1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
37 DEFINE_MUTEX(pci_slot_mutex);
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 EXPORT_SYMBOL_GPL(pci_power_names);
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48 EXPORT_SYMBOL(pci_pci_problems);
50 unsigned int pci_pm_d3hot_delay;
52 static void pci_pme_list_scan(struct work_struct *work);
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 struct pci_pme_device {
59 struct list_head list;
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
67 unsigned int delay = dev->d3hot_delay;
69 if (delay < pci_pm_d3hot_delay)
70 delay = pci_pm_d3hot_delay;
76 bool pci_reset_supported(struct pci_dev *dev)
78 return dev->reset_methods[0] != 0;
81 #ifdef CONFIG_PCI_DOMAINS
82 int pci_domains_supported = 1;
85 #define DEFAULT_CARDBUS_IO_SIZE (256)
86 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
91 #define DEFAULT_HOTPLUG_IO_SIZE (256)
92 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
94 /* hpiosize=nn can override this */
95 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
97 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
98 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
99 * pci=hpmemsize=nnM overrides both
101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
104 #define DEFAULT_HOTPLUG_BUS_SIZE 1
105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
111 #elif defined CONFIG_PCIE_BUS_SAFE
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
115 #elif defined CONFIG_PCIE_BUS_PEER2PEER
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
122 * The default CLS is used if arch didn't set CLS explicitly and not
123 * all pci devices agree on the same value. Arch can override either
124 * the dfl or actual value as it sees fit. Don't forget this is
125 * measured in 32-bit words, not bytes.
127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
128 u8 pci_cache_line_size;
131 * If we set up a device for bus mastering, we need to check the latency
132 * timer as certain BIOSes forget to set it properly.
134 unsigned int pcibios_max_latency = 255;
136 /* If set, the PCIe ARI capability will not be used. */
137 static bool pcie_ari_disabled;
139 /* If set, the PCIe ATS capability will not be used. */
140 static bool pcie_ats_disabled;
142 /* If set, the PCI config space of each device is printed during boot. */
145 bool pci_ats_disabled(void)
147 return pcie_ats_disabled;
149 EXPORT_SYMBOL_GPL(pci_ats_disabled);
151 /* Disable bridge_d3 for all PCIe ports */
152 static bool pci_bridge_d3_disable;
153 /* Force bridge_d3 for all PCIe ports */
154 static bool pci_bridge_d3_force;
156 static int __init pcie_port_pm_setup(char *str)
158 if (!strcmp(str, "off"))
159 pci_bridge_d3_disable = true;
160 else if (!strcmp(str, "force"))
161 pci_bridge_d3_force = true;
164 __setup("pcie_port_pm=", pcie_port_pm_setup);
166 /* Time to wait after a reset for device to become responsive */
167 #define PCIE_RESET_READY_POLL_MS 60000
170 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
171 * @bus: pointer to PCI bus structure to search
173 * Given a PCI bus, returns the highest PCI bus number present in the set
174 * including the given PCI bus and its list of child PCI buses.
176 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
179 unsigned char max, n;
181 max = bus->busn_res.end;
182 list_for_each_entry(tmp, &bus->children, node) {
183 n = pci_bus_max_busnr(tmp);
189 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
192 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
193 * @pdev: the PCI device
195 * Returns error bits set in PCI_STATUS and clears them.
197 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
202 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
203 if (ret != PCIBIOS_SUCCESSFUL)
206 status &= PCI_STATUS_ERROR_BITS;
208 pci_write_config_word(pdev, PCI_STATUS, status);
212 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
214 #ifdef CONFIG_HAS_IOMEM
215 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
217 struct resource *res = &pdev->resource[bar];
220 * Make sure the BAR is actually a memory resource, not an IO resource
222 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
223 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
226 return ioremap(res->start, resource_size(res));
228 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
230 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
233 * Make sure the BAR is actually a memory resource, not an IO resource
235 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
239 return ioremap_wc(pci_resource_start(pdev, bar),
240 pci_resource_len(pdev, bar));
242 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
246 * pci_dev_str_match_path - test if a path string matches a device
247 * @dev: the PCI device to test
248 * @path: string to match the device against
249 * @endptr: pointer to the string after the match
251 * Test if a string (typically from a kernel parameter) formatted as a
252 * path of device/function addresses matches a PCI device. The string must
255 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
257 * A path for a device can be obtained using 'lspci -t'. Using a path
258 * is more robust against bus renumbering than using only a single bus,
259 * device and function address.
261 * Returns 1 if the string matches the device, 0 if it does not and
262 * a negative error code if it fails to parse the string.
264 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
268 int seg, bus, slot, func;
272 *endptr = strchrnul(path, ';');
274 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
279 p = strrchr(wpath, '/');
282 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
288 if (dev->devfn != PCI_DEVFN(slot, func)) {
294 * Note: we don't need to get a reference to the upstream
295 * bridge because we hold a reference to the top level
296 * device which should hold a reference to the bridge,
299 dev = pci_upstream_bridge(dev);
308 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
312 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
319 ret = (seg == pci_domain_nr(dev->bus) &&
320 bus == dev->bus->number &&
321 dev->devfn == PCI_DEVFN(slot, func));
329 * pci_dev_str_match - test if a string matches a device
330 * @dev: the PCI device to test
331 * @p: string to match the device against
332 * @endptr: pointer to the string after the match
334 * Test if a string (typically from a kernel parameter) matches a specified
335 * PCI device. The string may be of one of the following formats:
337 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
338 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
340 * The first format specifies a PCI bus/device/function address which
341 * may change if new hardware is inserted, if motherboard firmware changes,
342 * or due to changes caused in kernel parameters. If the domain is
343 * left unspecified, it is taken to be 0. In order to be robust against
344 * bus renumbering issues, a path of PCI device/function numbers may be used
345 * to address the specific device. The path for a device can be determined
346 * through the use of 'lspci -t'.
348 * The second format matches devices using IDs in the configuration
349 * space which may match multiple devices in the system. A value of 0
350 * for any field will match all devices. (Note: this differs from
351 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
352 * legacy reasons and convenience so users don't have to specify
353 * FFFFFFFFs on the command line.)
355 * Returns 1 if the string matches the device, 0 if it does not and
356 * a negative error code if the string cannot be parsed.
358 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
363 unsigned short vendor, device, subsystem_vendor, subsystem_device;
365 if (strncmp(p, "pci:", 4) == 0) {
366 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
368 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
369 &subsystem_vendor, &subsystem_device, &count);
371 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
375 subsystem_vendor = 0;
376 subsystem_device = 0;
381 if ((!vendor || vendor == dev->vendor) &&
382 (!device || device == dev->device) &&
383 (!subsystem_vendor ||
384 subsystem_vendor == dev->subsystem_vendor) &&
385 (!subsystem_device ||
386 subsystem_device == dev->subsystem_device))
390 * PCI Bus, Device, Function IDs are specified
391 * (optionally, may include a path of devfns following it)
393 ret = pci_dev_str_match_path(dev, p, &p);
408 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
409 u8 pos, int cap, int *ttl)
414 pci_bus_read_config_byte(bus, devfn, pos, &pos);
420 pci_bus_read_config_word(bus, devfn, pos, &ent);
432 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
435 int ttl = PCI_FIND_CAP_TTL;
437 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
440 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
442 return __pci_find_next_cap(dev->bus, dev->devfn,
443 pos + PCI_CAP_LIST_NEXT, cap);
445 EXPORT_SYMBOL_GPL(pci_find_next_capability);
447 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
448 unsigned int devfn, u8 hdr_type)
452 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
453 if (!(status & PCI_STATUS_CAP_LIST))
457 case PCI_HEADER_TYPE_NORMAL:
458 case PCI_HEADER_TYPE_BRIDGE:
459 return PCI_CAPABILITY_LIST;
460 case PCI_HEADER_TYPE_CARDBUS:
461 return PCI_CB_CAPABILITY_LIST;
468 * pci_find_capability - query for devices' capabilities
469 * @dev: PCI device to query
470 * @cap: capability code
472 * Tell if a device supports a given PCI capability.
473 * Returns the address of the requested capability structure within the
474 * device's PCI configuration space or 0 in case the device does not
475 * support it. Possible values for @cap include:
477 * %PCI_CAP_ID_PM Power Management
478 * %PCI_CAP_ID_AGP Accelerated Graphics Port
479 * %PCI_CAP_ID_VPD Vital Product Data
480 * %PCI_CAP_ID_SLOTID Slot Identification
481 * %PCI_CAP_ID_MSI Message Signalled Interrupts
482 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
483 * %PCI_CAP_ID_PCIX PCI-X
484 * %PCI_CAP_ID_EXP PCI Express
486 u8 pci_find_capability(struct pci_dev *dev, int cap)
490 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
492 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
496 EXPORT_SYMBOL(pci_find_capability);
499 * pci_bus_find_capability - query for devices' capabilities
500 * @bus: the PCI bus to query
501 * @devfn: PCI device to query
502 * @cap: capability code
504 * Like pci_find_capability() but works for PCI devices that do not have a
505 * pci_dev structure set up yet.
507 * Returns the address of the requested capability structure within the
508 * device's PCI configuration space or 0 in case the device does not
511 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
515 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
517 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
519 pos = __pci_find_next_cap(bus, devfn, pos, cap);
523 EXPORT_SYMBOL(pci_bus_find_capability);
526 * pci_find_next_ext_capability - Find an extended capability
527 * @dev: PCI device to query
528 * @start: address at which to start looking (0 to start at beginning of list)
529 * @cap: capability code
531 * Returns the address of the next matching extended capability structure
532 * within the device's PCI configuration space or 0 if the device does
533 * not support it. Some capabilities can occur several times, e.g., the
534 * vendor-specific capability, and this provides a way to find them all.
536 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
540 u16 pos = PCI_CFG_SPACE_SIZE;
542 /* minimum 8 bytes per capability */
543 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
545 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
551 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
555 * If we have no capabilities, this is indicated by cap ID,
556 * cap version and next pointer all being 0.
562 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
565 pos = PCI_EXT_CAP_NEXT(header);
566 if (pos < PCI_CFG_SPACE_SIZE)
569 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
575 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
578 * pci_find_ext_capability - Find an extended capability
579 * @dev: PCI device to query
580 * @cap: capability code
582 * Returns the address of the requested extended capability structure
583 * within the device's PCI configuration space or 0 if the device does
584 * not support it. Possible values for @cap include:
586 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
587 * %PCI_EXT_CAP_ID_VC Virtual Channel
588 * %PCI_EXT_CAP_ID_DSN Device Serial Number
589 * %PCI_EXT_CAP_ID_PWR Power Budgeting
591 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
593 return pci_find_next_ext_capability(dev, 0, cap);
595 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
598 * pci_get_dsn - Read and return the 8-byte Device Serial Number
599 * @dev: PCI device to query
601 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
604 * Returns the DSN, or zero if the capability does not exist.
606 u64 pci_get_dsn(struct pci_dev *dev)
612 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
617 * The Device Serial Number is two dwords offset 4 bytes from the
618 * capability position. The specification says that the first dword is
619 * the lower half, and the second dword is the upper half.
622 pci_read_config_dword(dev, pos, &dword);
624 pci_read_config_dword(dev, pos + 4, &dword);
625 dsn |= ((u64)dword) << 32;
629 EXPORT_SYMBOL_GPL(pci_get_dsn);
631 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
633 int rc, ttl = PCI_FIND_CAP_TTL;
636 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
637 mask = HT_3BIT_CAP_MASK;
639 mask = HT_5BIT_CAP_MASK;
641 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
642 PCI_CAP_ID_HT, &ttl);
644 rc = pci_read_config_byte(dev, pos + 3, &cap);
645 if (rc != PCIBIOS_SUCCESSFUL)
648 if ((cap & mask) == ht_cap)
651 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
652 pos + PCI_CAP_LIST_NEXT,
653 PCI_CAP_ID_HT, &ttl);
660 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
661 * @dev: PCI device to query
662 * @pos: Position from which to continue searching
663 * @ht_cap: HyperTransport capability code
665 * To be used in conjunction with pci_find_ht_capability() to search for
666 * all capabilities matching @ht_cap. @pos should always be a value returned
667 * from pci_find_ht_capability().
669 * NB. To be 100% safe against broken PCI devices, the caller should take
670 * steps to avoid an infinite loop.
672 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
674 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
676 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
679 * pci_find_ht_capability - query a device's HyperTransport capabilities
680 * @dev: PCI device to query
681 * @ht_cap: HyperTransport capability code
683 * Tell if a device supports a given HyperTransport capability.
684 * Returns an address within the device's PCI configuration space
685 * or 0 in case the device does not support the request capability.
686 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
687 * which has a HyperTransport capability matching @ht_cap.
689 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
693 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
695 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
699 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
702 * pci_find_vsec_capability - Find a vendor-specific extended capability
703 * @dev: PCI device to query
704 * @vendor: Vendor ID for which capability is defined
705 * @cap: Vendor-specific capability ID
707 * If @dev has Vendor ID @vendor, search for a VSEC capability with
708 * VSEC ID @cap. If found, return the capability offset in
709 * config space; otherwise return 0.
711 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
716 if (vendor != dev->vendor)
719 while ((vsec = pci_find_next_ext_capability(dev, vsec,
720 PCI_EXT_CAP_ID_VNDR))) {
721 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
722 &header) == PCIBIOS_SUCCESSFUL &&
723 PCI_VNDR_HEADER_ID(header) == cap)
729 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
732 * pci_find_parent_resource - return resource region of parent bus of given
734 * @dev: PCI device structure contains resources to be searched
735 * @res: child resource record for which parent is sought
737 * For given resource region of given device, return the resource region of
738 * parent bus the given region is contained in.
740 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
741 struct resource *res)
743 const struct pci_bus *bus = dev->bus;
747 pci_bus_for_each_resource(bus, r, i) {
750 if (resource_contains(r, res)) {
753 * If the window is prefetchable but the BAR is
754 * not, the allocator made a mistake.
756 if (r->flags & IORESOURCE_PREFETCH &&
757 !(res->flags & IORESOURCE_PREFETCH))
761 * If we're below a transparent bridge, there may
762 * be both a positively-decoded aperture and a
763 * subtractively-decoded region that contain the BAR.
764 * We want the positively-decoded one, so this depends
765 * on pci_bus_for_each_resource() giving us those
773 EXPORT_SYMBOL(pci_find_parent_resource);
776 * pci_find_resource - Return matching PCI device resource
777 * @dev: PCI device to query
778 * @res: Resource to look for
780 * Goes over standard PCI resources (BARs) and checks if the given resource
781 * is partially or fully contained in any of them. In that case the
782 * matching resource is returned, %NULL otherwise.
784 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
788 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
789 struct resource *r = &dev->resource[i];
791 if (r->start && resource_contains(r, res))
797 EXPORT_SYMBOL(pci_find_resource);
800 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
801 * @dev: the PCI device to operate on
802 * @pos: config space offset of status word
803 * @mask: mask of bit(s) to care about in status word
805 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
807 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
811 /* Wait for Transaction Pending bit clean */
812 for (i = 0; i < 4; i++) {
815 msleep((1 << (i - 1)) * 100);
817 pci_read_config_word(dev, pos, &status);
818 if (!(status & mask))
825 static int pci_acs_enable;
828 * pci_request_acs - ask for ACS to be enabled if supported
830 void pci_request_acs(void)
835 static const char *disable_acs_redir_param;
838 * pci_disable_acs_redir - disable ACS redirect capabilities
839 * @dev: the PCI device
841 * For only devices specified in the disable_acs_redir parameter.
843 static void pci_disable_acs_redir(struct pci_dev *dev)
850 if (!disable_acs_redir_param)
853 p = disable_acs_redir_param;
855 ret = pci_dev_str_match(dev, p, &p);
857 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
858 disable_acs_redir_param);
861 } else if (ret == 1) {
866 if (*p != ';' && *p != ',') {
867 /* End of param or invalid format */
876 if (!pci_dev_specific_disable_acs_redir(dev))
881 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
885 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
887 /* P2P Request & Completion Redirect */
888 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
890 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
892 pci_info(dev, "disabled ACS redirect\n");
896 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
897 * @dev: the PCI device
899 static void pci_std_enable_acs(struct pci_dev *dev)
909 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
910 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
912 /* Source Validation */
913 ctrl |= (cap & PCI_ACS_SV);
915 /* P2P Request Redirect */
916 ctrl |= (cap & PCI_ACS_RR);
918 /* P2P Completion Redirect */
919 ctrl |= (cap & PCI_ACS_CR);
921 /* Upstream Forwarding */
922 ctrl |= (cap & PCI_ACS_UF);
924 /* Enable Translation Blocking for external devices */
925 if (dev->external_facing || dev->untrusted)
926 ctrl |= (cap & PCI_ACS_TB);
928 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
932 * pci_enable_acs - enable ACS if hardware support it
933 * @dev: the PCI device
935 static void pci_enable_acs(struct pci_dev *dev)
938 goto disable_acs_redir;
940 if (!pci_dev_specific_enable_acs(dev))
941 goto disable_acs_redir;
943 pci_std_enable_acs(dev);
947 * Note: pci_disable_acs_redir() must be called even if ACS was not
948 * enabled by the kernel because it may have been enabled by
949 * platform firmware. So if we are told to disable it, we should
950 * always disable it after setting the kernel's default
953 pci_disable_acs_redir(dev);
957 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
958 * @dev: PCI device to have its BARs restored
960 * Restore the BAR values for a given device, so as to make it
961 * accessible by its driver.
