1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
18 #include <linux/of_pci.h>
19 #include <linux/pci.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/log2.h>
26 #include <linux/logic_pio.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
36 #include <linux/aer.h>
39 DEFINE_MUTEX(pci_slot_mutex);
41 const char *pci_power_names[] = {
42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
44 EXPORT_SYMBOL_GPL(pci_power_names);
46 int isa_dma_bridge_buggy;
47 EXPORT_SYMBOL(isa_dma_bridge_buggy);
50 EXPORT_SYMBOL(pci_pci_problems);
52 unsigned int pci_pm_d3_delay;
54 static void pci_pme_list_scan(struct work_struct *work);
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
60 struct pci_pme_device {
61 struct list_head list;
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
69 unsigned int delay = dev->d3_delay;
71 if (delay < pci_pm_d3_delay)
72 delay = pci_pm_d3_delay;
78 #ifdef CONFIG_PCI_DOMAINS
79 int pci_domains_supported = 1;
82 #define DEFAULT_CARDBUS_IO_SIZE (256)
83 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
88 #define DEFAULT_HOTPLUG_IO_SIZE (256)
89 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
91 /* hpiosize=nn can override this */
92 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96 * pci=hpmemsize=nnM overrides both
98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
101 #define DEFAULT_HOTPLUG_BUS_SIZE 1
102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
107 * The default CLS is used if arch didn't set CLS explicitly and not
108 * all pci devices agree on the same value. Arch can override either
109 * the dfl or actual value as it sees fit. Don't forget this is
110 * measured in 32-bit words, not bytes.
112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
113 u8 pci_cache_line_size;
116 * If we set up a device for bus mastering, we need to check the latency
117 * timer as certain BIOSes forget to set it properly.
119 unsigned int pcibios_max_latency = 255;
121 /* If set, the PCIe ARI capability will not be used. */
122 static bool pcie_ari_disabled;
124 /* If set, the PCIe ATS capability will not be used. */
125 static bool pcie_ats_disabled;
127 /* If set, the PCI config space of each device is printed during boot. */
130 bool pci_ats_disabled(void)
132 return pcie_ats_disabled;
134 EXPORT_SYMBOL_GPL(pci_ats_disabled);
136 /* Disable bridge_d3 for all PCIe ports */
137 static bool pci_bridge_d3_disable;
138 /* Force bridge_d3 for all PCIe ports */
139 static bool pci_bridge_d3_force;
141 static int __init pcie_port_pm_setup(char *str)
143 if (!strcmp(str, "off"))
144 pci_bridge_d3_disable = true;
145 else if (!strcmp(str, "force"))
146 pci_bridge_d3_force = true;
149 __setup("pcie_port_pm=", pcie_port_pm_setup);
151 /* Time to wait after a reset for device to become responsive */
152 #define PCIE_RESET_READY_POLL_MS 60000
155 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
156 * @bus: pointer to PCI bus structure to search
158 * Given a PCI bus, returns the highest PCI bus number present in the set
159 * including the given PCI bus and its list of child PCI buses.
161 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
164 unsigned char max, n;
166 max = bus->busn_res.end;
167 list_for_each_entry(tmp, &bus->children, node) {
168 n = pci_bus_max_busnr(tmp);
174 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
177 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
178 * @pdev: the PCI device
180 * Returns error bits set in PCI_STATUS and clears them.
182 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
187 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
188 if (ret != PCIBIOS_SUCCESSFUL)
191 status &= PCI_STATUS_ERROR_BITS;
193 pci_write_config_word(pdev, PCI_STATUS, status);
197 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
199 #ifdef CONFIG_HAS_IOMEM
200 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
202 struct resource *res = &pdev->resource[bar];
205 * Make sure the BAR is actually a memory resource, not an IO resource
207 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
208 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
211 return ioremap(res->start, resource_size(res));
213 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
215 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
218 * Make sure the BAR is actually a memory resource, not an IO resource
220 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
224 return ioremap_wc(pci_resource_start(pdev, bar),
225 pci_resource_len(pdev, bar));
227 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
231 * pci_dev_str_match_path - test if a path string matches a device
232 * @dev: the PCI device to test
233 * @path: string to match the device against
234 * @endptr: pointer to the string after the match
236 * Test if a string (typically from a kernel parameter) formatted as a
237 * path of device/function addresses matches a PCI device. The string must
240 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
242 * A path for a device can be obtained using 'lspci -t'. Using a path
243 * is more robust against bus renumbering than using only a single bus,
244 * device and function address.
246 * Returns 1 if the string matches the device, 0 if it does not and
247 * a negative error code if it fails to parse the string.
249 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
253 int seg, bus, slot, func;
257 *endptr = strchrnul(path, ';');
259 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
264 p = strrchr(wpath, '/');
267 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
273 if (dev->devfn != PCI_DEVFN(slot, func)) {
279 * Note: we don't need to get a reference to the upstream
280 * bridge because we hold a reference to the top level
281 * device which should hold a reference to the bridge,
284 dev = pci_upstream_bridge(dev);
293 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
297 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
304 ret = (seg == pci_domain_nr(dev->bus) &&
305 bus == dev->bus->number &&
306 dev->devfn == PCI_DEVFN(slot, func));
314 * pci_dev_str_match - test if a string matches a device
315 * @dev: the PCI device to test
316 * @p: string to match the device against
317 * @endptr: pointer to the string after the match
319 * Test if a string (typically from a kernel parameter) matches a specified
320 * PCI device. The string may be of one of the following formats:
322 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
323 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
325 * The first format specifies a PCI bus/device/function address which
326 * may change if new hardware is inserted, if motherboard firmware changes,
327 * or due to changes caused in kernel parameters. If the domain is
328 * left unspecified, it is taken to be 0. In order to be robust against
329 * bus renumbering issues, a path of PCI device/function numbers may be used
330 * to address the specific device. The path for a device can be determined
331 * through the use of 'lspci -t'.
333 * The second format matches devices using IDs in the configuration
334 * space which may match multiple devices in the system. A value of 0
335 * for any field will match all devices. (Note: this differs from
336 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
337 * legacy reasons and convenience so users don't have to specify
338 * FFFFFFFFs on the command line.)
340 * Returns 1 if the string matches the device, 0 if it does not and
341 * a negative error code if the string cannot be parsed.
343 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
348 unsigned short vendor, device, subsystem_vendor, subsystem_device;
350 if (strncmp(p, "pci:", 4) == 0) {
351 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
353 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
354 &subsystem_vendor, &subsystem_device, &count);
356 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
360 subsystem_vendor = 0;
361 subsystem_device = 0;
366 if ((!vendor || vendor == dev->vendor) &&
367 (!device || device == dev->device) &&
368 (!subsystem_vendor ||
369 subsystem_vendor == dev->subsystem_vendor) &&
370 (!subsystem_device ||
371 subsystem_device == dev->subsystem_device))
375 * PCI Bus, Device, Function IDs are specified
376 * (optionally, may include a path of devfns following it)
378 ret = pci_dev_str_match_path(dev, p, &p);
393 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
394 u8 pos, int cap, int *ttl)
399 pci_bus_read_config_byte(bus, devfn, pos, &pos);
405 pci_bus_read_config_word(bus, devfn, pos, &ent);
417 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
420 int ttl = PCI_FIND_CAP_TTL;
422 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
425 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
427 return __pci_find_next_cap(dev->bus, dev->devfn,
428 pos + PCI_CAP_LIST_NEXT, cap);
430 EXPORT_SYMBOL_GPL(pci_find_next_capability);
432 static int __pci_bus_find_cap_start(struct pci_bus *bus,
433 unsigned int devfn, u8 hdr_type)
437 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
438 if (!(status & PCI_STATUS_CAP_LIST))
442 case PCI_HEADER_TYPE_NORMAL:
443 case PCI_HEADER_TYPE_BRIDGE:
444 return PCI_CAPABILITY_LIST;
445 case PCI_HEADER_TYPE_CARDBUS:
446 return PCI_CB_CAPABILITY_LIST;
453 * pci_find_capability - query for devices' capabilities
454 * @dev: PCI device to query
455 * @cap: capability code
457 * Tell if a device supports a given PCI capability.
458 * Returns the address of the requested capability structure within the
459 * device's PCI configuration space or 0 in case the device does not
460 * support it. Possible values for @cap include:
462 * %PCI_CAP_ID_PM Power Management
463 * %PCI_CAP_ID_AGP Accelerated Graphics Port
464 * %PCI_CAP_ID_VPD Vital Product Data
465 * %PCI_CAP_ID_SLOTID Slot Identification
466 * %PCI_CAP_ID_MSI Message Signalled Interrupts
467 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
468 * %PCI_CAP_ID_PCIX PCI-X
469 * %PCI_CAP_ID_EXP PCI Express
471 int pci_find_capability(struct pci_dev *dev, int cap)
475 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
477 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
481 EXPORT_SYMBOL(pci_find_capability);
484 * pci_bus_find_capability - query for devices' capabilities
485 * @bus: the PCI bus to query
486 * @devfn: PCI device to query
487 * @cap: capability code
489 * Like pci_find_capability() but works for PCI devices that do not have a
490 * pci_dev structure set up yet.
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
496 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
501 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
503 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
505 pos = __pci_find_next_cap(bus, devfn, pos, cap);
509 EXPORT_SYMBOL(pci_bus_find_capability);
512 * pci_find_next_ext_capability - Find an extended capability
513 * @dev: PCI device to query
514 * @start: address at which to start looking (0 to start at beginning of list)
515 * @cap: capability code
517 * Returns the address of the next matching extended capability structure
518 * within the device's PCI configuration space or 0 if the device does
519 * not support it. Some capabilities can occur several times, e.g., the
520 * vendor-specific capability, and this provides a way to find them all.
522 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
526 int pos = PCI_CFG_SPACE_SIZE;
528 /* minimum 8 bytes per capability */
529 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
531 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
537 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
541 * If we have no capabilities, this is indicated by cap ID,
542 * cap version and next pointer all being 0.
548 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
551 pos = PCI_EXT_CAP_NEXT(header);
552 if (pos < PCI_CFG_SPACE_SIZE)
555 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
561 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
564 * pci_find_ext_capability - Find an extended capability
565 * @dev: PCI device to query
566 * @cap: capability code
568 * Returns the address of the requested extended capability structure
569 * within the device's PCI configuration space or 0 if the device does
570 * not support it. Possible values for @cap include:
572 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
573 * %PCI_EXT_CAP_ID_VC Virtual Channel
574 * %PCI_EXT_CAP_ID_DSN Device Serial Number
575 * %PCI_EXT_CAP_ID_PWR Power Budgeting
577 int pci_find_ext_capability(struct pci_dev *dev, int cap)
579 return pci_find_next_ext_capability(dev, 0, cap);
581 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
584 * pci_get_dsn - Read and return the 8-byte Device Serial Number
585 * @dev: PCI device to query
587 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
590 * Returns the DSN, or zero if the capability does not exist.
592 u64 pci_get_dsn(struct pci_dev *dev)
598 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
603 * The Device Serial Number is two dwords offset 4 bytes from the
604 * capability position. The specification says that the first dword is
605 * the lower half, and the second dword is the upper half.
608 pci_read_config_dword(dev, pos, &dword);
610 pci_read_config_dword(dev, pos + 4, &dword);
611 dsn |= ((u64)dword) << 32;
615 EXPORT_SYMBOL_GPL(pci_get_dsn);
617 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
619 int rc, ttl = PCI_FIND_CAP_TTL;
622 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
623 mask = HT_3BIT_CAP_MASK;
625 mask = HT_5BIT_CAP_MASK;
627 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
628 PCI_CAP_ID_HT, &ttl);
630 rc = pci_read_config_byte(dev, pos + 3, &cap);
631 if (rc != PCIBIOS_SUCCESSFUL)
634 if ((cap & mask) == ht_cap)
637 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
638 pos + PCI_CAP_LIST_NEXT,
639 PCI_CAP_ID_HT, &ttl);
645 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
646 * @dev: PCI device to query
647 * @pos: Position from which to continue searching
648 * @ht_cap: Hypertransport capability code
650 * To be used in conjunction with pci_find_ht_capability() to search for
651 * all capabilities matching @ht_cap. @pos should always be a value returned
652 * from pci_find_ht_capability().
654 * NB. To be 100% safe against broken PCI devices, the caller should take
655 * steps to avoid an infinite loop.
657 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
659 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
661 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
664 * pci_find_ht_capability - query a device's Hypertransport capabilities
665 * @dev: PCI device to query
666 * @ht_cap: Hypertransport capability code
668 * Tell if a device supports a given Hypertransport capability.
669 * Returns an address within the device's PCI configuration space
670 * or 0 in case the device does not support the request capability.
671 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
672 * which has a Hypertransport capability matching @ht_cap.
674 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
678 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
680 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
684 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
687 * pci_find_parent_resource - return resource region of parent bus of given
689 * @dev: PCI device structure contains resources to be searched
690 * @res: child resource record for which parent is sought
692 * For given resource region of given device, return the resource region of
693 * parent bus the given region is contained in.
695 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
696 struct resource *res)
698 const struct pci_bus *bus = dev->bus;
702 pci_bus_for_each_resource(bus, r, i) {
705 if (resource_contains(r, res)) {
708 * If the window is prefetchable but the BAR is
709 * not, the allocator made a mistake.
711 if (r->flags & IORESOURCE_PREFETCH &&
712 !(res->flags & IORESOURCE_PREFETCH))
716 * If we're below a transparent bridge, there may
717 * be both a positively-decoded aperture and a
718 * subtractively-decoded region that contain the BAR.
719 * We want the positively-decoded one, so this depends
720 * on pci_bus_for_each_resource() giving us those
728 EXPORT_SYMBOL(pci_find_parent_resource);
731 * pci_find_resource - Return matching PCI device resource
732 * @dev: PCI device to query
733 * @res: Resource to look for
735 * Goes over standard PCI resources (BARs) and checks if the given resource
736 * is partially or fully contained in any of them. In that case the
737 * matching resource is returned, %NULL otherwise.
739 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
743 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
744 struct resource *r = &dev->resource[i];
746 if (r->start && resource_contains(r, res))
752 EXPORT_SYMBOL(pci_find_resource);
755 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
756 * @dev: the PCI device to operate on
757 * @pos: config space offset of status word
758 * @mask: mask of bit(s) to care about in status word
760 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
762 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
766 /* Wait for Transaction Pending bit clean */
767 for (i = 0; i < 4; i++) {
770 msleep((1 << (i - 1)) * 100);
772 pci_read_config_word(dev, pos, &status);
773 if (!(status & mask))
780 static int pci_acs_enable;
783 * pci_request_acs - ask for ACS to be enabled if supported
785 void pci_request_acs(void)
790 static const char *disable_acs_redir_param;
793 * pci_disable_acs_redir - disable ACS redirect capabilities
794 * @dev: the PCI device
796 * For only devices specified in the disable_acs_redir parameter.
798 static void pci_disable_acs_redir(struct pci_dev *dev)
805 if (!disable_acs_redir_param)
808 p = disable_acs_redir_param;
810 ret = pci_dev_str_match(dev, p, &p);
812 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
813 disable_acs_redir_param);
816 } else if (ret == 1) {
821 if (*p != ';' && *p != ',') {
822 /* End of param or invalid format */
831 if (!pci_dev_specific_disable_acs_redir(dev))
836 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
840 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
842 /* P2P Request & Completion Redirect */
843 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
845 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
847 pci_info(dev, "disabled ACS redirect\n");
851 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
852 * @dev: the PCI device
854 static void pci_std_enable_acs(struct pci_dev *dev)
864 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
865 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
867 /* Source Validation */
868 ctrl |= (cap & PCI_ACS_SV);
870 /* P2P Request Redirect */
871 ctrl |= (cap & PCI_ACS_RR);
873 /* P2P Completion Redirect */
874 ctrl |= (cap & PCI_ACS_CR);
876 /* Upstream Forwarding */
877 ctrl |= (cap & PCI_ACS_UF);
879 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
883 * pci_enable_acs - enable ACS if hardware support it
884 * @dev: the PCI device
886 static void pci_enable_acs(struct pci_dev *dev)
889 goto disable_acs_redir;
891 if (!pci_dev_specific_enable_acs(dev))
892 goto disable_acs_redir;
894 pci_std_enable_acs(dev);
898 * Note: pci_disable_acs_redir() must be called even if ACS was not
899 * enabled by the kernel because it may have been enabled by
900 * platform firmware. So if we are told to disable it, we should
901 * always disable it after setting the kernel's default
904 pci_disable_acs_redir(dev);
908 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
909 * @dev: PCI device to have its BARs restored
911 * Restore the BAR values for a given device, so as to make it
912 * accessible by its driver.
