge_d3_force = true;
125 __setup("pcie_port_pm=", pcie_port_pm_setup);
128 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
129 * @bus: pointer to PCI bus structure to search
131 * Given a PCI bus, returns the highest PCI bus number present in the set
132 * including the given PCI bus and its list of child PCI buses.
134 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
137 unsigned char max, n;
139 max = bus->busn_res.end;
140 list_for_each_entry(tmp, &bus->children, node) {
141 n = pci_bus_max_busnr(tmp);
147 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
149 #ifdef CONFIG_HAS_IOMEM
150 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
152 struct resource *res = &pdev->resource[bar];
155 * Make sure the BAR is actually a memory resource, not an IO resource
157 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
158 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
161 return ioremap_nocache(res->start, resource_size(res));
163 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
165 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
168 * Make sure the BAR is actually a memory resource, not an IO resource
170 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
174 return ioremap_wc(pci_resource_start(pdev, bar),
175 pci_resource_len(pdev, bar));
177 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
181 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
182 u8 pos, int cap, int *ttl)
187 pci_bus_read_config_byte(bus, devfn, pos, &pos);
193 pci_bus_read_config_word(bus, devfn, pos, &ent);
205 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
208 int ttl = PCI_FIND_CAP_TTL;
210 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
213 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
215 return __pci_find_next_cap(dev->bus, dev->devfn,
216 pos + PCI_CAP_LIST_NEXT, cap);
218 EXPORT_SYMBOL_GPL(pci_find_next_capability);
220 static int __pci_bus_find_cap_start(struct pci_bus *bus,
221 unsigned int devfn, u8 hdr_type)
225 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
226 if (!(status & PCI_STATUS_CAP_LIST))
230 case PCI_HEADER_TYPE_NORMAL:
231 case PCI_HEADER_TYPE_BRIDGE:
232 return PCI_CAPABILITY_LIST;
233 case PCI_HEADER_TYPE_CARDBUS:
234 return PCI_CB_CAPABILITY_LIST;
241 * pci_find_capability - query for devices' capabilities
242 * @dev: PCI device to query
243 * @cap: capability code
245 * Tell if a device supports a given PCI capability.
246 * Returns the address of the requested capability structure within the
247 * device's PCI configuration space or 0 in case the device does not
248 * support it. Possible values for @cap:
250 * %PCI_CAP_ID_PM Power Management
251 * %PCI_CAP_ID_AGP Accelerated Graphics Port
252 * %PCI_CAP_ID_VPD Vital Product Data
253 * %PCI_CAP_ID_SLOTID Slot Identification
254 * %PCI_CAP_ID_MSI Message Signalled Interrupts
255 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
256 * %PCI_CAP_ID_PCIX PCI-X
257 * %PCI_CAP_ID_EXP PCI Express
259 int pci_find_capability(struct pci_dev *dev, int cap)
263 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
265 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
269 EXPORT_SYMBOL(pci_find_capability);
272 * pci_bus_find_capability - query for devices' capabilities
273 * @bus: the PCI bus to query
274 * @devfn: PCI device to query
275 * @cap: capability code
277 * Like pci_find_capability() but works for pci devices that do not have a
278 * pci_dev structure set up yet.
280 * Returns the address of the requested capability structure within the
281 * device's PCI configuration space or 0 in case the device does not
284 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
289 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
291 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
293 pos = __pci_find_next_cap(bus, devfn, pos, cap);
297 EXPORT_SYMBOL(pci_bus_find_capability);
300 * pci_find_next_ext_capability - Find an extended capability
301 * @dev: PCI device to query
302 * @start: address at which to start looking (0 to start at beginning of list)
303 * @cap: capability code
305 * Returns the address of the next matching extended capability structure
306 * within the device's PCI configuration space or 0 if the device does
307 * not support it. Some capabilities can occur several times, e.g., the
308 * vendor-specific capability, and this provides a way to find them all.
310 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
314 int pos = PCI_CFG_SPACE_SIZE;
316 /* minimum 8 bytes per capability */
317 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
319 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
325 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
329 * If we have no capabilities, this is indicated by cap ID,
330 * cap version and next pointer all being 0.
336 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
339 pos = PCI_EXT_CAP_NEXT(header);
340 if (pos < PCI_CFG_SPACE_SIZE)
343 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
349 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
352 * pci_find_ext_capability - Find an extended capability
353 * @dev: PCI device to query
354 * @cap: capability code
356 * Returns the address of the requested extended capability structure
357 * within the device's PCI configuration space or 0 if the device does
358 * not support it. Possible values for @cap:
360 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
361 * %PCI_EXT_CAP_ID_VC Virtual Channel
362 * %PCI_EXT_CAP_ID_DSN Device Serial Number
363 * %PCI_EXT_CAP_ID_PWR Power Budgeting
365 int pci_find_ext_capability(struct pci_dev *dev, int cap)
367 return pci_find_next_ext_capability(dev, 0, cap);
369 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
371 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
373 int rc, ttl = PCI_FIND_CAP_TTL;
376 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
377 mask = HT_3BIT_CAP_MASK;
379 mask = HT_5BIT_CAP_MASK;
381 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
382 PCI_CAP_ID_HT, &ttl);
384 rc = pci_read_config_byte(dev, pos + 3, &cap);
385 if (rc != PCIBIOS_SUCCESSFUL)
388 if ((cap & mask) == ht_cap)
391 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
392 pos + PCI_CAP_LIST_NEXT,
393 PCI_CAP_ID_HT, &ttl);
399 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
400 * @dev: PCI device to query
401 * @pos: Position from which to continue searching
402 * @ht_cap: Hypertransport capability code
404 * To be used in conjunction with pci_find_ht_capability() to search for
405 * all capabilities matching @ht_cap. @pos should always be a value returned
406 * from pci_find_ht_capability().
408 * NB. To be 100% safe against broken PCI devices, the caller should take
409 * steps to avoid an infinite loop.
411 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
413 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
415 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
418 * pci_find_ht_capability - query a device's Hypertransport capabilities
419 * @dev: PCI device to query
420 * @ht_cap: Hypertransport capability code
422 * Tell if a device supports a given Hypertransport capability.
423 * Returns an address within the device's PCI configuration space
424 * or 0 in case the device does not support the request capability.
425 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
426 * which has a Hypertransport capability matching @ht_cap.
428 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
432 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
434 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
438 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
441 * pci_find_parent_resource - return resource region of parent bus of given region
442 * @dev: PCI device structure contains resources to be searched
443 * @res: child resource record for which parent is sought
445 * For given resource region of given device, return the resource
446 * region of parent bus the given region is contained in.
448 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
449 struct resource *res)
451 const struct pci_bus *bus = dev->bus;
455 pci_bus_for_each_resource(bus, r, i) {
458 if (res->start && resource_contains(r, res)) {
461 * If the window is prefetchable but the BAR is
462 * not, the allocator made a mistake.
464 if (r->flags & IORESOURCE_PREFETCH &&
465 !(res->flags & IORESOURCE_PREFETCH))
469 * If we're below a transparent bridge, there may
470 * be both a positively-decoded aperture and a
471 * subtractively-decoded region that contain the BAR.
472 * We want the positively-decoded one, so this depends
473 * on pci_bus_for_each_resource() giving us those
481 EXPORT_SYMBOL(pci_find_parent_resource);
484 * pci_find_resource - Return matching PCI device resource
485 * @dev: PCI device to query
486 * @res: Resource to look for
488 * Goes over standard PCI resources (BARs) and checks if the given resource
489 * is partially or fully contained in any of them. In that case the
490 * matching resource is returned, %NULL otherwise.
492 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
496 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
497 struct resource *r = &dev->resource[i];
499 if (r->start && resource_contains(r, res))
505 EXPORT_SYMBOL(pci_find_resource);
508 * pci_find_pcie_root_port - return PCIe Root Port
509 * @dev: PCI device to query
511 * Traverse up the parent chain and return the PCIe Root Port PCI Device
512 * for a given PCI Device.
514 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
516 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
518 bridge = pci_upstream_bridge(dev);
519 while (bridge && pci_is_pcie(bridge)) {
520 highest_pcie_bridge = bridge;
521 bridge = pci_upstream_bridge(bridge);
524 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
527 return highest_pcie_bridge;
529 EXPORT_SYMBOL(pci_find_pcie_root_port);
532 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
533 * @dev: the PCI device to operate on
534 * @pos: config space offset of status word
535 * @mask: mask of bit(s) to care about in status word
537 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
539 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
543 /* Wait for Transaction Pending bit clean */
544 for (i = 0; i < 4; i++) {
547 msleep((1 << (i - 1)) * 100);
549 pci_read_config_word(dev, pos, &status);
550 if (!(status & mask))
558 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
559 * @dev: PCI device to have its BARs restored
561 * Restore the BAR values for a given device, so as to make it
562 * accessible by its driver.
564 static void pci_restore_bars(struct pci_dev *dev)
568 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
569 pci_update_resource(dev, i);
572 static const struct pci_platform_pm_ops *pci_platform_pm;
574 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
576 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
577 !ops->choose_state || !ops->sleep_wake || !ops->run_wake ||
580 pci_platform_pm = ops;
584 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
586 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
589 static inline int platform_pci_set_power_state(struct pci_dev *dev,
592 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
595 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
597 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
600 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
602 return pci_platform_pm ?
603 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
606 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
608 return pci_platform_pm ?
609 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
612 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
614 return pci_platform_pm ?
615 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
618 static inline bool platform_pci_need_resume(struct pci_dev *dev)
620 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
624 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
626 * @dev: PCI device to handle.
627 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
630 * -EINVAL if the requested state is invalid.
631 * -EIO if device does not support PCI PM or its PM capabilities register has a
632 * wrong version, or device doesn't support the requested state.
633 * 0 if device already is in the requested state.
634 * 0 if device's power state has been successfully changed.
636 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
639 bool need_restore = false;
641 /* Check if we're already there */
642 if (dev->current_state == state)
648 if (state < PCI_D0 || state > PCI_D3hot)
651 /* Validate current state:
652 * Can enter D0 from any state, but if we can only go deeper
653 * to sleep if we're already in a low power state
655 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
656 && dev->current_state > state) {
657 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
658 dev->current_state, state);
662 /* check if this device supports the desired state */
663 if ((state == PCI_D1 && !dev->d1_support)
664 || (state == PCI_D2 && !dev->d2_support))
667 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
669 /* If we're (effectively) in D3, force entire word to 0.
670 * This doesn't affect PME_Status, disables PME_En, and
671 * sets PowerState to 0.
673 switch (dev->current_state) {
677 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
682 case PCI_UNKNOWN: /* Boot-up */
683 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
684 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
686 /* Fall-through: force to D0 */
692 /* enter specified state */
693 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
695 /* Mandatory power management transition delays */
696 /* see PCI PM 1.1 5.6.1 table 18 */
697 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
698 pci_dev_d3_sleep(dev);
699 else if (state == PCI_D2 || dev->current_state == PCI_D2)
700 udelay(PCI_PM_D2_DELAY);
702 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
703 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
704 if (dev->current_state != state && printk_ratelimit())
705 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
709 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
710 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
711 * from D3hot to D0 _may_ perform an internal reset, thereby
712 * going to "D0 Uninitialized" rather than "D0 Initialized".
713 * For example, at least some versions of the 3c905B and the
714 * 3c556B exhibit this behaviour.
716 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
717 * devices in a D3hot state at boot. Consequently, we need to
718 * restore at least the BARs so that the device will be
719 * accessible to its driver.
722 pci_restore_bars(dev);
725 pcie_aspm_pm_state_change(dev->bus->self);
731 * pci_update_current_state - Read power state of given device and cache it
732 * @dev: PCI device to handle.
733 * @state: State to cache in case the device doesn't have the PM capability
735 * The power state is read from the PMCSR register, which however is
736 * inaccessible in D3cold. The platform firmware is therefore queried first
737 * to detect accessibility of the register. In case the platform firmware
738 * reports an incorrect state or the device isn't power manageable by the
739 * platform at all, we try to detect D3cold by testing accessibility of the
740 * vendor ID in config space.
742 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
744 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
745 !pci_device_is_present(dev)) {
746 dev->current_state = PCI_D3cold;
747 } else if (dev->pm_cap) {
750 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
751 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
753 dev->current_state = state;
758 * pci_power_up - Put the given device into D0 forcibly
759 * @dev: PCI device to power up
761 void pci_power_up(struct pci_dev *dev)
763 if (platform_pci_power_manageable(dev))
764 platform_pci_set_power_state(dev, PCI_D0);
766 pci_raw_set_power_state(dev, PCI_D0);
767 pci_update_current_state(dev, PCI_D0);
771 * pci_platform_power_transition - Use platform to change device power state
772 * @dev: PCI device to handle.
773 * @state: State to put the device into.
775 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
779 if (platform_pci_power_manageable(dev)) {
780 error = platform_pci_set_power_state(dev, state);
782 pci_update_current_state(dev, state);
786 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
787 dev->current_state = PCI_D0;
793 * pci_wakeup - Wake up a PCI device
794 * @pci_dev: Device to handle.
795 * @ign: ignored parameter
797 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
799 pci_wakeup_event(pci_dev);
800 pm_request_resume(&pci_dev->dev);
805 * pci_wakeup_bus - Walk given bus and wake up devices on it
806 * @bus: Top bus of the subtree to walk.
808 static void pci_wakeup_bus(struct pci_bus *bus)
811 pci_walk_bus(bus, pci_wakeup, NULL);
815 * __pci_start_power_transition - Start power transition of a PCI device
816 * @dev: PCI device to handle.
817 * @state: State to put the device into.
819 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
821 if (state == PCI_D0) {
822 pci_platform_power_transition(dev, PCI_D0);
824 * Mandatory power management transition delays, see
825 * PCI Express Base Specification Revision 2.0 Section
826 * 6.6.1: Conventional Reset. Do not delay for
827 * devices powered on/off by corresponding bridge,
828 * because have already delayed for the bridge.