963 static void pci_restore_bars(struct pci_dev *dev)
967 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
968 pci_update_resource(dev, i);
971 static const struct pci_platform_pm_ops *pci_platform_pm;
973 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
975 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
976 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
978 pci_platform_pm = ops;
982 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
984 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
987 static inline int platform_pci_set_power_state(struct pci_dev *dev,
990 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
993 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
995 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
998 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1000 if (pci_platform_pm && pci_platform_pm->refresh_state)
1001 pci_platform_pm->refresh_state(dev);
1004 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1006 return pci_platform_pm ?
1007 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1010 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1012 return pci_platform_pm ?
1013 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1016 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1018 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1021 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1023 if (pci_platform_pm && pci_platform_pm->bridge_d3)
1024 return pci_platform_pm->bridge_d3(dev);
1029 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1031 * @dev: PCI device to handle.
1032 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1035 * -EINVAL if the requested state is invalid.
1036 * -EIO if device does not support PCI PM or its PM capabilities register has a
1037 * wrong version, or device doesn't support the requested state.
1038 * 0 if device already is in the requested state.
1039 * 0 if device's power state has been successfully changed.
1041 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1044 bool need_restore = false;
1046 /* Check if we're already there */
1047 if (dev->current_state == state)
1053 if (state < PCI_D0 || state > PCI_D3hot)
1057 * Validate transition: We can enter D0 from any state, but if
1058 * we're already in a low-power state, we can only go deeper. E.g.,
1059 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1060 * we'd have to go from D3 to D0, then to D1.
1062 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1063 && dev->current_state > state) {
1064 pci_err(dev, "invalid power transition (from %s to %s)\n",
1065 pci_power_name(dev->current_state),
1066 pci_power_name(state));
1070 /* Check if this device supports the desired state */
1071 if ((state == PCI_D1 && !dev->d1_support)
1072 || (state == PCI_D2 && !dev->d2_support))
1075 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1076 if (pmcsr == (u16) ~0) {
1077 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1078 pci_power_name(dev->current_state),
1079 pci_power_name(state));
1084 * If we're (effectively) in D3, force entire word to 0.
1085 * This doesn't affect PME_Status, disables PME_En, and
1086 * sets PowerState to 0.
1088 switch (dev->current_state) {
1092 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1097 case PCI_UNKNOWN: /* Boot-up */
1098 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1099 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1100 need_restore = true;
1101 fallthrough; /* force to D0 */
1107 /* Enter specified state */
1108 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1111 * Mandatory power management transition delays; see PCI PM 1.1
1114 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1115 pci_dev_d3_sleep(dev);
1116 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1117 udelay(PCI_PM_D2_DELAY);
1119 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1120 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1121 if (dev->current_state != state)
1122 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1123 pci_power_name(dev->current_state),
1124 pci_power_name(state));
1127 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1128 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1129 * from D3hot to D0 _may_ perform an internal reset, thereby
1130 * going to "D0 Uninitialized" rather than "D0 Initialized".
1131 * For example, at least some versions of the 3c905B and the
1132 * 3c556B exhibit this behaviour.
1134 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1135 * devices in a D3hot state at boot. Consequently, we need to
1136 * restore at least the BARs so that the device will be
1137 * accessible to its driver.
1140 pci_restore_bars(dev);
1143 pcie_aspm_pm_state_change(dev->bus->self);
1149 * pci_update_current_state - Read power state of given device and cache it
1150 * @dev: PCI device to handle.
1151 * @state: State to cache in case the device doesn't have the PM capability
1153 * The power state is read from the PMCSR register, which however is
1154 * inaccessible in D3cold. The platform firmware is therefore queried first
1155 * to detect accessibility of the register. In case the platform firmware
1156 * reports an incorrect state or the device isn't power manageable by the
1157 * platform at all, we try to detect D3cold by testing accessibility of the
1158 * vendor ID in config space.
1160 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1162 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1163 !pci_device_is_present(dev)) {
1164 dev->current_state = PCI_D3cold;
1165 } else if (dev->pm_cap) {
1168 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1169 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1171 dev->current_state = state;
1176 * pci_refresh_power_state - Refresh the given device's power state data
1177 * @dev: Target PCI device.
1179 * Ask the platform to refresh the devices power state information and invoke
1180 * pci_update_current_state() to update its current PCI power state.
1182 void pci_refresh_power_state(struct pci_dev *dev)
1184 if (platform_pci_power_manageable(dev))
1185 platform_pci_refresh_power_state(dev);
1187 pci_update_current_state(dev, dev->current_state);
1191 * pci_platform_power_transition - Use platform to change device power state
1192 * @dev: PCI device to handle.
1193 * @state: State to put the device into.
1195 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1199 if (platform_pci_power_manageable(dev)) {
1200 error = platform_pci_set_power_state(dev, state);
1202 pci_update_current_state(dev, state);
1206 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1207 dev->current_state = PCI_D0;
1211 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1213 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1215 pm_request_resume(&pci_dev->dev);
1220 * pci_resume_bus - Walk given bus and runtime resume devices on it
1221 * @bus: Top bus of the subtree to walk.
1223 void pci_resume_bus(struct pci_bus *bus)
1226 pci_walk_bus(bus, pci_resume_one, NULL);
1229 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1235 * After reset, the device should not silently discard config
1236 * requests, but it may still indicate that it needs more time by
1237 * responding to them with CRS completions. The Root Port will
1238 * generally synthesize ~0 data to complete the read (except when
1239 * CRS SV is enabled and the read was for the Vendor ID; in that
1240 * case it synthesizes 0x0001 data).
1242 * Wait for the device to return a non-CRS completion. Read the
1243 * Command register instead of Vendor ID so we don't have to
1244 * contend with the CRS SV value.
1246 pci_read_config_dword(dev, PCI_COMMAND, &id);
1248 if (delay > timeout) {
1249 pci_warn(dev, "not ready %dms after %s; giving up\n",
1250 delay - 1, reset_type);
1255 pci_info(dev, "not ready %dms after %s; waiting\n",
1256 delay - 1, reset_type);
1260 pci_read_config_dword(dev, PCI_COMMAND, &id);
1264 pci_info(dev, "ready %dms after %s\n", delay - 1,
1271 * pci_power_up - Put the given device into D0
1272 * @dev: PCI device to power up
1274 int pci_power_up(struct pci_dev *dev)
1276 pci_platform_power_transition(dev, PCI_D0);
1279 * Mandatory power management transition delays are handled in
1280 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1281 * corresponding bridge.
1283 if (dev->runtime_d3cold) {
1285 * When powering on a bridge from D3cold, the whole hierarchy
1286 * may be powered on into D0uninitialized state, resume them to
1287 * give them a chance to suspend again
1289 pci_resume_bus(dev->subordinate);
1292 return pci_raw_set_power_state(dev, PCI_D0);
1296 * __pci_dev_set_current_state - Set current state of a PCI device
1297 * @dev: Device to handle
1298 * @data: pointer to state to be set
1300 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1302 pci_power_t state = *(pci_power_t *)data;
1304 dev->current_state = state;
1309 * pci_bus_set_current_state - Walk given bus and set current state of devices
1310 * @bus: Top bus of the subtree to walk.
1311 * @state: state to be set
1313 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1316 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1320 * pci_set_power_state - Set the power state of a PCI device
1321 * @dev: PCI device to handle.
1322 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1324 * Transition a device to a new power state, using the platform firmware and/or
1325 * the device's PCI PM registers.
1328 * -EINVAL if the requested state is invalid.
1329 * -EIO if device does not support PCI PM or its PM capabilities register has a
1330 * wrong version, or device doesn't support the requested state.
1331 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1332 * 0 if device already is in the requested state.
1333 * 0 if the transition is to D3 but D3 is not supported.
1334 * 0 if device's power state has been successfully changed.
1336 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1340 /* Bound the state we're entering */
1341 if (state > PCI_D3cold)
1343 else if (state < PCI_D0)
1345 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1348 * If the device or the parent bridge do not support PCI
1349 * PM, ignore the request if we're doing anything other
1350 * than putting it into D0 (which would only happen on
1355 /* Check if we're already there */
1356 if (dev->current_state == state)
1359 if (state == PCI_D0)
1360 return pci_power_up(dev);
1363 * This device is quirked not to be put into D3, so don't put it in
1366 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1370 * To put device in D3cold, we put device into D3hot in native
1371 * way, then put device into D3cold with platform ops
1373 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1376 if (pci_platform_power_transition(dev, state))
1379 /* Powering off a bridge may power off the whole hierarchy */
1380 if (state == PCI_D3cold)
1381 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1385 EXPORT_SYMBOL(pci_set_power_state);
1388 * pci_choose_state - Choose the power state of a PCI device
1389 * @dev: PCI device to be suspended
1390 * @state: target sleep state for the whole system. This is the value
1391 * that is passed to suspend() function.
1393 * Returns PCI power state suitable for given device and given system
1396 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1403 ret = platform_pci_choose_state(dev);
1404 if (ret != PCI_POWER_ERROR)
1407 switch (state.event) {
1410 case PM_EVENT_FREEZE:
1411 case PM_EVENT_PRETHAW:
1412 /* REVISIT both freeze and pre-thaw "should" use D0 */
1413 case PM_EVENT_SUSPEND:
1414 case PM_EVENT_HIBERNATE:
1417 pci_info(dev, "unrecognized suspend event %d\n",
1423 EXPORT_SYMBOL(pci_choose_state);
1425 #define PCI_EXP_SAVE_REGS 7
1427 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1428 u16 cap, bool extended)
1430 struct pci_cap_saved_state *tmp;
1432 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1433 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1439 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1441 return _pci_find_saved_cap(dev, cap, false);
1444 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1446 return _pci_find_saved_cap(dev, cap, true);
1449 static int pci_save_pcie_state(struct pci_dev *dev)
1452 struct pci_cap_saved_state *save_state;
1455 if (!pci_is_pcie(dev))
1458 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1460 pci_err(dev, "buffer not found in %s\n", __func__);
1464 cap = (u16 *)&save_state->cap.data[0];
1465 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1466 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1467 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1468 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1469 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1470 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1471 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1476 static void pci_restore_pcie_state(struct pci_dev *dev)
1479 struct pci_cap_saved_state *save_state;
1482 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1486 cap = (u16 *)&save_state->cap.data[0];
1487 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1488 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1489 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1490 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1491 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1492 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1493 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1496 static int pci_save_pcix_state(struct pci_dev *dev)
1499 struct pci_cap_saved_state *save_state;
1501 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1505 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1507 pci_err(dev, "buffer not found in %s\n", __func__);
1511 pci_read_config_word(dev, pos + PCI_X_CMD,
1512 (u16 *)save_state->cap.data);
1517 static void pci_restore_pcix_state(struct pci_dev *dev)
1520 struct pci_cap_saved_state *save_state;
1523 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1524 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1525 if (!save_state || !pos)
1527 cap = (u16 *)&save_state->cap.data[0];
1529 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1532 static void pci_save_ltr_state(struct pci_dev *dev)
1535 struct pci_cap_saved_state *save_state;
1538 if (!pci_is_pcie(dev))
1541 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1545 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1547 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1551 cap = (u16 *)&save_state->cap.data[0];
1552 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1553 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1556 static void pci_restore_ltr_state(struct pci_dev *dev)
1558 struct pci_cap_saved_state *save_state;
1562 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1563 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1564 if (!save_state || !ltr)
1567 cap = (u16 *)&save_state->cap.data[0];
1568 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1569 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1573 * pci_save_state - save the PCI configuration space of a device before
1575 * @dev: PCI device that we're dealing with
1577 int pci_save_state(struct pci_dev *dev)
1580 /* XXX: 100% dword access ok here? */
1581 for (i = 0; i < 16; i++) {
1582 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1583 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1584 i * 4, dev->saved_config_space[i]);
1586 dev->state_saved = true;
1588 i = pci_save_pcie_state(dev);
1592 i = pci_save_pcix_state(dev);
1596 pci_save_ltr_state(dev);
1597 pci_save_dpc_state(dev);
1598 pci_save_aer_state(dev);
1599 pci_save_ptm_state(dev);
1600 return pci_save_vc_state(dev);
1602 EXPORT_SYMBOL(pci_save_state);
1604 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1605 u32 saved_val, int retry, bool force)
1609 pci_read_config_dword(pdev, offset, &val);
1610 if (!force && val == saved_val)
1614 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1615 offset, val, saved_val);
1616 pci_write_config_dword(pdev, offset, saved_val);
1620 pci_read_config_dword(pdev, offset, &val);
1621 if (val == saved_val)
1628 static void pci_restore_config_space_range(struct pci_dev *pdev,
1629 int start, int end, int retry,
1634 for (index = end; index >= start; index--)
1635 pci_restore_config_dword(pdev, 4 * index,
1636 pdev->saved_config_space[index],
1640 static void pci_restore_config_space(struct pci_dev *pdev)
1642 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1643 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1644 /* Restore BARs before the command register. */
1645 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1646 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1647 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1648 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1651 * Force rewriting of prefetch registers to avoid S3 resume
1652 * issues on Intel PCI bridges that occur when these
1653 * registers are not explicitly written.
1655 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1656 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1658 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1662 static void pci_restore_rebar_state(struct pci_dev *pdev)
1664 unsigned int pos, nbars, i;
1667 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1671 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1672 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1673 PCI_REBAR_CTRL_NBAR_SHIFT;
1675 for (i = 0; i < nbars; i++, pos += 8) {
1676 struct resource *res;
1679 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1680 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1681 res = pdev->resource + bar_idx;
1682 size = pci_rebar_bytes_to_size(resource_size(res));
1683 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1684 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1685 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1690 * pci_restore_state - Restore the saved state of a PCI device
1691 * @dev: PCI device that we're dealing with
1693 void pci_restore_state(struct pci_dev *dev)
1695 if (!dev->state_saved)
1699 * Restore max latencies (in the LTR capability) before enabling
1700 * LTR itself (in the PCIe capability).
1702 pci_restore_ltr_state(dev);
1704 pci_restore_pcie_state(dev);
1705 pci_restore_pasid_state(dev);
1706 pci_restore_pri_state(dev);
1707 pci_restore_ats_state(dev);
1708 pci_restore_vc_state(dev);
1709 pci_restore_rebar_state(dev);
1710 pci_restore_dpc_state(dev);
1711 pci_restore_ptm_state(dev);
1713 pci_aer_clear_status(dev);
1714 pci_restore_aer_state(dev);
1716 pci_restore_config_space(dev);
1718 pci_restore_pcix_state(dev);
1719 pci_restore_msi_state(dev);
1721 /* Restore ACS and IOV configuration state */
1722 pci_enable_acs(dev);
1723 pci_restore_iov_state(dev);
1725 dev->state_saved = false;
1727 EXPORT_SYMBOL(pci_restore_state);
1729 struct pci_saved_state {
1730 u32 config_space[16];
1731 struct pci_cap_saved_data cap[];
1735 * pci_store_saved_state - Allocate and return an opaque struct containing
1736 * the device saved state.
1737 * @dev: PCI device that we're dealing with
1739 * Return NULL if no state or error.
1741 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1743 struct pci_saved_state *state;
1744 struct pci_cap_saved_state *tmp;
1745 struct pci_cap_saved_data *cap;
1748 if (!dev->state_saved)
1751 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1753 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1754 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1756 state = kzalloc(size, GFP_KERNEL);
1760 memcpy(state->config_space, dev->saved_config_space,
1761 sizeof(state->config_space));
1764 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1765 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1766 memcpy(cap, &tmp->cap, len);
1767 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1769 /* Empty cap_save terminates list */
1773 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1776 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1777 * @dev: PCI device that we're dealing with
1778 * @state: Saved state returned from pci_store_saved_state()
1780 int pci_load_saved_state(struct pci_dev *dev,
1781 struct pci_saved_state *state)
1783 struct pci_cap_saved_data *cap;
1785 dev->state_saved = false;
1790 memcpy(dev->saved_config_space, state->config_space,
1791 sizeof(state->config_space));
1795 struct pci_cap_saved_state *tmp;
1797 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1798 if (!tmp || tmp->cap.size != cap->size)
1801 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1802 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1803 sizeof(struct pci_cap_saved_data) + cap->size);
1806 dev->state_saved = true;
1809 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1812 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1813 * and free the memory allocated for it.
1814 * @dev: PCI device that we're dealing with
1815 * @state: Pointer to saved state returned from pci_store_saved_state()
1817 int pci_load_and_free_saved_state(struct pci_dev *dev,
1818 struct pci_saved_state **state)
1820 int ret = pci_load_saved_state(dev, *state);
1825 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1827 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1829 return pci_enable_resources(dev, bars);
1832 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1835 struct pci_dev *bridge;
1839 err = pci_set_power_state(dev, PCI_D0);
1840 if (err < 0 && err != -EIO)
1843 bridge = pci_upstream_bridge(dev);
1845 pcie_aspm_powersave_config_link(bridge);
1847 err = pcibios_enable_device(dev, bars);
1850 pci_fixup_device(pci_fixup_enable, dev);
1852 if (dev->msi_enabled || dev->msix_enabled)
1855 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1857 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1858 if (cmd & PCI_COMMAND_INTX_DISABLE)
1859 pci_write_config_word(dev, PCI_COMMAND,
1860 cmd & ~PCI_COMMAND_INTX_DISABLE);
1867 * pci_reenable_device - Resume abandoned device
1868 * @dev: PCI device to be resumed
1870 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1871 * to be called by normal code, write proper resume handler and use it instead.