914 static void pci_restore_bars(struct pci_dev *dev)
918 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
919 pci_update_resource(dev, i);
922 static const struct pci_platform_pm_ops *pci_platform_pm;
924 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
926 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
927 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
929 pci_platform_pm = ops;
933 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
935 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
938 static inline int platform_pci_set_power_state(struct pci_dev *dev,
941 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
944 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
946 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
949 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
951 if (pci_platform_pm && pci_platform_pm->refresh_state)
952 pci_platform_pm->refresh_state(dev);
955 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
957 return pci_platform_pm ?
958 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
961 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
963 return pci_platform_pm ?
964 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
967 static inline bool platform_pci_need_resume(struct pci_dev *dev)
969 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
972 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
974 if (pci_platform_pm && pci_platform_pm->bridge_d3)
975 return pci_platform_pm->bridge_d3(dev);
980 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
982 * @dev: PCI device to handle.
983 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
986 * -EINVAL if the requested state is invalid.
987 * -EIO if device does not support PCI PM or its PM capabilities register has a
988 * wrong version, or device doesn't support the requested state.
989 * 0 if device already is in the requested state.
990 * 0 if device's power state has been successfully changed.
992 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
995 bool need_restore = false;
997 /* Check if we're already there */
998 if (dev->current_state == state)
1004 if (state < PCI_D0 || state > PCI_D3hot)
1008 * Validate transition: We can enter D0 from any state, but if
1009 * we're already in a low-power state, we can only go deeper. E.g.,
1010 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1011 * we'd have to go from D3 to D0, then to D1.
1013 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1014 && dev->current_state > state) {
1015 pci_err(dev, "invalid power transition (from %s to %s)\n",
1016 pci_power_name(dev->current_state),
1017 pci_power_name(state));
1021 /* Check if this device supports the desired state */
1022 if ((state == PCI_D1 && !dev->d1_support)
1023 || (state == PCI_D2 && !dev->d2_support))
1026 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1027 if (pmcsr == (u16) ~0) {
1028 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1029 pci_power_name(dev->current_state),
1030 pci_power_name(state));
1035 * If we're (effectively) in D3, force entire word to 0.
1036 * This doesn't affect PME_Status, disables PME_En, and
1037 * sets PowerState to 0.
1039 switch (dev->current_state) {
1043 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1048 case PCI_UNKNOWN: /* Boot-up */
1049 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1050 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1051 need_restore = true;
1052 fallthrough; /* force to D0 */
1058 /* Enter specified state */
1059 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1062 * Mandatory power management transition delays; see PCI PM 1.1
1065 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1066 pci_dev_d3_sleep(dev);
1067 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1068 msleep(PCI_PM_D2_DELAY);
1070 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1071 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1072 if (dev->current_state != state)
1073 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1074 pci_power_name(dev->current_state),
1075 pci_power_name(state));
1078 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1079 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1080 * from D3hot to D0 _may_ perform an internal reset, thereby
1081 * going to "D0 Uninitialized" rather than "D0 Initialized".
1082 * For example, at least some versions of the 3c905B and the
1083 * 3c556B exhibit this behaviour.
1085 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1086 * devices in a D3hot state at boot. Consequently, we need to
1087 * restore at least the BARs so that the device will be
1088 * accessible to its driver.
1091 pci_restore_bars(dev);
1094 pcie_aspm_pm_state_change(dev->bus->self);
1100 * pci_update_current_state - Read power state of given device and cache it
1101 * @dev: PCI device to handle.
1102 * @state: State to cache in case the device doesn't have the PM capability
1104 * The power state is read from the PMCSR register, which however is
1105 * inaccessible in D3cold. The platform firmware is therefore queried first
1106 * to detect accessibility of the register. In case the platform firmware
1107 * reports an incorrect state or the device isn't power manageable by the
1108 * platform at all, we try to detect D3cold by testing accessibility of the
1109 * vendor ID in config space.
1111 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1113 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1114 !pci_device_is_present(dev)) {
1115 dev->current_state = PCI_D3cold;
1116 } else if (dev->pm_cap) {
1119 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1120 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1122 dev->current_state = state;
1127 * pci_refresh_power_state - Refresh the given device's power state data
1128 * @dev: Target PCI device.
1130 * Ask the platform to refresh the devices power state information and invoke
1131 * pci_update_current_state() to update its current PCI power state.
1133 void pci_refresh_power_state(struct pci_dev *dev)
1135 if (platform_pci_power_manageable(dev))
1136 platform_pci_refresh_power_state(dev);
1138 pci_update_current_state(dev, dev->current_state);
1142 * pci_platform_power_transition - Use platform to change device power state
1143 * @dev: PCI device to handle.
1144 * @state: State to put the device into.
1146 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1150 if (platform_pci_power_manageable(dev)) {
1151 error = platform_pci_set_power_state(dev, state);
1153 pci_update_current_state(dev, state);
1157 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1158 dev->current_state = PCI_D0;
1162 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1165 * pci_wakeup - Wake up a PCI device
1166 * @pci_dev: Device to handle.
1167 * @ign: ignored parameter
1169 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1171 pci_wakeup_event(pci_dev);
1172 pm_request_resume(&pci_dev->dev);
1177 * pci_wakeup_bus - Walk given bus and wake up devices on it
1178 * @bus: Top bus of the subtree to walk.
1180 void pci_wakeup_bus(struct pci_bus *bus)
1183 pci_walk_bus(bus, pci_wakeup, NULL);
1186 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1192 * After reset, the device should not silently discard config
1193 * requests, but it may still indicate that it needs more time by
1194 * responding to them with CRS completions. The Root Port will
1195 * generally synthesize ~0 data to complete the read (except when
1196 * CRS SV is enabled and the read was for the Vendor ID; in that
1197 * case it synthesizes 0x0001 data).
1199 * Wait for the device to return a non-CRS completion. Read the
1200 * Command register instead of Vendor ID so we don't have to
1201 * contend with the CRS SV value.
1203 pci_read_config_dword(dev, PCI_COMMAND, &id);
1205 if (delay > timeout) {
1206 pci_warn(dev, "not ready %dms after %s; giving up\n",
1207 delay - 1, reset_type);
1212 pci_info(dev, "not ready %dms after %s; waiting\n",
1213 delay - 1, reset_type);
1217 pci_read_config_dword(dev, PCI_COMMAND, &id);
1221 pci_info(dev, "ready %dms after %s\n", delay - 1,
1228 * pci_power_up - Put the given device into D0
1229 * @dev: PCI device to power up
1231 int pci_power_up(struct pci_dev *dev)
1233 pci_platform_power_transition(dev, PCI_D0);
1236 * Mandatory power management transition delays are handled in
1237 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1238 * corresponding bridge.
1240 if (dev->runtime_d3cold) {
1242 * When powering on a bridge from D3cold, the whole hierarchy
1243 * may be powered on into D0uninitialized state, resume them to
1244 * give them a chance to suspend again
1246 pci_wakeup_bus(dev->subordinate);
1249 return pci_raw_set_power_state(dev, PCI_D0);
1253 * __pci_dev_set_current_state - Set current state of a PCI device
1254 * @dev: Device to handle
1255 * @data: pointer to state to be set
1257 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1259 pci_power_t state = *(pci_power_t *)data;
1261 dev->current_state = state;
1266 * pci_bus_set_current_state - Walk given bus and set current state of devices
1267 * @bus: Top bus of the subtree to walk.
1268 * @state: state to be set
1270 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1273 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1277 * pci_set_power_state - Set the power state of a PCI device
1278 * @dev: PCI device to handle.
1279 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1281 * Transition a device to a new power state, using the platform firmware and/or
1282 * the device's PCI PM registers.
1285 * -EINVAL if the requested state is invalid.
1286 * -EIO if device does not support PCI PM or its PM capabilities register has a
1287 * wrong version, or device doesn't support the requested state.
1288 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1289 * 0 if device already is in the requested state.
1290 * 0 if the transition is to D3 but D3 is not supported.
1291 * 0 if device's power state has been successfully changed.
1293 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1297 /* Bound the state we're entering */
1298 if (state > PCI_D3cold)
1300 else if (state < PCI_D0)
1302 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1305 * If the device or the parent bridge do not support PCI
1306 * PM, ignore the request if we're doing anything other
1307 * than putting it into D0 (which would only happen on
1312 /* Check if we're already there */
1313 if (dev->current_state == state)
1316 if (state == PCI_D0)
1317 return pci_power_up(dev);
1320 * This device is quirked not to be put into D3, so don't put it in
1323 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1327 * To put device in D3cold, we put device into D3hot in native
1328 * way, then put device into D3cold with platform ops
1330 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1333 if (pci_platform_power_transition(dev, state))
1336 /* Powering off a bridge may power off the whole hierarchy */
1337 if (state == PCI_D3cold)
1338 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1342 EXPORT_SYMBOL(pci_set_power_state);
1345 * pci_choose_state - Choose the power state of a PCI device
1346 * @dev: PCI device to be suspended
1347 * @state: target sleep state for the whole system. This is the value
1348 * that is passed to suspend() function.
1350 * Returns PCI power state suitable for given device and given system
1353 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1360 ret = platform_pci_choose_state(dev);
1361 if (ret != PCI_POWER_ERROR)
1364 switch (state.event) {
1367 case PM_EVENT_FREEZE:
1368 case PM_EVENT_PRETHAW:
1369 /* REVISIT both freeze and pre-thaw "should" use D0 */
1370 case PM_EVENT_SUSPEND:
1371 case PM_EVENT_HIBERNATE:
1374 pci_info(dev, "unrecognized suspend event %d\n",
1380 EXPORT_SYMBOL(pci_choose_state);
1382 #define PCI_EXP_SAVE_REGS 7
1384 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1385 u16 cap, bool extended)
1387 struct pci_cap_saved_state *tmp;
1389 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1390 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1396 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1398 return _pci_find_saved_cap(dev, cap, false);
1401 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1403 return _pci_find_saved_cap(dev, cap, true);
1406 static int pci_save_pcie_state(struct pci_dev *dev)
1409 struct pci_cap_saved_state *save_state;
1412 if (!pci_is_pcie(dev))
1415 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1417 pci_err(dev, "buffer not found in %s\n", __func__);
1421 cap = (u16 *)&save_state->cap.data[0];
1422 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1423 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1424 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1425 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1426 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1427 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1428 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1433 static void pci_restore_pcie_state(struct pci_dev *dev)
1436 struct pci_cap_saved_state *save_state;
1439 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1443 cap = (u16 *)&save_state->cap.data[0];
1444 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1445 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1446 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1447 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1448 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1449 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1450 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1453 static int pci_save_pcix_state(struct pci_dev *dev)
1456 struct pci_cap_saved_state *save_state;
1458 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1462 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1464 pci_err(dev, "buffer not found in %s\n", __func__);
1468 pci_read_config_word(dev, pos + PCI_X_CMD,
1469 (u16 *)save_state->cap.data);
1474 static void pci_restore_pcix_state(struct pci_dev *dev)
1477 struct pci_cap_saved_state *save_state;
1480 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1481 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1482 if (!save_state || !pos)
1484 cap = (u16 *)&save_state->cap.data[0];
1486 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1489 static void pci_save_ltr_state(struct pci_dev *dev)
1492 struct pci_cap_saved_state *save_state;
1495 if (!pci_is_pcie(dev))
1498 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1502 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1504 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1508 cap = (u16 *)&save_state->cap.data[0];
1509 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1510 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1513 static void pci_restore_ltr_state(struct pci_dev *dev)
1515 struct pci_cap_saved_state *save_state;
1519 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1520 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1521 if (!save_state || !ltr)
1524 cap = (u16 *)&save_state->cap.data[0];
1525 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1526 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1530 * pci_save_state - save the PCI configuration space of a device before
1532 * @dev: PCI device that we're dealing with
1534 int pci_save_state(struct pci_dev *dev)
1537 /* XXX: 100% dword access ok here? */
1538 for (i = 0; i < 16; i++) {
1539 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1540 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1541 i * 4, dev->saved_config_space[i]);
1543 dev->state_saved = true;
1545 i = pci_save_pcie_state(dev);
1549 i = pci_save_pcix_state(dev);
1553 pci_save_ltr_state(dev);
1554 pci_save_dpc_state(dev);
1555 pci_save_aer_state(dev);
1556 return pci_save_vc_state(dev);
1558 EXPORT_SYMBOL(pci_save_state);
1560 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1561 u32 saved_val, int retry, bool force)
1565 pci_read_config_dword(pdev, offset, &val);
1566 if (!force && val == saved_val)
1570 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1571 offset, val, saved_val);
1572 pci_write_config_dword(pdev, offset, saved_val);
1576 pci_read_config_dword(pdev, offset, &val);
1577 if (val == saved_val)
1584 static void pci_restore_config_space_range(struct pci_dev *pdev,
1585 int start, int end, int retry,
1590 for (index = end; index >= start; index--)
1591 pci_restore_config_dword(pdev, 4 * index,
1592 pdev->saved_config_space[index],
1596 static void pci_restore_config_space(struct pci_dev *pdev)
1598 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1599 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1600 /* Restore BARs before the command register. */
1601 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1602 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1603 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1604 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1607 * Force rewriting of prefetch registers to avoid S3 resume
1608 * issues on Intel PCI bridges that occur when these
1609 * registers are not explicitly written.
1611 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1612 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1614 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1618 static void pci_restore_rebar_state(struct pci_dev *pdev)
1620 unsigned int pos, nbars, i;
1623 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1627 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1628 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1629 PCI_REBAR_CTRL_NBAR_SHIFT;
1631 for (i = 0; i < nbars; i++, pos += 8) {
1632 struct resource *res;
1635 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1636 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1637 res = pdev->resource + bar_idx;
1638 size = ilog2(resource_size(res)) - 20;
1639 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1640 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1641 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1646 * pci_restore_state - Restore the saved state of a PCI device
1647 * @dev: PCI device that we're dealing with
1649 void pci_restore_state(struct pci_dev *dev)
1651 if (!dev->state_saved)
1655 * Restore max latencies (in the LTR capability) before enabling
1656 * LTR itself (in the PCIe capability).
1658 pci_restore_ltr_state(dev);
1660 pci_restore_pcie_state(dev);
1661 pci_restore_pasid_state(dev);
1662 pci_restore_pri_state(dev);
1663 pci_restore_ats_state(dev);
1664 pci_restore_vc_state(dev);
1665 pci_restore_rebar_state(dev);
1666 pci_restore_dpc_state(dev);
1668 pci_aer_clear_status(dev);
1669 pci_restore_aer_state(dev);
1671 pci_restore_config_space(dev);
1673 pci_restore_pcix_state(dev);
1674 pci_restore_msi_state(dev);
1676 /* Restore ACS and IOV configuration state */
1677 pci_enable_acs(dev);
1678 pci_restore_iov_state(dev);
1680 dev->state_saved = false;
1682 EXPORT_SYMBOL(pci_restore_state);
1684 struct pci_saved_state {
1685 u32 config_space[16];
1686 struct pci_cap_saved_data cap[];
1690 * pci_store_saved_state - Allocate and return an opaque struct containing
1691 * the device saved state.
1692 * @dev: PCI device that we're dealing with
1694 * Return NULL if no state or error.
1696 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1698 struct pci_saved_state *state;
1699 struct pci_cap_saved_state *tmp;
1700 struct pci_cap_saved_data *cap;
1703 if (!dev->state_saved)
1706 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1708 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1709 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1711 state = kzalloc(size, GFP_KERNEL);
1715 memcpy(state->config_space, dev->saved_config_space,
1716 sizeof(state->config_space));
1719 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1720 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1721 memcpy(cap, &tmp->cap, len);
1722 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1724 /* Empty cap_save terminates list */
1728 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1731 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1732 * @dev: PCI device that we're dealing with
1733 * @state: Saved state returned from pci_store_saved_state()
1735 int pci_load_saved_state(struct pci_dev *dev,
1736 struct pci_saved_state *state)
1738 struct pci_cap_saved_data *cap;
1740 dev->state_saved = false;
1745 memcpy(dev->saved_config_space, state->config_space,
1746 sizeof(state->config_space));
1750 struct pci_cap_saved_state *tmp;
1752 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1753 if (!tmp || tmp->cap.size != cap->size)
1756 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1757 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1758 sizeof(struct pci_cap_saved_data) + cap->size);
1761 dev->state_saved = true;
1764 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1767 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1768 * and free the memory allocated for it.
1769 * @dev: PCI device that we're dealing with
1770 * @state: Pointer to saved state returned from pci_store_saved_state()
1772 int pci_load_and_free_saved_state(struct pci_dev *dev,
1773 struct pci_saved_state **state)
1775 int ret = pci_load_saved_state(dev, *state);
1780 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1782 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1784 return pci_enable_resources(dev, bars);
1787 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1790 struct pci_dev *bridge;
1794 err = pci_set_power_state(dev, PCI_D0);
1795 if (err < 0 && err != -EIO)
1798 bridge = pci_upstream_bridge(dev);
1800 pcie_aspm_powersave_config_link(bridge);
1802 err = pcibios_enable_device(dev, bars);
1805 pci_fixup_device(pci_fixup_enable, dev);
1807 if (dev->msi_enabled || dev->msix_enabled)
1810 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1812 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1813 if (cmd & PCI_COMMAND_INTX_DISABLE)
1814 pci_write_config_word(dev, PCI_COMMAND,
1815 cmd & ~PCI_COMMAND_INTX_DISABLE);
1822 * pci_reenable_device - Resume abandoned device
1823 * @dev: PCI device to be resumed
1825 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1826 * to be called by normal code, write proper resume handler and use it instead.