830 if (dev->runtime_d3cold) {
831 if (dev->d3cold_delay)
832 msleep(dev->d3cold_delay);
834 * When powering on a bridge from D3cold, the
835 * whole hierarchy may be powered on into
836 * D0uninitialized state, resume them to give
837 * them a chance to suspend again
839 pci_wakeup_bus(dev->subordinate);
845 * __pci_dev_set_current_state - Set current state of a PCI device
846 * @dev: Device to handle
847 * @data: pointer to state to be set
849 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
851 pci_power_t state = *(pci_power_t *)data;
853 dev->current_state = state;
858 * __pci_bus_set_current_state - Walk given bus and set current state of devices
859 * @bus: Top bus of the subtree to walk.
860 * @state: state to be set
862 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
865 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
869 * __pci_complete_power_transition - Complete power transition of a PCI device
870 * @dev: PCI device to handle.
871 * @state: State to put the device into.
873 * This function should not be called directly by device drivers.
875 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
881 ret = pci_platform_power_transition(dev, state);
882 /* Power off the bridge may power off the whole hierarchy */
883 if (!ret && state == PCI_D3cold)
884 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
887 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
890 * pci_set_power_state - Set the power state of a PCI device
891 * @dev: PCI device to handle.
892 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
894 * Transition a device to a new power state, using the platform firmware and/or
895 * the device's PCI PM registers.
898 * -EINVAL if the requested state is invalid.
899 * -EIO if device does not support PCI PM or its PM capabilities register has a
900 * wrong version, or device doesn't support the requested state.
901 * 0 if device already is in the requested state.
902 * 0 if device's power state has been successfully changed.
904 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
908 /* bound the state we're entering */
909 if (state > PCI_D3cold)
911 else if (state < PCI_D0)
913 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
915 * If the device or the parent bridge do not support PCI PM,
916 * ignore the request if we're doing anything other than putting
917 * it into D0 (which would only happen on boot).
921 /* Check if we're already there */
922 if (dev->current_state == state)
925 __pci_start_power_transition(dev, state);
927 /* This device is quirked not to be put into D3, so
928 don't put it in D3 */
929 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
933 * To put device in D3cold, we put device into D3hot in native
934 * way, then put device into D3cold with platform ops
936 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
939 if (!__pci_complete_power_transition(dev, state))
944 EXPORT_SYMBOL(pci_set_power_state);
947 * pci_choose_state - Choose the power state of a PCI device
948 * @dev: PCI device to be suspended
949 * @state: target sleep state for the whole system. This is the value
950 * that is passed to suspend() function.
952 * Returns PCI power state suitable for given device and given system
956 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
963 ret = platform_pci_choose_state(dev);
964 if (ret != PCI_POWER_ERROR)
967 switch (state.event) {
970 case PM_EVENT_FREEZE:
971 case PM_EVENT_PRETHAW:
972 /* REVISIT both freeze and pre-thaw "should" use D0 */
973 case PM_EVENT_SUSPEND:
974 case PM_EVENT_HIBERNATE:
977 dev_info(&dev->dev, "unrecognized suspend event %d\n",
983 EXPORT_SYMBOL(pci_choose_state);
985 #define PCI_EXP_SAVE_REGS 7
987 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
988 u16 cap, bool extended)
990 struct pci_cap_saved_state *tmp;
992 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
993 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
999 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1001 return _pci_find_saved_cap(dev, cap, false);
1004 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1006 return _pci_find_saved_cap(dev, cap, true);
1009 static int pci_save_pcie_state(struct pci_dev *dev)
1012 struct pci_cap_saved_state *save_state;
1015 if (!pci_is_pcie(dev))
1018 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1020 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1024 cap = (u16 *)&save_state->cap.data[0];
1025 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1029 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1030 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1031 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1036 static void pci_restore_pcie_state(struct pci_dev *dev)
1039 struct pci_cap_saved_state *save_state;
1042 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1046 cap = (u16 *)&save_state->cap.data[0];
1047 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1051 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1052 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1053 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1057 static int pci_save_pcix_state(struct pci_dev *dev)
1060 struct pci_cap_saved_state *save_state;
1062 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1066 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1068 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1072 pci_read_config_word(dev, pos + PCI_X_CMD,
1073 (u16 *)save_state->cap.data);
1078 static void pci_restore_pcix_state(struct pci_dev *dev)
1081 struct pci_cap_saved_state *save_state;
1084 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1085 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1086 if (!save_state || !pos)
1088 cap = (u16 *)&save_state->cap.data[0];
1090 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1095 * pci_save_state - save the PCI configuration space of a device before suspending
1096 * @dev: - PCI device that we're dealing with
1098 int pci_save_state(struct pci_dev *dev)
1101 /* XXX: 100% dword access ok here? */
1102 for (i = 0; i < 16; i++)
1103 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1104 dev->state_saved = true;
1106 i = pci_save_pcie_state(dev);
1110 i = pci_save_pcix_state(dev);
1114 return pci_save_vc_state(dev);
1116 EXPORT_SYMBOL(pci_save_state);
1118 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1119 u32 saved_val, int retry)
1123 pci_read_config_dword(pdev, offset, &val);
1124 if (val == saved_val)
1128 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1129 offset, val, saved_val);
1130 pci_write_config_dword(pdev, offset, saved_val);
1134 pci_read_config_dword(pdev, offset, &val);
1135 if (val == saved_val)
1142 static void pci_restore_config_space_range(struct pci_dev *pdev,
1143 int start, int end, int retry)
1147 for (index = end; index >= start; index--)
1148 pci_restore_config_dword(pdev, 4 * index,
1149 pdev->saved_config_space[index],
1153 static void pci_restore_config_space(struct pci_dev *pdev)
1155 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1156 pci_restore_config_space_range(pdev, 10, 15, 0);
1157 /* Restore BARs before the command register. */
1158 pci_restore_config_space_range(pdev, 4, 9, 10);
1159 pci_restore_config_space_range(pdev, 0, 3, 0);
1161 pci_restore_config_space_range(pdev, 0, 15, 0);
1166 * pci_restore_state - Restore the saved state of a PCI device
1167 * @dev: - PCI device that we're dealing with
1169 void pci_restore_state(struct pci_dev *dev)
1171 if (!dev->state_saved)
1174 /* PCI Express register must be restored first */
1175 pci_restore_pcie_state(dev);
1176 pci_restore_ats_state(dev);
1177 pci_restore_vc_state(dev);
1179 pci_cleanup_aer_error_status_regs(dev);
1181 pci_restore_config_space(dev);
1183 pci_restore_pcix_state(dev);
1184 pci_restore_msi_state(dev);
1186 /* Restore ACS and IOV configuration state */
1187 pci_enable_acs(dev);
1188 pci_restore_iov_state(dev);
1190 dev->state_saved = false;
1192 EXPORT_SYMBOL(pci_restore_state);
1194 struct pci_saved_state {
1195 u32 config_space[16];
1196 struct pci_cap_saved_data cap[0];
1200 * pci_store_saved_state - Allocate and return an opaque struct containing
1201 * the device saved state.
1202 * @dev: PCI device that we're dealing with
1204 * Return NULL if no state or error.
1206 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1208 struct pci_saved_state *state;
1209 struct pci_cap_saved_state *tmp;
1210 struct pci_cap_saved_data *cap;
1213 if (!dev->state_saved)
1216 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1218 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1219 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1221 state = kzalloc(size, GFP_KERNEL);
1225 memcpy(state->config_space, dev->saved_config_space,
1226 sizeof(state->config_space));
1229 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1230 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1231 memcpy(cap, &tmp->cap, len);
1232 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1234 /* Empty cap_save terminates list */
1238 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1241 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1242 * @dev: PCI device that we're dealing with
1243 * @state: Saved state returned from pci_store_saved_state()
1245 int pci_load_saved_state(struct pci_dev *dev,
1246 struct pci_saved_state *state)
1248 struct pci_cap_saved_data *cap;
1250 dev->state_saved = false;
1255 memcpy(dev->saved_config_space, state->config_space,
1256 sizeof(state->config_space));
1260 struct pci_cap_saved_state *tmp;
1262 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1263 if (!tmp || tmp->cap.size != cap->size)
1266 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1267 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1268 sizeof(struct pci_cap_saved_data) + cap->size);
1271 dev->state_saved = true;
1274 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1277 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1278 * and free the memory allocated for it.
1279 * @dev: PCI device that we're dealing with
1280 * @state: Pointer to saved state returned from pci_store_saved_state()
1282 int pci_load_and_free_saved_state(struct pci_dev *dev,
1283 struct pci_saved_state **state)
1285 int ret = pci_load_saved_state(dev, *state);
1290 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1292 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1294 return pci_enable_resources(dev, bars);
1297 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1300 struct pci_dev *bridge;
1304 err = pci_set_power_state(dev, PCI_D0);
1305 if (err < 0 && err != -EIO)
1308 bridge = pci_upstream_bridge(dev);
1310 pcie_aspm_powersave_config_link(bridge);
1312 err = pcibios_enable_device(dev, bars);
1315 pci_fixup_device(pci_fixup_enable, dev);
1317 if (dev->msi_enabled || dev->msix_enabled)
1320 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1322 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1323 if (cmd & PCI_COMMAND_INTX_DISABLE)
1324 pci_write_config_word(dev, PCI_COMMAND,
1325 cmd & ~PCI_COMMAND_INTX_DISABLE);
1332 * pci_reenable_device - Resume abandoned device
1333 * @dev: PCI device to be resumed
1335 * Note this function is a backend of pci_default_resume and is not supposed
1336 * to be called by normal code, write proper resume handler and use it instead.
1338 int pci_reenable_device(struct pci_dev *dev)
1340 if (pci_is_enabled(dev))
1341 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1344 EXPORT_SYMBOL(pci_reenable_device);
1346 static void pci_enable_bridge(struct pci_dev *dev)
1348 struct pci_dev *bridge;
1351 bridge = pci_upstream_bridge(dev);
1353 pci_enable_bridge(bridge);
1355 if (pci_is_enabled(dev)) {
1356 if (!dev->is_busmaster)
1357 pci_set_master(dev);
1361 retval = pci_enable_device(dev);
1363 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1365 pci_set_master(dev);
1368 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1370 struct pci_dev *bridge;
1375 * Power state could be unknown at this point, either due to a fresh
1376 * boot or a device removal call. So get the current power state
1377 * so that things like MSI message writing will behave as expected
1378 * (e.g. if the device really is in D0 at enable time).
1382 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1383 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1386 if (atomic_inc_return(&dev->enable_cnt) > 1)
1387 return 0; /* already enabled */
1389 bridge = pci_upstream_bridge(dev);
1391 pci_enable_bridge(bridge);
1393 /* only skip sriov related */
1394 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1395 if (dev->resource[i].flags & flags)
1397 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1398 if (dev->resource[i].flags & flags)
1401 err = do_pci_enable_device(dev, bars);
1403 atomic_dec(&dev->enable_cnt);
1408 * pci_enable_device_io - Initialize a device for use with IO space
1409 * @dev: PCI device to be initialized
1411 * Initialize device before it's used by a driver. Ask low-level code
1412 * to enable I/O resources. Wake up the device if it was suspended.
1413 * Beware, this function can fail.
1415 int pci_enable_device_io(struct pci_dev *dev)
1417 return pci_enable_device_flags(dev, IORESOURCE_IO);
1419 EXPORT_SYMBOL(pci_enable_device_io);
1422 * pci_enable_device_mem - Initialize a device for use with Memory space
1423 * @dev: PCI device to be initialized
1425 * Initialize device before it's used by a driver. Ask low-level code
1426 * to enable Memory resources. Wake up the device if it was suspended.
1427 * Beware, this function can fail.
1429 int pci_enable_device_mem(struct pci_dev *dev)
1431 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1433 EXPORT_SYMBOL(pci_enable_device_mem);
1436 * pci_enable_device - Initialize device before it's used by a driver.
1437 * @dev: PCI device to be initialized
1439 * Initialize device before it's used by a driver. Ask low-level code
1440 * to enable I/O and memory. Wake up the device if it was suspended.
1441 * Beware, this function can fail.
1443 * Note we don't actually enable the device many times if we call
1444 * this function repeatedly (we just increment the count).
1446 int pci_enable_device(struct pci_dev *dev)
1448 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1450 EXPORT_SYMBOL(pci_enable_device);
1453 * Managed PCI resources. This manages device on/off, intx/msi/msix
1454 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1455 * there's no need to track it separately. pci_devres is initialized
1456 * when a device is enabled using managed PCI device enable interface.
1459 unsigned int enabled:1;
1460 unsigned int pinned:1;
1461 unsigned int orig_intx:1;
1462 unsigned int restore_intx:1;
1466 static void pcim_release(struct device *gendev, void *res)
1468 struct pci_dev *dev = to_pci_dev(gendev);
1469 struct pci_devres *this = res;
1472 if (dev->msi_enabled)
1473 pci_disable_msi(dev);
1474 if (dev->msix_enabled)
1475 pci_disable_msix(dev);
1477 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1478 if (this->region_mask & (1 << i))
1479 pci_release_region(dev, i);
1481 if (this->restore_intx)
1482 pci_intx(dev, this->orig_intx);
1484 if (this->enabled && !this->pinned)
1485 pci_disable_device(dev);
1488 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1490 struct pci_devres *dr, *new_dr;
1492 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1496 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1499 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1502 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1504 if (pci_is_managed(pdev))
1505 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1510 * pcim_enable_device - Managed pci_enable_device()
1511 * @pdev: PCI device to be initialized
1513 * Managed pci_enable_device().
1515 int pcim_enable_device(struct pci_dev *pdev)
1517 struct pci_devres *dr;
1520 dr = get_pci_dr(pdev);
1526 rc = pci_enable_device(pdev);
1528 pdev->is_managed = 1;
1533 EXPORT_SYMBOL(pcim_enable_device);
1536 * pcim_pin_device - Pin managed PCI device
1537 * @pdev: PCI device to pin
1539 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1540 * driver detach. @pdev must have been enabled with
1541 * pcim_enable_device().
1543 void pcim_pin_device(struct pci_dev *pdev)
1545 struct pci_devres *dr;
1547 dr = find_pci_dr(pdev);
1548 WARN_ON(!dr || !dr->enabled);
1552 EXPORT_SYMBOL(pcim_pin_device);
1555 * pcibios_add_device - provide arch specific hooks when adding device dev
1556 * @dev: the PCI device being added
1558 * Permits the platform to provide architecture specific functionality when
1559 * devices are added. This is the default implementation. Architecture
1560 * implementations can override this.