1873 int pci_reenable_device(struct pci_dev *dev)
1875 if (pci_is_enabled(dev))
1876 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1879 EXPORT_SYMBOL(pci_reenable_device);
1881 static void pci_enable_bridge(struct pci_dev *dev)
1883 struct pci_dev *bridge;
1886 bridge = pci_upstream_bridge(dev);
1888 pci_enable_bridge(bridge);
1890 if (pci_is_enabled(dev)) {
1891 if (!dev->is_busmaster)
1892 pci_set_master(dev);
1896 retval = pci_enable_device(dev);
1898 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1900 pci_set_master(dev);
1903 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1905 struct pci_dev *bridge;
1910 * Power state could be unknown at this point, either due to a fresh
1911 * boot or a device removal call. So get the current power state
1912 * so that things like MSI message writing will behave as expected
1913 * (e.g. if the device really is in D0 at enable time).
1917 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1918 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1921 if (atomic_inc_return(&dev->enable_cnt) > 1)
1922 return 0; /* already enabled */
1924 bridge = pci_upstream_bridge(dev);
1926 pci_enable_bridge(bridge);
1928 /* only skip sriov related */
1929 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1930 if (dev->resource[i].flags & flags)
1932 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1933 if (dev->resource[i].flags & flags)
1936 err = do_pci_enable_device(dev, bars);
1938 atomic_dec(&dev->enable_cnt);
1943 * pci_enable_device_io - Initialize a device for use with IO space
1944 * @dev: PCI device to be initialized
1946 * Initialize device before it's used by a driver. Ask low-level code
1947 * to enable I/O resources. Wake up the device if it was suspended.
1948 * Beware, this function can fail.
1950 int pci_enable_device_io(struct pci_dev *dev)
1952 return pci_enable_device_flags(dev, IORESOURCE_IO);
1954 EXPORT_SYMBOL(pci_enable_device_io);
1957 * pci_enable_device_mem - Initialize a device for use with Memory space
1958 * @dev: PCI device to be initialized
1960 * Initialize device before it's used by a driver. Ask low-level code
1961 * to enable Memory resources. Wake up the device if it was suspended.
1962 * Beware, this function can fail.
1964 int pci_enable_device_mem(struct pci_dev *dev)
1966 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1968 EXPORT_SYMBOL(pci_enable_device_mem);
1971 * pci_enable_device - Initialize device before it's used by a driver.
1972 * @dev: PCI device to be initialized
1974 * Initialize device before it's used by a driver. Ask low-level code
1975 * to enable I/O and memory. Wake up the device if it was suspended.
1976 * Beware, this function can fail.
1978 * Note we don't actually enable the device many times if we call
1979 * this function repeatedly (we just increment the count).
1981 int pci_enable_device(struct pci_dev *dev)
1983 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1985 EXPORT_SYMBOL(pci_enable_device);
1988 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1989 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1990 * there's no need to track it separately. pci_devres is initialized
1991 * when a device is enabled using managed PCI device enable interface.
1994 unsigned int enabled:1;
1995 unsigned int pinned:1;
1996 unsigned int orig_intx:1;
1997 unsigned int restore_intx:1;
2002 static void pcim_release(struct device *gendev, void *res)
2004 struct pci_dev *dev = to_pci_dev(gendev);
2005 struct pci_devres *this = res;
2008 if (dev->msi_enabled)
2009 pci_disable_msi(dev);
2010 if (dev->msix_enabled)
2011 pci_disable_msix(dev);
2013 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2014 if (this->region_mask & (1 << i))
2015 pci_release_region(dev, i);
2020 if (this->restore_intx)
2021 pci_intx(dev, this->orig_intx);
2023 if (this->enabled && !this->pinned)
2024 pci_disable_device(dev);
2027 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2029 struct pci_devres *dr, *new_dr;
2031 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2035 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2038 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2041 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2043 if (pci_is_managed(pdev))
2044 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2049 * pcim_enable_device - Managed pci_enable_device()
2050 * @pdev: PCI device to be initialized
2052 * Managed pci_enable_device().
2054 int pcim_enable_device(struct pci_dev *pdev)
2056 struct pci_devres *dr;
2059 dr = get_pci_dr(pdev);
2065 rc = pci_enable_device(pdev);
2067 pdev->is_managed = 1;
2072 EXPORT_SYMBOL(pcim_enable_device);
2075 * pcim_pin_device - Pin managed PCI device
2076 * @pdev: PCI device to pin
2078 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2079 * driver detach. @pdev must have been enabled with
2080 * pcim_enable_device().
2082 void pcim_pin_device(struct pci_dev *pdev)
2084 struct pci_devres *dr;
2086 dr = find_pci_dr(pdev);
2087 WARN_ON(!dr || !dr->enabled);
2091 EXPORT_SYMBOL(pcim_pin_device);
2094 * pcibios_add_device - provide arch specific hooks when adding device dev
2095 * @dev: the PCI device being added
2097 * Permits the platform to provide architecture specific functionality when
2098 * devices are added. This is the default implementation. Architecture
2099 * implementations can override this.
2101 int __weak pcibios_add_device(struct pci_dev *dev)
2107 * pcibios_release_device - provide arch specific hooks when releasing
2109 * @dev: the PCI device being released
2111 * Permits the platform to provide architecture specific functionality when
2112 * devices are released. This is the default implementation. Architecture
2113 * implementations can override this.
2115 void __weak pcibios_release_device(struct pci_dev *dev) {}
2118 * pcibios_disable_device - disable arch specific PCI resources for device dev
2119 * @dev: the PCI device to disable
2121 * Disables architecture specific PCI resources for the device. This
2122 * is the default implementation. Architecture implementations can
2125 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2128 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2129 * @irq: ISA IRQ to penalize
2130 * @active: IRQ active or not
2132 * Permits the platform to provide architecture-specific functionality when
2133 * penalizing ISA IRQs. This is the default implementation. Architecture
2134 * implementations can override this.
2136 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2138 static void do_pci_disable_device(struct pci_dev *dev)
2142 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2143 if (pci_command & PCI_COMMAND_MASTER) {
2144 pci_command &= ~PCI_COMMAND_MASTER;
2145 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2148 pcibios_disable_device(dev);
2152 * pci_disable_enabled_device - Disable device without updating enable_cnt
2153 * @dev: PCI device to disable
2155 * NOTE: This function is a backend of PCI power management routines and is
2156 * not supposed to be called drivers.
2158 void pci_disable_enabled_device(struct pci_dev *dev)
2160 if (pci_is_enabled(dev))
2161 do_pci_disable_device(dev);
2165 * pci_disable_device - Disable PCI device after use
2166 * @dev: PCI device to be disabled
2168 * Signal to the system that the PCI device is not in use by the system
2169 * anymore. This only involves disabling PCI bus-mastering, if active.
2171 * Note we don't actually disable the device until all callers of
2172 * pci_enable_device() have called pci_disable_device().
2174 void pci_disable_device(struct pci_dev *dev)
2176 struct pci_devres *dr;
2178 dr = find_pci_dr(dev);
2182 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2183 "disabling already-disabled device");
2185 if (atomic_dec_return(&dev->enable_cnt) != 0)
2188 do_pci_disable_device(dev);
2190 dev->is_busmaster = 0;
2192 EXPORT_SYMBOL(pci_disable_device);
2195 * pcibios_set_pcie_reset_state - set reset state for device dev
2196 * @dev: the PCIe device reset
2197 * @state: Reset state to enter into
2199 * Set the PCIe reset state for the device. This is the default
2200 * implementation. Architecture implementations can override this.
2202 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2203 enum pcie_reset_state state)
2209 * pci_set_pcie_reset_state - set reset state for device dev
2210 * @dev: the PCIe device reset
2211 * @state: Reset state to enter into
2213 * Sets the PCI reset state for the device.
2215 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2217 return pcibios_set_pcie_reset_state(dev, state);
2219 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2221 void pcie_clear_device_status(struct pci_dev *dev)
2225 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2226 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2230 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2231 * @dev: PCIe root port or event collector.
2233 void pcie_clear_root_pme_status(struct pci_dev *dev)
2235 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2239 * pci_check_pme_status - Check if given device has generated PME.
2240 * @dev: Device to check.
2242 * Check the PME status of the device and if set, clear it and clear PME enable
2243 * (if set). Return 'true' if PME status and PME enable were both set or
2244 * 'false' otherwise.
2246 bool pci_check_pme_status(struct pci_dev *dev)
2255 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2256 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2257 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2260 /* Clear PME status. */
2261 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2262 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2263 /* Disable PME to avoid interrupt flood. */
2264 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2268 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2274 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2275 * @dev: Device to handle.
2276 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2278 * Check if @dev has generated PME and queue a resume request for it in that
2281 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2283 if (pme_poll_reset && dev->pme_poll)
2284 dev->pme_poll = false;
2286 if (pci_check_pme_status(dev)) {
2287 pci_wakeup_event(dev);
2288 pm_request_resume(&dev->dev);
2294 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2295 * @bus: Top bus of the subtree to walk.
2297 void pci_pme_wakeup_bus(struct pci_bus *bus)
2300 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2305 * pci_pme_capable - check the capability of PCI device to generate PME#
2306 * @dev: PCI device to handle.
2307 * @state: PCI state from which device will issue PME#.
2309 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2314 return !!(dev->pme_support & (1 << state));
2316 EXPORT_SYMBOL(pci_pme_capable);
2318 static void pci_pme_list_scan(struct work_struct *work)
2320 struct pci_pme_device *pme_dev, *n;
2322 mutex_lock(&pci_pme_list_mutex);
2323 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2324 if (pme_dev->dev->pme_poll) {
2325 struct pci_dev *bridge;
2327 bridge = pme_dev->dev->bus->self;
2329 * If bridge is in low power state, the
2330 * configuration space of subordinate devices
2331 * may be not accessible
2333 if (bridge && bridge->current_state != PCI_D0)
2336 * If the device is in D3cold it should not be
2339 if (pme_dev->dev->current_state == PCI_D3cold)
2342 pci_pme_wakeup(pme_dev->dev, NULL);
2344 list_del(&pme_dev->list);
2348 if (!list_empty(&pci_pme_list))
2349 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2350 msecs_to_jiffies(PME_TIMEOUT));
2351 mutex_unlock(&pci_pme_list_mutex);
2354 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2358 if (!dev->pme_support)
2361 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2362 /* Clear PME_Status by writing 1 to it and enable PME# */
2363 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2365 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2367 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2371 * pci_pme_restore - Restore PME configuration after config space restore.
2372 * @dev: PCI device to update.
2374 void pci_pme_restore(struct pci_dev *dev)
2378 if (!dev->pme_support)
2381 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2382 if (dev->wakeup_prepared) {
2383 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2384 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2386 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2387 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2389 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2393 * pci_pme_active - enable or disable PCI device's PME# function
2394 * @dev: PCI device to handle.
2395 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2397 * The caller must verify that the device is capable of generating PME# before
2398 * calling this function with @enable equal to 'true'.
2400 void pci_pme_active(struct pci_dev *dev, bool enable)
2402 __pci_pme_active(dev, enable);
2405 * PCI (as opposed to PCIe) PME requires that the device have
2406 * its PME# line hooked up correctly. Not all hardware vendors
2407 * do this, so the PME never gets delivered and the device
2408 * remains asleep. The easiest way around this is to
2409 * periodically walk the list of suspended devices and check
2410 * whether any have their PME flag set. The assumption is that
2411 * we'll wake up often enough anyway that this won't be a huge
2412 * hit, and the power savings from the devices will still be a
2415 * Although PCIe uses in-band PME message instead of PME# line
2416 * to report PME, PME does not work for some PCIe devices in
2417 * reality. For example, there are devices that set their PME
2418 * status bits, but don't really bother to send a PME message;
2419 * there are PCI Express Root Ports that don't bother to
2420 * trigger interrupts when they receive PME messages from the
2421 * devices below. So PME poll is used for PCIe devices too.
2424 if (dev->pme_poll) {
2425 struct pci_pme_device *pme_dev;
2427 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2430 pci_warn(dev, "can't enable PME#\n");
2434 mutex_lock(&pci_pme_list_mutex);
2435 list_add(&pme_dev->list, &pci_pme_list);
2436 if (list_is_singular(&pci_pme_list))
2437 queue_delayed_work(system_freezable_wq,
2439 msecs_to_jiffies(PME_TIMEOUT));
2440 mutex_unlock(&pci_pme_list_mutex);
2442 mutex_lock(&pci_pme_list_mutex);
2443 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2444 if (pme_dev->dev == dev) {
2445 list_del(&pme_dev->list);
2450 mutex_unlock(&pci_pme_list_mutex);
2454 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2456 EXPORT_SYMBOL(pci_pme_active);
2459 * __pci_enable_wake - enable PCI device as wakeup event source
2460 * @dev: PCI device affected
2461 * @state: PCI state from which device will issue wakeup events
2462 * @enable: True to enable event generation; false to disable
2464 * This enables the device as a wakeup event source, or disables it.
2465 * When such events involves platform-specific hooks, those hooks are
2466 * called automatically by this routine.
2468 * Devices with legacy power management (no standard PCI PM capabilities)
2469 * always require such platform hooks.
2472 * 0 is returned on success
2473 * -EINVAL is returned if device is not supposed to wake up the system
2474 * Error code depending on the platform is returned if both the platform and
2475 * the native mechanism fail to enable the generation of wake-up events
2477 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2482 * Bridges that are not power-manageable directly only signal
2483 * wakeup on behalf of subordinate devices which is set up
2484 * elsewhere, so skip them. However, bridges that are
2485 * power-manageable may signal wakeup for themselves (for example,
2486 * on a hotplug event) and they need to be covered here.
2488 if (!pci_power_manageable(dev))
2491 /* Don't do the same thing twice in a row for one device. */
2492 if (!!enable == !!dev->wakeup_prepared)
2496 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2497 * Anderson we should be doing PME# wake enable followed by ACPI wake
2498 * enable. To disable wake-up we call the platform first, for symmetry.
2504 if (pci_pme_capable(dev, state))
2505 pci_pme_active(dev, true);
2508 error = platform_pci_set_wakeup(dev, true);
2512 dev->wakeup_prepared = true;
2514 platform_pci_set_wakeup(dev, false);
2515 pci_pme_active(dev, false);
2516 dev->wakeup_prepared = false;
2523 * pci_enable_wake - change wakeup settings for a PCI device
2524 * @pci_dev: Target device
2525 * @state: PCI state from which device will issue wakeup events
2526 * @enable: Whether or not to enable event generation
2528 * If @enable is set, check device_may_wakeup() for the device before calling
2529 * __pci_enable_wake() for it.
2531 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2533 if (enable && !device_may_wakeup(&pci_dev->dev))
2536 return __pci_enable_wake(pci_dev, state, enable);
2538 EXPORT_SYMBOL(pci_enable_wake);
2541 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2542 * @dev: PCI device to prepare
2543 * @enable: True to enable wake-up event generation; false to disable
2545 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2546 * and this function allows them to set that up cleanly - pci_enable_wake()
2547 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2548 * ordering constraints.
2550 * This function only returns error code if the device is not allowed to wake
2551 * up the system from sleep or it is not capable of generating PME# from both
2552 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2554 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2556 return pci_pme_capable(dev, PCI_D3cold) ?
2557 pci_enable_wake(dev, PCI_D3cold, enable) :
2558 pci_enable_wake(dev, PCI_D3hot, enable);
2560 EXPORT_SYMBOL(pci_wake_from_d3);
2563 * pci_target_state - find an appropriate low power state for a given PCI dev
2565 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2567 * Use underlying platform code to find a supported low power state for @dev.
2568 * If the platform can't manage @dev, return the deepest state from which it
2569 * can generate wake events, based on any available PME info.
2571 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2573 pci_power_t target_state = PCI_D3hot;
2575 if (platform_pci_power_manageable(dev)) {
2577 * Call the platform to find the target state for the device.
2579 pci_power_t state = platform_pci_choose_state(dev);
2582 case PCI_POWER_ERROR:
2587 if (pci_no_d1d2(dev))
2591 target_state = state;
2594 return target_state;
2598 target_state = PCI_D0;
2601 * If the device is in D3cold even though it's not power-manageable by
2602 * the platform, it may have been powered down by non-standard means.
2603 * Best to let it slumber.
2605 if (dev->current_state == PCI_D3cold)
2606 target_state = PCI_D3cold;
2610 * Find the deepest state from which the device can generate
2613 if (dev->pme_support) {
2615 && !(dev->pme_support & (1 << target_state)))
2620 return target_state;
2624 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2625 * into a sleep state
2626 * @dev: Device to handle.
2628 * Choose the power state appropriate for the device depending on whether
2629 * it can wake up the system and/or is power manageable by the platform
2630 * (PCI_D3hot is the default) and put the device into that state.
2632 int pci_prepare_to_sleep(struct pci_dev *dev)
2634 bool wakeup = device_may_wakeup(&dev->dev);
2635 pci_power_t target_state = pci_target_state(dev, wakeup);
2638 if (target_state == PCI_POWER_ERROR)
2642 * There are systems (for example, Intel mobile chips since Coffee
2643 * Lake) where the power drawn while suspended can be significantly
2644 * reduced by disabling PTM on PCIe root ports as this allows the
2645 * port to enter a lower-power PM state and the SoC to reach a
2646 * lower-power idle state as a whole.