1828 int pci_reenable_device(struct pci_dev *dev)
1830 if (pci_is_enabled(dev))
1831 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1834 EXPORT_SYMBOL(pci_reenable_device);
1836 static void pci_enable_bridge(struct pci_dev *dev)
1838 struct pci_dev *bridge;
1841 bridge = pci_upstream_bridge(dev);
1843 pci_enable_bridge(bridge);
1845 if (pci_is_enabled(dev)) {
1846 if (!dev->is_busmaster)
1847 pci_set_master(dev);
1851 retval = pci_enable_device(dev);
1853 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1855 pci_set_master(dev);
1858 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1860 struct pci_dev *bridge;
1865 * Power state could be unknown at this point, either due to a fresh
1866 * boot or a device removal call. So get the current power state
1867 * so that things like MSI message writing will behave as expected
1868 * (e.g. if the device really is in D0 at enable time).
1872 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1873 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1876 if (atomic_inc_return(&dev->enable_cnt) > 1)
1877 return 0; /* already enabled */
1879 bridge = pci_upstream_bridge(dev);
1881 pci_enable_bridge(bridge);
1883 /* only skip sriov related */
1884 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1885 if (dev->resource[i].flags & flags)
1887 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1888 if (dev->resource[i].flags & flags)
1891 err = do_pci_enable_device(dev, bars);
1893 atomic_dec(&dev->enable_cnt);
1898 * pci_enable_device_io - Initialize a device for use with IO space
1899 * @dev: PCI device to be initialized
1901 * Initialize device before it's used by a driver. Ask low-level code
1902 * to enable I/O resources. Wake up the device if it was suspended.
1903 * Beware, this function can fail.
1905 int pci_enable_device_io(struct pci_dev *dev)
1907 return pci_enable_device_flags(dev, IORESOURCE_IO);
1909 EXPORT_SYMBOL(pci_enable_device_io);
1912 * pci_enable_device_mem - Initialize a device for use with Memory space
1913 * @dev: PCI device to be initialized
1915 * Initialize device before it's used by a driver. Ask low-level code
1916 * to enable Memory resources. Wake up the device if it was suspended.
1917 * Beware, this function can fail.
1919 int pci_enable_device_mem(struct pci_dev *dev)
1921 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1923 EXPORT_SYMBOL(pci_enable_device_mem);
1926 * pci_enable_device - Initialize device before it's used by a driver.
1927 * @dev: PCI device to be initialized
1929 * Initialize device before it's used by a driver. Ask low-level code
1930 * to enable I/O and memory. Wake up the device if it was suspended.
1931 * Beware, this function can fail.
1933 * Note we don't actually enable the device many times if we call
1934 * this function repeatedly (we just increment the count).
1936 int pci_enable_device(struct pci_dev *dev)
1938 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1940 EXPORT_SYMBOL(pci_enable_device);
1943 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1944 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1945 * there's no need to track it separately. pci_devres is initialized
1946 * when a device is enabled using managed PCI device enable interface.
1949 unsigned int enabled:1;
1950 unsigned int pinned:1;
1951 unsigned int orig_intx:1;
1952 unsigned int restore_intx:1;
1957 static void pcim_release(struct device *gendev, void *res)
1959 struct pci_dev *dev = to_pci_dev(gendev);
1960 struct pci_devres *this = res;
1963 if (dev->msi_enabled)
1964 pci_disable_msi(dev);
1965 if (dev->msix_enabled)
1966 pci_disable_msix(dev);
1968 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1969 if (this->region_mask & (1 << i))
1970 pci_release_region(dev, i);
1975 if (this->restore_intx)
1976 pci_intx(dev, this->orig_intx);
1978 if (this->enabled && !this->pinned)
1979 pci_disable_device(dev);
1982 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1984 struct pci_devres *dr, *new_dr;
1986 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1990 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1993 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1996 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1998 if (pci_is_managed(pdev))
1999 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2004 * pcim_enable_device - Managed pci_enable_device()
2005 * @pdev: PCI device to be initialized
2007 * Managed pci_enable_device().
2009 int pcim_enable_device(struct pci_dev *pdev)
2011 struct pci_devres *dr;
2014 dr = get_pci_dr(pdev);
2020 rc = pci_enable_device(pdev);
2022 pdev->is_managed = 1;
2027 EXPORT_SYMBOL(pcim_enable_device);
2030 * pcim_pin_device - Pin managed PCI device
2031 * @pdev: PCI device to pin
2033 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2034 * driver detach. @pdev must have been enabled with
2035 * pcim_enable_device().
2037 void pcim_pin_device(struct pci_dev *pdev)
2039 struct pci_devres *dr;
2041 dr = find_pci_dr(pdev);
2042 WARN_ON(!dr || !dr->enabled);
2046 EXPORT_SYMBOL(pcim_pin_device);
2049 * pcibios_add_device - provide arch specific hooks when adding device dev
2050 * @dev: the PCI device being added
2052 * Permits the platform to provide architecture specific functionality when
2053 * devices are added. This is the default implementation. Architecture
2054 * implementations can override this.
2056 int __weak pcibios_add_device(struct pci_dev *dev)
2062 * pcibios_release_device - provide arch specific hooks when releasing
2064 * @dev: the PCI device being released
2066 * Permits the platform to provide architecture specific functionality when
2067 * devices are released. This is the default implementation. Architecture
2068 * implementations can override this.
2070 void __weak pcibios_release_device(struct pci_dev *dev) {}
2073 * pcibios_disable_device - disable arch specific PCI resources for device dev
2074 * @dev: the PCI device to disable
2076 * Disables architecture specific PCI resources for the device. This
2077 * is the default implementation. Architecture implementations can
2080 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2083 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2084 * @irq: ISA IRQ to penalize
2085 * @active: IRQ active or not
2087 * Permits the platform to provide architecture-specific functionality when
2088 * penalizing ISA IRQs. This is the default implementation. Architecture
2089 * implementations can override this.
2091 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2093 static void do_pci_disable_device(struct pci_dev *dev)
2097 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2098 if (pci_command & PCI_COMMAND_MASTER) {
2099 pci_command &= ~PCI_COMMAND_MASTER;
2100 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2103 pcibios_disable_device(dev);
2107 * pci_disable_enabled_device - Disable device without updating enable_cnt
2108 * @dev: PCI device to disable
2110 * NOTE: This function is a backend of PCI power management routines and is
2111 * not supposed to be called drivers.
2113 void pci_disable_enabled_device(struct pci_dev *dev)
2115 if (pci_is_enabled(dev))
2116 do_pci_disable_device(dev);
2120 * pci_disable_device - Disable PCI device after use
2121 * @dev: PCI device to be disabled
2123 * Signal to the system that the PCI device is not in use by the system
2124 * anymore. This only involves disabling PCI bus-mastering, if active.
2126 * Note we don't actually disable the device until all callers of
2127 * pci_enable_device() have called pci_disable_device().
2129 void pci_disable_device(struct pci_dev *dev)
2131 struct pci_devres *dr;
2133 dr = find_pci_dr(dev);
2137 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2138 "disabling already-disabled device");
2140 if (atomic_dec_return(&dev->enable_cnt) != 0)
2143 do_pci_disable_device(dev);
2145 dev->is_busmaster = 0;
2147 EXPORT_SYMBOL(pci_disable_device);
2150 * pcibios_set_pcie_reset_state - set reset state for device dev
2151 * @dev: the PCIe device reset
2152 * @state: Reset state to enter into
2154 * Set the PCIe reset state for the device. This is the default
2155 * implementation. Architecture implementations can override this.
2157 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2158 enum pcie_reset_state state)
2164 * pci_set_pcie_reset_state - set reset state for device dev
2165 * @dev: the PCIe device reset
2166 * @state: Reset state to enter into
2168 * Sets the PCI reset state for the device.
2170 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2172 return pcibios_set_pcie_reset_state(dev, state);
2174 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2176 void pcie_clear_device_status(struct pci_dev *dev)
2180 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2181 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2185 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2186 * @dev: PCIe root port or event collector.
2188 void pcie_clear_root_pme_status(struct pci_dev *dev)
2190 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2194 * pci_check_pme_status - Check if given device has generated PME.
2195 * @dev: Device to check.
2197 * Check the PME status of the device and if set, clear it and clear PME enable
2198 * (if set). Return 'true' if PME status and PME enable were both set or
2199 * 'false' otherwise.
2201 bool pci_check_pme_status(struct pci_dev *dev)
2210 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2211 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2212 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2215 /* Clear PME status. */
2216 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2217 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2218 /* Disable PME to avoid interrupt flood. */
2219 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2223 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2229 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2230 * @dev: Device to handle.
2231 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2233 * Check if @dev has generated PME and queue a resume request for it in that
2236 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2238 if (pme_poll_reset && dev->pme_poll)
2239 dev->pme_poll = false;
2241 if (pci_check_pme_status(dev)) {
2242 pci_wakeup_event(dev);
2243 pm_request_resume(&dev->dev);
2249 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2250 * @bus: Top bus of the subtree to walk.
2252 void pci_pme_wakeup_bus(struct pci_bus *bus)
2255 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2260 * pci_pme_capable - check the capability of PCI device to generate PME#
2261 * @dev: PCI device to handle.
2262 * @state: PCI state from which device will issue PME#.
2264 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2269 return !!(dev->pme_support & (1 << state));
2271 EXPORT_SYMBOL(pci_pme_capable);
2273 static void pci_pme_list_scan(struct work_struct *work)
2275 struct pci_pme_device *pme_dev, *n;
2277 mutex_lock(&pci_pme_list_mutex);
2278 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2279 if (pme_dev->dev->pme_poll) {
2280 struct pci_dev *bridge;
2282 bridge = pme_dev->dev->bus->self;
2284 * If bridge is in low power state, the
2285 * configuration space of subordinate devices
2286 * may be not accessible
2288 if (bridge && bridge->current_state != PCI_D0)
2291 * If the device is in D3cold it should not be
2294 if (pme_dev->dev->current_state == PCI_D3cold)
2297 pci_pme_wakeup(pme_dev->dev, NULL);
2299 list_del(&pme_dev->list);
2303 if (!list_empty(&pci_pme_list))
2304 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2305 msecs_to_jiffies(PME_TIMEOUT));
2306 mutex_unlock(&pci_pme_list_mutex);
2309 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2313 if (!dev->pme_support)
2316 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2317 /* Clear PME_Status by writing 1 to it and enable PME# */
2318 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2320 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2322 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2326 * pci_pme_restore - Restore PME configuration after config space restore.
2327 * @dev: PCI device to update.
2329 void pci_pme_restore(struct pci_dev *dev)
2333 if (!dev->pme_support)
2336 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2337 if (dev->wakeup_prepared) {
2338 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2339 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2341 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2342 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2344 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2348 * pci_pme_active - enable or disable PCI device's PME# function
2349 * @dev: PCI device to handle.
2350 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2352 * The caller must verify that the device is capable of generating PME# before
2353 * calling this function with @enable equal to 'true'.
2355 void pci_pme_active(struct pci_dev *dev, bool enable)
2357 __pci_pme_active(dev, enable);
2360 * PCI (as opposed to PCIe) PME requires that the device have
2361 * its PME# line hooked up correctly. Not all hardware vendors
2362 * do this, so the PME never gets delivered and the device
2363 * remains asleep. The easiest way around this is to
2364 * periodically walk the list of suspended devices and check
2365 * whether any have their PME flag set. The assumption is that
2366 * we'll wake up often enough anyway that this won't be a huge
2367 * hit, and the power savings from the devices will still be a
2370 * Although PCIe uses in-band PME message instead of PME# line
2371 * to report PME, PME does not work for some PCIe devices in
2372 * reality. For example, there are devices that set their PME
2373 * status bits, but don't really bother to send a PME message;
2374 * there are PCI Express Root Ports that don't bother to
2375 * trigger interrupts when they receive PME messages from the
2376 * devices below. So PME poll is used for PCIe devices too.
2379 if (dev->pme_poll) {
2380 struct pci_pme_device *pme_dev;
2382 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2385 pci_warn(dev, "can't enable PME#\n");
2389 mutex_lock(&pci_pme_list_mutex);
2390 list_add(&pme_dev->list, &pci_pme_list);
2391 if (list_is_singular(&pci_pme_list))
2392 queue_delayed_work(system_freezable_wq,
2394 msecs_to_jiffies(PME_TIMEOUT));
2395 mutex_unlock(&pci_pme_list_mutex);
2397 mutex_lock(&pci_pme_list_mutex);
2398 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2399 if (pme_dev->dev == dev) {
2400 list_del(&pme_dev->list);
2405 mutex_unlock(&pci_pme_list_mutex);
2409 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2411 EXPORT_SYMBOL(pci_pme_active);
2414 * __pci_enable_wake - enable PCI device as wakeup event source
2415 * @dev: PCI device affected
2416 * @state: PCI state from which device will issue wakeup events
2417 * @enable: True to enable event generation; false to disable
2419 * This enables the device as a wakeup event source, or disables it.
2420 * When such events involves platform-specific hooks, those hooks are
2421 * called automatically by this routine.
2423 * Devices with legacy power management (no standard PCI PM capabilities)
2424 * always require such platform hooks.
2427 * 0 is returned on success
2428 * -EINVAL is returned if device is not supposed to wake up the system
2429 * Error code depending on the platform is returned if both the platform and
2430 * the native mechanism fail to enable the generation of wake-up events
2432 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2437 * Bridges that are not power-manageable directly only signal
2438 * wakeup on behalf of subordinate devices which is set up
2439 * elsewhere, so skip them. However, bridges that are
2440 * power-manageable may signal wakeup for themselves (for example,
2441 * on a hotplug event) and they need to be covered here.
2443 if (!pci_power_manageable(dev))
2446 /* Don't do the same thing twice in a row for one device. */
2447 if (!!enable == !!dev->wakeup_prepared)
2451 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2452 * Anderson we should be doing PME# wake enable followed by ACPI wake
2453 * enable. To disable wake-up we call the platform first, for symmetry.
2459 if (pci_pme_capable(dev, state))
2460 pci_pme_active(dev, true);
2463 error = platform_pci_set_wakeup(dev, true);
2467 dev->wakeup_prepared = true;
2469 platform_pci_set_wakeup(dev, false);
2470 pci_pme_active(dev, false);
2471 dev->wakeup_prepared = false;
2478 * pci_enable_wake - change wakeup settings for a PCI device
2479 * @pci_dev: Target device
2480 * @state: PCI state from which device will issue wakeup events
2481 * @enable: Whether or not to enable event generation
2483 * If @enable is set, check device_may_wakeup() for the device before calling
2484 * __pci_enable_wake() for it.
2486 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2488 if (enable && !device_may_wakeup(&pci_dev->dev))
2491 return __pci_enable_wake(pci_dev, state, enable);
2493 EXPORT_SYMBOL(pci_enable_wake);
2496 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2497 * @dev: PCI device to prepare
2498 * @enable: True to enable wake-up event generation; false to disable
2500 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2501 * and this function allows them to set that up cleanly - pci_enable_wake()
2502 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2503 * ordering constraints.
2505 * This function only returns error code if the device is not allowed to wake
2506 * up the system from sleep or it is not capable of generating PME# from both
2507 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2509 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2511 return pci_pme_capable(dev, PCI_D3cold) ?
2512 pci_enable_wake(dev, PCI_D3cold, enable) :
2513 pci_enable_wake(dev, PCI_D3hot, enable);
2515 EXPORT_SYMBOL(pci_wake_from_d3);
2518 * pci_target_state - find an appropriate low power state for a given PCI dev
2520 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2522 * Use underlying platform code to find a supported low power state for @dev.
2523 * If the platform can't manage @dev, return the deepest state from which it
2524 * can generate wake events, based on any available PME info.
2526 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2528 pci_power_t target_state = PCI_D3hot;
2530 if (platform_pci_power_manageable(dev)) {
2532 * Call the platform to find the target state for the device.
2534 pci_power_t state = platform_pci_choose_state(dev);
2537 case PCI_POWER_ERROR:
2542 if (pci_no_d1d2(dev))
2546 target_state = state;
2549 return target_state;
2553 target_state = PCI_D0;
2556 * If the device is in D3cold even though it's not power-manageable by
2557 * the platform, it may have been powered down by non-standard means.
2558 * Best to let it slumber.
2560 if (dev->current_state == PCI_D3cold)
2561 target_state = PCI_D3cold;
2565 * Find the deepest state from which the device can generate
2568 if (dev->pme_support) {
2570 && !(dev->pme_support & (1 << target_state)))
2575 return target_state;
2579 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2580 * into a sleep state
2581 * @dev: Device to handle.