1562 int __weak pcibios_add_device(struct pci_dev *dev)
1568 * pcibios_release_device - provide arch specific hooks when releasing device dev
1569 * @dev: the PCI device being released
1571 * Permits the platform to provide architecture specific functionality when
1572 * devices are released. This is the default implementation. Architecture
1573 * implementations can override this.
1575 void __weak pcibios_release_device(struct pci_dev *dev) {}
1578 * pcibios_disable_device - disable arch specific PCI resources for device dev
1579 * @dev: the PCI device to disable
1581 * Disables architecture specific PCI resources for the device. This
1582 * is the default implementation. Architecture implementations can
1585 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1588 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1589 * @irq: ISA IRQ to penalize
1590 * @active: IRQ active or not
1592 * Permits the platform to provide architecture-specific functionality when
1593 * penalizing ISA IRQs. This is the default implementation. Architecture
1594 * implementations can override this.
1596 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1598 static void do_pci_disable_device(struct pci_dev *dev)
1602 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1603 if (pci_command & PCI_COMMAND_MASTER) {
1604 pci_command &= ~PCI_COMMAND_MASTER;
1605 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1608 pcibios_disable_device(dev);
1612 * pci_disable_enabled_device - Disable device without updating enable_cnt
1613 * @dev: PCI device to disable
1615 * NOTE: This function is a backend of PCI power management routines and is
1616 * not supposed to be called drivers.
1618 void pci_disable_enabled_device(struct pci_dev *dev)
1620 if (pci_is_enabled(dev))
1621 do_pci_disable_device(dev);
1625 * pci_disable_device - Disable PCI device after use
1626 * @dev: PCI device to be disabled
1628 * Signal to the system that the PCI device is not in use by the system
1629 * anymore. This only involves disabling PCI bus-mastering, if active.
1631 * Note we don't actually disable the device until all callers of
1632 * pci_enable_device() have called pci_disable_device().
1634 void pci_disable_device(struct pci_dev *dev)
1636 struct pci_devres *dr;
1638 dr = find_pci_dr(dev);
1642 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1643 "disabling already-disabled device");
1645 if (atomic_dec_return(&dev->enable_cnt) != 0)
1648 do_pci_disable_device(dev);
1650 dev->is_busmaster = 0;
1652 EXPORT_SYMBOL(pci_disable_device);
1655 * pcibios_set_pcie_reset_state - set reset state for device dev
1656 * @dev: the PCIe device reset
1657 * @state: Reset state to enter into
1660 * Sets the PCIe reset state for the device. This is the default
1661 * implementation. Architecture implementations can override this.
1663 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1664 enum pcie_reset_state state)
1670 * pci_set_pcie_reset_state - set reset state for device dev
1671 * @dev: the PCIe device reset
1672 * @state: Reset state to enter into
1675 * Sets the PCI reset state for the device.
1677 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1679 return pcibios_set_pcie_reset_state(dev, state);
1681 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1684 * pci_check_pme_status - Check if given device has generated PME.
1685 * @dev: Device to check.
1687 * Check the PME status of the device and if set, clear it and clear PME enable
1688 * (if set). Return 'true' if PME status and PME enable were both set or
1689 * 'false' otherwise.
1691 bool pci_check_pme_status(struct pci_dev *dev)
1700 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1701 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1702 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1705 /* Clear PME status. */
1706 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1707 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1708 /* Disable PME to avoid interrupt flood. */
1709 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1713 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1719 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1720 * @dev: Device to handle.
1721 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1723 * Check if @dev has generated PME and queue a resume request for it in that
1726 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1728 if (pme_poll_reset && dev->pme_poll)
1729 dev->pme_poll = false;
1731 if (pci_check_pme_status(dev)) {
1732 pci_wakeup_event(dev);
1733 pm_request_resume(&dev->dev);
1739 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1740 * @bus: Top bus of the subtree to walk.
1742 void pci_pme_wakeup_bus(struct pci_bus *bus)
1745 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1750 * pci_pme_capable - check the capability of PCI device to generate PME#
1751 * @dev: PCI device to handle.
1752 * @state: PCI state from which device will issue PME#.
1754 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1759 return !!(dev->pme_support & (1 << state));
1761 EXPORT_SYMBOL(pci_pme_capable);
1763 static void pci_pme_list_scan(struct work_struct *work)
1765 struct pci_pme_device *pme_dev, *n;
1767 mutex_lock(&pci_pme_list_mutex);
1768 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1769 if (pme_dev->dev->pme_poll) {
1770 struct pci_dev *bridge;
1772 bridge = pme_dev->dev->bus->self;
1774 * If bridge is in low power state, the
1775 * configuration space of subordinate devices
1776 * may be not accessible
1778 if (bridge && bridge->current_state != PCI_D0)
1780 pci_pme_wakeup(pme_dev->dev, NULL);
1782 list_del(&pme_dev->list);
1786 if (!list_empty(&pci_pme_list))
1787 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1788 msecs_to_jiffies(PME_TIMEOUT));
1789 mutex_unlock(&pci_pme_list_mutex);
1792 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1796 if (!dev->pme_support)
1799 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1800 /* Clear PME_Status by writing 1 to it and enable PME# */
1801 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1803 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1805 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1809 * pci_pme_active - enable or disable PCI device's PME# function
1810 * @dev: PCI device to handle.
1811 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1813 * The caller must verify that the device is capable of generating PME# before
1814 * calling this function with @enable equal to 'true'.
1816 void pci_pme_active(struct pci_dev *dev, bool enable)
1818 __pci_pme_active(dev, enable);
1821 * PCI (as opposed to PCIe) PME requires that the device have
1822 * its PME# line hooked up correctly. Not all hardware vendors
1823 * do this, so the PME never gets delivered and the device
1824 * remains asleep. The easiest way around this is to
1825 * periodically walk the list of suspended devices and check
1826 * whether any have their PME flag set. The assumption is that
1827 * we'll wake up often enough anyway that this won't be a huge
1828 * hit, and the power savings from the devices will still be a
1831 * Although PCIe uses in-band PME message instead of PME# line
1832 * to report PME, PME does not work for some PCIe devices in
1833 * reality. For example, there are devices that set their PME
1834 * status bits, but don't really bother to send a PME message;
1835 * there are PCI Express Root Ports that don't bother to
1836 * trigger interrupts when they receive PME messages from the
1837 * devices below. So PME poll is used for PCIe devices too.
1840 if (dev->pme_poll) {
1841 struct pci_pme_device *pme_dev;
1843 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1846 dev_warn(&dev->dev, "can't enable PME#\n");
1850 mutex_lock(&pci_pme_list_mutex);
1851 list_add(&pme_dev->list, &pci_pme_list);
1852 if (list_is_singular(&pci_pme_list))
1853 queue_delayed_work(system_freezable_wq,
1855 msecs_to_jiffies(PME_TIMEOUT));
1856 mutex_unlock(&pci_pme_list_mutex);
1858 mutex_lock(&pci_pme_list_mutex);
1859 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1860 if (pme_dev->dev == dev) {
1861 list_del(&pme_dev->list);
1866 mutex_unlock(&pci_pme_list_mutex);
1870 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1872 EXPORT_SYMBOL(pci_pme_active);
1875 * __pci_enable_wake - enable PCI device as wakeup event source
1876 * @dev: PCI device affected
1877 * @state: PCI state from which device will issue wakeup events
1878 * @runtime: True if the events are to be generated at run time
1879 * @enable: True to enable event generation; false to disable
1881 * This enables the device as a wakeup event source, or disables it.
1882 * When such events involves platform-specific hooks, those hooks are
1883 * called automatically by this routine.
1885 * Devices with legacy power management (no standard PCI PM capabilities)
1886 * always require such platform hooks.
1889 * 0 is returned on success
1890 * -EINVAL is returned if device is not supposed to wake up the system
1891 * Error code depending on the platform is returned if both the platform and
1892 * the native mechanism fail to enable the generation of wake-up events
1894 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1895 bool runtime, bool enable)
1899 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1902 /* Don't do the same thing twice in a row for one device. */
1903 if (!!enable == !!dev->wakeup_prepared)
1907 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1908 * Anderson we should be doing PME# wake enable followed by ACPI wake
1909 * enable. To disable wake-up we call the platform first, for symmetry.
1915 if (pci_pme_capable(dev, state))
1916 pci_pme_active(dev, true);
1919 error = runtime ? platform_pci_run_wake(dev, true) :
1920 platform_pci_sleep_wake(dev, true);
1924 dev->wakeup_prepared = true;
1927 platform_pci_run_wake(dev, false);
1929 platform_pci_sleep_wake(dev, false);
1930 pci_pme_active(dev, false);
1931 dev->wakeup_prepared = false;
1936 EXPORT_SYMBOL(__pci_enable_wake);
1939 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1940 * @dev: PCI device to prepare
1941 * @enable: True to enable wake-up event generation; false to disable
1943 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1944 * and this function allows them to set that up cleanly - pci_enable_wake()
1945 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1946 * ordering constraints.
1948 * This function only returns error code if the device is not capable of
1949 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1950 * enable wake-up power for it.
1952 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1954 return pci_pme_capable(dev, PCI_D3cold) ?
1955 pci_enable_wake(dev, PCI_D3cold, enable) :
1956 pci_enable_wake(dev, PCI_D3hot, enable);
1958 EXPORT_SYMBOL(pci_wake_from_d3);
1961 * pci_target_state - find an appropriate low power state for a given PCI dev
1964 * Use underlying platform code to find a supported low power state for @dev.
1965 * If the platform can't manage @dev, return the deepest state from which it
1966 * can generate wake events, based on any available PME info.
1968 static pci_power_t pci_target_state(struct pci_dev *dev)
1970 pci_power_t target_state = PCI_D3hot;
1972 if (platform_pci_power_manageable(dev)) {
1974 * Call the platform to choose the target state of the device
1975 * and enable wake-up from this state if supported.
1977 pci_power_t state = platform_pci_choose_state(dev);
1980 case PCI_POWER_ERROR:
1985 if (pci_no_d1d2(dev))
1988 target_state = state;
1991 return target_state;
1995 target_state = PCI_D0;
1998 * If the device is in D3cold even though it's not power-manageable by
1999 * the platform, it may have been powered down by non-standard means.
2000 * Best to let it slumber.
2002 if (dev->current_state == PCI_D3cold)
2003 target_state = PCI_D3cold;
2005 if (device_may_wakeup(&dev->dev)) {
2007 * Find the deepest state from which the device can generate
2008 * wake-up events, make it the target state and enable device
2011 if (dev->pme_support) {
2013 && !(dev->pme_support & (1 << target_state)))
2018 return target_state;
2022 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2023 * @dev: Device to handle.
2025 * Choose the power state appropriate for the device depending on whether
2026 * it can wake up the system and/or is power manageable by the platform
2027 * (PCI_D3hot is the default) and put the device into that state.
2029 int pci_prepare_to_sleep(struct pci_dev *dev)
2031 pci_power_t target_state = pci_target_state(dev);
2034 if (target_state == PCI_POWER_ERROR)
2037 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
2039 error = pci_set_power_state(dev, target_state);
2042 pci_enable_wake(dev, target_state, false);
2046 EXPORT_SYMBOL(pci_prepare_to_sleep);
2049 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2050 * @dev: Device to handle.
2052 * Disable device's system wake-up capability and put it into D0.
2054 int pci_back_from_sleep(struct pci_dev *dev)
2056 pci_enable_wake(dev, PCI_D0, false);
2057 return pci_set_power_state(dev, PCI_D0);
2059 EXPORT_SYMBOL(pci_back_from_sleep);
2062 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2063 * @dev: PCI device being suspended.
2065 * Prepare @dev to generate wake-up events at run time and put it into a low
2068 int pci_finish_runtime_suspend(struct pci_dev *dev)
2070 pci_power_t target_state = pci_target_state(dev);
2073 if (target_state == PCI_POWER_ERROR)
2076 dev->runtime_d3cold = target_state == PCI_D3cold;
2078 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2080 error = pci_set_power_state(dev, target_state);
2083 __pci_enable_wake(dev, target_state, true, false);
2084 dev->runtime_d3cold = false;
2091 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2092 * @dev: Device to check.
2094 * Return true if the device itself is capable of generating wake-up events
2095 * (through the platform or using the native PCIe PME) or if the device supports
2096 * PME and one of its upstream bridges can generate wake-up events.
2098 bool pci_dev_run_wake(struct pci_dev *dev)
2100 struct pci_bus *bus = dev->bus;
2102 if (device_run_wake(&dev->dev))
2105 if (!dev->pme_support)
2108 /* PME-capable in principle, but not from the intended sleep state */
2109 if (!pci_pme_capable(dev, pci_target_state(dev)))
2112 while (bus->parent) {
2113 struct pci_dev *bridge = bus->self;
2115 if (device_run_wake(&bridge->dev))
2121 /* We have reached the root bus. */
2123 return device_run_wake(bus->bridge);
2127 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2130 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2131 * @pci_dev: Device to check.
2133 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2134 * reconfigured due to wakeup settings difference between system and runtime
2135 * suspend and the current power state of it is suitable for the upcoming
2136 * (system) transition.
2138 * If the device is not configured for system wakeup, disable PME for it before
2139 * returning 'true' to prevent it from waking up the system unnecessarily.
2141 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2143 struct device *dev = &pci_dev->dev;
2145 if (!pm_runtime_suspended(dev)
2146 || pci_target_state(pci_dev) != pci_dev->current_state
2147 || platform_pci_need_resume(pci_dev))
2151 * At this point the device is good to go unless it's been configured
2152 * to generate PME at the runtime suspend time, but it is not supposed
2153 * to wake up the system. In that case, simply disable PME for it
2154 * (it will have to be re-enabled on exit from system resume).
2156 * If the device's power state is D3cold and the platform check above
2157 * hasn't triggered, the device's configuration is suitable and we don't
2158 * need to manipulate it at all.