2648 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2649 pci_disable_ptm(dev);
2651 pci_enable_wake(dev, target_state, wakeup);
2653 error = pci_set_power_state(dev, target_state);
2656 pci_enable_wake(dev, target_state, false);
2657 pci_restore_ptm_state(dev);
2662 EXPORT_SYMBOL(pci_prepare_to_sleep);
2665 * pci_back_from_sleep - turn PCI device on during system-wide transition
2666 * into working state
2667 * @dev: Device to handle.
2669 * Disable device's system wake-up capability and put it into D0.
2671 int pci_back_from_sleep(struct pci_dev *dev)
2673 pci_enable_wake(dev, PCI_D0, false);
2674 return pci_set_power_state(dev, PCI_D0);
2676 EXPORT_SYMBOL(pci_back_from_sleep);
2679 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2680 * @dev: PCI device being suspended.
2682 * Prepare @dev to generate wake-up events at run time and put it into a low
2685 int pci_finish_runtime_suspend(struct pci_dev *dev)
2687 pci_power_t target_state;
2690 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2691 if (target_state == PCI_POWER_ERROR)
2694 dev->runtime_d3cold = target_state == PCI_D3cold;
2697 * There are systems (for example, Intel mobile chips since Coffee
2698 * Lake) where the power drawn while suspended can be significantly
2699 * reduced by disabling PTM on PCIe root ports as this allows the
2700 * port to enter a lower-power PM state and the SoC to reach a
2701 * lower-power idle state as a whole.
2703 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2704 pci_disable_ptm(dev);
2706 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2708 error = pci_set_power_state(dev, target_state);
2711 pci_enable_wake(dev, target_state, false);
2712 pci_restore_ptm_state(dev);
2713 dev->runtime_d3cold = false;
2720 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2721 * @dev: Device to check.
2723 * Return true if the device itself is capable of generating wake-up events
2724 * (through the platform or using the native PCIe PME) or if the device supports
2725 * PME and one of its upstream bridges can generate wake-up events.
2727 bool pci_dev_run_wake(struct pci_dev *dev)
2729 struct pci_bus *bus = dev->bus;
2731 if (!dev->pme_support)
2734 /* PME-capable in principle, but not from the target power state */
2735 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2738 if (device_can_wakeup(&dev->dev))
2741 while (bus->parent) {
2742 struct pci_dev *bridge = bus->self;
2744 if (device_can_wakeup(&bridge->dev))
2750 /* We have reached the root bus. */
2752 return device_can_wakeup(bus->bridge);
2756 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2759 * pci_dev_need_resume - Check if it is necessary to resume the device.
2760 * @pci_dev: Device to check.
2762 * Return 'true' if the device is not runtime-suspended or it has to be
2763 * reconfigured due to wakeup settings difference between system and runtime
2764 * suspend, or the current power state of it is not suitable for the upcoming
2765 * (system-wide) transition.
2767 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2769 struct device *dev = &pci_dev->dev;
2770 pci_power_t target_state;
2772 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2775 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2778 * If the earlier platform check has not triggered, D3cold is just power
2779 * removal on top of D3hot, so no need to resume the device in that
2782 return target_state != pci_dev->current_state &&
2783 target_state != PCI_D3cold &&
2784 pci_dev->current_state != PCI_D3hot;
2788 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2789 * @pci_dev: Device to check.
2791 * If the device is suspended and it is not configured for system wakeup,
2792 * disable PME for it to prevent it from waking up the system unnecessarily.
2794 * Note that if the device's power state is D3cold and the platform check in
2795 * pci_dev_need_resume() has not triggered, the device's configuration need not
2798 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2800 struct device *dev = &pci_dev->dev;
2802 spin_lock_irq(&dev->power.lock);
2804 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2805 pci_dev->current_state < PCI_D3cold)
2806 __pci_pme_active(pci_dev, false);
2808 spin_unlock_irq(&dev->power.lock);
2812 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2813 * @pci_dev: Device to handle.
2815 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2816 * it might have been disabled during the prepare phase of system suspend if
2817 * the device was not configured for system wakeup.
2819 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2821 struct device *dev = &pci_dev->dev;
2823 if (!pci_dev_run_wake(pci_dev))
2826 spin_lock_irq(&dev->power.lock);
2828 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2829 __pci_pme_active(pci_dev, true);
2831 spin_unlock_irq(&dev->power.lock);
2834 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2836 struct device *dev = &pdev->dev;
2837 struct device *parent = dev->parent;
2840 pm_runtime_get_sync(parent);
2841 pm_runtime_get_noresume(dev);
2843 * pdev->current_state is set to PCI_D3cold during suspending,
2844 * so wait until suspending completes
2846 pm_runtime_barrier(dev);
2848 * Only need to resume devices in D3cold, because config
2849 * registers are still accessible for devices suspended but
2852 if (pdev->current_state == PCI_D3cold)
2853 pm_runtime_resume(dev);
2856 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2858 struct device *dev = &pdev->dev;
2859 struct device *parent = dev->parent;
2861 pm_runtime_put(dev);
2863 pm_runtime_put_sync(parent);
2866 static const struct dmi_system_id bridge_d3_blacklist[] = {
2870 * Gigabyte X299 root port is not marked as hotplug capable
2871 * which allows Linux to power manage it. However, this
2872 * confuses the BIOS SMI handler so don't power manage root
2873 * ports on that system.
2875 .ident = "X299 DESIGNARE EX-CF",
2877 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2878 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2886 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2887 * @bridge: Bridge to check
2889 * This function checks if it is possible to move the bridge to D3.
2890 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2892 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2894 if (!pci_is_pcie(bridge))
2897 switch (pci_pcie_type(bridge)) {
2898 case PCI_EXP_TYPE_ROOT_PORT:
2899 case PCI_EXP_TYPE_UPSTREAM:
2900 case PCI_EXP_TYPE_DOWNSTREAM:
2901 if (pci_bridge_d3_disable)
2905 * Hotplug ports handled by firmware in System Management Mode
2906 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2908 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2911 if (pci_bridge_d3_force)
2914 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2915 if (bridge->is_thunderbolt)
2918 /* Platform might know better if the bridge supports D3 */
2919 if (platform_pci_bridge_d3(bridge))
2923 * Hotplug ports handled natively by the OS were not validated
2924 * by vendors for runtime D3 at least until 2018 because there
2925 * was no OS support.
2927 if (bridge->is_hotplug_bridge)
2930 if (dmi_check_system(bridge_d3_blacklist))
2934 * It should be safe to put PCIe ports from 2015 or newer
2937 if (dmi_get_bios_year() >= 2015)
2945 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2947 bool *d3cold_ok = data;
2949 if (/* The device needs to be allowed to go D3cold ... */
2950 dev->no_d3cold || !dev->d3cold_allowed ||
2952 /* ... and if it is wakeup capable to do so from D3cold. */
2953 (device_may_wakeup(&dev->dev) &&
2954 !pci_pme_capable(dev, PCI_D3cold)) ||
2956 /* If it is a bridge it must be allowed to go to D3. */
2957 !pci_power_manageable(dev))
2965 * pci_bridge_d3_update - Update bridge D3 capabilities
2966 * @dev: PCI device which is changed
2968 * Update upstream bridge PM capabilities accordingly depending on if the
2969 * device PM configuration was changed or the device is being removed. The
2970 * change is also propagated upstream.
2972 void pci_bridge_d3_update(struct pci_dev *dev)
2974 bool remove = !device_is_registered(&dev->dev);
2975 struct pci_dev *bridge;
2976 bool d3cold_ok = true;
2978 bridge = pci_upstream_bridge(dev);
2979 if (!bridge || !pci_bridge_d3_possible(bridge))
2983 * If D3 is currently allowed for the bridge, removing one of its
2984 * children won't change that.
2986 if (remove && bridge->bridge_d3)
2990 * If D3 is currently allowed for the bridge and a child is added or
2991 * changed, disallowance of D3 can only be caused by that child, so
2992 * we only need to check that single device, not any of its siblings.
2994 * If D3 is currently not allowed for the bridge, checking the device
2995 * first may allow us to skip checking its siblings.
2998 pci_dev_check_d3cold(dev, &d3cold_ok);
3001 * If D3 is currently not allowed for the bridge, this may be caused
3002 * either by the device being changed/removed or any of its siblings,
3003 * so we need to go through all children to find out if one of them
3004 * continues to block D3.
3006 if (d3cold_ok && !bridge->bridge_d3)
3007 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3010 if (bridge->bridge_d3 != d3cold_ok) {
3011 bridge->bridge_d3 = d3cold_ok;
3012 /* Propagate change to upstream bridges */
3013 pci_bridge_d3_update(bridge);
3018 * pci_d3cold_enable - Enable D3cold for device
3019 * @dev: PCI device to handle
3021 * This function can be used in drivers to enable D3cold from the device
3022 * they handle. It also updates upstream PCI bridge PM capabilities
3025 void pci_d3cold_enable(struct pci_dev *dev)
3027 if (dev->no_d3cold) {
3028 dev->no_d3cold = false;
3029 pci_bridge_d3_update(dev);
3032 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3035 * pci_d3cold_disable - Disable D3cold for device
3036 * @dev: PCI device to handle
3038 * This function can be used in drivers to disable D3cold from the device
3039 * they handle. It also updates upstream PCI bridge PM capabilities
3042 void pci_d3cold_disable(struct pci_dev *dev)
3044 if (!dev->no_d3cold) {
3045 dev->no_d3cold = true;
3046 pci_bridge_d3_update(dev);
3049 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3052 * pci_pm_init - Initialize PM functions of given PCI device
3053 * @dev: PCI device to handle.
3055 void pci_pm_init(struct pci_dev *dev)
3061 pm_runtime_forbid(&dev->dev);
3062 pm_runtime_set_active(&dev->dev);
3063 pm_runtime_enable(&dev->dev);
3064 device_enable_async_suspend(&dev->dev);
3065 dev->wakeup_prepared = false;
3068 dev->pme_support = 0;
3070 /* find PCI PM capability in list */
3071 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3074 /* Check device's ability to generate PME# */
3075 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3077 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3078 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3079 pmc & PCI_PM_CAP_VER_MASK);
3084 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3085 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3086 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3087 dev->d3cold_allowed = true;
3089 dev->d1_support = false;
3090 dev->d2_support = false;
3091 if (!pci_no_d1d2(dev)) {
3092 if (pmc & PCI_PM_CAP_D1)
3093 dev->d1_support = true;
3094 if (pmc & PCI_PM_CAP_D2)
3095 dev->d2_support = true;
3097 if (dev->d1_support || dev->d2_support)
3098 pci_info(dev, "supports%s%s\n",
3099 dev->d1_support ? " D1" : "",
3100 dev->d2_support ? " D2" : "");
3103 pmc &= PCI_PM_CAP_PME_MASK;
3105 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3106 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3107 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3108 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3109 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3110 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3111 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3112 dev->pme_poll = true;
3114 * Make device's PM flags reflect the wake-up capability, but
3115 * let the user space enable it to wake up the system as needed.
3117 device_set_wakeup_capable(&dev->dev, true);
3118 /* Disable the PME# generation functionality */
3119 pci_pme_active(dev, false);
3122 pci_read_config_word(dev, PCI_STATUS, &status);
3123 if (status & PCI_STATUS_IMM_READY)
3127 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3129 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3133 case PCI_EA_P_VF_MEM:
3134 flags |= IORESOURCE_MEM;
3136 case PCI_EA_P_MEM_PREFETCH:
3137 case PCI_EA_P_VF_MEM_PREFETCH:
3138 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3141 flags |= IORESOURCE_IO;
3150 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3153 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3154 return &dev->resource[bei];
3155 #ifdef CONFIG_PCI_IOV
3156 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3157 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3158 return &dev->resource[PCI_IOV_RESOURCES +
3159 bei - PCI_EA_BEI_VF_BAR0];
3161 else if (bei == PCI_EA_BEI_ROM)
3162 return &dev->resource[PCI_ROM_RESOURCE];
3167 /* Read an Enhanced Allocation (EA) entry */
3168 static int pci_ea_read(struct pci_dev *dev, int offset)
3170 struct resource *res;
3171 int ent_size, ent_offset = offset;
3172 resource_size_t start, end;
3173 unsigned long flags;
3174 u32 dw0, bei, base, max_offset;
3176 bool support_64 = (sizeof(resource_size_t) >= 8);
3178 pci_read_config_dword(dev, ent_offset, &dw0);
3181 /* Entry size field indicates DWORDs after 1st */
3182 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3184 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3187 bei = (dw0 & PCI_EA_BEI) >> 4;
3188 prop = (dw0 & PCI_EA_PP) >> 8;
3191 * If the Property is in the reserved range, try the Secondary
3194 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3195 prop = (dw0 & PCI_EA_SP) >> 16;
3196 if (prop > PCI_EA_P_BRIDGE_IO)
3199 res = pci_ea_get_resource(dev, bei, prop);
3201 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3205 flags = pci_ea_flags(dev, prop);
3207 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3212 pci_read_config_dword(dev, ent_offset, &base);
3213 start = (base & PCI_EA_FIELD_MASK);
3216 /* Read MaxOffset */
3217 pci_read_config_dword(dev, ent_offset, &max_offset);
3220 /* Read Base MSBs (if 64-bit entry) */
3221 if (base & PCI_EA_IS_64) {
3224 pci_read_config_dword(dev, ent_offset, &base_upper);
3227 flags |= IORESOURCE_MEM_64;
3229 /* entry starts above 32-bit boundary, can't use */
3230 if (!support_64 && base_upper)
3234 start |= ((u64)base_upper << 32);
3237 end = start + (max_offset | 0x03);
3239 /* Read MaxOffset MSBs (if 64-bit entry) */
3240 if (max_offset & PCI_EA_IS_64) {
3241 u32 max_offset_upper;
3243 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3246 flags |= IORESOURCE_MEM_64;
3248 /* entry too big, can't use */
3249 if (!support_64 && max_offset_upper)
3253 end += ((u64)max_offset_upper << 32);
3257 pci_err(dev, "EA Entry crosses address boundary\n");
3261 if (ent_size != ent_offset - offset) {
3262 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3263 ent_size, ent_offset - offset);
3267 res->name = pci_name(dev);
3272 if (bei <= PCI_EA_BEI_BAR5)
3273 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3275 else if (bei == PCI_EA_BEI_ROM)
3276 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3278 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3279 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3280 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3282 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3286 return offset + ent_size;
3289 /* Enhanced Allocation Initialization */
3290 void pci_ea_init(struct pci_dev *dev)
3297 /* find PCI EA capability in list */
3298 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3302 /* determine the number of entries */
3303 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3305 num_ent &= PCI_EA_NUM_ENT_MASK;
3307 offset = ea + PCI_EA_FIRST_ENT;
3309 /* Skip DWORD 2 for type 1 functions */
3310 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3313 /* parse each EA entry */
3314 for (i = 0; i < num_ent; ++i)
3315 offset = pci_ea_read(dev, offset);
3318 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3319 struct pci_cap_saved_state *new_cap)
3321 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3325 * _pci_add_cap_save_buffer - allocate buffer for saving given
3326 * capability registers
3327 * @dev: the PCI device
3328 * @cap: the capability to allocate the buffer for
3329 * @extended: Standard or Extended capability ID
3330 * @size: requested size of the buffer
3332 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3333 bool extended, unsigned int size)
3336 struct pci_cap_saved_state *save_state;
3339 pos = pci_find_ext_capability(dev, cap);
3341 pos = pci_find_capability(dev, cap);
3346 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3350 save_state->cap.cap_nr = cap;
3351 save_state->cap.cap_extended = extended;
3352 save_state->cap.size = size;
3353 pci_add_saved_cap(dev, save_state);
3358 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3360 return _pci_add_cap_save_buffer(dev, cap, false, size);
3363 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3365 return _pci_add_cap_save_buffer(dev, cap, true, size);
3369 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3370 * @dev: the PCI device
3372 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3376 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3377 PCI_EXP_SAVE_REGS * sizeof(u16));
3379 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3381 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3383 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3385 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3388 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3390 pci_allocate_vc_save_buffers(dev);
3393 void pci_free_cap_save_buffers(struct pci_dev *dev)
3395 struct pci_cap_saved_state *tmp;
3396 struct hlist_node *n;
3398 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3403 * pci_configure_ari - enable or disable ARI forwarding
3404 * @dev: the PCI device
3406 * If @dev and its upstream bridge both support ARI, enable ARI in the
3407 * bridge. Otherwise, disable ARI in the bridge.
3409 void pci_configure_ari(struct pci_dev *dev)
3412 struct pci_dev *bridge;
3414 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3417 bridge = dev->bus->self;
3421 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3422 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3425 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3426 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3427 PCI_EXP_DEVCTL2_ARI);
3428 bridge->ari_enabled = 1;
3430 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3431 PCI_EXP_DEVCTL2_ARI);
3432 bridge->ari_enabled = 0;
3436 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3441 pos = pdev->acs_cap;
3446 * Except for egress control, capabilities are either required
3447 * or only required if controllable. Features missing from the
3448 * capability field can therefore be assumed as hard-wired enabled.
3450 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3451 acs_flags &= (cap | PCI_ACS_EC);
3453 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3454 return (ctrl & acs_flags) == acs_flags;
3458 * pci_acs_enabled - test ACS against required flags for a given device
3459 * @pdev: device to test
3460 * @acs_flags: required PCI ACS flags
3462 * Return true if the device supports the provided flags. Automatically
3463 * filters out flags that are not implemented on multifunction devices.