2583 * Choose the power state appropriate for the device depending on whether
2584 * it can wake up the system and/or is power manageable by the platform
2585 * (PCI_D3hot is the default) and put the device into that state.
2587 int pci_prepare_to_sleep(struct pci_dev *dev)
2589 bool wakeup = device_may_wakeup(&dev->dev);
2590 pci_power_t target_state = pci_target_state(dev, wakeup);
2593 if (target_state == PCI_POWER_ERROR)
2596 pci_enable_wake(dev, target_state, wakeup);
2598 error = pci_set_power_state(dev, target_state);
2601 pci_enable_wake(dev, target_state, false);
2605 EXPORT_SYMBOL(pci_prepare_to_sleep);
2608 * pci_back_from_sleep - turn PCI device on during system-wide transition
2609 * into working state
2610 * @dev: Device to handle.
2612 * Disable device's system wake-up capability and put it into D0.
2614 int pci_back_from_sleep(struct pci_dev *dev)
2616 pci_enable_wake(dev, PCI_D0, false);
2617 return pci_set_power_state(dev, PCI_D0);
2619 EXPORT_SYMBOL(pci_back_from_sleep);
2622 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2623 * @dev: PCI device being suspended.
2625 * Prepare @dev to generate wake-up events at run time and put it into a low
2628 int pci_finish_runtime_suspend(struct pci_dev *dev)
2630 pci_power_t target_state;
2633 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2634 if (target_state == PCI_POWER_ERROR)
2637 dev->runtime_d3cold = target_state == PCI_D3cold;
2639 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2641 error = pci_set_power_state(dev, target_state);
2644 pci_enable_wake(dev, target_state, false);
2645 dev->runtime_d3cold = false;
2652 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2653 * @dev: Device to check.
2655 * Return true if the device itself is capable of generating wake-up events
2656 * (through the platform or using the native PCIe PME) or if the device supports
2657 * PME and one of its upstream bridges can generate wake-up events.
2659 bool pci_dev_run_wake(struct pci_dev *dev)
2661 struct pci_bus *bus = dev->bus;
2663 if (!dev->pme_support)
2666 /* PME-capable in principle, but not from the target power state */
2667 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2670 if (device_can_wakeup(&dev->dev))
2673 while (bus->parent) {
2674 struct pci_dev *bridge = bus->self;
2676 if (device_can_wakeup(&bridge->dev))
2682 /* We have reached the root bus. */
2684 return device_can_wakeup(bus->bridge);
2688 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2691 * pci_dev_need_resume - Check if it is necessary to resume the device.
2692 * @pci_dev: Device to check.
2694 * Return 'true' if the device is not runtime-suspended or it has to be
2695 * reconfigured due to wakeup settings difference between system and runtime
2696 * suspend, or the current power state of it is not suitable for the upcoming
2697 * (system-wide) transition.
2699 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2701 struct device *dev = &pci_dev->dev;
2702 pci_power_t target_state;
2704 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2707 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2710 * If the earlier platform check has not triggered, D3cold is just power
2711 * removal on top of D3hot, so no need to resume the device in that
2714 return target_state != pci_dev->current_state &&
2715 target_state != PCI_D3cold &&
2716 pci_dev->current_state != PCI_D3hot;
2720 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2721 * @pci_dev: Device to check.
2723 * If the device is suspended and it is not configured for system wakeup,
2724 * disable PME for it to prevent it from waking up the system unnecessarily.
2726 * Note that if the device's power state is D3cold and the platform check in
2727 * pci_dev_need_resume() has not triggered, the device's configuration need not
2730 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2732 struct device *dev = &pci_dev->dev;
2734 spin_lock_irq(&dev->power.lock);
2736 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2737 pci_dev->current_state < PCI_D3cold)
2738 __pci_pme_active(pci_dev, false);
2740 spin_unlock_irq(&dev->power.lock);
2744 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2745 * @pci_dev: Device to handle.
2747 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2748 * it might have been disabled during the prepare phase of system suspend if
2749 * the device was not configured for system wakeup.
2751 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2753 struct device *dev = &pci_dev->dev;
2755 if (!pci_dev_run_wake(pci_dev))
2758 spin_lock_irq(&dev->power.lock);
2760 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2761 __pci_pme_active(pci_dev, true);
2763 spin_unlock_irq(&dev->power.lock);
2766 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2768 struct device *dev = &pdev->dev;
2769 struct device *parent = dev->parent;
2772 pm_runtime_get_sync(parent);
2773 pm_runtime_get_noresume(dev);
2775 * pdev->current_state is set to PCI_D3cold during suspending,
2776 * so wait until suspending completes
2778 pm_runtime_barrier(dev);
2780 * Only need to resume devices in D3cold, because config
2781 * registers are still accessible for devices suspended but
2784 if (pdev->current_state == PCI_D3cold)
2785 pm_runtime_resume(dev);
2788 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2790 struct device *dev = &pdev->dev;
2791 struct device *parent = dev->parent;
2793 pm_runtime_put(dev);
2795 pm_runtime_put_sync(parent);
2798 static const struct dmi_system_id bridge_d3_blacklist[] = {
2802 * Gigabyte X299 root port is not marked as hotplug capable
2803 * which allows Linux to power manage it. However, this
2804 * confuses the BIOS SMI handler so don't power manage root
2805 * ports on that system.
2807 .ident = "X299 DESIGNARE EX-CF",
2809 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2810 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2818 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2819 * @bridge: Bridge to check
2821 * This function checks if it is possible to move the bridge to D3.
2822 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2824 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2826 if (!pci_is_pcie(bridge))
2829 switch (pci_pcie_type(bridge)) {
2830 case PCI_EXP_TYPE_ROOT_PORT:
2831 case PCI_EXP_TYPE_UPSTREAM:
2832 case PCI_EXP_TYPE_DOWNSTREAM:
2833 if (pci_bridge_d3_disable)
2837 * Hotplug ports handled by firmware in System Management Mode
2838 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2840 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2843 if (pci_bridge_d3_force)
2846 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2847 if (bridge->is_thunderbolt)
2850 /* Platform might know better if the bridge supports D3 */
2851 if (platform_pci_bridge_d3(bridge))
2855 * Hotplug ports handled natively by the OS were not validated
2856 * by vendors for runtime D3 at least until 2018 because there
2857 * was no OS support.
2859 if (bridge->is_hotplug_bridge)
2862 if (dmi_check_system(bridge_d3_blacklist))
2866 * It should be safe to put PCIe ports from 2015 or newer
2869 if (dmi_get_bios_year() >= 2015)
2877 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2879 bool *d3cold_ok = data;
2881 if (/* The device needs to be allowed to go D3cold ... */
2882 dev->no_d3cold || !dev->d3cold_allowed ||
2884 /* ... and if it is wakeup capable to do so from D3cold. */
2885 (device_may_wakeup(&dev->dev) &&
2886 !pci_pme_capable(dev, PCI_D3cold)) ||
2888 /* If it is a bridge it must be allowed to go to D3. */
2889 !pci_power_manageable(dev))
2897 * pci_bridge_d3_update - Update bridge D3 capabilities
2898 * @dev: PCI device which is changed
2900 * Update upstream bridge PM capabilities accordingly depending on if the
2901 * device PM configuration was changed or the device is being removed. The
2902 * change is also propagated upstream.
2904 void pci_bridge_d3_update(struct pci_dev *dev)
2906 bool remove = !device_is_registered(&dev->dev);
2907 struct pci_dev *bridge;
2908 bool d3cold_ok = true;
2910 bridge = pci_upstream_bridge(dev);
2911 if (!bridge || !pci_bridge_d3_possible(bridge))
2915 * If D3 is currently allowed for the bridge, removing one of its
2916 * children won't change that.
2918 if (remove && bridge->bridge_d3)
2922 * If D3 is currently allowed for the bridge and a child is added or
2923 * changed, disallowance of D3 can only be caused by that child, so
2924 * we only need to check that single device, not any of its siblings.
2926 * If D3 is currently not allowed for the bridge, checking the device
2927 * first may allow us to skip checking its siblings.
2930 pci_dev_check_d3cold(dev, &d3cold_ok);
2933 * If D3 is currently not allowed for the bridge, this may be caused
2934 * either by the device being changed/removed or any of its siblings,
2935 * so we need to go through all children to find out if one of them
2936 * continues to block D3.
2938 if (d3cold_ok && !bridge->bridge_d3)
2939 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2942 if (bridge->bridge_d3 != d3cold_ok) {
2943 bridge->bridge_d3 = d3cold_ok;
2944 /* Propagate change to upstream bridges */
2945 pci_bridge_d3_update(bridge);
2950 * pci_d3cold_enable - Enable D3cold for device
2951 * @dev: PCI device to handle
2953 * This function can be used in drivers to enable D3cold from the device
2954 * they handle. It also updates upstream PCI bridge PM capabilities
2957 void pci_d3cold_enable(struct pci_dev *dev)
2959 if (dev->no_d3cold) {
2960 dev->no_d3cold = false;
2961 pci_bridge_d3_update(dev);
2964 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2967 * pci_d3cold_disable - Disable D3cold for device
2968 * @dev: PCI device to handle
2970 * This function can be used in drivers to disable D3cold from the device
2971 * they handle. It also updates upstream PCI bridge PM capabilities
2974 void pci_d3cold_disable(struct pci_dev *dev)
2976 if (!dev->no_d3cold) {
2977 dev->no_d3cold = true;
2978 pci_bridge_d3_update(dev);
2981 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2984 * pci_pm_init - Initialize PM functions of given PCI device
2985 * @dev: PCI device to handle.
2987 void pci_pm_init(struct pci_dev *dev)
2993 pm_runtime_forbid(&dev->dev);
2994 pm_runtime_set_active(&dev->dev);
2995 pm_runtime_enable(&dev->dev);
2996 device_enable_async_suspend(&dev->dev);
2997 dev->wakeup_prepared = false;
3000 dev->pme_support = 0;
3002 /* find PCI PM capability in list */
3003 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3006 /* Check device's ability to generate PME# */
3007 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3009 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3010 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3011 pmc & PCI_PM_CAP_VER_MASK);
3016 dev->d3_delay = PCI_PM_D3_WAIT;
3017 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3018 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3019 dev->d3cold_allowed = true;
3021 dev->d1_support = false;
3022 dev->d2_support = false;
3023 if (!pci_no_d1d2(dev)) {
3024 if (pmc & PCI_PM_CAP_D1)
3025 dev->d1_support = true;
3026 if (pmc & PCI_PM_CAP_D2)
3027 dev->d2_support = true;
3029 if (dev->d1_support || dev->d2_support)
3030 pci_info(dev, "supports%s%s\n",
3031 dev->d1_support ? " D1" : "",
3032 dev->d2_support ? " D2" : "");
3035 pmc &= PCI_PM_CAP_PME_MASK;
3037 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3038 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3039 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3040 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3041 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
3042 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3043 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3044 dev->pme_poll = true;
3046 * Make device's PM flags reflect the wake-up capability, but
3047 * let the user space enable it to wake up the system as needed.
3049 device_set_wakeup_capable(&dev->dev, true);
3050 /* Disable the PME# generation functionality */
3051 pci_pme_active(dev, false);
3054 pci_read_config_word(dev, PCI_STATUS, &status);
3055 if (status & PCI_STATUS_IMM_READY)
3059 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3061 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3065 case PCI_EA_P_VF_MEM:
3066 flags |= IORESOURCE_MEM;
3068 case PCI_EA_P_MEM_PREFETCH:
3069 case PCI_EA_P_VF_MEM_PREFETCH:
3070 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3073 flags |= IORESOURCE_IO;
3082 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3085 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3086 return &dev->resource[bei];
3087 #ifdef CONFIG_PCI_IOV
3088 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3089 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3090 return &dev->resource[PCI_IOV_RESOURCES +
3091 bei - PCI_EA_BEI_VF_BAR0];
3093 else if (bei == PCI_EA_BEI_ROM)
3094 return &dev->resource[PCI_ROM_RESOURCE];
3099 /* Read an Enhanced Allocation (EA) entry */
3100 static int pci_ea_read(struct pci_dev *dev, int offset)
3102 struct resource *res;
3103 int ent_size, ent_offset = offset;
3104 resource_size_t start, end;
3105 unsigned long flags;
3106 u32 dw0, bei, base, max_offset;
3108 bool support_64 = (sizeof(resource_size_t) >= 8);
3110 pci_read_config_dword(dev, ent_offset, &dw0);
3113 /* Entry size field indicates DWORDs after 1st */
3114 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3116 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3119 bei = (dw0 & PCI_EA_BEI) >> 4;
3120 prop = (dw0 & PCI_EA_PP) >> 8;
3123 * If the Property is in the reserved range, try the Secondary
3126 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3127 prop = (dw0 & PCI_EA_SP) >> 16;
3128 if (prop > PCI_EA_P_BRIDGE_IO)
3131 res = pci_ea_get_resource(dev, bei, prop);
3133 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3137 flags = pci_ea_flags(dev, prop);
3139 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3144 pci_read_config_dword(dev, ent_offset, &base);
3145 start = (base & PCI_EA_FIELD_MASK);
3148 /* Read MaxOffset */
3149 pci_read_config_dword(dev, ent_offset, &max_offset);
3152 /* Read Base MSBs (if 64-bit entry) */
3153 if (base & PCI_EA_IS_64) {
3156 pci_read_config_dword(dev, ent_offset, &base_upper);
3159 flags |= IORESOURCE_MEM_64;
3161 /* entry starts above 32-bit boundary, can't use */
3162 if (!support_64 && base_upper)
3166 start |= ((u64)base_upper << 32);
3169 end = start + (max_offset | 0x03);
3171 /* Read MaxOffset MSBs (if 64-bit entry) */
3172 if (max_offset & PCI_EA_IS_64) {
3173 u32 max_offset_upper;
3175 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3178 flags |= IORESOURCE_MEM_64;
3180 /* entry too big, can't use */
3181 if (!support_64 && max_offset_upper)
3185 end += ((u64)max_offset_upper << 32);
3189 pci_err(dev, "EA Entry crosses address boundary\n");
3193 if (ent_size != ent_offset - offset) {
3194 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3195 ent_size, ent_offset - offset);
3199 res->name = pci_name(dev);
3204 if (bei <= PCI_EA_BEI_BAR5)
3205 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3207 else if (bei == PCI_EA_BEI_ROM)
3208 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3210 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3211 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3212 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3214 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3218 return offset + ent_size;
3221 /* Enhanced Allocation Initialization */
3222 void pci_ea_init(struct pci_dev *dev)
3229 /* find PCI EA capability in list */
3230 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3234 /* determine the number of entries */
3235 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3237 num_ent &= PCI_EA_NUM_ENT_MASK;
3239 offset = ea + PCI_EA_FIRST_ENT;
3241 /* Skip DWORD 2 for type 1 functions */
3242 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3245 /* parse each EA entry */
3246 for (i = 0; i < num_ent; ++i)
3247 offset = pci_ea_read(dev, offset);
3250 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3251 struct pci_cap_saved_state *new_cap)
3253 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3257 * _pci_add_cap_save_buffer - allocate buffer for saving given
3258 * capability registers
3259 * @dev: the PCI device
3260 * @cap: the capability to allocate the buffer for
3261 * @extended: Standard or Extended capability ID
3262 * @size: requested size of the buffer
3264 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3265 bool extended, unsigned int size)
3268 struct pci_cap_saved_state *save_state;
3271 pos = pci_find_ext_capability(dev, cap);
3273 pos = pci_find_capability(dev, cap);
3278 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3282 save_state->cap.cap_nr = cap;
3283 save_state->cap.cap_extended = extended;
3284 save_state->cap.size = size;
3285 pci_add_saved_cap(dev, save_state);
3290 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3292 return _pci_add_cap_save_buffer(dev, cap, false, size);
3295 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3297 return _pci_add_cap_save_buffer(dev, cap, true, size);
3301 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3302 * @dev: the PCI device
3304 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3308 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3309 PCI_EXP_SAVE_REGS * sizeof(u16));
3311 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3313 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3315 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3317 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3320 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3322 pci_allocate_vc_save_buffers(dev);
3325 void pci_free_cap_save_buffers(struct pci_dev *dev)
3327 struct pci_cap_saved_state *tmp;
3328 struct hlist_node *n;
3330 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3335 * pci_configure_ari - enable or disable ARI forwarding
3336 * @dev: the PCI device
3338 * If @dev and its upstream bridge both support ARI, enable ARI in the
3339 * bridge. Otherwise, disable ARI in the bridge.
3341 void pci_configure_ari(struct pci_dev *dev)
3344 struct pci_dev *bridge;
3346 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3349 bridge = dev->bus->self;
3353 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3354 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3357 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3358 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3359 PCI_EXP_DEVCTL2_ARI);
3360 bridge->ari_enabled = 1;
3362 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3363 PCI_EXP_DEVCTL2_ARI);
3364 bridge->ari_enabled = 0;
3368 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3373 pos = pdev->acs_cap;
3378 * Except for egress control, capabilities are either required
3379 * or only required if controllable. Features missing from the
3380 * capability field can therefore be assumed as hard-wired enabled.