2160 spin_lock_irq(&dev->power.lock);
2162 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2163 !device_may_wakeup(dev))
2164 __pci_pme_active(pci_dev, false);
2166 spin_unlock_irq(&dev->power.lock);
2171 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2172 * @pci_dev: Device to handle.
2174 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2175 * it might have been disabled during the prepare phase of system suspend if
2176 * the device was not configured for system wakeup.
2178 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2180 struct device *dev = &pci_dev->dev;
2182 if (!pci_dev_run_wake(pci_dev))
2185 spin_lock_irq(&dev->power.lock);
2187 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2188 __pci_pme_active(pci_dev, true);
2190 spin_unlock_irq(&dev->power.lock);
2193 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2195 struct device *dev = &pdev->dev;
2196 struct device *parent = dev->parent;
2199 pm_runtime_get_sync(parent);
2200 pm_runtime_get_noresume(dev);
2202 * pdev->current_state is set to PCI_D3cold during suspending,
2203 * so wait until suspending completes
2205 pm_runtime_barrier(dev);
2207 * Only need to resume devices in D3cold, because config
2208 * registers are still accessible for devices suspended but
2211 if (pdev->current_state == PCI_D3cold)
2212 pm_runtime_resume(dev);
2215 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2217 struct device *dev = &pdev->dev;
2218 struct device *parent = dev->parent;
2220 pm_runtime_put(dev);
2222 pm_runtime_put_sync(parent);
2226 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2227 * @bridge: Bridge to check
2229 * This function checks if it is possible to move the bridge to D3.
2230 * Currently we only allow D3 for recent enough PCIe ports.
2232 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2236 if (!pci_is_pcie(bridge))
2239 switch (pci_pcie_type(bridge)) {
2240 case PCI_EXP_TYPE_ROOT_PORT:
2241 case PCI_EXP_TYPE_UPSTREAM:
2242 case PCI_EXP_TYPE_DOWNSTREAM:
2243 if (pci_bridge_d3_disable)
2247 * Hotplug interrupts cannot be delivered if the link is down,
2248 * so parents of a hotplug port must stay awake. In addition,
2249 * hotplug ports handled by firmware in System Management Mode
2250 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2251 * For simplicity, disallow in general for now.
2253 if (bridge->is_hotplug_bridge)
2256 if (pci_bridge_d3_force)
2260 * It should be safe to put PCIe ports from 2015 or newer
2263 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2273 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2275 bool *d3cold_ok = data;
2277 if (/* The device needs to be allowed to go D3cold ... */
2278 dev->no_d3cold || !dev->d3cold_allowed ||
2280 /* ... and if it is wakeup capable to do so from D3cold. */
2281 (device_may_wakeup(&dev->dev) &&
2282 !pci_pme_capable(dev, PCI_D3cold)) ||
2284 /* If it is a bridge it must be allowed to go to D3. */
2285 !pci_power_manageable(dev))
2293 * pci_bridge_d3_update - Update bridge D3 capabilities
2294 * @dev: PCI device which is changed
2296 * Update upstream bridge PM capabilities accordingly depending on if the
2297 * device PM configuration was changed or the device is being removed. The
2298 * change is also propagated upstream.
2300 void pci_bridge_d3_update(struct pci_dev *dev)
2302 bool remove = !device_is_registered(&dev->dev);
2303 struct pci_dev *bridge;
2304 bool d3cold_ok = true;
2306 bridge = pci_upstream_bridge(dev);
2307 if (!bridge || !pci_bridge_d3_possible(bridge))
2311 * If D3 is currently allowed for the bridge, removing one of its
2312 * children won't change that.
2314 if (remove && bridge->bridge_d3)
2318 * If D3 is currently allowed for the bridge and a child is added or
2319 * changed, disallowance of D3 can only be caused by that child, so
2320 * we only need to check that single device, not any of its siblings.
2322 * If D3 is currently not allowed for the bridge, checking the device
2323 * first may allow us to skip checking its siblings.
2326 pci_dev_check_d3cold(dev, &d3cold_ok);
2329 * If D3 is currently not allowed for the bridge, this may be caused
2330 * either by the device being changed/removed or any of its siblings,
2331 * so we need to go through all children to find out if one of them
2332 * continues to block D3.
2334 if (d3cold_ok && !bridge->bridge_d3)
2335 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2338 if (bridge->bridge_d3 != d3cold_ok) {
2339 bridge->bridge_d3 = d3cold_ok;
2340 /* Propagate change to upstream bridges */
2341 pci_bridge_d3_update(bridge);
2346 * pci_d3cold_enable - Enable D3cold for device
2347 * @dev: PCI device to handle
2349 * This function can be used in drivers to enable D3cold from the device
2350 * they handle. It also updates upstream PCI bridge PM capabilities
2353 void pci_d3cold_enable(struct pci_dev *dev)
2355 if (dev->no_d3cold) {
2356 dev->no_d3cold = false;
2357 pci_bridge_d3_update(dev);
2360 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2363 * pci_d3cold_disable - Disable D3cold for device
2364 * @dev: PCI device to handle
2366 * This function can be used in drivers to disable D3cold from the device
2367 * they handle. It also updates upstream PCI bridge PM capabilities
2370 void pci_d3cold_disable(struct pci_dev *dev)
2372 if (!dev->no_d3cold) {
2373 dev->no_d3cold = true;
2374 pci_bridge_d3_update(dev);
2377 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2380 * pci_pm_init - Initialize PM functions of given PCI device
2381 * @dev: PCI device to handle.
2383 void pci_pm_init(struct pci_dev *dev)
2388 pm_runtime_forbid(&dev->dev);
2389 pm_runtime_set_active(&dev->dev);
2390 pm_runtime_enable(&dev->dev);
2391 device_enable_async_suspend(&dev->dev);
2392 dev->wakeup_prepared = false;
2395 dev->pme_support = 0;
2397 /* find PCI PM capability in list */
2398 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2401 /* Check device's ability to generate PME# */
2402 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2404 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2405 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2406 pmc & PCI_PM_CAP_VER_MASK);
2411 dev->d3_delay = PCI_PM_D3_WAIT;
2412 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2413 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2414 dev->d3cold_allowed = true;
2416 dev->d1_support = false;
2417 dev->d2_support = false;
2418 if (!pci_no_d1d2(dev)) {
2419 if (pmc & PCI_PM_CAP_D1)
2420 dev->d1_support = true;
2421 if (pmc & PCI_PM_CAP_D2)
2422 dev->d2_support = true;
2424 if (dev->d1_support || dev->d2_support)
2425 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2426 dev->d1_support ? " D1" : "",
2427 dev->d2_support ? " D2" : "");
2430 pmc &= PCI_PM_CAP_PME_MASK;
2432 dev_printk(KERN_DEBUG, &dev->dev,
2433 "PME# supported from%s%s%s%s%s\n",
2434 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2435 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2436 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2437 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2438 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2439 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2440 dev->pme_poll = true;
2442 * Make device's PM flags reflect the wake-up capability, but
2443 * let the user space enable it to wake up the system as needed.
2445 device_set_wakeup_capable(&dev->dev, true);
2446 /* Disable the PME# generation functionality */
2447 pci_pme_active(dev, false);
2451 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2453 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2457 case PCI_EA_P_VF_MEM:
2458 flags |= IORESOURCE_MEM;
2460 case PCI_EA_P_MEM_PREFETCH:
2461 case PCI_EA_P_VF_MEM_PREFETCH:
2462 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2465 flags |= IORESOURCE_IO;
2474 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2477 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2478 return &dev->resource[bei];
2479 #ifdef CONFIG_PCI_IOV
2480 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2481 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2482 return &dev->resource[PCI_IOV_RESOURCES +
2483 bei - PCI_EA_BEI_VF_BAR0];
2485 else if (bei == PCI_EA_BEI_ROM)
2486 return &dev->resource[PCI_ROM_RESOURCE];
2491 /* Read an Enhanced Allocation (EA) entry */
2492 static int pci_ea_read(struct pci_dev *dev, int offset)
2494 struct resource *res;
2495 int ent_size, ent_offset = offset;
2496 resource_size_t start, end;
2497 unsigned long flags;
2498 u32 dw0, bei, base, max_offset;
2500 bool support_64 = (sizeof(resource_size_t) >= 8);
2502 pci_read_config_dword(dev, ent_offset, &dw0);
2505 /* Entry size field indicates DWORDs after 1st */
2506 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2508 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2511 bei = (dw0 & PCI_EA_BEI) >> 4;
2512 prop = (dw0 & PCI_EA_PP) >> 8;
2515 * If the Property is in the reserved range, try the Secondary
2518 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2519 prop = (dw0 & PCI_EA_SP) >> 16;
2520 if (prop > PCI_EA_P_BRIDGE_IO)
2523 res = pci_ea_get_resource(dev, bei, prop);
2525 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2529 flags = pci_ea_flags(dev, prop);
2531 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2536 pci_read_config_dword(dev, ent_offset, &base);
2537 start = (base & PCI_EA_FIELD_MASK);
2540 /* Read MaxOffset */
2541 pci_read_config_dword(dev, ent_offset, &max_offset);
2544 /* Read Base MSBs (if 64-bit entry) */
2545 if (base & PCI_EA_IS_64) {
2548 pci_read_config_dword(dev, ent_offset, &base_upper);
2551 flags |= IORESOURCE_MEM_64;
2553 /* entry starts above 32-bit boundary, can't use */
2554 if (!support_64 && base_upper)
2558 start |= ((u64)base_upper << 32);
2561 end = start + (max_offset | 0x03);
2563 /* Read MaxOffset MSBs (if 64-bit entry) */
2564 if (max_offset & PCI_EA_IS_64) {
2565 u32 max_offset_upper;
2567 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2570 flags |= IORESOURCE_MEM_64;
2572 /* entry too big, can't use */
2573 if (!support_64 && max_offset_upper)
2577 end += ((u64)max_offset_upper << 32);
2581 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2585 if (ent_size != ent_offset - offset) {
2587 "EA Entry Size (%d) does not match length read (%d)\n",
2588 ent_size, ent_offset - offset);
2592 res->name = pci_name(dev);
2597 if (bei <= PCI_EA_BEI_BAR5)
2598 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2600 else if (bei == PCI_EA_BEI_ROM)
2601 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2603 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2604 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2605 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2607 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2611 return offset + ent_size;
2614 /* Enhanced Allocation Initialization */
2615 void pci_ea_init(struct pci_dev *dev)
2622 /* find PCI EA capability in list */
2623 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2627 /* determine the number of entries */
2628 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2630 num_ent &= PCI_EA_NUM_ENT_MASK;
2632 offset = ea + PCI_EA_FIRST_ENT;
2634 /* Skip DWORD 2 for type 1 functions */
2635 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2638 /* parse each EA entry */
2639 for (i = 0; i < num_ent; ++i)
2640 offset = pci_ea_read(dev, offset);
2643 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2644 struct pci_cap_saved_state *new_cap)
2646 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2650 * _pci_add_cap_save_buffer - allocate buffer for saving given
2651 * capability registers
2652 * @dev: the PCI device
2653 * @cap: the capability to allocate the buffer for
2654 * @extended: Standard or Extended capability ID
2655 * @size: requested size of the buffer
2657 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2658 bool extended, unsigned int size)
2661 struct pci_cap_saved_state *save_state;
2664 pos = pci_find_ext_capability(dev, cap);
2666 pos = pci_find_capability(dev, cap);
2671 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2675 save_state->cap.cap_nr = cap;
2676 save_state->cap.cap_extended = extended;
2677 save_state->cap.size = size;
2678 pci_add_saved_cap(dev, save_state);
2683 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2685 return _pci_add_cap_save_buffer(dev, cap, false, size);
2688 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2690 return _pci_add_cap_save_buffer(dev, cap, true, size);
2694 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2695 * @dev: the PCI device
2697 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2701 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2702 PCI_EXP_SAVE_REGS * sizeof(u16));
2705 "unable to preallocate PCI Express save buffer\n");
2707 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2710 "unable to preallocate PCI-X save buffer\n");
2712 pci_allocate_vc_save_buffers(dev);
2715 void pci_free_cap_save_buffers(struct pci_dev *dev)
2717 struct pci_cap_saved_state *tmp;
2718 struct hlist_node *n;
2720 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2725 * pci_configure_ari - enable or disable ARI forwarding
2726 * @dev: the PCI device
2728 * If @dev and its upstream bridge both support ARI, enable ARI in the
2729 * bridge. Otherwise, disable ARI in the bridge.
2731 void pci_configure_ari(struct pci_dev *dev)
2734 struct pci_dev *bridge;
2736 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2739 bridge = dev->bus->self;
2743 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2744 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2747 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2748 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2749 PCI_EXP_DEVCTL2_ARI);
2750 bridge->ari_enabled = 1;
2752 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2753 PCI_EXP_DEVCTL2_ARI);
2754 bridge->ari_enabled = 0;
2758 static int pci_acs_enable;
2761 * pci_request_acs - ask for ACS to be enabled if supported
2763 void pci_request_acs(void)
2769 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2770 * @dev: the PCI device
2772 static void pci_std_enable_acs(struct pci_dev *dev)
2778 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2782 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2783 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2785 /* Source Validation */
2786 ctrl |= (cap & PCI_ACS_SV);
2788 /* P2P Request Redirect */
2789 ctrl |= (cap & PCI_ACS_RR);
2791 /* P2P Completion Redirect */
2792 ctrl |= (cap & PCI_ACS_CR);
2794 /* Upstream Forwarding */
2795 ctrl |= (cap & PCI_ACS_UF);
2797 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2801 * pci_enable_acs - enable ACS if hardware support it
2802 * @dev: the PCI device
2804 void pci_enable_acs(struct pci_dev *dev)
2806 if (!pci_acs_enable)
2809 if (!pci_dev_specific_enable_acs(dev))
2812 pci_std_enable_acs(dev);
2815 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2820 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2825 * Except for egress control, capabilities are either required
2826 * or only required if controllable. Features missing from the
2827 * capability field can therefore be assumed as hard-wired enabled.
2829 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2830 acs_flags &= (cap | PCI_ACS_EC);
2832 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2833 return (ctrl & acs_flags) == acs_flags;
2837 * pci_acs_enabled - test ACS against required flags for a given device
2838 * @pdev: device to test
2839 * @acs_flags: required PCI ACS flags
2841 * Return true if the device supports the provided flags. Automatically
2842 * filters out flags that are not implemented on multifunction devices.