3465 * Note that this interface checks the effective ACS capabilities of the
3466 * device rather than the actual capabilities. For instance, most single
3467 * function endpoints are not required to support ACS because they have no
3468 * opportunity for peer-to-peer access. We therefore return 'true'
3469 * regardless of whether the device exposes an ACS capability. This makes
3470 * it much easier for callers of this function to ignore the actual type
3471 * or topology of the device when testing ACS support.
3473 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3477 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3482 * Conventional PCI and PCI-X devices never support ACS, either
3483 * effectively or actually. The shared bus topology implies that
3484 * any device on the bus can receive or snoop DMA.
3486 if (!pci_is_pcie(pdev))
3489 switch (pci_pcie_type(pdev)) {
3491 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3492 * but since their primary interface is PCI/X, we conservatively
3493 * handle them as we would a non-PCIe device.
3495 case PCI_EXP_TYPE_PCIE_BRIDGE:
3497 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3498 * applicable... must never implement an ACS Extended Capability...".
3499 * This seems arbitrary, but we take a conservative interpretation
3500 * of this statement.
3502 case PCI_EXP_TYPE_PCI_BRIDGE:
3503 case PCI_EXP_TYPE_RC_EC:
3506 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3507 * implement ACS in order to indicate their peer-to-peer capabilities,
3508 * regardless of whether they are single- or multi-function devices.
3510 case PCI_EXP_TYPE_DOWNSTREAM:
3511 case PCI_EXP_TYPE_ROOT_PORT:
3512 return pci_acs_flags_enabled(pdev, acs_flags);
3514 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3515 * implemented by the remaining PCIe types to indicate peer-to-peer
3516 * capabilities, but only when they are part of a multifunction
3517 * device. The footnote for section 6.12 indicates the specific
3518 * PCIe types included here.
3520 case PCI_EXP_TYPE_ENDPOINT:
3521 case PCI_EXP_TYPE_UPSTREAM:
3522 case PCI_EXP_TYPE_LEG_END:
3523 case PCI_EXP_TYPE_RC_END:
3524 if (!pdev->multifunction)
3527 return pci_acs_flags_enabled(pdev, acs_flags);
3531 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3532 * to single function devices with the exception of downstream ports.
3538 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3539 * @start: starting downstream device
3540 * @end: ending upstream device or NULL to search to the root bus
3541 * @acs_flags: required flags
3543 * Walk up a device tree from start to end testing PCI ACS support. If
3544 * any step along the way does not support the required flags, return false.
3546 bool pci_acs_path_enabled(struct pci_dev *start,
3547 struct pci_dev *end, u16 acs_flags)
3549 struct pci_dev *pdev, *parent = start;
3554 if (!pci_acs_enabled(pdev, acs_flags))
3557 if (pci_is_root_bus(pdev->bus))
3558 return (end == NULL);
3560 parent = pdev->bus->self;
3561 } while (pdev != end);
3567 * pci_acs_init - Initialize ACS if hardware supports it
3568 * @dev: the PCI device
3570 void pci_acs_init(struct pci_dev *dev)
3572 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3575 * Attempt to enable ACS regardless of capability because some Root
3576 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3577 * the standard ACS capability but still support ACS via those
3580 pci_enable_acs(dev);
3584 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3588 * Helper to find the position of the ctrl register for a BAR.
3589 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3590 * Returns -ENOENT if no ctrl register for the BAR could be found.
3592 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3594 unsigned int pos, nbars, i;
3597 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3601 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3602 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3603 PCI_REBAR_CTRL_NBAR_SHIFT;
3605 for (i = 0; i < nbars; i++, pos += 8) {
3608 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3609 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3618 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3620 * @bar: BAR to query
3622 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3623 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3625 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3630 pos = pci_rebar_find_pos(pdev, bar);
3634 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3635 cap &= PCI_REBAR_CAP_SIZES;
3637 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3638 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3639 bar == 0 && cap == 0x7000)
3644 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3647 * pci_rebar_get_current_size - get the current size of a BAR
3649 * @bar: BAR to set size to
3651 * Read the size of a BAR from the resizable BAR config.
3652 * Returns size if found or negative error code.
3654 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3659 pos = pci_rebar_find_pos(pdev, bar);
3663 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3664 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3668 * pci_rebar_set_size - set a new size for a BAR
3670 * @bar: BAR to set size to
3671 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3673 * Set the new size of a BAR as defined in the spec.
3674 * Returns zero if resizing was successful, error code otherwise.
3676 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3681 pos = pci_rebar_find_pos(pdev, bar);
3685 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3686 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3687 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3688 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3693 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3694 * @dev: the PCI device
3695 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3696 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3697 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3698 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3700 * Return 0 if all upstream bridges support AtomicOp routing, egress
3701 * blocking is disabled on all upstream ports, and the root port supports
3702 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3703 * AtomicOp completion), or negative otherwise.
3705 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3707 struct pci_bus *bus = dev->bus;
3708 struct pci_dev *bridge;
3711 if (!pci_is_pcie(dev))
3715 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3716 * AtomicOp requesters. For now, we only support endpoints as
3717 * requesters and root ports as completers. No endpoints as
3718 * completers, and no peer-to-peer.
3721 switch (pci_pcie_type(dev)) {
3722 case PCI_EXP_TYPE_ENDPOINT:
3723 case PCI_EXP_TYPE_LEG_END:
3724 case PCI_EXP_TYPE_RC_END:
3730 while (bus->parent) {
3733 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3735 switch (pci_pcie_type(bridge)) {
3736 /* Ensure switch ports support AtomicOp routing */
3737 case PCI_EXP_TYPE_UPSTREAM:
3738 case PCI_EXP_TYPE_DOWNSTREAM:
3739 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3743 /* Ensure root port supports all the sizes we care about */
3744 case PCI_EXP_TYPE_ROOT_PORT:
3745 if ((cap & cap_mask) != cap_mask)
3750 /* Ensure upstream ports don't block AtomicOps on egress */
3751 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3752 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3754 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3761 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3762 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3765 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3768 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3769 * @dev: the PCI device
3770 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3772 * Perform INTx swizzling for a device behind one level of bridge. This is
3773 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3774 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3775 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3776 * the PCI Express Base Specification, Revision 2.1)
3778 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3782 if (pci_ari_enabled(dev->bus))
3785 slot = PCI_SLOT(dev->devfn);
3787 return (((pin - 1) + slot) % 4) + 1;
3790 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3798 while (!pci_is_root_bus(dev->bus)) {
3799 pin = pci_swizzle_interrupt_pin(dev, pin);
3800 dev = dev->bus->self;
3807 * pci_common_swizzle - swizzle INTx all the way to root bridge
3808 * @dev: the PCI device
3809 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3811 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3812 * bridges all the way up to a PCI root bus.
3814 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3818 while (!pci_is_root_bus(dev->bus)) {
3819 pin = pci_swizzle_interrupt_pin(dev, pin);
3820 dev = dev->bus->self;
3823 return PCI_SLOT(dev->devfn);
3825 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3828 * pci_release_region - Release a PCI bar
3829 * @pdev: PCI device whose resources were previously reserved by
3830 * pci_request_region()
3831 * @bar: BAR to release
3833 * Releases the PCI I/O and memory resources previously reserved by a
3834 * successful call to pci_request_region(). Call this function only
3835 * after all use of the PCI regions has ceased.
3837 void pci_release_region(struct pci_dev *pdev, int bar)
3839 struct pci_devres *dr;
3841 if (pci_resource_len(pdev, bar) == 0)
3843 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3844 release_region(pci_resource_start(pdev, bar),
3845 pci_resource_len(pdev, bar));
3846 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3847 release_mem_region(pci_resource_start(pdev, bar),
3848 pci_resource_len(pdev, bar));
3850 dr = find_pci_dr(pdev);
3852 dr->region_mask &= ~(1 << bar);
3854 EXPORT_SYMBOL(pci_release_region);
3857 * __pci_request_region - Reserved PCI I/O and memory resource
3858 * @pdev: PCI device whose resources are to be reserved
3859 * @bar: BAR to be reserved
3860 * @res_name: Name to be associated with resource.
3861 * @exclusive: whether the region access is exclusive or not
3863 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3864 * being reserved by owner @res_name. Do not access any
3865 * address inside the PCI regions unless this call returns
3868 * If @exclusive is set, then the region is marked so that userspace
3869 * is explicitly not allowed to map the resource via /dev/mem or
3870 * sysfs MMIO access.
3872 * Returns 0 on success, or %EBUSY on error. A warning
3873 * message is also printed on failure.
3875 static int __pci_request_region(struct pci_dev *pdev, int bar,
3876 const char *res_name, int exclusive)
3878 struct pci_devres *dr;
3880 if (pci_resource_len(pdev, bar) == 0)
3883 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3884 if (!request_region(pci_resource_start(pdev, bar),
3885 pci_resource_len(pdev, bar), res_name))
3887 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3888 if (!__request_mem_region(pci_resource_start(pdev, bar),
3889 pci_resource_len(pdev, bar), res_name,
3894 dr = find_pci_dr(pdev);
3896 dr->region_mask |= 1 << bar;
3901 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3902 &pdev->resource[bar]);
3907 * pci_request_region - Reserve PCI I/O and memory resource
3908 * @pdev: PCI device whose resources are to be reserved
3909 * @bar: BAR to be reserved
3910 * @res_name: Name to be associated with resource
3912 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3913 * being reserved by owner @res_name. Do not access any
3914 * address inside the PCI regions unless this call returns
3917 * Returns 0 on success, or %EBUSY on error. A warning
3918 * message is also printed on failure.
3920 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3922 return __pci_request_region(pdev, bar, res_name, 0);
3924 EXPORT_SYMBOL(pci_request_region);
3927 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3928 * @pdev: PCI device whose resources were previously reserved
3929 * @bars: Bitmask of BARs to be released
3931 * Release selected PCI I/O and memory resources previously reserved.
3932 * Call this function only after all use of the PCI regions has ceased.
3934 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3938 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3939 if (bars & (1 << i))
3940 pci_release_region(pdev, i);
3942 EXPORT_SYMBOL(pci_release_selected_regions);
3944 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3945 const char *res_name, int excl)
3949 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3950 if (bars & (1 << i))
3951 if (__pci_request_region(pdev, i, res_name, excl))
3957 if (bars & (1 << i))
3958 pci_release_region(pdev, i);
3965 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3966 * @pdev: PCI device whose resources are to be reserved
3967 * @bars: Bitmask of BARs to be requested
3968 * @res_name: Name to be associated with resource
3970 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3971 const char *res_name)
3973 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3975 EXPORT_SYMBOL(pci_request_selected_regions);
3977 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3978 const char *res_name)
3980 return __pci_request_selected_regions(pdev, bars, res_name,
3981 IORESOURCE_EXCLUSIVE);
3983 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3986 * pci_release_regions - Release reserved PCI I/O and memory resources
3987 * @pdev: PCI device whose resources were previously reserved by
3988 * pci_request_regions()
3990 * Releases all PCI I/O and memory resources previously reserved by a
3991 * successful call to pci_request_regions(). Call this function only
3992 * after all use of the PCI regions has ceased.
3995 void pci_release_regions(struct pci_dev *pdev)
3997 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3999 EXPORT_SYMBOL(pci_release_regions);
4002 * pci_request_regions - Reserve PCI I/O and memory resources
4003 * @pdev: PCI device whose resources are to be reserved
4004 * @res_name: Name to be associated with resource.
4006 * Mark all PCI regions associated with PCI device @pdev as
4007 * being reserved by owner @res_name. Do not access any
4008 * address inside the PCI regions unless this call returns
4011 * Returns 0 on success, or %EBUSY on error. A warning
4012 * message is also printed on failure.
4014 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4016 return pci_request_selected_regions(pdev,
4017 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4019 EXPORT_SYMBOL(pci_request_regions);
4022 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4023 * @pdev: PCI device whose resources are to be reserved
4024 * @res_name: Name to be associated with resource.
4026 * Mark all PCI regions associated with PCI device @pdev as being reserved
4027 * by owner @res_name. Do not access any address inside the PCI regions
4028 * unless this call returns successfully.
4030 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4031 * and the sysfs MMIO access will not be allowed.
4033 * Returns 0 on success, or %EBUSY on error. A warning message is also
4034 * printed on failure.
4036 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4038 return pci_request_selected_regions_exclusive(pdev,
4039 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4041 EXPORT_SYMBOL(pci_request_regions_exclusive);
4044 * Record the PCI IO range (expressed as CPU physical address + size).
4045 * Return a negative value if an error has occurred, zero otherwise
4047 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4048 resource_size_t size)
4052 struct logic_pio_hwaddr *range;
4054 if (!size || addr + size < addr)
4057 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4061 range->fwnode = fwnode;
4063 range->hw_start = addr;
4064 range->flags = LOGIC_PIO_CPU_MMIO;
4066 ret = logic_pio_register_range(range);
4070 /* Ignore duplicates due to deferred probing */
4078 phys_addr_t pci_pio_to_address(unsigned long pio)
4080 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4083 if (pio >= MMIO_UPPER_LIMIT)
4086 address = logic_pio_to_hwaddr(pio);
4091 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4093 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4096 return logic_pio_trans_cpuaddr(address);
4098 if (address > IO_SPACE_LIMIT)
4099 return (unsigned long)-1;
4101 return (unsigned long) address;
4106 * pci_remap_iospace - Remap the memory mapped I/O space
4107 * @res: Resource describing the I/O space
4108 * @phys_addr: physical address of range to be mapped
4110 * Remap the memory mapped I/O space described by the @res and the CPU
4111 * physical address @phys_addr into virtual address space. Only
4112 * architectures that have memory mapped IO functions defined (and the
4113 * PCI_IOBASE value defined) should call this function.
4115 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4117 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4118 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4120 if (!(res->flags & IORESOURCE_IO))
4123 if (res->end > IO_SPACE_LIMIT)
4126 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4127 pgprot_device(PAGE_KERNEL));
4130 * This architecture does not have memory mapped I/O space,
4131 * so this function should never be called
4133 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4137 EXPORT_SYMBOL(pci_remap_iospace);
4140 * pci_unmap_iospace - Unmap the memory mapped I/O space
4141 * @res: resource to be unmapped
4143 * Unmap the CPU virtual address @res from virtual address space. Only
4144 * architectures that have memory mapped IO functions defined (and the
4145 * PCI_IOBASE value defined) should call this function.
4147 void pci_unmap_iospace(struct resource *res)
4149 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4150 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4152 vunmap_range(vaddr, vaddr + resource_size(res));
4155 EXPORT_SYMBOL(pci_unmap_iospace);
4157 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4159 struct resource **res = ptr;
4161 pci_unmap_iospace(*res);
4165 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4166 * @dev: Generic device to remap IO address for
4167 * @res: Resource describing the I/O space
4168 * @phys_addr: physical address of range to be mapped
4170 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4173 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4174 phys_addr_t phys_addr)
4176 const struct resource **ptr;
4179 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4183 error = pci_remap_iospace(res, phys_addr);
4188 devres_add(dev, ptr);
4193 EXPORT_SYMBOL(devm_pci_remap_iospace);
4196 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4197 * @dev: Generic device to remap IO address for
4198 * @offset: Resource address to map
4199 * @size: Size of map
4201 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4204 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4205 resource_size_t offset,
4206 resource_size_t size)
4208 void __iomem **ptr, *addr;
4210 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4214 addr = pci_remap_cfgspace(offset, size);
4217 devres_add(dev, ptr);
4223 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4226 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4227 * @dev: generic device to handle the resource for
4228 * @res: configuration space resource to be handled
4230 * Checks that a resource is a valid memory region, requests the memory
4231 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4232 * proper PCI configuration space memory attributes are guaranteed.
4234 * All operations are managed and will be undone on driver detach.
4236 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4237 * on failure. Usage example::
4239 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4240 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4242 * return PTR_ERR(base);
4244 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4245 struct resource *res)
4247 resource_size_t size;
4249 void __iomem *dest_ptr;
4253 if (!res || resource_type(res) != IORESOURCE_MEM) {
4254 dev_err(dev, "invalid resource\n");
4255 return IOMEM_ERR_PTR(-EINVAL);
4258 size = resource_size(res);
4261 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4264 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4266 return IOMEM_ERR_PTR(-ENOMEM);
4268 if (!devm_request_mem_region(dev, res->start, size, name)) {
4269 dev_err(dev, "can't request region for resource %pR\n", res);
4270 return IOMEM_ERR_PTR(-EBUSY);
4273 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4275 dev_err(dev, "ioremap failed for resource %pR\n", res);
4276 devm_release_mem_region(dev, res->start, size);
4277 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4282 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4284 static void __pci_set_master(struct pci_dev *dev, bool enable)
4288 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4290 cmd = old_cmd | PCI_COMMAND_MASTER;
4292 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4293 if (cmd != old_cmd) {
4294 pci_dbg(dev, "%s bus mastering\n",
4295 enable ? "enabling" : "disabling");
4296 pci_write_config_word(dev, PCI_COMMAND, cmd);
4298 dev->is_busmaster = enable;
4302 * pcibios_setup - process "pci=" kernel boot arguments
4303 * @str: string used to pass in "pci=" kernel boot arguments
4305 * Process kernel boot arguments. This is the default implementation.
4306 * Architecture specific implementations can override this as necessary.
4308 char * __weak __init pcibios_setup(char *str)
4314 * pcibios_set_master - enable PCI bus-mastering for device dev
4315 * @dev: the PCI device to enable
4317 * Enables PCI bus-mastering for the device. This is the default
4318 * implementation. Architecture specific implementations can override
4319 * this if necessary.