3382 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3383 acs_flags &= (cap | PCI_ACS_EC);
3385 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3386 return (ctrl & acs_flags) == acs_flags;
3390 * pci_acs_enabled - test ACS against required flags for a given device
3391 * @pdev: device to test
3392 * @acs_flags: required PCI ACS flags
3394 * Return true if the device supports the provided flags. Automatically
3395 * filters out flags that are not implemented on multifunction devices.
3397 * Note that this interface checks the effective ACS capabilities of the
3398 * device rather than the actual capabilities. For instance, most single
3399 * function endpoints are not required to support ACS because they have no
3400 * opportunity for peer-to-peer access. We therefore return 'true'
3401 * regardless of whether the device exposes an ACS capability. This makes
3402 * it much easier for callers of this function to ignore the actual type
3403 * or topology of the device when testing ACS support.
3405 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3409 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3414 * Conventional PCI and PCI-X devices never support ACS, either
3415 * effectively or actually. The shared bus topology implies that
3416 * any device on the bus can receive or snoop DMA.
3418 if (!pci_is_pcie(pdev))
3421 switch (pci_pcie_type(pdev)) {
3423 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3424 * but since their primary interface is PCI/X, we conservatively
3425 * handle them as we would a non-PCIe device.
3427 case PCI_EXP_TYPE_PCIE_BRIDGE:
3429 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3430 * applicable... must never implement an ACS Extended Capability...".
3431 * This seems arbitrary, but we take a conservative interpretation
3432 * of this statement.
3434 case PCI_EXP_TYPE_PCI_BRIDGE:
3435 case PCI_EXP_TYPE_RC_EC:
3438 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3439 * implement ACS in order to indicate their peer-to-peer capabilities,
3440 * regardless of whether they are single- or multi-function devices.
3442 case PCI_EXP_TYPE_DOWNSTREAM:
3443 case PCI_EXP_TYPE_ROOT_PORT:
3444 return pci_acs_flags_enabled(pdev, acs_flags);
3446 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3447 * implemented by the remaining PCIe types to indicate peer-to-peer
3448 * capabilities, but only when they are part of a multifunction
3449 * device. The footnote for section 6.12 indicates the specific
3450 * PCIe types included here.
3452 case PCI_EXP_TYPE_ENDPOINT:
3453 case PCI_EXP_TYPE_UPSTREAM:
3454 case PCI_EXP_TYPE_LEG_END:
3455 case PCI_EXP_TYPE_RC_END:
3456 if (!pdev->multifunction)
3459 return pci_acs_flags_enabled(pdev, acs_flags);
3463 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3464 * to single function devices with the exception of downstream ports.
3470 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3471 * @start: starting downstream device
3472 * @end: ending upstream device or NULL to search to the root bus
3473 * @acs_flags: required flags
3475 * Walk up a device tree from start to end testing PCI ACS support. If
3476 * any step along the way does not support the required flags, return false.
3478 bool pci_acs_path_enabled(struct pci_dev *start,
3479 struct pci_dev *end, u16 acs_flags)
3481 struct pci_dev *pdev, *parent = start;
3486 if (!pci_acs_enabled(pdev, acs_flags))
3489 if (pci_is_root_bus(pdev->bus))
3490 return (end == NULL);
3492 parent = pdev->bus->self;
3493 } while (pdev != end);
3499 * pci_acs_init - Initialize ACS if hardware supports it
3500 * @dev: the PCI device
3502 void pci_acs_init(struct pci_dev *dev)
3504 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3507 pci_enable_acs(dev);
3511 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3515 * Helper to find the position of the ctrl register for a BAR.
3516 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3517 * Returns -ENOENT if no ctrl register for the BAR could be found.
3519 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3521 unsigned int pos, nbars, i;
3524 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3528 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3529 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3530 PCI_REBAR_CTRL_NBAR_SHIFT;
3532 for (i = 0; i < nbars; i++, pos += 8) {
3535 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3536 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3545 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3547 * @bar: BAR to query
3549 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3550 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3552 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3557 pos = pci_rebar_find_pos(pdev, bar);
3561 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3562 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3566 * pci_rebar_get_current_size - get the current size of a BAR
3568 * @bar: BAR to set size to
3570 * Read the size of a BAR from the resizable BAR config.
3571 * Returns size if found or negative error code.
3573 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3578 pos = pci_rebar_find_pos(pdev, bar);
3582 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3583 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3587 * pci_rebar_set_size - set a new size for a BAR
3589 * @bar: BAR to set size to
3590 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3592 * Set the new size of a BAR as defined in the spec.
3593 * Returns zero if resizing was successful, error code otherwise.
3595 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3600 pos = pci_rebar_find_pos(pdev, bar);
3604 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3605 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3606 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3607 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3612 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3613 * @dev: the PCI device
3614 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3615 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3616 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3617 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3619 * Return 0 if all upstream bridges support AtomicOp routing, egress
3620 * blocking is disabled on all upstream ports, and the root port supports
3621 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3622 * AtomicOp completion), or negative otherwise.
3624 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3626 struct pci_bus *bus = dev->bus;
3627 struct pci_dev *bridge;
3630 if (!pci_is_pcie(dev))
3634 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3635 * AtomicOp requesters. For now, we only support endpoints as
3636 * requesters and root ports as completers. No endpoints as
3637 * completers, and no peer-to-peer.
3640 switch (pci_pcie_type(dev)) {
3641 case PCI_EXP_TYPE_ENDPOINT:
3642 case PCI_EXP_TYPE_LEG_END:
3643 case PCI_EXP_TYPE_RC_END:
3649 while (bus->parent) {
3652 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3654 switch (pci_pcie_type(bridge)) {
3655 /* Ensure switch ports support AtomicOp routing */
3656 case PCI_EXP_TYPE_UPSTREAM:
3657 case PCI_EXP_TYPE_DOWNSTREAM:
3658 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3662 /* Ensure root port supports all the sizes we care about */
3663 case PCI_EXP_TYPE_ROOT_PORT:
3664 if ((cap & cap_mask) != cap_mask)
3669 /* Ensure upstream ports don't block AtomicOps on egress */
3670 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3671 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3673 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3680 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3681 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3684 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3687 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3688 * @dev: the PCI device
3689 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3691 * Perform INTx swizzling for a device behind one level of bridge. This is
3692 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3693 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3694 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3695 * the PCI Express Base Specification, Revision 2.1)
3697 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3701 if (pci_ari_enabled(dev->bus))
3704 slot = PCI_SLOT(dev->devfn);
3706 return (((pin - 1) + slot) % 4) + 1;
3709 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3717 while (!pci_is_root_bus(dev->bus)) {
3718 pin = pci_swizzle_interrupt_pin(dev, pin);
3719 dev = dev->bus->self;
3726 * pci_common_swizzle - swizzle INTx all the way to root bridge
3727 * @dev: the PCI device
3728 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3730 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3731 * bridges all the way up to a PCI root bus.
3733 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3737 while (!pci_is_root_bus(dev->bus)) {
3738 pin = pci_swizzle_interrupt_pin(dev, pin);
3739 dev = dev->bus->self;
3742 return PCI_SLOT(dev->devfn);
3744 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3747 * pci_release_region - Release a PCI bar
3748 * @pdev: PCI device whose resources were previously reserved by
3749 * pci_request_region()
3750 * @bar: BAR to release
3752 * Releases the PCI I/O and memory resources previously reserved by a
3753 * successful call to pci_request_region(). Call this function only
3754 * after all use of the PCI regions has ceased.
3756 void pci_release_region(struct pci_dev *pdev, int bar)
3758 struct pci_devres *dr;
3760 if (pci_resource_len(pdev, bar) == 0)
3762 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3763 release_region(pci_resource_start(pdev, bar),
3764 pci_resource_len(pdev, bar));
3765 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3766 release_mem_region(pci_resource_start(pdev, bar),
3767 pci_resource_len(pdev, bar));
3769 dr = find_pci_dr(pdev);
3771 dr->region_mask &= ~(1 << bar);
3773 EXPORT_SYMBOL(pci_release_region);
3776 * __pci_request_region - Reserved PCI I/O and memory resource
3777 * @pdev: PCI device whose resources are to be reserved
3778 * @bar: BAR to be reserved
3779 * @res_name: Name to be associated with resource.
3780 * @exclusive: whether the region access is exclusive or not
3782 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3783 * being reserved by owner @res_name. Do not access any
3784 * address inside the PCI regions unless this call returns
3787 * If @exclusive is set, then the region is marked so that userspace
3788 * is explicitly not allowed to map the resource via /dev/mem or
3789 * sysfs MMIO access.
3791 * Returns 0 on success, or %EBUSY on error. A warning
3792 * message is also printed on failure.
3794 static int __pci_request_region(struct pci_dev *pdev, int bar,
3795 const char *res_name, int exclusive)
3797 struct pci_devres *dr;
3799 if (pci_resource_len(pdev, bar) == 0)
3802 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3803 if (!request_region(pci_resource_start(pdev, bar),
3804 pci_resource_len(pdev, bar), res_name))
3806 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3807 if (!__request_mem_region(pci_resource_start(pdev, bar),
3808 pci_resource_len(pdev, bar), res_name,
3813 dr = find_pci_dr(pdev);
3815 dr->region_mask |= 1 << bar;
3820 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3821 &pdev->resource[bar]);
3826 * pci_request_region - Reserve PCI I/O and memory resource
3827 * @pdev: PCI device whose resources are to be reserved
3828 * @bar: BAR to be reserved
3829 * @res_name: Name to be associated with resource
3831 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3832 * being reserved by owner @res_name. Do not access any
3833 * address inside the PCI regions unless this call returns
3836 * Returns 0 on success, or %EBUSY on error. A warning
3837 * message is also printed on failure.
3839 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3841 return __pci_request_region(pdev, bar, res_name, 0);
3843 EXPORT_SYMBOL(pci_request_region);
3846 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3847 * @pdev: PCI device whose resources were previously reserved
3848 * @bars: Bitmask of BARs to be released
3850 * Release selected PCI I/O and memory resources previously reserved.
3851 * Call this function only after all use of the PCI regions has ceased.
3853 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3857 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3858 if (bars & (1 << i))
3859 pci_release_region(pdev, i);
3861 EXPORT_SYMBOL(pci_release_selected_regions);
3863 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3864 const char *res_name, int excl)
3868 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3869 if (bars & (1 << i))
3870 if (__pci_request_region(pdev, i, res_name, excl))
3876 if (bars & (1 << i))
3877 pci_release_region(pdev, i);
3884 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3885 * @pdev: PCI device whose resources are to be reserved
3886 * @bars: Bitmask of BARs to be requested
3887 * @res_name: Name to be associated with resource
3889 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3890 const char *res_name)
3892 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3894 EXPORT_SYMBOL(pci_request_selected_regions);
3896 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3897 const char *res_name)
3899 return __pci_request_selected_regions(pdev, bars, res_name,
3900 IORESOURCE_EXCLUSIVE);
3902 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3905 * pci_release_regions - Release reserved PCI I/O and memory resources
3906 * @pdev: PCI device whose resources were previously reserved by
3907 * pci_request_regions()
3909 * Releases all PCI I/O and memory resources previously reserved by a
3910 * successful call to pci_request_regions(). Call this function only
3911 * after all use of the PCI regions has ceased.
3914 void pci_release_regions(struct pci_dev *pdev)
3916 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3918 EXPORT_SYMBOL(pci_release_regions);
3921 * pci_request_regions - Reserve PCI I/O and memory resources
3922 * @pdev: PCI device whose resources are to be reserved
3923 * @res_name: Name to be associated with resource.
3925 * Mark all PCI regions associated with PCI device @pdev as
3926 * being reserved by owner @res_name. Do not access any
3927 * address inside the PCI regions unless this call returns
3930 * Returns 0 on success, or %EBUSY on error. A warning
3931 * message is also printed on failure.
3933 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3935 return pci_request_selected_regions(pdev,
3936 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3938 EXPORT_SYMBOL(pci_request_regions);
3941 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @res_name: Name to be associated with resource.
3945 * Mark all PCI regions associated with PCI device @pdev as being reserved
3946 * by owner @res_name. Do not access any address inside the PCI regions
3947 * unless this call returns successfully.
3949 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3950 * and the sysfs MMIO access will not be allowed.
3952 * Returns 0 on success, or %EBUSY on error. A warning message is also
3953 * printed on failure.
3955 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3957 return pci_request_selected_regions_exclusive(pdev,
3958 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3960 EXPORT_SYMBOL(pci_request_regions_exclusive);
3963 * Record the PCI IO range (expressed as CPU physical address + size).
3964 * Return a negative value if an error has occurred, zero otherwise
3966 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3967 resource_size_t size)
3971 struct logic_pio_hwaddr *range;
3973 if (!size || addr + size < addr)
3976 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3980 range->fwnode = fwnode;
3982 range->hw_start = addr;
3983 range->flags = LOGIC_PIO_CPU_MMIO;
3985 ret = logic_pio_register_range(range);
3993 phys_addr_t pci_pio_to_address(unsigned long pio)
3995 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3998 if (pio >= MMIO_UPPER_LIMIT)
4001 address = logic_pio_to_hwaddr(pio);
4007 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4010 return logic_pio_trans_cpuaddr(address);
4012 if (address > IO_SPACE_LIMIT)
4013 return (unsigned long)-1;
4015 return (unsigned long) address;
4020 * pci_remap_iospace - Remap the memory mapped I/O space
4021 * @res: Resource describing the I/O space
4022 * @phys_addr: physical address of range to be mapped
4024 * Remap the memory mapped I/O space described by the @res and the CPU
4025 * physical address @phys_addr into virtual address space. Only
4026 * architectures that have memory mapped IO functions defined (and the
4027 * PCI_IOBASE value defined) should call this function.
4029 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4031 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4032 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4034 if (!(res->flags & IORESOURCE_IO))
4037 if (res->end > IO_SPACE_LIMIT)
4040 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4041 pgprot_device(PAGE_KERNEL));
4044 * This architecture does not have memory mapped I/O space,
4045 * so this function should never be called
4047 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4051 EXPORT_SYMBOL(pci_remap_iospace);
4054 * pci_unmap_iospace - Unmap the memory mapped I/O space
4055 * @res: resource to be unmapped
4057 * Unmap the CPU virtual address @res from virtual address space. Only
4058 * architectures that have memory mapped IO functions defined (and the
4059 * PCI_IOBASE value defined) should call this function.
4061 void pci_unmap_iospace(struct resource *res)
4063 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4064 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4066 unmap_kernel_range(vaddr, resource_size(res));
4069 EXPORT_SYMBOL(pci_unmap_iospace);
4071 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4073 struct resource **res = ptr;
4075 pci_unmap_iospace(*res);
4079 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4080 * @dev: Generic device to remap IO address for
4081 * @res: Resource describing the I/O space
4082 * @phys_addr: physical address of range to be mapped
4084 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4087 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4088 phys_addr_t phys_addr)
4090 const struct resource **ptr;
4093 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4097 error = pci_remap_iospace(res, phys_addr);
4102 devres_add(dev, ptr);
4107 EXPORT_SYMBOL(devm_pci_remap_iospace);
4110 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4111 * @dev: Generic device to remap IO address for
4112 * @offset: Resource address to map
4113 * @size: Size of map
4115 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4118 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4119 resource_size_t offset,
4120 resource_size_t size)
4122 void __iomem **ptr, *addr;
4124 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4128 addr = pci_remap_cfgspace(offset, size);
4131 devres_add(dev, ptr);
4137 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4140 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4141 * @dev: generic device to handle the resource for
4142 * @res: configuration space resource to be handled
4144 * Checks that a resource is a valid memory region, requests the memory
4145 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4146 * proper PCI configuration space memory attributes are guaranteed.
4148 * All operations are managed and will be undone on driver detach.
4150 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4151 * on failure. Usage example::
4153 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4154 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4156 * return PTR_ERR(base);
4158 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4159 struct resource *res)
4161 resource_size_t size;
4163 void __iomem *dest_ptr;
4167 if (!res || resource_type(res) != IORESOURCE_MEM) {
4168 dev_err(dev, "invalid resource\n");
4169 return IOMEM_ERR_PTR(-EINVAL);
4172 size = resource_size(res);
4173 name = res->name ?: dev_name(dev);
4175 if (!devm_request_mem_region(dev, res->start, size, name)) {
4176 dev_err(dev, "can't request region for resource %pR\n", res);
4177 return IOMEM_ERR_PTR(-EBUSY);
4180 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4182 dev_err(dev, "ioremap failed for resource %pR\n", res);
4183 devm_release_mem_region(dev, res->start, size);
4184 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4189 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4191 static void __pci_set_master(struct pci_dev *dev, bool enable)
4195 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4197 cmd = old_cmd | PCI_COMMAND_MASTER;
4199 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4200 if (cmd != old_cmd) {
4201 pci_dbg(dev, "%s bus mastering\n",
4202 enable ? "enabling" : "disabling");
4203 pci_write_config_word(dev, PCI_COMMAND, cmd);
4205 dev->is_busmaster = enable;
4209 * pcibios_setup - process "pci=" kernel boot arguments
4210 * @str: string used to pass in "pci=" kernel boot arguments
4212 * Process kernel boot arguments. This is the default implementation.