2844 * Note that this interface checks the effective ACS capabilities of the
2845 * device rather than the actual capabilities. For instance, most single
2846 * function endpoints are not required to support ACS because they have no
2847 * opportunity for peer-to-peer access. We therefore return 'true'
2848 * regardless of whether the device exposes an ACS capability. This makes
2849 * it much easier for callers of this function to ignore the actual type
2850 * or topology of the device when testing ACS support.
2852 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2856 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2861 * Conventional PCI and PCI-X devices never support ACS, either
2862 * effectively or actually. The shared bus topology implies that
2863 * any device on the bus can receive or snoop DMA.
2865 if (!pci_is_pcie(pdev))
2868 switch (pci_pcie_type(pdev)) {
2870 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2871 * but since their primary interface is PCI/X, we conservatively
2872 * handle them as we would a non-PCIe device.
2874 case PCI_EXP_TYPE_PCIE_BRIDGE:
2876 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2877 * applicable... must never implement an ACS Extended Capability...".
2878 * This seems arbitrary, but we take a conservative interpretation
2879 * of this statement.
2881 case PCI_EXP_TYPE_PCI_BRIDGE:
2882 case PCI_EXP_TYPE_RC_EC:
2885 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2886 * implement ACS in order to indicate their peer-to-peer capabilities,
2887 * regardless of whether they are single- or multi-function devices.
2889 case PCI_EXP_TYPE_DOWNSTREAM:
2890 case PCI_EXP_TYPE_ROOT_PORT:
2891 return pci_acs_flags_enabled(pdev, acs_flags);
2893 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2894 * implemented by the remaining PCIe types to indicate peer-to-peer
2895 * capabilities, but only when they are part of a multifunction
2896 * device. The footnote for section 6.12 indicates the specific
2897 * PCIe types included here.
2899 case PCI_EXP_TYPE_ENDPOINT:
2900 case PCI_EXP_TYPE_UPSTREAM:
2901 case PCI_EXP_TYPE_LEG_END:
2902 case PCI_EXP_TYPE_RC_END:
2903 if (!pdev->multifunction)
2906 return pci_acs_flags_enabled(pdev, acs_flags);
2910 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2911 * to single function devices with the exception of downstream ports.
2917 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2918 * @start: starting downstream device
2919 * @end: ending upstream device or NULL to search to the root bus
2920 * @acs_flags: required flags
2922 * Walk up a device tree from start to end testing PCI ACS support. If
2923 * any step along the way does not support the required flags, return false.
2925 bool pci_acs_path_enabled(struct pci_dev *start,
2926 struct pci_dev *end, u16 acs_flags)
2928 struct pci_dev *pdev, *parent = start;
2933 if (!pci_acs_enabled(pdev, acs_flags))
2936 if (pci_is_root_bus(pdev->bus))
2937 return (end == NULL);
2939 parent = pdev->bus->self;
2940 } while (pdev != end);
2946 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2947 * @dev: the PCI device
2948 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2950 * Perform INTx swizzling for a device behind one level of bridge. This is
2951 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2952 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2953 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2954 * the PCI Express Base Specification, Revision 2.1)
2956 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2960 if (pci_ari_enabled(dev->bus))
2963 slot = PCI_SLOT(dev->devfn);
2965 return (((pin - 1) + slot) % 4) + 1;
2968 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2976 while (!pci_is_root_bus(dev->bus)) {
2977 pin = pci_swizzle_interrupt_pin(dev, pin);
2978 dev = dev->bus->self;
2985 * pci_common_swizzle - swizzle INTx all the way to root bridge
2986 * @dev: the PCI device
2987 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2989 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2990 * bridges all the way up to a PCI root bus.
2992 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2996 while (!pci_is_root_bus(dev->bus)) {
2997 pin = pci_swizzle_interrupt_pin(dev, pin);
2998 dev = dev->bus->self;
3001 return PCI_SLOT(dev->devfn);
3003 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3006 * pci_release_region - Release a PCI bar
3007 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3008 * @bar: BAR to release
3010 * Releases the PCI I/O and memory resources previously reserved by a
3011 * successful call to pci_request_region. Call this function only
3012 * after all use of the PCI regions has ceased.
3014 void pci_release_region(struct pci_dev *pdev, int bar)
3016 struct pci_devres *dr;
3018 if (pci_resource_len(pdev, bar) == 0)
3020 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3021 release_region(pci_resource_start(pdev, bar),
3022 pci_resource_len(pdev, bar));
3023 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3024 release_mem_region(pci_resource_start(pdev, bar),
3025 pci_resource_len(pdev, bar));
3027 dr = find_pci_dr(pdev);
3029 dr->region_mask &= ~(1 << bar);
3031 EXPORT_SYMBOL(pci_release_region);
3034 * __pci_request_region - Reserved PCI I/O and memory resource
3035 * @pdev: PCI device whose resources are to be reserved
3036 * @bar: BAR to be reserved
3037 * @res_name: Name to be associated with resource.
3038 * @exclusive: whether the region access is exclusive or not
3040 * Mark the PCI region associated with PCI device @pdev BR @bar as
3041 * being reserved by owner @res_name. Do not access any
3042 * address inside the PCI regions unless this call returns
3045 * If @exclusive is set, then the region is marked so that userspace
3046 * is explicitly not allowed to map the resource via /dev/mem or
3047 * sysfs MMIO access.
3049 * Returns 0 on success, or %EBUSY on error. A warning
3050 * message is also printed on failure.
3052 static int __pci_request_region(struct pci_dev *pdev, int bar,
3053 const char *res_name, int exclusive)
3055 struct pci_devres *dr;
3057 if (pci_resource_len(pdev, bar) == 0)
3060 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3061 if (!request_region(pci_resource_start(pdev, bar),
3062 pci_resource_len(pdev, bar), res_name))
3064 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3065 if (!__request_mem_region(pci_resource_start(pdev, bar),
3066 pci_resource_len(pdev, bar), res_name,
3071 dr = find_pci_dr(pdev);
3073 dr->region_mask |= 1 << bar;
3078 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3079 &pdev->resource[bar]);
3084 * pci_request_region - Reserve PCI I/O and memory resource
3085 * @pdev: PCI device whose resources are to be reserved
3086 * @bar: BAR to be reserved
3087 * @res_name: Name to be associated with resource
3089 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3090 * being reserved by owner @res_name. Do not access any
3091 * address inside the PCI regions unless this call returns
3094 * Returns 0 on success, or %EBUSY on error. A warning
3095 * message is also printed on failure.
3097 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3099 return __pci_request_region(pdev, bar, res_name, 0);
3101 EXPORT_SYMBOL(pci_request_region);
3104 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3105 * @pdev: PCI device whose resources are to be reserved
3106 * @bar: BAR to be reserved
3107 * @res_name: Name to be associated with resource.
3109 * Mark the PCI region associated with PCI device @pdev BR @bar as
3110 * being reserved by owner @res_name. Do not access any
3111 * address inside the PCI regions unless this call returns
3114 * Returns 0 on success, or %EBUSY on error. A warning
3115 * message is also printed on failure.
3117 * The key difference that _exclusive makes it that userspace is
3118 * explicitly not allowed to map the resource via /dev/mem or
3121 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3122 const char *res_name)
3124 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3126 EXPORT_SYMBOL(pci_request_region_exclusive);
3129 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3130 * @pdev: PCI device whose resources were previously reserved
3131 * @bars: Bitmask of BARs to be released
3133 * Release selected PCI I/O and memory resources previously reserved.
3134 * Call this function only after all use of the PCI regions has ceased.
3136 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3140 for (i = 0; i < 6; i++)
3141 if (bars & (1 << i))
3142 pci_release_region(pdev, i);
3144 EXPORT_SYMBOL(pci_release_selected_regions);
3146 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3147 const char *res_name, int excl)
3151 for (i = 0; i < 6; i++)
3152 if (bars & (1 << i))
3153 if (__pci_request_region(pdev, i, res_name, excl))
3159 if (bars & (1 << i))
3160 pci_release_region(pdev, i);
3167 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3168 * @pdev: PCI device whose resources are to be reserved
3169 * @bars: Bitmask of BARs to be requested
3170 * @res_name: Name to be associated with resource
3172 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3173 const char *res_name)
3175 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3177 EXPORT_SYMBOL(pci_request_selected_regions);
3179 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3180 const char *res_name)
3182 return __pci_request_selected_regions(pdev, bars, res_name,
3183 IORESOURCE_EXCLUSIVE);
3185 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3188 * pci_release_regions - Release reserved PCI I/O and memory resources
3189 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3191 * Releases all PCI I/O and memory resources previously reserved by a
3192 * successful call to pci_request_regions. Call this function only
3193 * after all use of the PCI regions has ceased.
3196 void pci_release_regions(struct pci_dev *pdev)
3198 pci_release_selected_regions(pdev, (1 << 6) - 1);
3200 EXPORT_SYMBOL(pci_release_regions);
3203 * pci_request_regions - Reserved PCI I/O and memory resources
3204 * @pdev: PCI device whose resources are to be reserved
3205 * @res_name: Name to be associated with resource.
3207 * Mark all PCI regions associated with PCI device @pdev as
3208 * being reserved by owner @res_name. Do not access any
3209 * address inside the PCI regions unless this call returns
3212 * Returns 0 on success, or %EBUSY on error. A warning
3213 * message is also printed on failure.
3215 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3217 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3219 EXPORT_SYMBOL(pci_request_regions);
3222 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3223 * @pdev: PCI device whose resources are to be reserved
3224 * @res_name: Name to be associated with resource.
3226 * Mark all PCI regions associated with PCI device @pdev as
3227 * being reserved by owner @res_name. Do not access any
3228 * address inside the PCI regions unless this call returns
3231 * pci_request_regions_exclusive() will mark the region so that
3232 * /dev/mem and the sysfs MMIO access will not be allowed.
3234 * Returns 0 on success, or %EBUSY on error. A warning
3235 * message is also printed on failure.
3237 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3239 return pci_request_selected_regions_exclusive(pdev,
3240 ((1 << 6) - 1), res_name);
3242 EXPORT_SYMBOL(pci_request_regions_exclusive);
3246 struct list_head list;
3248 resource_size_t size;
3251 static LIST_HEAD(io_range_list);
3252 static DEFINE_SPINLOCK(io_range_lock);
3256 * Record the PCI IO range (expressed as CPU physical address + size).
3257 * Return a negative value if an error has occured, zero otherwise
3259 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3264 struct io_range *range;
3265 resource_size_t allocated_size = 0;
3267 /* check if the range hasn't been previously recorded */
3268 spin_lock(&io_range_lock);
3269 list_for_each_entry(range, &io_range_list, list) {
3270 if (addr >= range->start && addr + size <= range->start + size) {
3271 /* range already registered, bail out */
3274 allocated_size += range->size;
3277 /* range not registed yet, check for available space */
3278 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3279 /* if it's too big check if 64K space can be reserved */
3280 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3286 pr_warn("Requested IO range too big, new size set to 64K\n");
3289 /* add the range to the list */
3290 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3296 range->start = addr;
3299 list_add_tail(&range->list, &io_range_list);
3302 spin_unlock(&io_range_lock);
3308 phys_addr_t pci_pio_to_address(unsigned long pio)
3310 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3313 struct io_range *range;
3314 resource_size_t allocated_size = 0;
3316 if (pio > IO_SPACE_LIMIT)
3319 spin_lock(&io_range_lock);
3320 list_for_each_entry(range, &io_range_list, list) {
3321 if (pio >= allocated_size && pio < allocated_size + range->size) {
3322 address = range->start + pio - allocated_size;
3325 allocated_size += range->size;
3327 spin_unlock(&io_range_lock);
3333 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3336 struct io_range *res;
3337 resource_size_t offset = 0;
3338 unsigned long addr = -1;
3340 spin_lock(&io_range_lock);
3341 list_for_each_entry(res, &io_range_list, list) {
3342 if (address >= res->start && address < res->start + res->size) {
3343 addr = address - res->start + offset;
3346 offset += res->size;
3348 spin_unlock(&io_range_lock);
3352 if (address > IO_SPACE_LIMIT)
3353 return (unsigned long)-1;
3355 return (unsigned long) address;
3360 * pci_remap_iospace - Remap the memory mapped I/O space
3361 * @res: Resource describing the I/O space
3362 * @phys_addr: physical address of range to be mapped
3364 * Remap the memory mapped I/O space described by the @res
3365 * and the CPU physical address @phys_addr into virtual address space.
3366 * Only architectures that have memory mapped IO functions defined
3367 * (and the PCI_IOBASE value defined) should call this function.
3369 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3371 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3372 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3374 if (!(res->flags & IORESOURCE_IO))
3377 if (res->end > IO_SPACE_LIMIT)
3380 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3381 pgprot_device(PAGE_KERNEL));
3383 /* this architecture does not have memory mapped I/O space,
3384 so this function should never be called */
3385 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3389 EXPORT_SYMBOL(pci_remap_iospace);
3392 * pci_unmap_iospace - Unmap the memory mapped I/O space
3393 * @res: resource to be unmapped
3395 * Unmap the CPU virtual address @res from virtual address space.
3396 * Only architectures that have memory mapped IO functions defined
3397 * (and the PCI_IOBASE value defined) should call this function.
3399 void pci_unmap_iospace(struct resource *res)
3401 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3402 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3404 unmap_kernel_range(vaddr, resource_size(res));
3407 EXPORT_SYMBOL(pci_unmap_iospace);
3410 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3411 * @dev: Generic device to remap IO address for
3412 * @offset: Resource address to map
3413 * @size: Size of map
3415 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3418 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3419 resource_size_t offset,
3420 resource_size_t size)
3422 void __iomem **ptr, *addr;
3424 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3428 addr = pci_remap_cfgspace(offset, size);
3431 devres_add(dev, ptr);
3437 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3440 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3441 * @dev: generic device to handle the resource for
3442 * @res: configuration space resource to be handled
3444 * Checks that a resource is a valid memory region, requests the memory
3445 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3446 * proper PCI configuration space memory attributes are guaranteed.