4321 void __weak pcibios_set_master(struct pci_dev *dev)
4325 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4326 if (pci_is_pcie(dev))
4329 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4331 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4332 else if (lat > pcibios_max_latency)
4333 lat = pcibios_max_latency;
4337 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4341 * pci_set_master - enables bus-mastering for device dev
4342 * @dev: the PCI device to enable
4344 * Enables bus-mastering on the device and calls pcibios_set_master()
4345 * to do the needed arch specific settings.
4347 void pci_set_master(struct pci_dev *dev)
4349 __pci_set_master(dev, true);
4350 pcibios_set_master(dev);
4352 EXPORT_SYMBOL(pci_set_master);
4355 * pci_clear_master - disables bus-mastering for device dev
4356 * @dev: the PCI device to disable
4358 void pci_clear_master(struct pci_dev *dev)
4360 __pci_set_master(dev, false);
4362 EXPORT_SYMBOL(pci_clear_master);
4365 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4366 * @dev: the PCI device for which MWI is to be enabled
4368 * Helper function for pci_set_mwi.
4369 * Originally copied from drivers/net/acenic.c.
4370 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4372 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4374 int pci_set_cacheline_size(struct pci_dev *dev)
4378 if (!pci_cache_line_size)
4381 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4382 equal to or multiple of the right value. */
4383 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4384 if (cacheline_size >= pci_cache_line_size &&
4385 (cacheline_size % pci_cache_line_size) == 0)
4388 /* Write the correct value. */
4389 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4391 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4392 if (cacheline_size == pci_cache_line_size)
4395 pci_dbg(dev, "cache line size of %d is not supported\n",
4396 pci_cache_line_size << 2);
4400 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4403 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4404 * @dev: the PCI device for which MWI is enabled
4406 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4408 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4410 int pci_set_mwi(struct pci_dev *dev)
4412 #ifdef PCI_DISABLE_MWI
4418 rc = pci_set_cacheline_size(dev);
4422 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4423 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4424 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4425 cmd |= PCI_COMMAND_INVALIDATE;
4426 pci_write_config_word(dev, PCI_COMMAND, cmd);
4431 EXPORT_SYMBOL(pci_set_mwi);
4434 * pcim_set_mwi - a device-managed pci_set_mwi()
4435 * @dev: the PCI device for which MWI is enabled
4437 * Managed pci_set_mwi().
4439 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4441 int pcim_set_mwi(struct pci_dev *dev)
4443 struct pci_devres *dr;
4445 dr = find_pci_dr(dev);
4450 return pci_set_mwi(dev);
4452 EXPORT_SYMBOL(pcim_set_mwi);
4455 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4456 * @dev: the PCI device for which MWI is enabled
4458 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4459 * Callers are not required to check the return value.
4461 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4463 int pci_try_set_mwi(struct pci_dev *dev)
4465 #ifdef PCI_DISABLE_MWI
4468 return pci_set_mwi(dev);
4471 EXPORT_SYMBOL(pci_try_set_mwi);
4474 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4475 * @dev: the PCI device to disable
4477 * Disables PCI Memory-Write-Invalidate transaction on the device
4479 void pci_clear_mwi(struct pci_dev *dev)
4481 #ifndef PCI_DISABLE_MWI
4484 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4485 if (cmd & PCI_COMMAND_INVALIDATE) {
4486 cmd &= ~PCI_COMMAND_INVALIDATE;
4487 pci_write_config_word(dev, PCI_COMMAND, cmd);
4491 EXPORT_SYMBOL(pci_clear_mwi);
4494 * pci_disable_parity - disable parity checking for device
4495 * @dev: the PCI device to operate on
4497 * Disable parity checking for device @dev
4499 void pci_disable_parity(struct pci_dev *dev)
4503 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4504 if (cmd & PCI_COMMAND_PARITY) {
4505 cmd &= ~PCI_COMMAND_PARITY;
4506 pci_write_config_word(dev, PCI_COMMAND, cmd);
4511 * pci_intx - enables/disables PCI INTx for device dev
4512 * @pdev: the PCI device to operate on
4513 * @enable: boolean: whether to enable or disable PCI INTx
4515 * Enables/disables PCI INTx for device @pdev
4517 void pci_intx(struct pci_dev *pdev, int enable)
4519 u16 pci_command, new;
4521 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4524 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4526 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4528 if (new != pci_command) {
4529 struct pci_devres *dr;
4531 pci_write_config_word(pdev, PCI_COMMAND, new);
4533 dr = find_pci_dr(pdev);
4534 if (dr && !dr->restore_intx) {
4535 dr->restore_intx = 1;
4536 dr->orig_intx = !enable;
4540 EXPORT_SYMBOL_GPL(pci_intx);
4542 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4544 struct pci_bus *bus = dev->bus;
4545 bool mask_updated = true;
4546 u32 cmd_status_dword;
4547 u16 origcmd, newcmd;
4548 unsigned long flags;
4552 * We do a single dword read to retrieve both command and status.
4553 * Document assumptions that make this possible.
4555 BUILD_BUG_ON(PCI_COMMAND % 4);
4556 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4558 raw_spin_lock_irqsave(&pci_lock, flags);
4560 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4562 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4565 * Check interrupt status register to see whether our device
4566 * triggered the interrupt (when masking) or the next IRQ is
4567 * already pending (when unmasking).
4569 if (mask != irq_pending) {
4570 mask_updated = false;
4574 origcmd = cmd_status_dword;
4575 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4577 newcmd |= PCI_COMMAND_INTX_DISABLE;
4578 if (newcmd != origcmd)
4579 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4582 raw_spin_unlock_irqrestore(&pci_lock, flags);
4584 return mask_updated;
4588 * pci_check_and_mask_intx - mask INTx on pending interrupt
4589 * @dev: the PCI device to operate on
4591 * Check if the device dev has its INTx line asserted, mask it and return
4592 * true in that case. False is returned if no interrupt was pending.
4594 bool pci_check_and_mask_intx(struct pci_dev *dev)
4596 return pci_check_and_set_intx_mask(dev, true);
4598 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4601 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4602 * @dev: the PCI device to operate on
4604 * Check if the device dev has its INTx line asserted, unmask it if not and
4605 * return true. False is returned and the mask remains active if there was
4606 * still an interrupt pending.
4608 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4610 return pci_check_and_set_intx_mask(dev, false);
4612 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4615 * pci_wait_for_pending_transaction - wait for pending transaction
4616 * @dev: the PCI device to operate on
4618 * Return 0 if transaction is pending 1 otherwise.
4620 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4622 if (!pci_is_pcie(dev))
4625 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4626 PCI_EXP_DEVSTA_TRPND);
4628 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4631 * pcie_flr - initiate a PCIe function level reset
4632 * @dev: device to reset
4634 * Initiate a function level reset unconditionally on @dev without
4635 * checking any flags and DEVCAP
4637 int pcie_flr(struct pci_dev *dev)
4639 if (!pci_wait_for_pending_transaction(dev))
4640 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4642 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4648 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4649 * 100ms, but may silently discard requests while the FLR is in
4650 * progress. Wait 100ms before trying to access the device.
4654 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4656 EXPORT_SYMBOL_GPL(pcie_flr);
4659 * pcie_reset_flr - initiate a PCIe function level reset
4660 * @dev: device to reset
4661 * @probe: if true, return 0 if device can be reset this way
4663 * Initiate a function level reset on @dev.
4665 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4667 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4670 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4676 return pcie_flr(dev);
4678 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4680 static int pci_af_flr(struct pci_dev *dev, bool probe)
4685 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4689 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4692 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4693 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4700 * Wait for Transaction Pending bit to clear. A word-aligned test
4701 * is used, so we use the control offset rather than status and shift
4702 * the test bit to match.
4704 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4705 PCI_AF_STATUS_TP << 8))
4706 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4708 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4714 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4715 * updated 27 July 2006; a device must complete an FLR within
4716 * 100ms, but may silently discard requests while the FLR is in
4717 * progress. Wait 100ms before trying to access the device.
4721 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4725 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4726 * @dev: Device to reset.
4727 * @probe: if true, return 0 if the device can be reset this way.
4729 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4730 * unset, it will be reinitialized internally when going from PCI_D3hot to
4731 * PCI_D0. If that's the case and the device is not in a low-power state
4732 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4734 * NOTE: This causes the caller to sleep for twice the device power transition
4735 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4736 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4737 * Moreover, only devices in D0 can be reset by this function.
4739 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4743 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4746 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4747 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4753 if (dev->current_state != PCI_D0)
4756 csr &= ~PCI_PM_CTRL_STATE_MASK;
4758 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4759 pci_dev_d3_sleep(dev);
4761 csr &= ~PCI_PM_CTRL_STATE_MASK;
4763 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4764 pci_dev_d3_sleep(dev);
4766 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4770 * pcie_wait_for_link_delay - Wait until link is active or inactive
4771 * @pdev: Bridge device
4772 * @active: waiting for active or inactive?
4773 * @delay: Delay to wait after link has become active (in ms)
4775 * Use this to wait till link becomes active or inactive.
4777 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4785 * Some controllers might not implement link active reporting. In this
4786 * case, we wait for 1000 ms + any delay requested by the caller.
4788 if (!pdev->link_active_reporting) {
4789 msleep(timeout + delay);
4794 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4795 * after which we should expect an link active if the reset was
4796 * successful. If so, software must wait a minimum 100ms before sending
4797 * configuration requests to devices downstream this port.
4799 * If the link fails to activate, either the device was physically
4800 * removed or the link is permanently failed.
4805 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4806 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4817 return ret == active;
4821 * pcie_wait_for_link - Wait until link is active or inactive
4822 * @pdev: Bridge device
4823 * @active: waiting for active or inactive?
4825 * Use this to wait till link becomes active or inactive.
4827 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4829 return pcie_wait_for_link_delay(pdev, active, 100);
4833 * Find maximum D3cold delay required by all the devices on the bus. The
4834 * spec says 100 ms, but firmware can lower it and we allow drivers to
4835 * increase it as well.
4837 * Called with @pci_bus_sem locked for reading.
4839 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4841 const struct pci_dev *pdev;
4842 int min_delay = 100;
4845 list_for_each_entry(pdev, &bus->devices, bus_list) {
4846 if (pdev->d3cold_delay < min_delay)
4847 min_delay = pdev->d3cold_delay;
4848 if (pdev->d3cold_delay > max_delay)
4849 max_delay = pdev->d3cold_delay;
4852 return max(min_delay, max_delay);
4856 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4859 * Handle necessary delays before access to the devices on the secondary
4860 * side of the bridge are permitted after D3cold to D0 transition.
4862 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4863 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4866 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4868 struct pci_dev *child;
4871 if (pci_dev_is_disconnected(dev))
4874 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4877 down_read(&pci_bus_sem);
4880 * We only deal with devices that are present currently on the bus.
4881 * For any hot-added devices the access delay is handled in pciehp
4882 * board_added(). In case of ACPI hotplug the firmware is expected
4883 * to configure the devices before OS is notified.
4885 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4886 up_read(&pci_bus_sem);
4890 /* Take d3cold_delay requirements into account */
4891 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4893 up_read(&pci_bus_sem);
4897 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4899 up_read(&pci_bus_sem);
4902 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4903 * accessing the device after reset (that is 1000 ms + 100 ms). In
4904 * practice this should not be needed because we don't do power
4905 * management for them (see pci_bridge_d3_possible()).
4907 if (!pci_is_pcie(dev)) {
4908 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4909 msleep(1000 + delay);
4914 * For PCIe downstream and root ports that do not support speeds
4915 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4916 * speeds (gen3) we need to wait first for the data link layer to
4919 * However, 100 ms is the minimum and the PCIe spec says the
4920 * software must allow at least 1s before it can determine that the
4921 * device that did not respond is a broken device. There is
4922 * evidence that 100 ms is not always enough, for example certain
4923 * Titan Ridge xHCI controller does not always respond to
4924 * configuration requests if we only wait for 100 ms (see
4925 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4927 * Therefore we wait for 100 ms and check for the device presence.
4928 * If it is still not present give it an additional 100 ms.
4930 if (!pcie_downstream_port(dev))
4933 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4934 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4937 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4939 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4940 /* Did not train, no need to wait any further */
4941 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4946 if (!pci_device_is_present(child)) {
4947 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4952 void pci_reset_secondary_bus(struct pci_dev *dev)
4956 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4957 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4958 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4961 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4962 * this to 2ms to ensure that we meet the minimum requirement.
4966 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4967 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4970 * Trhfa for conventional PCI is 2^25 clock cycles.
4971 * Assuming a minimum 33MHz clock this results in a 1s
4972 * delay before we can consider subordinate devices to
4973 * be re-initialized. PCIe has some ways to shorten this,
4974 * but we don't make use of them yet.
4979 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4981 pci_reset_secondary_bus(dev);
4985 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4986 * @dev: Bridge device
4988 * Use the bridge control register to assert reset on the secondary bus.
4989 * Devices on the secondary bus are left in power-on state.
4991 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4993 pcibios_reset_secondary_bus(dev);
4995 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4997 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4999 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5001 struct pci_dev *pdev;
5003 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5004 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5007 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5014 return pci_bridge_secondary_bus_reset(dev->bus->self);
5017 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5021 if (!hotplug || !try_module_get(hotplug->owner))
5024 if (hotplug->ops->reset_slot)
5025 rc = hotplug->ops->reset_slot(hotplug, probe);
5027 module_put(hotplug->owner);
5032 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5034 if (dev->multifunction || dev->subordinate || !dev->slot ||
5035 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5038 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5041 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5045 rc = pci_dev_reset_slot_function(dev, probe);
5048 return pci_parent_bus_reset(dev, probe);
5051 static void pci_dev_lock(struct pci_dev *dev)
5053 pci_cfg_access_lock(dev);
5054 /* block PM suspend, driver probe, etc. */
5055 device_lock(&dev->dev);
5058 /* Return 1 on successful lock, 0 on contention */
5059 int pci_dev_trylock(struct pci_dev *dev)
5061 if (pci_cfg_access_trylock(dev)) {
5062 if (device_trylock(&dev->dev))
5064 pci_cfg_access_unlock(dev);
5069 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5071 void pci_dev_unlock(struct pci_dev *dev)
5073 device_unlock(&dev->dev);
5074 pci_cfg_access_unlock(dev);
5076 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5078 static void pci_dev_save_and_disable(struct pci_dev *dev)
5080 const struct pci_error_handlers *err_handler =
5081 dev->driver ? dev->driver->err_handler : NULL;
5084 * dev->driver->err_handler->reset_prepare() is protected against
5085 * races with ->remove() by the device lock, which must be held by
5088 if (err_handler && err_handler->reset_prepare)
5089 err_handler->reset_prepare(dev);
5092 * Wake-up device prior to save. PM registers default to D0 after
5093 * reset and a simple register restore doesn't reliably return
5094 * to a non-D0 state anyway.
5096 pci_set_power_state(dev, PCI_D0);
5098 pci_save_state(dev);
5100 * Disable the device by clearing the Command register, except for
5101 * INTx-disable which is set. This not only disables MMIO and I/O port
5102 * BARs, but also prevents the device from being Bus Master, preventing
5103 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5104 * compliant devices, INTx-disable prevents legacy interrupts.
5106 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5109 static void pci_dev_restore(struct pci_dev *dev)
5111 const struct pci_error_handlers *err_handler =
5112 dev->driver ? dev->driver->err_handler : NULL;
5114 pci_restore_state(dev);
5117 * dev->driver->err_handler->reset_done() is protected against
5118 * races with ->remove() by the device lock, which must be held by
5121 if (err_handler && err_handler->reset_done)
5122 err_handler->reset_done(dev);
5125 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5126 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5128 { pci_dev_specific_reset, .name = "device_specific" },
5129 { pci_dev_acpi_reset, .name = "acpi" },
5130 { pcie_reset_flr, .name = "flr" },
5131 { pci_af_flr, .name = "af_flr" },
5132 { pci_pm_reset, .name = "pm" },
5133 { pci_reset_bus_function, .name = "bus" },
5136 static ssize_t reset_method_show(struct device *dev,
5137 struct device_attribute *attr, char *buf)
5139 struct pci_dev *pdev = to_pci_dev(dev);
5143 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5144 m = pdev->reset_methods[i];
5148 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5149 pci_reset_fn_methods[m].name);
5153 len += sysfs_emit_at(buf, len, "\n");
5158 static int reset_method_lookup(const char *name)
5162 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5163 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5167 return 0; /* not found */
5170 static ssize_t reset_method_store(struct device *dev,
5171 struct device_attribute *attr,
5172 const char *buf, size_t count)
5174 struct pci_dev *pdev = to_pci_dev(dev);
5175 char *options, *name;
5177 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5179 if (sysfs_streq(buf, "")) {
5180 pdev->reset_methods[0] = 0;
5181 pci_warn(pdev, "All device reset methods disabled by user");
5185 if (sysfs_streq(buf, "default")) {
5186 pci_init_reset_methods(pdev);
5190 options = kstrndup(buf, count, GFP_KERNEL);
5195 while ((name = strsep(&options, " ")) != NULL) {
5196 if (sysfs_streq(name, ""))
5201 m = reset_method_lookup(name);
5203 pci_err(pdev, "Invalid reset method '%s'", name);
5207 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5208 pci_err(pdev, "Unsupported reset method '%s'", name);
5212 if (n == PCI_NUM_RESET_METHODS - 1) {
5213 pci_err(pdev, "Too many reset methods\n");
5217 reset_methods[n++] = m;
5220 reset_methods[n] = 0;
5222 /* Warn if dev-specific supported but not highest priority */
5223 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5224 reset_methods[0] != 1)
5225 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5226 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5231 /* Leave previous methods unchanged */
5235 static DEVICE_ATTR_RW(reset_method);
5237 static struct attribute *pci_dev_reset_method_attrs[] = {
5238 &dev_attr_reset_method.attr,
5242 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5243 struct attribute *a, int n)
5245 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5247 if (!pci_reset_supported(pdev))
5253 const struct attribute_group pci_dev_reset_method_attr_group = {
5254 .attrs = pci_dev_reset_method_attrs,
5255 .is_visible = pci_dev_reset_method_attr_is_visible,
5259 * __pci_reset_function_locked - reset a PCI device function while holding
5260 * the @dev mutex lock.