4213 * Architecture specific implementations can override this as necessary.
4215 char * __weak __init pcibios_setup(char *str)
4221 * pcibios_set_master - enable PCI bus-mastering for device dev
4222 * @dev: the PCI device to enable
4224 * Enables PCI bus-mastering for the device. This is the default
4225 * implementation. Architecture specific implementations can override
4226 * this if necessary.
4228 void __weak pcibios_set_master(struct pci_dev *dev)
4232 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4233 if (pci_is_pcie(dev))
4236 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4238 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4239 else if (lat > pcibios_max_latency)
4240 lat = pcibios_max_latency;
4244 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4248 * pci_set_master - enables bus-mastering for device dev
4249 * @dev: the PCI device to enable
4251 * Enables bus-mastering on the device and calls pcibios_set_master()
4252 * to do the needed arch specific settings.
4254 void pci_set_master(struct pci_dev *dev)
4256 __pci_set_master(dev, true);
4257 pcibios_set_master(dev);
4259 EXPORT_SYMBOL(pci_set_master);
4262 * pci_clear_master - disables bus-mastering for device dev
4263 * @dev: the PCI device to disable
4265 void pci_clear_master(struct pci_dev *dev)
4267 __pci_set_master(dev, false);
4269 EXPORT_SYMBOL(pci_clear_master);
4272 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4273 * @dev: the PCI device for which MWI is to be enabled
4275 * Helper function for pci_set_mwi.
4276 * Originally copied from drivers/net/acenic.c.
4277 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4279 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4281 int pci_set_cacheline_size(struct pci_dev *dev)
4285 if (!pci_cache_line_size)
4288 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4289 equal to or multiple of the right value. */
4290 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4291 if (cacheline_size >= pci_cache_line_size &&
4292 (cacheline_size % pci_cache_line_size) == 0)
4295 /* Write the correct value. */
4296 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4298 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4299 if (cacheline_size == pci_cache_line_size)
4302 pci_info(dev, "cache line size of %d is not supported\n",
4303 pci_cache_line_size << 2);
4307 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4310 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4311 * @dev: the PCI device for which MWI is enabled
4313 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4315 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4317 int pci_set_mwi(struct pci_dev *dev)
4319 #ifdef PCI_DISABLE_MWI
4325 rc = pci_set_cacheline_size(dev);
4329 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4330 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4331 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4332 cmd |= PCI_COMMAND_INVALIDATE;
4333 pci_write_config_word(dev, PCI_COMMAND, cmd);
4338 EXPORT_SYMBOL(pci_set_mwi);
4341 * pcim_set_mwi - a device-managed pci_set_mwi()
4342 * @dev: the PCI device for which MWI is enabled
4344 * Managed pci_set_mwi().
4346 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4348 int pcim_set_mwi(struct pci_dev *dev)
4350 struct pci_devres *dr;
4352 dr = find_pci_dr(dev);
4357 return pci_set_mwi(dev);
4359 EXPORT_SYMBOL(pcim_set_mwi);
4362 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4363 * @dev: the PCI device for which MWI is enabled
4365 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4366 * Callers are not required to check the return value.
4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4370 int pci_try_set_mwi(struct pci_dev *dev)
4372 #ifdef PCI_DISABLE_MWI
4375 return pci_set_mwi(dev);
4378 EXPORT_SYMBOL(pci_try_set_mwi);
4381 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4382 * @dev: the PCI device to disable
4384 * Disables PCI Memory-Write-Invalidate transaction on the device
4386 void pci_clear_mwi(struct pci_dev *dev)
4388 #ifndef PCI_DISABLE_MWI
4391 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4392 if (cmd & PCI_COMMAND_INVALIDATE) {
4393 cmd &= ~PCI_COMMAND_INVALIDATE;
4394 pci_write_config_word(dev, PCI_COMMAND, cmd);
4398 EXPORT_SYMBOL(pci_clear_mwi);
4401 * pci_intx - enables/disables PCI INTx for device dev
4402 * @pdev: the PCI device to operate on
4403 * @enable: boolean: whether to enable or disable PCI INTx
4405 * Enables/disables PCI INTx for device @pdev
4407 void pci_intx(struct pci_dev *pdev, int enable)
4409 u16 pci_command, new;
4411 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4414 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4416 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4418 if (new != pci_command) {
4419 struct pci_devres *dr;
4421 pci_write_config_word(pdev, PCI_COMMAND, new);
4423 dr = find_pci_dr(pdev);
4424 if (dr && !dr->restore_intx) {
4425 dr->restore_intx = 1;
4426 dr->orig_intx = !enable;
4430 EXPORT_SYMBOL_GPL(pci_intx);
4432 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4434 struct pci_bus *bus = dev->bus;
4435 bool mask_updated = true;
4436 u32 cmd_status_dword;
4437 u16 origcmd, newcmd;
4438 unsigned long flags;
4442 * We do a single dword read to retrieve both command and status.
4443 * Document assumptions that make this possible.
4445 BUILD_BUG_ON(PCI_COMMAND % 4);
4446 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4448 raw_spin_lock_irqsave(&pci_lock, flags);
4450 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4452 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4455 * Check interrupt status register to see whether our device
4456 * triggered the interrupt (when masking) or the next IRQ is
4457 * already pending (when unmasking).
4459 if (mask != irq_pending) {
4460 mask_updated = false;
4464 origcmd = cmd_status_dword;
4465 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4467 newcmd |= PCI_COMMAND_INTX_DISABLE;
4468 if (newcmd != origcmd)
4469 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4472 raw_spin_unlock_irqrestore(&pci_lock, flags);
4474 return mask_updated;
4478 * pci_check_and_mask_intx - mask INTx on pending interrupt
4479 * @dev: the PCI device to operate on
4481 * Check if the device dev has its INTx line asserted, mask it and return
4482 * true in that case. False is returned if no interrupt was pending.
4484 bool pci_check_and_mask_intx(struct pci_dev *dev)
4486 return pci_check_and_set_intx_mask(dev, true);
4488 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4491 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4492 * @dev: the PCI device to operate on
4494 * Check if the device dev has its INTx line asserted, unmask it if not and
4495 * return true. False is returned and the mask remains active if there was
4496 * still an interrupt pending.
4498 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4500 return pci_check_and_set_intx_mask(dev, false);
4502 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4505 * pci_wait_for_pending_transaction - wait for pending transaction
4506 * @dev: the PCI device to operate on
4508 * Return 0 if transaction is pending 1 otherwise.
4510 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4512 if (!pci_is_pcie(dev))
4515 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4516 PCI_EXP_DEVSTA_TRPND);
4518 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4521 * pcie_has_flr - check if a device supports function level resets
4522 * @dev: device to check
4524 * Returns true if the device advertises support for PCIe function level
4527 bool pcie_has_flr(struct pci_dev *dev)
4531 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4534 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4535 return cap & PCI_EXP_DEVCAP_FLR;
4537 EXPORT_SYMBOL_GPL(pcie_has_flr);
4540 * pcie_flr - initiate a PCIe function level reset
4541 * @dev: device to reset
4543 * Initiate a function level reset on @dev. The caller should ensure the
4544 * device supports FLR before calling this function, e.g. by using the
4545 * pcie_has_flr() helper.
4547 int pcie_flr(struct pci_dev *dev)
4549 if (!pci_wait_for_pending_transaction(dev))
4550 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4552 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4558 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4559 * 100ms, but may silently discard requests while the FLR is in
4560 * progress. Wait 100ms before trying to access the device.
4564 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4566 EXPORT_SYMBOL_GPL(pcie_flr);
4568 static int pci_af_flr(struct pci_dev *dev, int probe)
4573 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4577 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4580 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4581 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4588 * Wait for Transaction Pending bit to clear. A word-aligned test
4589 * is used, so we use the control offset rather than status and shift
4590 * the test bit to match.
4592 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4593 PCI_AF_STATUS_TP << 8))
4594 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4596 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4602 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4603 * updated 27 July 2006; a device must complete an FLR within
4604 * 100ms, but may silently discard requests while the FLR is in
4605 * progress. Wait 100ms before trying to access the device.
4609 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4613 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4614 * @dev: Device to reset.
4615 * @probe: If set, only check if the device can be reset this way.
4617 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4618 * unset, it will be reinitialized internally when going from PCI_D3hot to
4619 * PCI_D0. If that's the case and the device is not in a low-power state
4620 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4622 * NOTE: This causes the caller to sleep for twice the device power transition
4623 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4624 * by default (i.e. unless the @dev's d3_delay field has a different value).
4625 * Moreover, only devices in D0 can be reset by this function.
4627 static int pci_pm_reset(struct pci_dev *dev, int probe)
4631 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4634 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4635 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4641 if (dev->current_state != PCI_D0)
4644 csr &= ~PCI_PM_CTRL_STATE_MASK;
4646 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4647 pci_dev_d3_sleep(dev);
4649 csr &= ~PCI_PM_CTRL_STATE_MASK;
4651 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4652 pci_dev_d3_sleep(dev);
4654 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4658 * pcie_wait_for_link_delay - Wait until link is active or inactive
4659 * @pdev: Bridge device
4660 * @active: waiting for active or inactive?
4661 * @delay: Delay to wait after link has become active (in ms)
4663 * Use this to wait till link becomes active or inactive.
4665 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4673 * Some controllers might not implement link active reporting. In this
4674 * case, we wait for 1000 ms + any delay requested by the caller.
4676 if (!pdev->link_active_reporting) {
4677 msleep(timeout + delay);
4682 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4683 * after which we should expect an link active if the reset was
4684 * successful. If so, software must wait a minimum 100ms before sending
4685 * configuration requests to devices downstream this port.
4687 * If the link fails to activate, either the device was physically
4688 * removed or the link is permanently failed.
4693 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4694 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4704 else if (ret != active)
4705 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4706 active ? "set" : "cleared");
4707 return ret == active;
4711 * pcie_wait_for_link - Wait until link is active or inactive
4712 * @pdev: Bridge device
4713 * @active: waiting for active or inactive?
4715 * Use this to wait till link becomes active or inactive.
4717 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4719 return pcie_wait_for_link_delay(pdev, active, 100);
4723 * Find maximum D3cold delay required by all the devices on the bus. The
4724 * spec says 100 ms, but firmware can lower it and we allow drivers to
4725 * increase it as well.
4727 * Called with @pci_bus_sem locked for reading.
4729 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4731 const struct pci_dev *pdev;
4732 int min_delay = 100;
4735 list_for_each_entry(pdev, &bus->devices, bus_list) {
4736 if (pdev->d3cold_delay < min_delay)
4737 min_delay = pdev->d3cold_delay;
4738 if (pdev->d3cold_delay > max_delay)
4739 max_delay = pdev->d3cold_delay;
4742 return max(min_delay, max_delay);
4746 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4749 * Handle necessary delays before access to the devices on the secondary
4750 * side of the bridge are permitted after D3cold to D0 transition.
4752 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4753 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4756 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4758 struct pci_dev *child;
4761 if (pci_dev_is_disconnected(dev))
4764 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4767 down_read(&pci_bus_sem);
4770 * We only deal with devices that are present currently on the bus.
4771 * For any hot-added devices the access delay is handled in pciehp
4772 * board_added(). In case of ACPI hotplug the firmware is expected
4773 * to configure the devices before OS is notified.
4775 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4776 up_read(&pci_bus_sem);
4780 /* Take d3cold_delay requirements into account */
4781 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4783 up_read(&pci_bus_sem);
4787 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4789 up_read(&pci_bus_sem);
4792 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4793 * accessing the device after reset (that is 1000 ms + 100 ms). In
4794 * practice this should not be needed because we don't do power
4795 * management for them (see pci_bridge_d3_possible()).
4797 if (!pci_is_pcie(dev)) {
4798 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4799 msleep(1000 + delay);
4804 * For PCIe downstream and root ports that do not support speeds
4805 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4806 * speeds (gen3) we need to wait first for the data link layer to
4809 * However, 100 ms is the minimum and the PCIe spec says the
4810 * software must allow at least 1s before it can determine that the
4811 * device that did not respond is a broken device. There is
4812 * evidence that 100 ms is not always enough, for example certain
4813 * Titan Ridge xHCI controller does not always respond to
4814 * configuration requests if we only wait for 100 ms (see
4815 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4817 * Therefore we wait for 100 ms and check for the device presence.
4818 * If it is still not present give it an additional 100 ms.
4820 if (!pcie_downstream_port(dev))
4823 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4824 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4827 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4829 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4830 /* Did not train, no need to wait any further */
4835 if (!pci_device_is_present(child)) {
4836 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4841 void pci_reset_secondary_bus(struct pci_dev *dev)
4845 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4846 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4847 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4850 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4851 * this to 2ms to ensure that we meet the minimum requirement.
4855 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4856 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4859 * Trhfa for conventional PCI is 2^25 clock cycles.
4860 * Assuming a minimum 33MHz clock this results in a 1s
4861 * delay before we can consider subordinate devices to
4862 * be re-initialized. PCIe has some ways to shorten this,
4863 * but we don't make use of them yet.
4868 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4870 pci_reset_secondary_bus(dev);
4874 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4875 * @dev: Bridge device
4877 * Use the bridge control register to assert reset on the secondary bus.
4878 * Devices on the secondary bus are left in power-on state.
4880 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4882 pcibios_reset_secondary_bus(dev);
4884 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4886 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4888 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4890 struct pci_dev *pdev;
4892 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4893 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4896 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4903 return pci_bridge_secondary_bus_reset(dev->bus->self);
4906 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4910 if (!hotplug || !try_module_get(hotplug->owner))
4913 if (hotplug->ops->reset_slot)
4914 rc = hotplug->ops->reset_slot(hotplug, probe);
4916 module_put(hotplug->owner);
4921 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4923 struct pci_dev *pdev;
4925 if (dev->subordinate || !dev->slot ||
4926 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4929 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4930 if (pdev != dev && pdev->slot == dev->slot)
4933 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4936 static void pci_dev_lock(struct pci_dev *dev)
4938 pci_cfg_access_lock(dev);
4939 /* block PM suspend, driver probe, etc. */
4940 device_lock(&dev->dev);
4943 /* Return 1 on successful lock, 0 on contention */
4944 static int pci_dev_trylock(struct pci_dev *dev)
4946 if (pci_cfg_access_trylock(dev)) {
4947 if (device_trylock(&dev->dev))
4949 pci_cfg_access_unlock(dev);
4955 static void pci_dev_unlock(struct pci_dev *dev)
4957 device_unlock(&dev->dev);
4958 pci_cfg_access_unlock(dev);
4961 static void pci_dev_save_and_disable(struct pci_dev *dev)
4963 const struct pci_error_handlers *err_handler =
4964 dev->driver ? dev->driver->err_handler : NULL;
4967 * dev->driver->err_handler->reset_prepare() is protected against
4968 * races with ->remove() by the device lock, which must be held by
4971 if (err_handler && err_handler->reset_prepare)
4972 err_handler->reset_prepare(dev);
4975 * Wake-up device prior to save. PM registers default to D0 after
4976 * reset and a simple register restore doesn't reliably return
4977 * to a non-D0 state anyway.
4979 pci_set_power_state(dev, PCI_D0);
4981 pci_save_state(dev);
4983 * Disable the device by clearing the Command register, except for
4984 * INTx-disable which is set. This not only disables MMIO and I/O port
4985 * BARs, but also prevents the device from being Bus Master, preventing
4986 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4987 * compliant devices, INTx-disable prevents legacy interrupts.
4989 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4992 static void pci_dev_restore(struct pci_dev *dev)
4994 const struct pci_error_handlers *err_handler =
4995 dev->driver ? dev->driver->err_handler : NULL;
4997 pci_restore_state(dev);
5000 * dev->driver->err_handler->reset_done() is protected against
5001 * races with ->remove() by the device lock, which must be held by
5004 if (err_handler && err_handler->reset_done)
5005 err_handler->reset_done(dev);
5009 * __pci_reset_function_locked - reset a PCI device function while holding
5010 * the @dev mutex lock.
5011 * @dev: PCI device to reset
5013 * Some devices allow an individual function to be reset without affecting
5014 * other functions in the same device. The PCI device must be responsive
5015 * to PCI config space in order to use this function.
5017 * The device function is presumed to be unused and the caller is holding
5018 * the device mutex lock when this function is called.