3448 * All operations are managed and will be undone on driver detach.
3450 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3451 * on failure. Usage example:
3453 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3454 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3456 * return PTR_ERR(base);
3458 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3459 struct resource *res)
3461 resource_size_t size;
3463 void __iomem *dest_ptr;
3467 if (!res || resource_type(res) != IORESOURCE_MEM) {
3468 dev_err(dev, "invalid resource\n");
3469 return IOMEM_ERR_PTR(-EINVAL);
3472 size = resource_size(res);
3473 name = res->name ?: dev_name(dev);
3475 if (!devm_request_mem_region(dev, res->start, size, name)) {
3476 dev_err(dev, "can't request region for resource %pR\n", res);
3477 return IOMEM_ERR_PTR(-EBUSY);
3480 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3482 dev_err(dev, "ioremap failed for resource %pR\n", res);
3483 devm_release_mem_region(dev, res->start, size);
3484 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3489 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3491 static void __pci_set_master(struct pci_dev *dev, bool enable)
3495 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3497 cmd = old_cmd | PCI_COMMAND_MASTER;
3499 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3500 if (cmd != old_cmd) {
3501 dev_dbg(&dev->dev, "%s bus mastering\n",
3502 enable ? "enabling" : "disabling");
3503 pci_write_config_word(dev, PCI_COMMAND, cmd);
3505 dev->is_busmaster = enable;
3509 * pcibios_setup - process "pci=" kernel boot arguments
3510 * @str: string used to pass in "pci=" kernel boot arguments
3512 * Process kernel boot arguments. This is the default implementation.
3513 * Architecture specific implementations can override this as necessary.
3515 char * __weak __init pcibios_setup(char *str)
3521 * pcibios_set_master - enable PCI bus-mastering for device dev
3522 * @dev: the PCI device to enable
3524 * Enables PCI bus-mastering for the device. This is the default
3525 * implementation. Architecture specific implementations can override
3526 * this if necessary.
3528 void __weak pcibios_set_master(struct pci_dev *dev)
3532 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3533 if (pci_is_pcie(dev))
3536 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3538 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3539 else if (lat > pcibios_max_latency)
3540 lat = pcibios_max_latency;
3544 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3548 * pci_set_master - enables bus-mastering for device dev
3549 * @dev: the PCI device to enable
3551 * Enables bus-mastering on the device and calls pcibios_set_master()
3552 * to do the needed arch specific settings.
3554 void pci_set_master(struct pci_dev *dev)
3556 __pci_set_master(dev, true);
3557 pcibios_set_master(dev);
3559 EXPORT_SYMBOL(pci_set_master);
3562 * pci_clear_master - disables bus-mastering for device dev
3563 * @dev: the PCI device to disable
3565 void pci_clear_master(struct pci_dev *dev)
3567 __pci_set_master(dev, false);
3569 EXPORT_SYMBOL(pci_clear_master);
3572 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3573 * @dev: the PCI device for which MWI is to be enabled
3575 * Helper function for pci_set_mwi.
3576 * Originally copied from drivers/net/acenic.c.
3577 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3579 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3581 int pci_set_cacheline_size(struct pci_dev *dev)
3585 if (!pci_cache_line_size)
3588 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3589 equal to or multiple of the right value. */
3590 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3591 if (cacheline_size >= pci_cache_line_size &&
3592 (cacheline_size % pci_cache_line_size) == 0)
3595 /* Write the correct value. */
3596 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3598 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3599 if (cacheline_size == pci_cache_line_size)
3602 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3603 pci_cache_line_size << 2);
3607 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3610 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3611 * @dev: the PCI device for which MWI is enabled
3613 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3615 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3617 int pci_set_mwi(struct pci_dev *dev)
3619 #ifdef PCI_DISABLE_MWI
3625 rc = pci_set_cacheline_size(dev);
3629 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3630 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3631 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3632 cmd |= PCI_COMMAND_INVALIDATE;
3633 pci_write_config_word(dev, PCI_COMMAND, cmd);
3638 EXPORT_SYMBOL(pci_set_mwi);
3641 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3642 * @dev: the PCI device for which MWI is enabled
3644 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3645 * Callers are not required to check the return value.
3647 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3649 int pci_try_set_mwi(struct pci_dev *dev)
3651 #ifdef PCI_DISABLE_MWI
3654 return pci_set_mwi(dev);
3657 EXPORT_SYMBOL(pci_try_set_mwi);
3660 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3661 * @dev: the PCI device to disable
3663 * Disables PCI Memory-Write-Invalidate transaction on the device
3665 void pci_clear_mwi(struct pci_dev *dev)
3667 #ifndef PCI_DISABLE_MWI
3670 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3671 if (cmd & PCI_COMMAND_INVALIDATE) {
3672 cmd &= ~PCI_COMMAND_INVALIDATE;
3673 pci_write_config_word(dev, PCI_COMMAND, cmd);
3677 EXPORT_SYMBOL(pci_clear_mwi);
3680 * pci_intx - enables/disables PCI INTx for device dev
3681 * @pdev: the PCI device to operate on
3682 * @enable: boolean: whether to enable or disable PCI INTx
3684 * Enables/disables PCI INTx for device dev
3686 void pci_intx(struct pci_dev *pdev, int enable)
3688 u16 pci_command, new;
3690 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3693 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3695 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3697 if (new != pci_command) {
3698 struct pci_devres *dr;
3700 pci_write_config_word(pdev, PCI_COMMAND, new);
3702 dr = find_pci_dr(pdev);
3703 if (dr && !dr->restore_intx) {
3704 dr->restore_intx = 1;
3705 dr->orig_intx = !enable;
3709 EXPORT_SYMBOL_GPL(pci_intx);
3712 * pci_intx_mask_supported - probe for INTx masking support
3713 * @dev: the PCI device to operate on
3715 * Check if the device dev support INTx masking via the config space
3718 bool pci_intx_mask_supported(struct pci_dev *dev)
3720 bool mask_supported = false;
3723 if (dev->broken_intx_masking)
3726 pci_cfg_access_lock(dev);
3728 pci_read_config_word(dev, PCI_COMMAND, &orig);
3729 pci_write_config_word(dev, PCI_COMMAND,
3730 orig ^ PCI_COMMAND_INTX_DISABLE);
3731 pci_read_config_word(dev, PCI_COMMAND, &new);
3734 * There's no way to protect against hardware bugs or detect them
3735 * reliably, but as long as we know what the value should be, let's
3736 * go ahead and check it.
3738 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3739 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3741 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3742 mask_supported = true;
3743 pci_write_config_word(dev, PCI_COMMAND, orig);
3746 pci_cfg_access_unlock(dev);
3747 return mask_supported;
3749 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3751 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3753 struct pci_bus *bus = dev->bus;
3754 bool mask_updated = true;
3755 u32 cmd_status_dword;
3756 u16 origcmd, newcmd;
3757 unsigned long flags;
3761 * We do a single dword read to retrieve both command and status.
3762 * Document assumptions that make this possible.
3764 BUILD_BUG_ON(PCI_COMMAND % 4);
3765 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3767 raw_spin_lock_irqsave(&pci_lock, flags);
3769 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3771 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3774 * Check interrupt status register to see whether our device
3775 * triggered the interrupt (when masking) or the next IRQ is
3776 * already pending (when unmasking).
3778 if (mask != irq_pending) {
3779 mask_updated = false;
3783 origcmd = cmd_status_dword;
3784 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3786 newcmd |= PCI_COMMAND_INTX_DISABLE;
3787 if (newcmd != origcmd)
3788 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3791 raw_spin_unlock_irqrestore(&pci_lock, flags);
3793 return mask_updated;
3797 * pci_check_and_mask_intx - mask INTx on pending interrupt
3798 * @dev: the PCI device to operate on
3800 * Check if the device dev has its INTx line asserted, mask it and
3801 * return true in that case. False is returned if not interrupt was
3804 bool pci_check_and_mask_intx(struct pci_dev *dev)
3806 return pci_check_and_set_intx_mask(dev, true);
3808 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3811 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3812 * @dev: the PCI device to operate on
3814 * Check if the device dev has its INTx line asserted, unmask it if not
3815 * and return true. False is returned and the mask remains active if
3816 * there was still an interrupt pending.
3818 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3820 return pci_check_and_set_intx_mask(dev, false);
3822 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3825 * pci_wait_for_pending_transaction - waits for pending transaction
3826 * @dev: the PCI device to operate on
3828 * Return 0 if transaction is pending 1 otherwise.
3830 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3832 if (!pci_is_pcie(dev))
3835 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3836 PCI_EXP_DEVSTA_TRPND);
3838 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3841 * We should only need to wait 100ms after FLR, but some devices take longer.
3842 * Wait for up to 1000ms for config space to return something other than -1.
3843 * Intel IGD requires this when an LCD panel is attached. We read the 2nd
3844 * dword because VFs don't implement the 1st dword.
3846 static void pci_flr_wait(struct pci_dev *dev)
3853 pci_read_config_dword(dev, PCI_COMMAND, &id);
3854 } while (i++ < 10 && id == ~0);
3857 dev_warn(&dev->dev, "Failed to return from FLR\n");
3859 dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3864 * pcie_has_flr - check if a device supports function level resets
3865 * @dev: device to check
3867 * Returns true if the device advertises support for PCIe function level
3870 static bool pcie_has_flr(struct pci_dev *dev)
3874 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3877 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3878 return cap & PCI_EXP_DEVCAP_FLR;
3882 * pcie_flr - initiate a PCIe function level reset
3883 * @dev: device to reset
3885 * Initiate a function level reset on @dev. The caller should ensure the
3886 * device supports FLR before calling this function, e.g. by using the
3887 * pcie_has_flr() helper.
3889 void pcie_flr(struct pci_dev *dev)
3891 if (!pci_wait_for_pending_transaction(dev))
3892 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3894 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3897 EXPORT_SYMBOL_GPL(pcie_flr);
3899 static int pci_af_flr(struct pci_dev *dev, int probe)
3904 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3908 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3911 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3912 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3919 * Wait for Transaction Pending bit to clear. A word-aligned test
3920 * is used, so we use the conrol offset rather than status and shift
3921 * the test bit to match.
3923 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3924 PCI_AF_STATUS_TP << 8))
3925 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3927 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3933 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3934 * @dev: Device to reset.
3935 * @probe: If set, only check if the device can be reset this way.
3937 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3938 * unset, it will be reinitialized internally when going from PCI_D3hot to
3939 * PCI_D0. If that's the case and the device is not in a low-power state
3940 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3942 * NOTE: This causes the caller to sleep for twice the device power transition
3943 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3944 * by default (i.e. unless the @dev's d3_delay field has a different value).
3945 * Moreover, only devices in D0 can be reset by this function.
3947 static int pci_pm_reset(struct pci_dev *dev, int probe)
3951 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3954 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3955 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3961 if (dev->current_state != PCI_D0)
3964 csr &= ~PCI_PM_CTRL_STATE_MASK;
3966 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3967 pci_dev_d3_sleep(dev);
3969 csr &= ~PCI_PM_CTRL_STATE_MASK;
3971 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3972 pci_dev_d3_sleep(dev);
3977 void pci_reset_secondary_bus(struct pci_dev *dev)
3981 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3982 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3983 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3985 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3986 * this to 2ms to ensure that we meet the minimum requirement.
3990 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3991 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3994 * Trhfa for conventional PCI is 2^25 clock cycles.
3995 * Assuming a minimum 33MHz clock this results in a 1s
3996 * delay before we can consider subordinate devices to
3997 * be re-initialized. PCIe has some ways to shorten this,
3998 * but we don't make use of them yet.
4003 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4005 pci_reset_secondary_bus(dev);
4009 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4010 * @dev: Bridge device
4012 * Use the bridge control register to assert reset on the secondary bus.
4013 * Devices on the secondary bus are left in power-on state.
4015 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4017 pcibios_reset_secondary_bus(dev);
4019 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4021 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4023 struct pci_dev *pdev;
4025 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4026 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4029 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4036 pci_reset_bridge_secondary_bus(dev->bus->self);
4041 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4045 if (!hotplug || !try_module_get(hotplug->ops->owner))
4048 if (hotplug->ops->reset_slot)
4049 rc = hotplug->ops->reset_slot(hotplug, probe);
4051 module_put(hotplug->ops->owner);
4056 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4058 struct pci_dev *pdev;
4060 if (dev->subordinate || !dev->slot ||
4061 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4064 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4065 if (pdev != dev && pdev->slot == dev->slot)
4068 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4071 static int __pci_dev_reset(struct pci_dev *dev, int probe)
4077 rc = pci_dev_specific_reset(dev, probe);
4081 if (pcie_has_flr(dev)) {
4088 rc = pci_af_flr(dev, probe);
4092 rc = pci_pm_reset(dev, probe);
4096 rc = pci_dev_reset_slot_function(dev, probe);
4100 rc = pci_parent_bus_reset(dev, probe);
4105 static void pci_dev_lock(struct pci_dev *dev)
4107 pci_cfg_access_lock(dev);
4108 /* block PM suspend, driver probe, etc. */
4109 device_lock(&dev->dev);
4112 /* Return 1 on successful lock, 0 on contention */
4113 static int pci_dev_trylock(struct pci_dev *dev)
4115 if (pci_cfg_access_trylock(dev)) {
4116 if (device_trylock(&dev->dev))
4118 pci_cfg_access_unlock(dev);
4124 static void pci_dev_unlock(struct pci_dev *dev)
4126 device_unlock(&dev->dev);
4127 pci_cfg_access_unlock(dev);
4131 * pci_reset_notify - notify device driver of reset
4132 * @dev: device to be notified of reset
4133 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4136 * Must be called prior to device access being disabled and after device
4137 * access is restored.
4139 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4141 const struct pci_error_handlers *err_handler =
4142 dev->driver ? dev->driver->err_handler : NULL;
4143 if (err_handler && err_handler->reset_notify)
4144 err_handler->reset_notify(dev, prepare);
4147 static void pci_dev_save_and_disable(struct pci_dev *dev)
4149 pci_reset_notify(dev, true);
4152 * Wake-up device prior to save. PM registers default to D0 after
4153 * reset and a simple register restore doesn't reliably return
4154 * to a non-D0 state anyway.