5261 * @dev: PCI device to reset
5263 * Some devices allow an individual function to be reset without affecting
5264 * other functions in the same device. The PCI device must be responsive
5265 * to PCI config space in order to use this function.
5267 * The device function is presumed to be unused and the caller is holding
5268 * the device mutex lock when this function is called.
5270 * Resetting the device will make the contents of PCI configuration space
5271 * random, so any caller of this must be prepared to reinitialise the
5272 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5275 * Returns 0 if the device function was successfully reset or negative if the
5276 * device doesn't support resetting a single function.
5278 int __pci_reset_function_locked(struct pci_dev *dev)
5280 int i, m, rc = -ENOTTY;
5285 * A reset method returns -ENOTTY if it doesn't support this device and
5286 * we should try the next method.
5288 * If it returns 0 (success), we're finished. If it returns any other
5289 * error, we're also finished: this indicates that further reset
5290 * mechanisms might be broken on the device.
5292 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5293 m = dev->reset_methods[i];
5297 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5306 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5309 * pci_init_reset_methods - check whether device can be safely reset
5310 * and store supported reset mechanisms.
5311 * @dev: PCI device to check for reset mechanisms
5313 * Some devices allow an individual function to be reset without affecting
5314 * other functions in the same device. The PCI device must be in D0-D3hot
5317 * Stores reset mechanisms supported by device in reset_methods byte array
5318 * which is a member of struct pci_dev.
5320 void pci_init_reset_methods(struct pci_dev *dev)
5324 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5329 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5330 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5332 dev->reset_methods[i++] = m;
5333 else if (rc != -ENOTTY)
5337 dev->reset_methods[i] = 0;
5341 * pci_reset_function - quiesce and reset a PCI device function
5342 * @dev: PCI device to reset
5344 * Some devices allow an individual function to be reset without affecting
5345 * other functions in the same device. The PCI device must be responsive
5346 * to PCI config space in order to use this function.
5348 * This function does not just reset the PCI portion of a device, but
5349 * clears all the state associated with the device. This function differs
5350 * from __pci_reset_function_locked() in that it saves and restores device state
5351 * over the reset and takes the PCI device lock.
5353 * Returns 0 if the device function was successfully reset or negative if the
5354 * device doesn't support resetting a single function.
5356 int pci_reset_function(struct pci_dev *dev)
5360 if (!pci_reset_supported(dev))
5364 pci_dev_save_and_disable(dev);
5366 rc = __pci_reset_function_locked(dev);
5368 pci_dev_restore(dev);
5369 pci_dev_unlock(dev);
5373 EXPORT_SYMBOL_GPL(pci_reset_function);
5376 * pci_reset_function_locked - quiesce and reset a PCI device function
5377 * @dev: PCI device to reset
5379 * Some devices allow an individual function to be reset without affecting
5380 * other functions in the same device. The PCI device must be responsive
5381 * to PCI config space in order to use this function.
5383 * This function does not just reset the PCI portion of a device, but
5384 * clears all the state associated with the device. This function differs
5385 * from __pci_reset_function_locked() in that it saves and restores device state
5386 * over the reset. It also differs from pci_reset_function() in that it
5387 * requires the PCI device lock to be held.
5389 * Returns 0 if the device function was successfully reset or negative if the
5390 * device doesn't support resetting a single function.
5392 int pci_reset_function_locked(struct pci_dev *dev)
5396 if (!pci_reset_supported(dev))
5399 pci_dev_save_and_disable(dev);
5401 rc = __pci_reset_function_locked(dev);
5403 pci_dev_restore(dev);
5407 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5410 * pci_try_reset_function - quiesce and reset a PCI device function
5411 * @dev: PCI device to reset
5413 * Same as above, except return -EAGAIN if unable to lock device.
5415 int pci_try_reset_function(struct pci_dev *dev)
5419 if (!pci_reset_supported(dev))
5422 if (!pci_dev_trylock(dev))
5425 pci_dev_save_and_disable(dev);
5426 rc = __pci_reset_function_locked(dev);
5427 pci_dev_restore(dev);
5428 pci_dev_unlock(dev);
5432 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5434 /* Do any devices on or below this bus prevent a bus reset? */
5435 static bool pci_bus_resetable(struct pci_bus *bus)
5437 struct pci_dev *dev;
5440 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5443 list_for_each_entry(dev, &bus->devices, bus_list) {
5444 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5445 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5452 /* Lock devices from the top of the tree down */
5453 static void pci_bus_lock(struct pci_bus *bus)
5455 struct pci_dev *dev;
5457 list_for_each_entry(dev, &bus->devices, bus_list) {
5459 if (dev->subordinate)
5460 pci_bus_lock(dev->subordinate);
5464 /* Unlock devices from the bottom of the tree up */
5465 static void pci_bus_unlock(struct pci_bus *bus)
5467 struct pci_dev *dev;
5469 list_for_each_entry(dev, &bus->devices, bus_list) {
5470 if (dev->subordinate)
5471 pci_bus_unlock(dev->subordinate);
5472 pci_dev_unlock(dev);
5476 /* Return 1 on successful lock, 0 on contention */
5477 static int pci_bus_trylock(struct pci_bus *bus)
5479 struct pci_dev *dev;
5481 list_for_each_entry(dev, &bus->devices, bus_list) {
5482 if (!pci_dev_trylock(dev))
5484 if (dev->subordinate) {
5485 if (!pci_bus_trylock(dev->subordinate)) {
5486 pci_dev_unlock(dev);
5494 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5495 if (dev->subordinate)
5496 pci_bus_unlock(dev->subordinate);
5497 pci_dev_unlock(dev);
5502 /* Do any devices on or below this slot prevent a bus reset? */
5503 static bool pci_slot_resetable(struct pci_slot *slot)
5505 struct pci_dev *dev;
5507 if (slot->bus->self &&
5508 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5511 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5512 if (!dev->slot || dev->slot != slot)
5514 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5515 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5522 /* Lock devices from the top of the tree down */
5523 static void pci_slot_lock(struct pci_slot *slot)
5525 struct pci_dev *dev;
5527 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5528 if (!dev->slot || dev->slot != slot)
5531 if (dev->subordinate)
5532 pci_bus_lock(dev->subordinate);
5536 /* Unlock devices from the bottom of the tree up */
5537 static void pci_slot_unlock(struct pci_slot *slot)
5539 struct pci_dev *dev;
5541 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5542 if (!dev->slot || dev->slot != slot)
5544 if (dev->subordinate)
5545 pci_bus_unlock(dev->subordinate);
5546 pci_dev_unlock(dev);
5550 /* Return 1 on successful lock, 0 on contention */
5551 static int pci_slot_trylock(struct pci_slot *slot)
5553 struct pci_dev *dev;
5555 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5556 if (!dev->slot || dev->slot != slot)
5558 if (!pci_dev_trylock(dev))
5560 if (dev->subordinate) {
5561 if (!pci_bus_trylock(dev->subordinate)) {
5562 pci_dev_unlock(dev);
5570 list_for_each_entry_continue_reverse(dev,
5571 &slot->bus->devices, bus_list) {
5572 if (!dev->slot || dev->slot != slot)
5574 if (dev->subordinate)
5575 pci_bus_unlock(dev->subordinate);
5576 pci_dev_unlock(dev);
5582 * Save and disable devices from the top of the tree down while holding
5583 * the @dev mutex lock for the entire tree.
5585 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5587 struct pci_dev *dev;
5589 list_for_each_entry(dev, &bus->devices, bus_list) {
5590 pci_dev_save_and_disable(dev);
5591 if (dev->subordinate)
5592 pci_bus_save_and_disable_locked(dev->subordinate);
5597 * Restore devices from top of the tree down while holding @dev mutex lock
5598 * for the entire tree. Parent bridges need to be restored before we can
5599 * get to subordinate devices.
5601 static void pci_bus_restore_locked(struct pci_bus *bus)
5603 struct pci_dev *dev;
5605 list_for_each_entry(dev, &bus->devices, bus_list) {
5606 pci_dev_restore(dev);
5607 if (dev->subordinate)
5608 pci_bus_restore_locked(dev->subordinate);
5613 * Save and disable devices from the top of the tree down while holding
5614 * the @dev mutex lock for the entire tree.
5616 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5618 struct pci_dev *dev;
5620 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5621 if (!dev->slot || dev->slot != slot)
5623 pci_dev_save_and_disable(dev);
5624 if (dev->subordinate)
5625 pci_bus_save_and_disable_locked(dev->subordinate);
5630 * Restore devices from top of the tree down while holding @dev mutex lock
5631 * for the entire tree. Parent bridges need to be restored before we can
5632 * get to subordinate devices.
5634 static void pci_slot_restore_locked(struct pci_slot *slot)
5636 struct pci_dev *dev;
5638 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5639 if (!dev->slot || dev->slot != slot)
5641 pci_dev_restore(dev);
5642 if (dev->subordinate)
5643 pci_bus_restore_locked(dev->subordinate);
5647 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5651 if (!slot || !pci_slot_resetable(slot))
5655 pci_slot_lock(slot);
5659 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5662 pci_slot_unlock(slot);
5668 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5669 * @slot: PCI slot to probe
5671 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5673 int pci_probe_reset_slot(struct pci_slot *slot)
5675 return pci_slot_reset(slot, PCI_RESET_PROBE);
5677 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5680 * __pci_reset_slot - Try to reset a PCI slot
5681 * @slot: PCI slot to reset
5683 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5684 * independent of other slots. For instance, some slots may support slot power
5685 * control. In the case of a 1:1 bus to slot architecture, this function may
5686 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5687 * Generally a slot reset should be attempted before a bus reset. All of the
5688 * function of the slot and any subordinate buses behind the slot are reset
5689 * through this function. PCI config space of all devices in the slot and
5690 * behind the slot is saved before and restored after reset.
5692 * Same as above except return -EAGAIN if the slot cannot be locked
5694 static int __pci_reset_slot(struct pci_slot *slot)
5698 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5702 if (pci_slot_trylock(slot)) {
5703 pci_slot_save_and_disable_locked(slot);
5705 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5706 pci_slot_restore_locked(slot);
5707 pci_slot_unlock(slot);
5714 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5718 if (!bus->self || !pci_bus_resetable(bus))
5728 ret = pci_bridge_secondary_bus_reset(bus->self);
5730 pci_bus_unlock(bus);
5736 * pci_bus_error_reset - reset the bridge's subordinate bus
5737 * @bridge: The parent device that connects to the bus to reset
5739 * This function will first try to reset the slots on this bus if the method is
5740 * available. If slot reset fails or is not available, this will fall back to a
5741 * secondary bus reset.
5743 int pci_bus_error_reset(struct pci_dev *bridge)
5745 struct pci_bus *bus = bridge->subordinate;
5746 struct pci_slot *slot;
5751 mutex_lock(&pci_slot_mutex);
5752 if (list_empty(&bus->slots))
5755 list_for_each_entry(slot, &bus->slots, list)
5756 if (pci_probe_reset_slot(slot))
5759 list_for_each_entry(slot, &bus->slots, list)
5760 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5763 mutex_unlock(&pci_slot_mutex);
5766 mutex_unlock(&pci_slot_mutex);
5767 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5771 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5772 * @bus: PCI bus to probe
5774 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5776 int pci_probe_reset_bus(struct pci_bus *bus)
5778 return pci_bus_reset(bus, PCI_RESET_PROBE);
5780 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5783 * __pci_reset_bus - Try to reset a PCI bus
5784 * @bus: top level PCI bus to reset
5786 * Same as above except return -EAGAIN if the bus cannot be locked
5788 static int __pci_reset_bus(struct pci_bus *bus)
5792 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5796 if (pci_bus_trylock(bus)) {
5797 pci_bus_save_and_disable_locked(bus);
5799 rc = pci_bridge_secondary_bus_reset(bus->self);
5800 pci_bus_restore_locked(bus);
5801 pci_bus_unlock(bus);
5809 * pci_reset_bus - Try to reset a PCI bus
5810 * @pdev: top level PCI device to reset via slot/bus
5812 * Same as above except return -EAGAIN if the bus cannot be locked
5814 int pci_reset_bus(struct pci_dev *pdev)
5816 return (!pci_probe_reset_slot(pdev->slot)) ?
5817 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5819 EXPORT_SYMBOL_GPL(pci_reset_bus);
5822 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5823 * @dev: PCI device to query
5825 * Returns mmrbc: maximum designed memory read count in bytes or
5826 * appropriate error value.
5828 int pcix_get_max_mmrbc(struct pci_dev *dev)
5833 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5837 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5840 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5842 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5845 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5846 * @dev: PCI device to query
5848 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5851 int pcix_get_mmrbc(struct pci_dev *dev)
5856 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5860 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5863 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5865 EXPORT_SYMBOL(pcix_get_mmrbc);
5868 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5869 * @dev: PCI device to query
5870 * @mmrbc: maximum memory read count in bytes
5871 * valid values are 512, 1024, 2048, 4096
5873 * If possible sets maximum memory read byte count, some bridges have errata
5874 * that prevent this.
5876 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5882 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5885 v = ffs(mmrbc) - 10;
5887 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5891 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5894 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5897 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5900 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5902 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5905 cmd &= ~PCI_X_CMD_MAX_READ;
5907 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5912 EXPORT_SYMBOL(pcix_set_mmrbc);
5915 * pcie_get_readrq - get PCI Express read request size
5916 * @dev: PCI device to query
5918 * Returns maximum memory read request in bytes or appropriate error value.
5920 int pcie_get_readrq(struct pci_dev *dev)
5924 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5926 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5928 EXPORT_SYMBOL(pcie_get_readrq);
5931 * pcie_set_readrq - set PCI Express maximum memory read request
5932 * @dev: PCI device to query
5933 * @rq: maximum memory read count in bytes
5934 * valid values are 128, 256, 512, 1024, 2048, 4096
5936 * If possible sets maximum memory read request in bytes
5938 int pcie_set_readrq(struct pci_dev *dev, int rq)
5943 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5947 * If using the "performance" PCIe config, we clamp the read rq
5948 * size to the max packet size to keep the host bridge from
5949 * generating requests larger than we can cope with.
5951 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5952 int mps = pcie_get_mps(dev);
5958 v = (ffs(rq) - 8) << 12;
5960 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5961 PCI_EXP_DEVCTL_READRQ, v);
5963 return pcibios_err_to_errno(ret);
5965 EXPORT_SYMBOL(pcie_set_readrq);
5968 * pcie_get_mps - get PCI Express maximum payload size
5969 * @dev: PCI device to query
5971 * Returns maximum payload size in bytes
5973 int pcie_get_mps(struct pci_dev *dev)
5977 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5979 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5981 EXPORT_SYMBOL(pcie_get_mps);
5984 * pcie_set_mps - set PCI Express maximum payload size
5985 * @dev: PCI device to query
5986 * @mps: maximum payload size in bytes
5987 * valid values are 128, 256, 512, 1024, 2048, 4096
5989 * If possible sets maximum payload size
5991 int pcie_set_mps(struct pci_dev *dev, int mps)
5996 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6000 if (v > dev->pcie_mpss)
6004 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6005 PCI_EXP_DEVCTL_PAYLOAD, v);
6007 return pcibios_err_to_errno(ret);
6009 EXPORT_SYMBOL(pcie_set_mps);
6012 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6013 * device and its bandwidth limitation
6014 * @dev: PCI device to query
6015 * @limiting_dev: storage for device causing the bandwidth limitation
6016 * @speed: storage for speed of limiting device
6017 * @width: storage for width of limiting device
6019 * Walk up the PCI device chain and find the point where the minimum
6020 * bandwidth is available. Return the bandwidth available there and (if
6021 * limiting_dev, speed, and width pointers are supplied) information about
6022 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6025 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6026 enum pci_bus_speed *speed,
6027 enum pcie_link_width *width)
6030 enum pci_bus_speed next_speed;
6031 enum pcie_link_width next_width;
6035 *speed = PCI_SPEED_UNKNOWN;
6037 *width = PCIE_LNK_WIDTH_UNKNOWN;
6042 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6044 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6045 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6046 PCI_EXP_LNKSTA_NLW_SHIFT;
6048 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6050 /* Check if current device limits the total bandwidth */
6051 if (!bw || next_bw <= bw) {
6055 *limiting_dev = dev;
6057 *speed = next_speed;
6059 *width = next_width;
6062 dev = pci_upstream_bridge(dev);
6067 EXPORT_SYMBOL(pcie_bandwidth_available);
6070 * pcie_get_speed_cap - query for the PCI device's link speed capability
6071 * @dev: PCI device to query
6073 * Query the PCI device speed capability. Return the maximum link speed
6074 * supported by the device.