5020 * Resetting the device will make the contents of PCI configuration space
5021 * random, so any caller of this must be prepared to reinitialise the
5022 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5025 * Returns 0 if the device function was successfully reset or negative if the
5026 * device doesn't support resetting a single function.
5028 int __pci_reset_function_locked(struct pci_dev *dev)
5035 * A reset method returns -ENOTTY if it doesn't support this device
5036 * and we should try the next method.
5038 * If it returns 0 (success), we're finished. If it returns any
5039 * other error, we're also finished: this indicates that further
5040 * reset mechanisms might be broken on the device.
5042 rc = pci_dev_specific_reset(dev, 0);
5045 if (pcie_has_flr(dev)) {
5050 rc = pci_af_flr(dev, 0);
5053 rc = pci_pm_reset(dev, 0);
5056 rc = pci_dev_reset_slot_function(dev, 0);
5059 return pci_parent_bus_reset(dev, 0);
5061 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5064 * pci_probe_reset_function - check whether the device can be safely reset
5065 * @dev: PCI device to reset
5067 * Some devices allow an individual function to be reset without affecting
5068 * other functions in the same device. The PCI device must be responsive
5069 * to PCI config space in order to use this function.
5071 * Returns 0 if the device function can be reset or negative if the
5072 * device doesn't support resetting a single function.
5074 int pci_probe_reset_function(struct pci_dev *dev)
5080 rc = pci_dev_specific_reset(dev, 1);
5083 if (pcie_has_flr(dev))
5085 rc = pci_af_flr(dev, 1);
5088 rc = pci_pm_reset(dev, 1);
5091 rc = pci_dev_reset_slot_function(dev, 1);
5095 return pci_parent_bus_reset(dev, 1);
5099 * pci_reset_function - quiesce and reset a PCI device function
5100 * @dev: PCI device to reset
5102 * Some devices allow an individual function to be reset without affecting
5103 * other functions in the same device. The PCI device must be responsive
5104 * to PCI config space in order to use this function.
5106 * This function does not just reset the PCI portion of a device, but
5107 * clears all the state associated with the device. This function differs
5108 * from __pci_reset_function_locked() in that it saves and restores device state
5109 * over the reset and takes the PCI device lock.
5111 * Returns 0 if the device function was successfully reset or negative if the
5112 * device doesn't support resetting a single function.
5114 int pci_reset_function(struct pci_dev *dev)
5122 pci_dev_save_and_disable(dev);
5124 rc = __pci_reset_function_locked(dev);
5126 pci_dev_restore(dev);
5127 pci_dev_unlock(dev);
5131 EXPORT_SYMBOL_GPL(pci_reset_function);
5134 * pci_reset_function_locked - quiesce and reset a PCI device function
5135 * @dev: PCI device to reset
5137 * Some devices allow an individual function to be reset without affecting
5138 * other functions in the same device. The PCI device must be responsive
5139 * to PCI config space in order to use this function.
5141 * This function does not just reset the PCI portion of a device, but
5142 * clears all the state associated with the device. This function differs
5143 * from __pci_reset_function_locked() in that it saves and restores device state
5144 * over the reset. It also differs from pci_reset_function() in that it
5145 * requires the PCI device lock to be held.
5147 * Returns 0 if the device function was successfully reset or negative if the
5148 * device doesn't support resetting a single function.
5150 int pci_reset_function_locked(struct pci_dev *dev)
5157 pci_dev_save_and_disable(dev);
5159 rc = __pci_reset_function_locked(dev);
5161 pci_dev_restore(dev);
5165 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5168 * pci_try_reset_function - quiesce and reset a PCI device function
5169 * @dev: PCI device to reset
5171 * Same as above, except return -EAGAIN if unable to lock device.
5173 int pci_try_reset_function(struct pci_dev *dev)
5180 if (!pci_dev_trylock(dev))
5183 pci_dev_save_and_disable(dev);
5184 rc = __pci_reset_function_locked(dev);
5185 pci_dev_restore(dev);
5186 pci_dev_unlock(dev);
5190 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5192 /* Do any devices on or below this bus prevent a bus reset? */
5193 static bool pci_bus_resetable(struct pci_bus *bus)
5195 struct pci_dev *dev;
5198 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5201 list_for_each_entry(dev, &bus->devices, bus_list) {
5202 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5203 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5210 /* Lock devices from the top of the tree down */
5211 static void pci_bus_lock(struct pci_bus *bus)
5213 struct pci_dev *dev;
5215 list_for_each_entry(dev, &bus->devices, bus_list) {
5217 if (dev->subordinate)
5218 pci_bus_lock(dev->subordinate);
5222 /* Unlock devices from the bottom of the tree up */
5223 static void pci_bus_unlock(struct pci_bus *bus)
5225 struct pci_dev *dev;
5227 list_for_each_entry(dev, &bus->devices, bus_list) {
5228 if (dev->subordinate)
5229 pci_bus_unlock(dev->subordinate);
5230 pci_dev_unlock(dev);
5234 /* Return 1 on successful lock, 0 on contention */
5235 static int pci_bus_trylock(struct pci_bus *bus)
5237 struct pci_dev *dev;
5239 list_for_each_entry(dev, &bus->devices, bus_list) {
5240 if (!pci_dev_trylock(dev))
5242 if (dev->subordinate) {
5243 if (!pci_bus_trylock(dev->subordinate)) {
5244 pci_dev_unlock(dev);
5252 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5253 if (dev->subordinate)
5254 pci_bus_unlock(dev->subordinate);
5255 pci_dev_unlock(dev);
5260 /* Do any devices on or below this slot prevent a bus reset? */
5261 static bool pci_slot_resetable(struct pci_slot *slot)
5263 struct pci_dev *dev;
5265 if (slot->bus->self &&
5266 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5269 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5270 if (!dev->slot || dev->slot != slot)
5272 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5273 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5280 /* Lock devices from the top of the tree down */
5281 static void pci_slot_lock(struct pci_slot *slot)
5283 struct pci_dev *dev;
5285 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5286 if (!dev->slot || dev->slot != slot)
5289 if (dev->subordinate)
5290 pci_bus_lock(dev->subordinate);
5294 /* Unlock devices from the bottom of the tree up */
5295 static void pci_slot_unlock(struct pci_slot *slot)
5297 struct pci_dev *dev;
5299 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5300 if (!dev->slot || dev->slot != slot)
5302 if (dev->subordinate)
5303 pci_bus_unlock(dev->subordinate);
5304 pci_dev_unlock(dev);
5308 /* Return 1 on successful lock, 0 on contention */
5309 static int pci_slot_trylock(struct pci_slot *slot)
5311 struct pci_dev *dev;
5313 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5314 if (!dev->slot || dev->slot != slot)
5316 if (!pci_dev_trylock(dev))
5318 if (dev->subordinate) {
5319 if (!pci_bus_trylock(dev->subordinate)) {
5320 pci_dev_unlock(dev);
5328 list_for_each_entry_continue_reverse(dev,
5329 &slot->bus->devices, bus_list) {
5330 if (!dev->slot || dev->slot != slot)
5332 if (dev->subordinate)
5333 pci_bus_unlock(dev->subordinate);
5334 pci_dev_unlock(dev);
5340 * Save and disable devices from the top of the tree down while holding
5341 * the @dev mutex lock for the entire tree.
5343 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5345 struct pci_dev *dev;
5347 list_for_each_entry(dev, &bus->devices, bus_list) {
5348 pci_dev_save_and_disable(dev);
5349 if (dev->subordinate)
5350 pci_bus_save_and_disable_locked(dev->subordinate);
5355 * Restore devices from top of the tree down while holding @dev mutex lock
5356 * for the entire tree. Parent bridges need to be restored before we can
5357 * get to subordinate devices.
5359 static void pci_bus_restore_locked(struct pci_bus *bus)
5361 struct pci_dev *dev;
5363 list_for_each_entry(dev, &bus->devices, bus_list) {
5364 pci_dev_restore(dev);
5365 if (dev->subordinate)
5366 pci_bus_restore_locked(dev->subordinate);
5371 * Save and disable devices from the top of the tree down while holding
5372 * the @dev mutex lock for the entire tree.
5374 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5376 struct pci_dev *dev;
5378 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5379 if (!dev->slot || dev->slot != slot)
5381 pci_dev_save_and_disable(dev);
5382 if (dev->subordinate)
5383 pci_bus_save_and_disable_locked(dev->subordinate);
5388 * Restore devices from top of the tree down while holding @dev mutex lock
5389 * for the entire tree. Parent bridges need to be restored before we can
5390 * get to subordinate devices.
5392 static void pci_slot_restore_locked(struct pci_slot *slot)
5394 struct pci_dev *dev;
5396 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5397 if (!dev->slot || dev->slot != slot)
5399 pci_dev_restore(dev);
5400 if (dev->subordinate)
5401 pci_bus_restore_locked(dev->subordinate);
5405 static int pci_slot_reset(struct pci_slot *slot, int probe)
5409 if (!slot || !pci_slot_resetable(slot))
5413 pci_slot_lock(slot);
5417 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5420 pci_slot_unlock(slot);
5426 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5427 * @slot: PCI slot to probe
5429 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5431 int pci_probe_reset_slot(struct pci_slot *slot)
5433 return pci_slot_reset(slot, 1);
5435 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5438 * __pci_reset_slot - Try to reset a PCI slot
5439 * @slot: PCI slot to reset
5441 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5442 * independent of other slots. For instance, some slots may support slot power
5443 * control. In the case of a 1:1 bus to slot architecture, this function may
5444 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5445 * Generally a slot reset should be attempted before a bus reset. All of the
5446 * function of the slot and any subordinate buses behind the slot are reset
5447 * through this function. PCI config space of all devices in the slot and
5448 * behind the slot is saved before and restored after reset.
5450 * Same as above except return -EAGAIN if the slot cannot be locked
5452 static int __pci_reset_slot(struct pci_slot *slot)
5456 rc = pci_slot_reset(slot, 1);
5460 if (pci_slot_trylock(slot)) {
5461 pci_slot_save_and_disable_locked(slot);
5463 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5464 pci_slot_restore_locked(slot);
5465 pci_slot_unlock(slot);
5472 static int pci_bus_reset(struct pci_bus *bus, int probe)
5476 if (!bus->self || !pci_bus_resetable(bus))
5486 ret = pci_bridge_secondary_bus_reset(bus->self);
5488 pci_bus_unlock(bus);
5494 * pci_bus_error_reset - reset the bridge's subordinate bus
5495 * @bridge: The parent device that connects to the bus to reset
5497 * This function will first try to reset the slots on this bus if the method is
5498 * available. If slot reset fails or is not available, this will fall back to a
5499 * secondary bus reset.
5501 int pci_bus_error_reset(struct pci_dev *bridge)
5503 struct pci_bus *bus = bridge->subordinate;
5504 struct pci_slot *slot;
5509 mutex_lock(&pci_slot_mutex);
5510 if (list_empty(&bus->slots))
5513 list_for_each_entry(slot, &bus->slots, list)
5514 if (pci_probe_reset_slot(slot))
5517 list_for_each_entry(slot, &bus->slots, list)
5518 if (pci_slot_reset(slot, 0))
5521 mutex_unlock(&pci_slot_mutex);
5524 mutex_unlock(&pci_slot_mutex);
5525 return pci_bus_reset(bridge->subordinate, 0);
5529 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5530 * @bus: PCI bus to probe
5532 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5534 int pci_probe_reset_bus(struct pci_bus *bus)
5536 return pci_bus_reset(bus, 1);
5538 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5541 * __pci_reset_bus - Try to reset a PCI bus
5542 * @bus: top level PCI bus to reset
5544 * Same as above except return -EAGAIN if the bus cannot be locked
5546 static int __pci_reset_bus(struct pci_bus *bus)
5550 rc = pci_bus_reset(bus, 1);
5554 if (pci_bus_trylock(bus)) {
5555 pci_bus_save_and_disable_locked(bus);
5557 rc = pci_bridge_secondary_bus_reset(bus->self);
5558 pci_bus_restore_locked(bus);
5559 pci_bus_unlock(bus);
5567 * pci_reset_bus - Try to reset a PCI bus
5568 * @pdev: top level PCI device to reset via slot/bus
5570 * Same as above except return -EAGAIN if the bus cannot be locked
5572 int pci_reset_bus(struct pci_dev *pdev)
5574 return (!pci_probe_reset_slot(pdev->slot)) ?
5575 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5577 EXPORT_SYMBOL_GPL(pci_reset_bus);
5580 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5581 * @dev: PCI device to query
5583 * Returns mmrbc: maximum designed memory read count in bytes or
5584 * appropriate error value.
5586 int pcix_get_max_mmrbc(struct pci_dev *dev)
5591 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5595 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5598 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5600 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5603 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5604 * @dev: PCI device to query
5606 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5609 int pcix_get_mmrbc(struct pci_dev *dev)
5614 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5618 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5621 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5623 EXPORT_SYMBOL(pcix_get_mmrbc);
5626 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5627 * @dev: PCI device to query
5628 * @mmrbc: maximum memory read count in bytes
5629 * valid values are 512, 1024, 2048, 4096
5631 * If possible sets maximum memory read byte count, some bridges have errata
5632 * that prevent this.
5634 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5640 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5643 v = ffs(mmrbc) - 10;
5645 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5649 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5652 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5655 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5658 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5660 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5663 cmd &= ~PCI_X_CMD_MAX_READ;
5665 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5670 EXPORT_SYMBOL(pcix_set_mmrbc);
5673 * pcie_get_readrq - get PCI Express read request size
5674 * @dev: PCI device to query
5676 * Returns maximum memory read request in bytes or appropriate error value.
5678 int pcie_get_readrq(struct pci_dev *dev)
5682 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5684 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5686 EXPORT_SYMBOL(pcie_get_readrq);
5689 * pcie_set_readrq - set PCI Express maximum memory read request
5690 * @dev: PCI device to query
5691 * @rq: maximum memory read count in bytes
5692 * valid values are 128, 256, 512, 1024, 2048, 4096
5694 * If possible sets maximum memory read request in bytes
5696 int pcie_set_readrq(struct pci_dev *dev, int rq)
5701 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5705 * If using the "performance" PCIe config, we clamp the read rq
5706 * size to the max packet size to keep the host bridge from
5707 * generating requests larger than we can cope with.
5709 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5710 int mps = pcie_get_mps(dev);
5716 v = (ffs(rq) - 8) << 12;
5718 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5719 PCI_EXP_DEVCTL_READRQ, v);
5721 return pcibios_err_to_errno(ret);
5723 EXPORT_SYMBOL(pcie_set_readrq);
5726 * pcie_get_mps - get PCI Express maximum payload size
5727 * @dev: PCI device to query
5729 * Returns maximum payload size in bytes
5731 int pcie_get_mps(struct pci_dev *dev)
5735 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5737 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5739 EXPORT_SYMBOL(pcie_get_mps);
5742 * pcie_set_mps - set PCI Express maximum payload size
5743 * @dev: PCI device to query
5744 * @mps: maximum payload size in bytes
5745 * valid values are 128, 256, 512, 1024, 2048, 4096
5747 * If possible sets maximum payload size
5749 int pcie_set_mps(struct pci_dev *dev, int mps)
5754 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5758 if (v > dev->pcie_mpss)
5762 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5763 PCI_EXP_DEVCTL_PAYLOAD, v);
5765 return pcibios_err_to_errno(ret);
5767 EXPORT_SYMBOL(pcie_set_mps);
5770 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5771 * device and its bandwidth limitation
5772 * @dev: PCI device to query
5773 * @limiting_dev: storage for device causing the bandwidth limitation
5774 * @speed: storage for speed of limiting device
5775 * @width: storage for width of limiting device
5777 * Walk up the PCI device chain and find the point where the minimum
5778 * bandwidth is available. Return the bandwidth available there and (if
5779 * limiting_dev, speed, and width pointers are supplied) information about
5780 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5783 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5784 enum pci_bus_speed *speed,
5785 enum pcie_link_width *width)
5788 enum pci_bus_speed next_speed;
5789 enum pcie_link_width next_width;
5793 *speed = PCI_SPEED_UNKNOWN;
5795 *width = PCIE_LNK_WIDTH_UNKNOWN;
5800 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5802 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5803 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5804 PCI_EXP_LNKSTA_NLW_SHIFT;
5806 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5808 /* Check if current device limits the total bandwidth */
5809 if (!bw || next_bw <= bw) {
5813 *limiting_dev = dev;
5815 *speed = next_speed;
5817 *width = next_width;
5820 dev = pci_upstream_bridge(dev);
5825 EXPORT_SYMBOL(pcie_bandwidth_available);
5828 * pcie_get_speed_cap - query for the PCI device's link speed capability
5829 * @dev: PCI device to query
5831 * Query the PCI device speed capability. Return the maximum link speed
5832 * supported by the device.
5834 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5836 u32 lnkcap2, lnkcap;
5839 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5840 * implementation note there recommends using the Supported Link
5841 * Speeds Vector in Link Capabilities 2 when supported.