4156 pci_set_power_state(dev, PCI_D0);
4158 pci_save_state(dev);
4160 * Disable the device by clearing the Command register, except for
4161 * INTx-disable which is set. This not only disables MMIO and I/O port
4162 * BARs, but also prevents the device from being Bus Master, preventing
4163 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4164 * compliant devices, INTx-disable prevents legacy interrupts.
4166 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4169 static void pci_dev_restore(struct pci_dev *dev)
4171 pci_restore_state(dev);
4172 pci_reset_notify(dev, false);
4175 static int pci_dev_reset(struct pci_dev *dev, int probe)
4182 rc = __pci_dev_reset(dev, probe);
4185 pci_dev_unlock(dev);
4191 * __pci_reset_function - reset a PCI device function
4192 * @dev: PCI device to reset
4194 * Some devices allow an individual function to be reset without affecting
4195 * other functions in the same device. The PCI device must be responsive
4196 * to PCI config space in order to use this function.
4198 * The device function is presumed to be unused when this function is called.
4199 * Resetting the device will make the contents of PCI configuration space
4200 * random, so any caller of this must be prepared to reinitialise the
4201 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4204 * Returns 0 if the device function was successfully reset or negative if the
4205 * device doesn't support resetting a single function.
4207 int __pci_reset_function(struct pci_dev *dev)
4209 return pci_dev_reset(dev, 0);
4211 EXPORT_SYMBOL_GPL(__pci_reset_function);
4214 * __pci_reset_function_locked - reset a PCI device function while holding
4215 * the @dev mutex lock.
4216 * @dev: PCI device to reset
4218 * Some devices allow an individual function to be reset without affecting
4219 * other functions in the same device. The PCI device must be responsive
4220 * to PCI config space in order to use this function.
4222 * The device function is presumed to be unused and the caller is holding
4223 * the device mutex lock when this function is called.
4224 * Resetting the device will make the contents of PCI configuration space
4225 * random, so any caller of this must be prepared to reinitialise the
4226 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4229 * Returns 0 if the device function was successfully reset or negative if the
4230 * device doesn't support resetting a single function.
4232 int __pci_reset_function_locked(struct pci_dev *dev)
4234 return __pci_dev_reset(dev, 0);
4236 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4239 * pci_probe_reset_function - check whether the device can be safely reset
4240 * @dev: PCI device to reset
4242 * Some devices allow an individual function to be reset without affecting
4243 * other functions in the same device. The PCI device must be responsive
4244 * to PCI config space in order to use this function.
4246 * Returns 0 if the device function can be reset or negative if the
4247 * device doesn't support resetting a single function.
4249 int pci_probe_reset_function(struct pci_dev *dev)
4251 return pci_dev_reset(dev, 1);
4255 * pci_reset_function - quiesce and reset a PCI device function
4256 * @dev: PCI device to reset
4258 * Some devices allow an individual function to be reset without affecting
4259 * other functions in the same device. The PCI device must be responsive
4260 * to PCI config space in order to use this function.
4262 * This function does not just reset the PCI portion of a device, but
4263 * clears all the state associated with the device. This function differs
4264 * from __pci_reset_function in that it saves and restores device state
4267 * Returns 0 if the device function was successfully reset or negative if the
4268 * device doesn't support resetting a single function.
4270 int pci_reset_function(struct pci_dev *dev)
4274 rc = pci_dev_reset(dev, 1);
4278 pci_dev_save_and_disable(dev);
4280 rc = pci_dev_reset(dev, 0);
4282 pci_dev_restore(dev);
4286 EXPORT_SYMBOL_GPL(pci_reset_function);
4289 * pci_try_reset_function - quiesce and reset a PCI device function
4290 * @dev: PCI device to reset
4292 * Same as above, except return -EAGAIN if unable to lock device.
4294 int pci_try_reset_function(struct pci_dev *dev)
4298 rc = pci_dev_reset(dev, 1);
4302 pci_dev_save_and_disable(dev);
4304 if (pci_dev_trylock(dev)) {
4305 rc = __pci_dev_reset(dev, 0);
4306 pci_dev_unlock(dev);
4310 pci_dev_restore(dev);
4314 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4316 /* Do any devices on or below this bus prevent a bus reset? */
4317 static bool pci_bus_resetable(struct pci_bus *bus)
4319 struct pci_dev *dev;
4321 list_for_each_entry(dev, &bus->devices, bus_list) {
4322 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4323 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4330 /* Lock devices from the top of the tree down */
4331 static void pci_bus_lock(struct pci_bus *bus)
4333 struct pci_dev *dev;
4335 list_for_each_entry(dev, &bus->devices, bus_list) {
4337 if (dev->subordinate)
4338 pci_bus_lock(dev->subordinate);
4342 /* Unlock devices from the bottom of the tree up */
4343 static void pci_bus_unlock(struct pci_bus *bus)
4345 struct pci_dev *dev;
4347 list_for_each_entry(dev, &bus->devices, bus_list) {
4348 if (dev->subordinate)
4349 pci_bus_unlock(dev->subordinate);
4350 pci_dev_unlock(dev);
4354 /* Return 1 on successful lock, 0 on contention */
4355 static int pci_bus_trylock(struct pci_bus *bus)
4357 struct pci_dev *dev;
4359 list_for_each_entry(dev, &bus->devices, bus_list) {
4360 if (!pci_dev_trylock(dev))
4362 if (dev->subordinate) {
4363 if (!pci_bus_trylock(dev->subordinate)) {
4364 pci_dev_unlock(dev);
4372 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4373 if (dev->subordinate)
4374 pci_bus_unlock(dev->subordinate);
4375 pci_dev_unlock(dev);
4380 /* Do any devices on or below this slot prevent a bus reset? */
4381 static bool pci_slot_resetable(struct pci_slot *slot)
4383 struct pci_dev *dev;
4385 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4386 if (!dev->slot || dev->slot != slot)
4388 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4389 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4396 /* Lock devices from the top of the tree down */
4397 static void pci_slot_lock(struct pci_slot *slot)
4399 struct pci_dev *dev;
4401 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4402 if (!dev->slot || dev->slot != slot)
4405 if (dev->subordinate)
4406 pci_bus_lock(dev->subordinate);
4410 /* Unlock devices from the bottom of the tree up */
4411 static void pci_slot_unlock(struct pci_slot *slot)
4413 struct pci_dev *dev;
4415 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4416 if (!dev->slot || dev->slot != slot)
4418 if (dev->subordinate)
4419 pci_bus_unlock(dev->subordinate);
4420 pci_dev_unlock(dev);
4424 /* Return 1 on successful lock, 0 on contention */
4425 static int pci_slot_trylock(struct pci_slot *slot)
4427 struct pci_dev *dev;
4429 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4430 if (!dev->slot || dev->slot != slot)
4432 if (!pci_dev_trylock(dev))
4434 if (dev->subordinate) {
4435 if (!pci_bus_trylock(dev->subordinate)) {
4436 pci_dev_unlock(dev);
4444 list_for_each_entry_continue_reverse(dev,
4445 &slot->bus->devices, bus_list) {
4446 if (!dev->slot || dev->slot != slot)
4448 if (dev->subordinate)
4449 pci_bus_unlock(dev->subordinate);
4450 pci_dev_unlock(dev);
4455 /* Save and disable devices from the top of the tree down */
4456 static void pci_bus_save_and_disable(struct pci_bus *bus)
4458 struct pci_dev *dev;
4460 list_for_each_entry(dev, &bus->devices, bus_list) {
4461 pci_dev_save_and_disable(dev);
4462 if (dev->subordinate)
4463 pci_bus_save_and_disable(dev->subordinate);
4468 * Restore devices from top of the tree down - parent bridges need to be
4469 * restored before we can get to subordinate devices.
4471 static void pci_bus_restore(struct pci_bus *bus)
4473 struct pci_dev *dev;
4475 list_for_each_entry(dev, &bus->devices, bus_list) {
4476 pci_dev_restore(dev);
4477 if (dev->subordinate)
4478 pci_bus_restore(dev->subordinate);
4482 /* Save and disable devices from the top of the tree down */
4483 static void pci_slot_save_and_disable(struct pci_slot *slot)
4485 struct pci_dev *dev;
4487 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4488 if (!dev->slot || dev->slot != slot)
4490 pci_dev_save_and_disable(dev);
4491 if (dev->subordinate)
4492 pci_bus_save_and_disable(dev->subordinate);
4497 * Restore devices from top of the tree down - parent bridges need to be
4498 * restored before we can get to subordinate devices.
4500 static void pci_slot_restore(struct pci_slot *slot)
4502 struct pci_dev *dev;
4504 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4505 if (!dev->slot || dev->slot != slot)
4507 pci_dev_restore(dev);
4508 if (dev->subordinate)
4509 pci_bus_restore(dev->subordinate);
4513 static int pci_slot_reset(struct pci_slot *slot, int probe)
4517 if (!slot || !pci_slot_resetable(slot))
4521 pci_slot_lock(slot);
4525 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4528 pci_slot_unlock(slot);
4534 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4535 * @slot: PCI slot to probe
4537 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4539 int pci_probe_reset_slot(struct pci_slot *slot)
4541 return pci_slot_reset(slot, 1);
4543 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4546 * pci_reset_slot - reset a PCI slot
4547 * @slot: PCI slot to reset
4549 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4550 * independent of other slots. For instance, some slots may support slot power
4551 * control. In the case of a 1:1 bus to slot architecture, this function may
4552 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4553 * Generally a slot reset should be attempted before a bus reset. All of the
4554 * function of the slot and any subordinate buses behind the slot are reset
4555 * through this function. PCI config space of all devices in the slot and
4556 * behind the slot is saved before and restored after reset.
4558 * Return 0 on success, non-zero on error.
4560 int pci_reset_slot(struct pci_slot *slot)
4564 rc = pci_slot_reset(slot, 1);
4568 pci_slot_save_and_disable(slot);
4570 rc = pci_slot_reset(slot, 0);
4572 pci_slot_restore(slot);
4576 EXPORT_SYMBOL_GPL(pci_reset_slot);
4579 * pci_try_reset_slot - Try to reset a PCI slot
4580 * @slot: PCI slot to reset
4582 * Same as above except return -EAGAIN if the slot cannot be locked
4584 int pci_try_reset_slot(struct pci_slot *slot)
4588 rc = pci_slot_reset(slot, 1);
4592 pci_slot_save_and_disable(slot);
4594 if (pci_slot_trylock(slot)) {
4596 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4597 pci_slot_unlock(slot);
4601 pci_slot_restore(slot);
4605 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4607 static int pci_bus_reset(struct pci_bus *bus, int probe)
4609 if (!bus->self || !pci_bus_resetable(bus))
4619 pci_reset_bridge_secondary_bus(bus->self);
4621 pci_bus_unlock(bus);
4627 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4628 * @bus: PCI bus to probe
4630 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4632 int pci_probe_reset_bus(struct pci_bus *bus)
4634 return pci_bus_reset(bus, 1);
4636 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4639 * pci_reset_bus - reset a PCI bus
4640 * @bus: top level PCI bus to reset
4642 * Do a bus reset on the given bus and any subordinate buses, saving
4643 * and restoring state of all devices.
4645 * Return 0 on success, non-zero on error.
4647 int pci_reset_bus(struct pci_bus *bus)
4651 rc = pci_bus_reset(bus, 1);
4655 pci_bus_save_and_disable(bus);
4657 rc = pci_bus_reset(bus, 0);
4659 pci_bus_restore(bus);
4663 EXPORT_SYMBOL_GPL(pci_reset_bus);
4666 * pci_try_reset_bus - Try to reset a PCI bus
4667 * @bus: top level PCI bus to reset
4669 * Same as above except return -EAGAIN if the bus cannot be locked
4671 int pci_try_reset_bus(struct pci_bus *bus)
4675 rc = pci_bus_reset(bus, 1);
4679 pci_bus_save_and_disable(bus);
4681 if (pci_bus_trylock(bus)) {
4683 pci_reset_bridge_secondary_bus(bus->self);
4684 pci_bus_unlock(bus);
4688 pci_bus_restore(bus);
4692 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4695 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4696 * @dev: PCI device to query
4698 * Returns mmrbc: maximum designed memory read count in bytes
4699 * or appropriate error value.
4701 int pcix_get_max_mmrbc(struct pci_dev *dev)
4706 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4710 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4713 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4715 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4718 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4719 * @dev: PCI device to query
4721 * Returns mmrbc: maximum memory read count in bytes
4722 * or appropriate error value.
4724 int pcix_get_mmrbc(struct pci_dev *dev)
4729 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4733 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4736 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4738 EXPORT_SYMBOL(pcix_get_mmrbc);
4741 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4742 * @dev: PCI device to query
4743 * @mmrbc: maximum memory read count in bytes
4744 * valid values are 512, 1024, 2048, 4096
4746 * If possible sets maximum memory read byte count, some bridges have erratas
4747 * that prevent this.
4749 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4755 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4758 v = ffs(mmrbc) - 10;
4760 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4764 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4767 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4770 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4773 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4775 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4778 cmd &= ~PCI_X_CMD_MAX_READ;
4780 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4785 EXPORT_SYMBOL(pcix_set_mmrbc);
4788 * pcie_get_readrq - get PCI Express read request size
4789 * @dev: PCI device to query
4791 * Returns maximum memory read request in bytes
4792 * or appropriate error value.