6076 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6078 u32 lnkcap2, lnkcap;
6081 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6082 * implementation note there recommends using the Supported Link
6083 * Speeds Vector in Link Capabilities 2 when supported.
6085 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6086 * should use the Supported Link Speeds field in Link Capabilities,
6087 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6089 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6091 /* PCIe r3.0-compliant */
6093 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6095 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6096 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6097 return PCIE_SPEED_5_0GT;
6098 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6099 return PCIE_SPEED_2_5GT;
6101 return PCI_SPEED_UNKNOWN;
6103 EXPORT_SYMBOL(pcie_get_speed_cap);
6106 * pcie_get_width_cap - query for the PCI device's link width capability
6107 * @dev: PCI device to query
6109 * Query the PCI device width capability. Return the maximum link width
6110 * supported by the device.
6112 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6116 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6118 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6120 return PCIE_LNK_WIDTH_UNKNOWN;
6122 EXPORT_SYMBOL(pcie_get_width_cap);
6125 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6127 * @speed: storage for link speed
6128 * @width: storage for link width
6130 * Calculate a PCI device's link bandwidth by querying for its link speed
6131 * and width, multiplying them, and applying encoding overhead. The result
6132 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6134 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6135 enum pcie_link_width *width)
6137 *speed = pcie_get_speed_cap(dev);
6138 *width = pcie_get_width_cap(dev);
6140 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6143 return *width * PCIE_SPEED2MBS_ENC(*speed);
6147 * __pcie_print_link_status - Report the PCI device's link speed and width
6148 * @dev: PCI device to query
6149 * @verbose: Print info even when enough bandwidth is available
6151 * If the available bandwidth at the device is less than the device is
6152 * capable of, report the device's maximum possible bandwidth and the
6153 * upstream link that limits its performance. If @verbose, always print
6154 * the available bandwidth, even if the device isn't constrained.
6156 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6158 enum pcie_link_width width, width_cap;
6159 enum pci_bus_speed speed, speed_cap;
6160 struct pci_dev *limiting_dev = NULL;
6161 u32 bw_avail, bw_cap;
6163 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6164 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6166 if (bw_avail >= bw_cap && verbose)
6167 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6168 bw_cap / 1000, bw_cap % 1000,
6169 pci_speed_string(speed_cap), width_cap);
6170 else if (bw_avail < bw_cap)
6171 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6172 bw_avail / 1000, bw_avail % 1000,
6173 pci_speed_string(speed), width,
6174 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6175 bw_cap / 1000, bw_cap % 1000,
6176 pci_speed_string(speed_cap), width_cap);
6180 * pcie_print_link_status - Report the PCI device's link speed and width
6181 * @dev: PCI device to query
6183 * Report the available bandwidth at the device.
6185 void pcie_print_link_status(struct pci_dev *dev)
6187 __pcie_print_link_status(dev, true);
6189 EXPORT_SYMBOL(pcie_print_link_status);
6192 * pci_select_bars - Make BAR mask from the type of resource
6193 * @dev: the PCI device for which BAR mask is made
6194 * @flags: resource type mask to be selected
6196 * This helper routine makes bar mask from the type of resource.
6198 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6201 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6202 if (pci_resource_flags(dev, i) & flags)
6206 EXPORT_SYMBOL(pci_select_bars);
6208 /* Some architectures require additional programming to enable VGA */
6209 static arch_set_vga_state_t arch_set_vga_state;
6211 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6213 arch_set_vga_state = func; /* NULL disables */
6216 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6217 unsigned int command_bits, u32 flags)
6219 if (arch_set_vga_state)
6220 return arch_set_vga_state(dev, decode, command_bits,
6226 * pci_set_vga_state - set VGA decode state on device and parents if requested
6227 * @dev: the PCI device
6228 * @decode: true = enable decoding, false = disable decoding
6229 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6230 * @flags: traverse ancestors and change bridges
6231 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6233 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6234 unsigned int command_bits, u32 flags)
6236 struct pci_bus *bus;
6237 struct pci_dev *bridge;
6241 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6243 /* ARCH specific VGA enables */
6244 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6248 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6249 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6251 cmd |= command_bits;
6253 cmd &= ~command_bits;
6254 pci_write_config_word(dev, PCI_COMMAND, cmd);
6257 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6264 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6267 cmd |= PCI_BRIDGE_CTL_VGA;
6269 cmd &= ~PCI_BRIDGE_CTL_VGA;
6270 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6279 bool pci_pr3_present(struct pci_dev *pdev)
6281 struct acpi_device *adev;
6286 adev = ACPI_COMPANION(&pdev->dev);
6290 return adev->power.flags.power_resources &&
6291 acpi_has_method(adev->handle, "_PR3");
6293 EXPORT_SYMBOL_GPL(pci_pr3_present);
6297 * pci_add_dma_alias - Add a DMA devfn alias for a device
6298 * @dev: the PCI device for which alias is added
6299 * @devfn_from: alias slot and function
6300 * @nr_devfns: number of subsequent devfns to alias
6302 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6303 * which is used to program permissible bus-devfn source addresses for DMA
6304 * requests in an IOMMU. These aliases factor into IOMMU group creation
6305 * and are useful for devices generating DMA requests beyond or different
6306 * from their logical bus-devfn. Examples include device quirks where the
6307 * device simply uses the wrong devfn, as well as non-transparent bridges
6308 * where the alias may be a proxy for devices in another domain.
6310 * IOMMU group creation is performed during device discovery or addition,
6311 * prior to any potential DMA mapping and therefore prior to driver probing
6312 * (especially for userspace assigned devices where IOMMU group definition
6313 * cannot be left as a userspace activity). DMA aliases should therefore
6314 * be configured via quirks, such as the PCI fixup header quirk.
6316 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6320 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6321 devfn_to = devfn_from + nr_devfns - 1;
6323 if (!dev->dma_alias_mask)
6324 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6325 if (!dev->dma_alias_mask) {
6326 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6330 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6333 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6334 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6335 else if (nr_devfns > 1)
6336 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6337 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6338 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6341 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6343 return (dev1->dma_alias_mask &&
6344 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6345 (dev2->dma_alias_mask &&
6346 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6347 pci_real_dma_dev(dev1) == dev2 ||
6348 pci_real_dma_dev(dev2) == dev1;
6351 bool pci_device_is_present(struct pci_dev *pdev)
6355 if (pci_dev_is_disconnected(pdev))
6357 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6359 EXPORT_SYMBOL_GPL(pci_device_is_present);
6361 void pci_ignore_hotplug(struct pci_dev *dev)
6363 struct pci_dev *bridge = dev->bus->self;
6365 dev->ignore_hotplug = 1;
6366 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6368 bridge->ignore_hotplug = 1;
6370 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6373 * pci_real_dma_dev - Get PCI DMA device for PCI device
6374 * @dev: the PCI device that may have a PCI DMA alias
6376 * Permits the platform to provide architecture-specific functionality to
6377 * devices needing to alias DMA to another PCI device on another PCI bus. If
6378 * the PCI device is on the same bus, it is recommended to use
6379 * pci_add_dma_alias(). This is the default implementation. Architecture
6380 * implementations can override this.
6382 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6387 resource_size_t __weak pcibios_default_alignment(void)
6393 * Arches that don't want to expose struct resource to userland as-is in
6394 * sysfs and /proc can implement their own pci_resource_to_user().
6396 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6397 const struct resource *rsrc,
6398 resource_size_t *start, resource_size_t *end)
6400 *start = rsrc->start;
6404 static char *resource_alignment_param;
6405 static DEFINE_SPINLOCK(resource_alignment_lock);
6408 * pci_specified_resource_alignment - get resource alignment specified by user.
6409 * @dev: the PCI device to get
6410 * @resize: whether or not to change resources' size when reassigning alignment
6412 * RETURNS: Resource alignment if it is specified.
6413 * Zero if it is not specified.
6415 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6418 int align_order, count;
6419 resource_size_t align = pcibios_default_alignment();
6423 spin_lock(&resource_alignment_lock);
6424 p = resource_alignment_param;
6427 if (pci_has_flag(PCI_PROBE_ONLY)) {
6429 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6435 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6438 if (align_order > 63) {
6439 pr_err("PCI: Invalid requested alignment (order %d)\n",
6441 align_order = PAGE_SHIFT;
6444 align_order = PAGE_SHIFT;
6447 ret = pci_dev_str_match(dev, p, &p);
6450 align = 1ULL << align_order;
6452 } else if (ret < 0) {
6453 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6458 if (*p != ';' && *p != ',') {
6459 /* End of param or invalid format */
6465 spin_unlock(&resource_alignment_lock);
6469 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6470 resource_size_t align, bool resize)
6472 struct resource *r = &dev->resource[bar];
6473 resource_size_t size;
6475 if (!(r->flags & IORESOURCE_MEM))
6478 if (r->flags & IORESOURCE_PCI_FIXED) {
6479 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6480 bar, r, (unsigned long long)align);
6484 size = resource_size(r);
6489 * Increase the alignment of the resource. There are two ways we
6492 * 1) Increase the size of the resource. BARs are aligned on their
6493 * size, so when we reallocate space for this resource, we'll
6494 * allocate it with the larger alignment. This also prevents
6495 * assignment of any other BARs inside the alignment region, so
6496 * if we're requesting page alignment, this means no other BARs
6497 * will share the page.
6499 * The disadvantage is that this makes the resource larger than
6500 * the hardware BAR, which may break drivers that compute things
6501 * based on the resource size, e.g., to find registers at a
6502 * fixed offset before the end of the BAR.
6504 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6505 * set r->start to the desired alignment. By itself this
6506 * doesn't prevent other BARs being put inside the alignment
6507 * region, but if we realign *every* resource of every device in
6508 * the system, none of them will share an alignment region.
6510 * When the user has requested alignment for only some devices via
6511 * the "pci=resource_alignment" argument, "resize" is true and we
6512 * use the first method. Otherwise we assume we're aligning all
6513 * devices and we use the second.
6516 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6517 bar, r, (unsigned long long)align);
6523 r->flags &= ~IORESOURCE_SIZEALIGN;
6524 r->flags |= IORESOURCE_STARTALIGN;
6526 r->end = r->start + size - 1;
6528 r->flags |= IORESOURCE_UNSET;
6532 * This function disables memory decoding and releases memory resources
6533 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6534 * It also rounds up size to specified alignment.
6535 * Later on, the kernel will assign page-aligned memory resource back
6538 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6542 resource_size_t align;
6544 bool resize = false;
6547 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6548 * 3.4.1.11. Their resources are allocated from the space
6549 * described by the VF BARx register in the PF's SR-IOV capability.
6550 * We can't influence their alignment here.
6555 /* check if specified PCI is target device to reassign */
6556 align = pci_specified_resource_alignment(dev, &resize);
6560 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6561 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6562 pci_warn(dev, "Can't reassign resources to host bridge\n");
6566 pci_read_config_word(dev, PCI_COMMAND, &command);
6567 command &= ~PCI_COMMAND_MEMORY;
6568 pci_write_config_word(dev, PCI_COMMAND, command);
6570 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6571 pci_request_resource_alignment(dev, i, align, resize);
6574 * Need to disable bridge's resource window,
6575 * to enable the kernel to reassign new resource
6578 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6579 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6580 r = &dev->resource[i];
6581 if (!(r->flags & IORESOURCE_MEM))
6583 r->flags |= IORESOURCE_UNSET;
6584 r->end = resource_size(r) - 1;
6587 pci_disable_bridge_window(dev);
6591 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6595 spin_lock(&resource_alignment_lock);
6596 if (resource_alignment_param)
6597 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6598 spin_unlock(&resource_alignment_lock);
6603 static ssize_t resource_alignment_store(struct bus_type *bus,
6604 const char *buf, size_t count)
6606 char *param, *old, *end;
6608 if (count >= (PAGE_SIZE - 1))
6611 param = kstrndup(buf, count, GFP_KERNEL);
6615 end = strchr(param, '\n');
6619 spin_lock(&resource_alignment_lock);
6620 old = resource_alignment_param;
6621 if (strlen(param)) {
6622 resource_alignment_param = param;
6625 resource_alignment_param = NULL;
6627 spin_unlock(&resource_alignment_lock);
6634 static BUS_ATTR_RW(resource_alignment);
6636 static int __init pci_resource_alignment_sysfs_init(void)
6638 return bus_create_file(&pci_bus_type,
6639 &bus_attr_resource_alignment);
6641 late_initcall(pci_resource_alignment_sysfs_init);
6643 static void pci_no_domains(void)
6645 #ifdef CONFIG_PCI_DOMAINS
6646 pci_domains_supported = 0;
6650 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6651 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6653 static int pci_get_new_domain_nr(void)
6655 return atomic_inc_return(&__domain_nr);
6658 static int of_pci_bus_find_domain_nr(struct device *parent)
6660 static int use_dt_domains = -1;
6664 domain = of_get_pci_domain_nr(parent->of_node);
6667 * Check DT domain and use_dt_domains values.
6669 * If DT domain property is valid (domain >= 0) and
6670 * use_dt_domains != 0, the DT assignment is valid since this means
6671 * we have not previously allocated a domain number by using
6672 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6673 * 1, to indicate that we have just assigned a domain number from
6676 * If DT domain property value is not valid (ie domain < 0), and we
6677 * have not previously assigned a domain number from DT
6678 * (use_dt_domains != 1) we should assign a domain number by
6681 * pci_get_new_domain_nr()
6683 * API and update the use_dt_domains value to keep track of method we
6684 * are using to assign domain numbers (use_dt_domains = 0).
6686 * All other combinations imply we have a platform that is trying
6687 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6688 * which is a recipe for domain mishandling and it is prevented by
6689 * invalidating the domain value (domain = -1) and printing a
6690 * corresponding error.
6692 if (domain >= 0 && use_dt_domains) {
6694 } else if (domain < 0 && use_dt_domains != 1) {
6696 domain = pci_get_new_domain_nr();
6699 pr_err("Node %pOF has ", parent->of_node);
6700 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6707 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6709 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6710 acpi_pci_bus_find_domain_nr(bus);
6715 * pci_ext_cfg_avail - can we access extended PCI config space?
6717 * Returns 1 if we can access PCI extended config space (offsets
6718 * greater than 0xff). This is the default implementation. Architecture
6719 * implementations can override this.
6721 int __weak pci_ext_cfg_avail(void)
6726 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6729 EXPORT_SYMBOL(pci_fixup_cardbus);
6731 static int __init pci_setup(char *str)
6734 char *k = strchr(str, ',');
6737 if (*str && (str = pcibios_setup(str)) && *str) {
6738 if (!strcmp(str, "nomsi")) {
6740 } else if (!strncmp(str, "noats", 5)) {
6741 pr_info("PCIe: ATS is disabled\n");
6742 pcie_ats_disabled = true;
6743 } else if (!strcmp(str, "noaer")) {
6745 } else if (!strcmp(str, "earlydump")) {
6746 pci_early_dump = true;
6747 } else if (!strncmp(str, "realloc=", 8)) {
6748 pci_realloc_get_opt(str + 8);
6749 } else if (!strncmp(str, "realloc", 7)) {
6750 pci_realloc_get_opt("on");
6751 } else if (!strcmp(str, "nodomains")) {
6753 } else if (!strncmp(str, "noari", 5)) {
6754 pcie_ari_disabled = true;
6755 } else if (!strncmp(str, "cbiosize=", 9)) {
6756 pci_cardbus_io_size = memparse(str + 9, &str);
6757 } else if (!strncmp(str, "cbmemsize=", 10)) {
6758 pci_cardbus_mem_size = memparse(str + 10, &str);
6759 } else if (!strncmp(str, "resource_alignment=", 19)) {
6760 resource_alignment_param = str + 19;
6761 } else if (!strncmp(str, "ecrc=", 5)) {
6762 pcie_ecrc_get_policy(str + 5);
6763 } else if (!strncmp(str, "hpiosize=", 9)) {
6764 pci_hotplug_io_size = memparse(str + 9, &str);
6765 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6766 pci_hotplug_mmio_size = memparse(str + 11, &str);
6767 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6768 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6769 } else if (!strncmp(str, "hpmemsize=", 10)) {
6770 pci_hotplug_mmio_size = memparse(str + 10, &str);
6771 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6772 } else if (!strncmp(str, "hpbussize=", 10)) {
6773 pci_hotplug_bus_size =
6774 simple_strtoul(str + 10, &str, 0);
6775 if (pci_hotplug_bus_size > 0xff)
6776 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6777 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6778 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6779 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6780 pcie_bus_config = PCIE_BUS_SAFE;
6781 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6782 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6783 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6784 pcie_bus_config = PCIE_BUS_PEER2PEER;
6785 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6786 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6787 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6788 disable_acs_redir_param = str + 18;
6790 pr_err("PCI: Unknown option `%s'\n", str);
6797 early_param("pci", pci_setup);
6800 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6801 * in pci_setup(), above, to point to data in the __initdata section which
6802 * will be freed after the init sequence is complete. We can't allocate memory
6803 * in pci_setup() because some architectures do not have any memory allocation
6804 * service available during an early_param() call. So we allocate memory and
6805 * copy the variable here before the init section is freed.
6808 static int __init pci_realloc_setup_params(void)
6810 resource_alignment_param = kstrdup(resource_alignment_param,
6812 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6816 pure_initcall(pci_realloc_setup_params);