5843 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5844 * should use the Supported Link Speeds field in Link Capabilities,
5845 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5847 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5849 /* PCIe r3.0-compliant */
5851 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5853 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5854 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5855 return PCIE_SPEED_5_0GT;
5856 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5857 return PCIE_SPEED_2_5GT;
5859 return PCI_SPEED_UNKNOWN;
5861 EXPORT_SYMBOL(pcie_get_speed_cap);
5864 * pcie_get_width_cap - query for the PCI device's link width capability
5865 * @dev: PCI device to query
5867 * Query the PCI device width capability. Return the maximum link width
5868 * supported by the device.
5870 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5874 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5876 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5878 return PCIE_LNK_WIDTH_UNKNOWN;
5880 EXPORT_SYMBOL(pcie_get_width_cap);
5883 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5885 * @speed: storage for link speed
5886 * @width: storage for link width
5888 * Calculate a PCI device's link bandwidth by querying for its link speed
5889 * and width, multiplying them, and applying encoding overhead. The result
5890 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5892 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5893 enum pcie_link_width *width)
5895 *speed = pcie_get_speed_cap(dev);
5896 *width = pcie_get_width_cap(dev);
5898 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5901 return *width * PCIE_SPEED2MBS_ENC(*speed);
5905 * __pcie_print_link_status - Report the PCI device's link speed and width
5906 * @dev: PCI device to query
5907 * @verbose: Print info even when enough bandwidth is available
5909 * If the available bandwidth at the device is less than the device is
5910 * capable of, report the device's maximum possible bandwidth and the
5911 * upstream link that limits its performance. If @verbose, always print
5912 * the available bandwidth, even if the device isn't constrained.
5914 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5916 enum pcie_link_width width, width_cap;
5917 enum pci_bus_speed speed, speed_cap;
5918 struct pci_dev *limiting_dev = NULL;
5919 u32 bw_avail, bw_cap;
5921 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5922 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5924 if (bw_avail >= bw_cap && verbose)
5925 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5926 bw_cap / 1000, bw_cap % 1000,
5927 pci_speed_string(speed_cap), width_cap);
5928 else if (bw_avail < bw_cap)
5929 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5930 bw_avail / 1000, bw_avail % 1000,
5931 pci_speed_string(speed), width,
5932 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5933 bw_cap / 1000, bw_cap % 1000,
5934 pci_speed_string(speed_cap), width_cap);
5938 * pcie_print_link_status - Report the PCI device's link speed and width
5939 * @dev: PCI device to query
5941 * Report the available bandwidth at the device.
5943 void pcie_print_link_status(struct pci_dev *dev)
5945 __pcie_print_link_status(dev, true);
5947 EXPORT_SYMBOL(pcie_print_link_status);
5950 * pci_select_bars - Make BAR mask from the type of resource
5951 * @dev: the PCI device for which BAR mask is made
5952 * @flags: resource type mask to be selected
5954 * This helper routine makes bar mask from the type of resource.
5956 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5959 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5960 if (pci_resource_flags(dev, i) & flags)
5964 EXPORT_SYMBOL(pci_select_bars);
5966 /* Some architectures require additional programming to enable VGA */
5967 static arch_set_vga_state_t arch_set_vga_state;
5969 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5971 arch_set_vga_state = func; /* NULL disables */
5974 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5975 unsigned int command_bits, u32 flags)
5977 if (arch_set_vga_state)
5978 return arch_set_vga_state(dev, decode, command_bits,
5984 * pci_set_vga_state - set VGA decode state on device and parents if requested
5985 * @dev: the PCI device
5986 * @decode: true = enable decoding, false = disable decoding
5987 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5988 * @flags: traverse ancestors and change bridges
5989 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5991 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5992 unsigned int command_bits, u32 flags)
5994 struct pci_bus *bus;
5995 struct pci_dev *bridge;
5999 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6001 /* ARCH specific VGA enables */
6002 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6006 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6007 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6009 cmd |= command_bits;
6011 cmd &= ~command_bits;
6012 pci_write_config_word(dev, PCI_COMMAND, cmd);
6015 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6022 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6025 cmd |= PCI_BRIDGE_CTL_VGA;
6027 cmd &= ~PCI_BRIDGE_CTL_VGA;
6028 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6037 bool pci_pr3_present(struct pci_dev *pdev)
6039 struct acpi_device *adev;
6044 adev = ACPI_COMPANION(&pdev->dev);
6048 return adev->power.flags.power_resources &&
6049 acpi_has_method(adev->handle, "_PR3");
6051 EXPORT_SYMBOL_GPL(pci_pr3_present);
6055 * pci_add_dma_alias - Add a DMA devfn alias for a device
6056 * @dev: the PCI device for which alias is added
6057 * @devfn_from: alias slot and function
6058 * @nr_devfns: number of subsequent devfns to alias
6060 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6061 * which is used to program permissible bus-devfn source addresses for DMA
6062 * requests in an IOMMU. These aliases factor into IOMMU group creation
6063 * and are useful for devices generating DMA requests beyond or different
6064 * from their logical bus-devfn. Examples include device quirks where the
6065 * device simply uses the wrong devfn, as well as non-transparent bridges
6066 * where the alias may be a proxy for devices in another domain.
6068 * IOMMU group creation is performed during device discovery or addition,
6069 * prior to any potential DMA mapping and therefore prior to driver probing
6070 * (especially for userspace assigned devices where IOMMU group definition
6071 * cannot be left as a userspace activity). DMA aliases should therefore
6072 * be configured via quirks, such as the PCI fixup header quirk.
6074 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6078 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6079 devfn_to = devfn_from + nr_devfns - 1;
6081 if (!dev->dma_alias_mask)
6082 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6083 if (!dev->dma_alias_mask) {
6084 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6088 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6091 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6092 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6093 else if (nr_devfns > 1)
6094 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6095 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6096 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6099 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6101 return (dev1->dma_alias_mask &&
6102 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6103 (dev2->dma_alias_mask &&
6104 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6105 pci_real_dma_dev(dev1) == dev2 ||
6106 pci_real_dma_dev(dev2) == dev1;
6109 bool pci_device_is_present(struct pci_dev *pdev)
6113 if (pci_dev_is_disconnected(pdev))
6115 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6117 EXPORT_SYMBOL_GPL(pci_device_is_present);
6119 void pci_ignore_hotplug(struct pci_dev *dev)
6121 struct pci_dev *bridge = dev->bus->self;
6123 dev->ignore_hotplug = 1;
6124 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6126 bridge->ignore_hotplug = 1;
6128 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6131 * pci_real_dma_dev - Get PCI DMA device for PCI device
6132 * @dev: the PCI device that may have a PCI DMA alias
6134 * Permits the platform to provide architecture-specific functionality to
6135 * devices needing to alias DMA to another PCI device on another PCI bus. If
6136 * the PCI device is on the same bus, it is recommended to use
6137 * pci_add_dma_alias(). This is the default implementation. Architecture
6138 * implementations can override this.
6140 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6145 resource_size_t __weak pcibios_default_alignment(void)
6151 * Arches that don't want to expose struct resource to userland as-is in
6152 * sysfs and /proc can implement their own pci_resource_to_user().
6154 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6155 const struct resource *rsrc,
6156 resource_size_t *start, resource_size_t *end)
6158 *start = rsrc->start;
6162 static char *resource_alignment_param;
6163 static DEFINE_SPINLOCK(resource_alignment_lock);
6166 * pci_specified_resource_alignment - get resource alignment specified by user.
6167 * @dev: the PCI device to get
6168 * @resize: whether or not to change resources' size when reassigning alignment
6170 * RETURNS: Resource alignment if it is specified.
6171 * Zero if it is not specified.
6173 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6176 int align_order, count;
6177 resource_size_t align = pcibios_default_alignment();
6181 spin_lock(&resource_alignment_lock);
6182 p = resource_alignment_param;
6185 if (pci_has_flag(PCI_PROBE_ONLY)) {
6187 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6193 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6200 ret = pci_dev_str_match(dev, p, &p);
6203 if (align_order == -1)
6206 align = 1 << align_order;
6208 } else if (ret < 0) {
6209 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6214 if (*p != ';' && *p != ',') {
6215 /* End of param or invalid format */
6221 spin_unlock(&resource_alignment_lock);
6225 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6226 resource_size_t align, bool resize)
6228 struct resource *r = &dev->resource[bar];
6229 resource_size_t size;
6231 if (!(r->flags & IORESOURCE_MEM))
6234 if (r->flags & IORESOURCE_PCI_FIXED) {
6235 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6236 bar, r, (unsigned long long)align);
6240 size = resource_size(r);
6245 * Increase the alignment of the resource. There are two ways we
6248 * 1) Increase the size of the resource. BARs are aligned on their
6249 * size, so when we reallocate space for this resource, we'll
6250 * allocate it with the larger alignment. This also prevents
6251 * assignment of any other BARs inside the alignment region, so
6252 * if we're requesting page alignment, this means no other BARs
6253 * will share the page.
6255 * The disadvantage is that this makes the resource larger than
6256 * the hardware BAR, which may break drivers that compute things
6257 * based on the resource size, e.g., to find registers at a
6258 * fixed offset before the end of the BAR.
6260 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6261 * set r->start to the desired alignment. By itself this
6262 * doesn't prevent other BARs being put inside the alignment
6263 * region, but if we realign *every* resource of every device in
6264 * the system, none of them will share an alignment region.
6266 * When the user has requested alignment for only some devices via
6267 * the "pci=resource_alignment" argument, "resize" is true and we
6268 * use the first method. Otherwise we assume we're aligning all
6269 * devices and we use the second.
6272 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6273 bar, r, (unsigned long long)align);
6279 r->flags &= ~IORESOURCE_SIZEALIGN;
6280 r->flags |= IORESOURCE_STARTALIGN;
6282 r->end = r->start + size - 1;
6284 r->flags |= IORESOURCE_UNSET;
6288 * This function disables memory decoding and releases memory resources
6289 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6290 * It also rounds up size to specified alignment.
6291 * Later on, the kernel will assign page-aligned memory resource back
6294 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6298 resource_size_t align;
6300 bool resize = false;
6303 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6304 * 3.4.1.11. Their resources are allocated from the space
6305 * described by the VF BARx register in the PF's SR-IOV capability.
6306 * We can't influence their alignment here.
6311 /* check if specified PCI is target device to reassign */
6312 align = pci_specified_resource_alignment(dev, &resize);
6316 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6317 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6318 pci_warn(dev, "Can't reassign resources to host bridge\n");
6322 pci_read_config_word(dev, PCI_COMMAND, &command);
6323 command &= ~PCI_COMMAND_MEMORY;
6324 pci_write_config_word(dev, PCI_COMMAND, command);
6326 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6327 pci_request_resource_alignment(dev, i, align, resize);
6330 * Need to disable bridge's resource window,
6331 * to enable the kernel to reassign new resource
6334 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6335 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6336 r = &dev->resource[i];
6337 if (!(r->flags & IORESOURCE_MEM))
6339 r->flags |= IORESOURCE_UNSET;
6340 r->end = resource_size(r) - 1;
6343 pci_disable_bridge_window(dev);
6347 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6351 spin_lock(&resource_alignment_lock);
6352 if (resource_alignment_param)
6353 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6354 spin_unlock(&resource_alignment_lock);
6357 * When set by the command line, resource_alignment_param will not
6358 * have a trailing line feed, which is ugly. So conditionally add
6361 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6362 buf[count - 1] = '\n';
6369 static ssize_t resource_alignment_store(struct bus_type *bus,
6370 const char *buf, size_t count)
6372 char *param = kstrndup(buf, count, GFP_KERNEL);
6377 spin_lock(&resource_alignment_lock);
6378 kfree(resource_alignment_param);
6379 resource_alignment_param = param;
6380 spin_unlock(&resource_alignment_lock);
6384 static BUS_ATTR_RW(resource_alignment);
6386 static int __init pci_resource_alignment_sysfs_init(void)
6388 return bus_create_file(&pci_bus_type,
6389 &bus_attr_resource_alignment);
6391 late_initcall(pci_resource_alignment_sysfs_init);
6393 static void pci_no_domains(void)
6395 #ifdef CONFIG_PCI_DOMAINS
6396 pci_domains_supported = 0;
6400 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6401 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6403 static int pci_get_new_domain_nr(void)
6405 return atomic_inc_return(&__domain_nr);
6408 static int of_pci_bus_find_domain_nr(struct device *parent)
6410 static int use_dt_domains = -1;
6414 domain = of_get_pci_domain_nr(parent->of_node);
6417 * Check DT domain and use_dt_domains values.
6419 * If DT domain property is valid (domain >= 0) and
6420 * use_dt_domains != 0, the DT assignment is valid since this means
6421 * we have not previously allocated a domain number by using
6422 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6423 * 1, to indicate that we have just assigned a domain number from
6426 * If DT domain property value is not valid (ie domain < 0), and we
6427 * have not previously assigned a domain number from DT
6428 * (use_dt_domains != 1) we should assign a domain number by
6431 * pci_get_new_domain_nr()
6433 * API and update the use_dt_domains value to keep track of method we
6434 * are using to assign domain numbers (use_dt_domains = 0).
6436 * All other combinations imply we have a platform that is trying
6437 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6438 * which is a recipe for domain mishandling and it is prevented by
6439 * invalidating the domain value (domain = -1) and printing a
6440 * corresponding error.
6442 if (domain >= 0 && use_dt_domains) {
6444 } else if (domain < 0 && use_dt_domains != 1) {
6446 domain = pci_get_new_domain_nr();
6449 pr_err("Node %pOF has ", parent->of_node);
6450 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6457 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6459 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6460 acpi_pci_bus_find_domain_nr(bus);
6465 * pci_ext_cfg_avail - can we access extended PCI config space?
6467 * Returns 1 if we can access PCI extended config space (offsets
6468 * greater than 0xff). This is the default implementation. Architecture
6469 * implementations can override this.
6471 int __weak pci_ext_cfg_avail(void)
6476 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6479 EXPORT_SYMBOL(pci_fixup_cardbus);
6481 static int __init pci_setup(char *str)
6484 char *k = strchr(str, ',');
6487 if (*str && (str = pcibios_setup(str)) && *str) {
6488 if (!strcmp(str, "nomsi")) {
6490 } else if (!strncmp(str, "noats", 5)) {
6491 pr_info("PCIe: ATS is disabled\n");
6492 pcie_ats_disabled = true;
6493 } else if (!strcmp(str, "noaer")) {
6495 } else if (!strcmp(str, "earlydump")) {
6496 pci_early_dump = true;
6497 } else if (!strncmp(str, "realloc=", 8)) {
6498 pci_realloc_get_opt(str + 8);
6499 } else if (!strncmp(str, "realloc", 7)) {
6500 pci_realloc_get_opt("on");
6501 } else if (!strcmp(str, "nodomains")) {
6503 } else if (!strncmp(str, "noari", 5)) {
6504 pcie_ari_disabled = true;
6505 } else if (!strncmp(str, "cbiosize=", 9)) {
6506 pci_cardbus_io_size = memparse(str + 9, &str);
6507 } else if (!strncmp(str, "cbmemsize=", 10)) {
6508 pci_cardbus_mem_size = memparse(str + 10, &str);
6509 } else if (!strncmp(str, "resource_alignment=", 19)) {
6510 resource_alignment_param = str + 19;
6511 } else if (!strncmp(str, "ecrc=", 5)) {
6512 pcie_ecrc_get_policy(str + 5);
6513 } else if (!strncmp(str, "hpiosize=", 9)) {
6514 pci_hotplug_io_size = memparse(str + 9, &str);
6515 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6516 pci_hotplug_mmio_size = memparse(str + 11, &str);
6517 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6518 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6519 } else if (!strncmp(str, "hpmemsize=", 10)) {
6520 pci_hotplug_mmio_size = memparse(str + 10, &str);
6521 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6522 } else if (!strncmp(str, "hpbussize=", 10)) {
6523 pci_hotplug_bus_size =
6524 simple_strtoul(str + 10, &str, 0);
6525 if (pci_hotplug_bus_size > 0xff)
6526 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6527 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6528 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6529 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6530 pcie_bus_config = PCIE_BUS_SAFE;
6531 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6532 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6533 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6534 pcie_bus_config = PCIE_BUS_PEER2PEER;
6535 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6536 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6537 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6538 disable_acs_redir_param = str + 18;
6540 pr_err("PCI: Unknown option `%s'\n", str);
6547 early_param("pci", pci_setup);
6550 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6551 * in pci_setup(), above, to point to data in the __initdata section which
6552 * will be freed after the init sequence is complete. We can't allocate memory
6553 * in pci_setup() because some architectures do not have any memory allocation
6554 * service available during an early_param() call. So we allocate memory and
6555 * copy the variable here before the init section is freed.
6558 static int __init pci_realloc_setup_params(void)
6560 resource_alignment_param = kstrdup(resource_alignment_param,
6562 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6566 pure_initcall(pci_realloc_setup_params);