4794 int pcie_get_readrq(struct pci_dev *dev)
4798 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4800 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4802 EXPORT_SYMBOL(pcie_get_readrq);
4805 * pcie_set_readrq - set PCI Express maximum memory read request
4806 * @dev: PCI device to query
4807 * @rq: maximum memory read count in bytes
4808 * valid values are 128, 256, 512, 1024, 2048, 4096
4810 * If possible sets maximum memory read request in bytes
4812 int pcie_set_readrq(struct pci_dev *dev, int rq)
4816 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4820 * If using the "performance" PCIe config, we clamp the
4821 * read rq size to the max packet size to prevent the
4822 * host bridge generating requests larger than we can
4825 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4826 int mps = pcie_get_mps(dev);
4832 v = (ffs(rq) - 8) << 12;
4834 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4835 PCI_EXP_DEVCTL_READRQ, v);
4837 EXPORT_SYMBOL(pcie_set_readrq);
4840 * pcie_get_mps - get PCI Express maximum payload size
4841 * @dev: PCI device to query
4843 * Returns maximum payload size in bytes
4845 int pcie_get_mps(struct pci_dev *dev)
4849 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4851 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4853 EXPORT_SYMBOL(pcie_get_mps);
4856 * pcie_set_mps - set PCI Express maximum payload size
4857 * @dev: PCI device to query
4858 * @mps: maximum payload size in bytes
4859 * valid values are 128, 256, 512, 1024, 2048, 4096
4861 * If possible sets maximum payload size
4863 int pcie_set_mps(struct pci_dev *dev, int mps)
4867 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4871 if (v > dev->pcie_mpss)
4875 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4876 PCI_EXP_DEVCTL_PAYLOAD, v);
4878 EXPORT_SYMBOL(pcie_set_mps);
4881 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4882 * @dev: PCI device to query
4883 * @speed: storage for minimum speed
4884 * @width: storage for minimum width
4886 * This function will walk up the PCI device chain and determine the minimum
4887 * link width and speed of the device.
4889 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4890 enum pcie_link_width *width)
4894 *speed = PCI_SPEED_UNKNOWN;
4895 *width = PCIE_LNK_WIDTH_UNKNOWN;
4899 enum pci_bus_speed next_speed;
4900 enum pcie_link_width next_width;
4902 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4906 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4907 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4908 PCI_EXP_LNKSTA_NLW_SHIFT;
4910 if (next_speed < *speed)
4911 *speed = next_speed;
4913 if (next_width < *width)
4914 *width = next_width;
4916 dev = dev->bus->self;
4921 EXPORT_SYMBOL(pcie_get_minimum_link);
4924 * pci_select_bars - Make BAR mask from the type of resource
4925 * @dev: the PCI device for which BAR mask is made
4926 * @flags: resource type mask to be selected
4928 * This helper routine makes bar mask from the type of resource.
4930 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4933 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4934 if (pci_resource_flags(dev, i) & flags)
4938 EXPORT_SYMBOL(pci_select_bars);
4940 /* Some architectures require additional programming to enable VGA */
4941 static arch_set_vga_state_t arch_set_vga_state;
4943 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4945 arch_set_vga_state = func; /* NULL disables */
4948 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4949 unsigned int command_bits, u32 flags)
4951 if (arch_set_vga_state)
4952 return arch_set_vga_state(dev, decode, command_bits,
4958 * pci_set_vga_state - set VGA decode state on device and parents if requested
4959 * @dev: the PCI device
4960 * @decode: true = enable decoding, false = disable decoding
4961 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4962 * @flags: traverse ancestors and change bridges
4963 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4965 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4966 unsigned int command_bits, u32 flags)
4968 struct pci_bus *bus;
4969 struct pci_dev *bridge;
4973 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4975 /* ARCH specific VGA enables */
4976 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4980 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4981 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4983 cmd |= command_bits;
4985 cmd &= ~command_bits;
4986 pci_write_config_word(dev, PCI_COMMAND, cmd);
4989 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4996 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4999 cmd |= PCI_BRIDGE_CTL_VGA;
5001 cmd &= ~PCI_BRIDGE_CTL_VGA;
5002 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5011 * pci_add_dma_alias - Add a DMA devfn alias for a device
5012 * @dev: the PCI device for which alias is added
5013 * @devfn: alias slot and function
5015 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5016 * It should be called early, preferably as PCI fixup header quirk.
5018 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5020 if (!dev->dma_alias_mask)
5021 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5022 sizeof(long), GFP_KERNEL);
5023 if (!dev->dma_alias_mask) {
5024 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5028 set_bit(devfn, dev->dma_alias_mask);
5029 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5030 PCI_SLOT(devfn), PCI_FUNC(devfn));
5033 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5035 return (dev1->dma_alias_mask &&
5036 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5037 (dev2->dma_alias_mask &&
5038 test_bit(dev1->devfn, dev2->dma_alias_mask));
5041 bool pci_device_is_present(struct pci_dev *pdev)
5045 if (pci_dev_is_disconnected(pdev))
5047 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5049 EXPORT_SYMBOL_GPL(pci_device_is_present);
5051 void pci_ignore_hotplug(struct pci_dev *dev)
5053 struct pci_dev *bridge = dev->bus->self;
5055 dev->ignore_hotplug = 1;
5056 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5058 bridge->ignore_hotplug = 1;
5060 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5062 resource_size_t __weak pcibios_default_alignment(void)
5067 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5068 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5069 static DEFINE_SPINLOCK(resource_alignment_lock);
5072 * pci_specified_resource_alignment - get resource alignment specified by user.
5073 * @dev: the PCI device to get
5074 * @resize: whether or not to change resources' size when reassigning alignment
5076 * RETURNS: Resource alignment if it is specified.
5077 * Zero if it is not specified.
5079 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5082 int seg, bus, slot, func, align_order, count;
5083 unsigned short vendor, device, subsystem_vendor, subsystem_device;
5084 resource_size_t align = pcibios_default_alignment();
5087 spin_lock(&resource_alignment_lock);
5088 p = resource_alignment_param;
5091 if (pci_has_flag(PCI_PROBE_ONLY)) {
5093 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5099 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5105 if (strncmp(p, "pci:", 4) == 0) {
5106 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5108 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5109 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5110 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5111 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5115 subsystem_vendor = subsystem_device = 0;
5118 if ((!vendor || (vendor == dev->vendor)) &&
5119 (!device || (device == dev->device)) &&
5120 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5121 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5123 if (align_order == -1)
5126 align = 1 << align_order;
5132 if (sscanf(p, "%x:%x:%x.%x%n",
5133 &seg, &bus, &slot, &func, &count) != 4) {
5135 if (sscanf(p, "%x:%x.%x%n",
5136 &bus, &slot, &func, &count) != 3) {
5137 /* Invalid format */
5138 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5144 if (seg == pci_domain_nr(dev->bus) &&
5145 bus == dev->bus->number &&
5146 slot == PCI_SLOT(dev->devfn) &&
5147 func == PCI_FUNC(dev->devfn)) {
5149 if (align_order == -1)
5152 align = 1 << align_order;
5157 if (*p != ';' && *p != ',') {
5158 /* End of param or invalid format */
5164 spin_unlock(&resource_alignment_lock);
5168 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5169 resource_size_t align, bool resize)
5171 struct resource *r = &dev->resource[bar];
5172 resource_size_t size;
5174 if (!(r->flags & IORESOURCE_MEM))
5177 if (r->flags & IORESOURCE_PCI_FIXED) {
5178 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5179 bar, r, (unsigned long long)align);
5183 size = resource_size(r);
5188 * Increase the alignment of the resource. There are two ways we
5191 * 1) Increase the size of the resource. BARs are aligned on their
5192 * size, so when we reallocate space for this resource, we'll
5193 * allocate it with the larger alignment. This also prevents
5194 * assignment of any other BARs inside the alignment region, so
5195 * if we're requesting page alignment, this means no other BARs
5196 * will share the page.
5198 * The disadvantage is that this makes the resource larger than
5199 * the hardware BAR, which may break drivers that compute things
5200 * based on the resource size, e.g., to find registers at a
5201 * fixed offset before the end of the BAR.
5203 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5204 * set r->start to the desired alignment. By itself this
5205 * doesn't prevent other BARs being put inside the alignment
5206 * region, but if we realign *every* resource of every device in
5207 * the system, none of them will share an alignment region.
5209 * When the user has requested alignment for only some devices via
5210 * the "pci=resource_alignment" argument, "resize" is true and we
5211 * use the first method. Otherwise we assume we're aligning all
5212 * devices and we use the second.
5215 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5216 bar, r, (unsigned long long)align);
5222 r->flags &= ~IORESOURCE_SIZEALIGN;
5223 r->flags |= IORESOURCE_STARTALIGN;
5225 r->end = r->start + size - 1;
5227 r->flags |= IORESOURCE_UNSET;
5231 * This function disables memory decoding and releases memory resources
5232 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5233 * It also rounds up size to specified alignment.
5234 * Later on, the kernel will assign page-aligned memory resource back
5237 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5241 resource_size_t align;
5243 bool resize = false;
5246 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5247 * 3.4.1.11. Their resources are allocated from the space
5248 * described by the VF BARx register in the PF's SR-IOV capability.
5249 * We can't influence their alignment here.
5254 /* check if specified PCI is target device to reassign */
5255 align = pci_specified_resource_alignment(dev, &resize);
5259 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5260 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5262 "Can't reassign resources to host bridge.\n");
5267 "Disabling memory decoding and releasing memory resources.\n");
5268 pci_read_config_word(dev, PCI_COMMAND, &command);
5269 command &= ~PCI_COMMAND_MEMORY;
5270 pci_write_config_word(dev, PCI_COMMAND, command);
5272 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5273 pci_request_resource_alignment(dev, i, align, resize);
5276 * Need to disable bridge's resource window,
5277 * to enable the kernel to reassign new resource
5280 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5281 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5282 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5283 r = &dev->resource[i];
5284 if (!(r->flags & IORESOURCE_MEM))
5286 r->flags |= IORESOURCE_UNSET;
5287 r->end = resource_size(r) - 1;
5290 pci_disable_bridge_window(dev);
5294 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5296 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5297 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5298 spin_lock(&resource_alignment_lock);
5299 strncpy(resource_alignment_param, buf, count);
5300 resource_alignment_param[count] = '\0';
5301 spin_unlock(&resource_alignment_lock);
5305 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5308 spin_lock(&resource_alignment_lock);
5309 count = snprintf(buf, size, "%s", resource_alignment_param);
5310 spin_unlock(&resource_alignment_lock);
5314 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5316 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5319 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5320 const char *buf, size_t count)
5322 return pci_set_resource_alignment_param(buf, count);
5325 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5326 pci_resource_alignment_store);
5328 static int __init pci_resource_alignment_sysfs_init(void)
5330 return bus_create_file(&pci_bus_type,
5331 &bus_attr_resource_alignment);
5333 late_initcall(pci_resource_alignment_sysfs_init);
5335 static void pci_no_domains(void)
5337 #ifdef CONFIG_PCI_DOMAINS
5338 pci_domains_supported = 0;
5342 #ifdef CONFIG_PCI_DOMAINS
5343 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5345 int pci_get_new_domain_nr(void)
5347 return atomic_inc_return(&__domain_nr);
5350 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5351 static int of_pci_bus_find_domain_nr(struct device *parent)
5353 static int use_dt_domains = -1;
5357 domain = of_get_pci_domain_nr(parent->of_node);
5359 * Check DT domain and use_dt_domains values.
5361 * If DT domain property is valid (domain >= 0) and
5362 * use_dt_domains != 0, the DT assignment is valid since this means
5363 * we have not previously allocated a domain number by using
5364 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5365 * 1, to indicate that we have just assigned a domain number from
5368 * If DT domain property value is not valid (ie domain < 0), and we
5369 * have not previously assigned a domain number from DT
5370 * (use_dt_domains != 1) we should assign a domain number by
5373 * pci_get_new_domain_nr()
5375 * API and update the use_dt_domains value to keep track of method we
5376 * are using to assign domain numbers (use_dt_domains = 0).
5378 * All other combinations imply we have a platform that is trying
5379 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5380 * which is a recipe for domain mishandling and it is prevented by
5381 * invalidating the domain value (domain = -1) and printing a
5382 * corresponding error.
5384 if (domain >= 0 && use_dt_domains) {
5386 } else if (domain < 0 && use_dt_domains != 1) {
5388 domain = pci_get_new_domain_nr();
5390 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5391 parent->of_node->full_name);
5398 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5400 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5401 acpi_pci_bus_find_domain_nr(bus);
5407 * pci_ext_cfg_avail - can we access extended PCI config space?
5409 * Returns 1 if we can access PCI extended config space (offsets
5410 * greater than 0xff). This is the default implementation. Architecture
5411 * implementations can override this.
5413 int __weak pci_ext_cfg_avail(void)
5418 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5421 EXPORT_SYMBOL(pci_fixup_cardbus);
5423 static int __init pci_setup(char *str)
5426 char *k = strchr(str, ',');
5429 if (*str && (str = pcibios_setup(str)) && *str) {
5430 if (!strcmp(str, "nomsi")) {
5432 } else if (!strcmp(str, "noaer")) {
5434 } else if (!strncmp(str, "realloc=", 8)) {
5435 pci_realloc_get_opt(str + 8);
5436 } else if (!strncmp(str, "realloc", 7)) {
5437 pci_realloc_get_opt("on");
5438 } else if (!strcmp(str, "nodomains")) {
5440 } else if (!strncmp(str, "noari", 5)) {
5441 pcie_ari_disabled = true;
5442 } else if (!strncmp(str, "cbiosize=", 9)) {
5443 pci_cardbus_io_size = memparse(str + 9, &str);
5444 } else if (!strncmp(str, "cbmemsize=", 10)) {
5445 pci_cardbus_mem_size = memparse(str + 10, &str);
5446 } else if (!strncmp(str, "resource_alignment=", 19)) {
5447 pci_set_resource_alignment_param(str + 19,
5449 } else if (!strncmp(str, "ecrc=", 5)) {
5450 pcie_ecrc_get_policy(str + 5);
5451 } else if (!strncmp(str, "hpiosize=", 9)) {
5452 pci_hotplug_io_size = memparse(str + 9, &str);
5453 } else if (!strncmp(str, "hpmemsize=", 10)) {
5454 pci_hotplug_mem_size = memparse(str + 10, &str);
5455 } else if (!strncmp(str, "hpbussize=", 10)) {
5456 pci_hotplug_bus_size =
5457 simple_strtoul(str + 10, &str, 0);
5458 if (pci_hotplug_bus_size > 0xff)
5459 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5460 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5461 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5462 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5463 pcie_bus_config = PCIE_BUS_SAFE;
5464 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5465 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5466 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5467 pcie_bus_config = PCIE_BUS_PEER2PEER;
5468 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5469 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5471 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5479 early_param("pci", pci_setup);