1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
37 DEFINE_MUTEX(pci_slot_mutex);
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 EXPORT_SYMBOL_GPL(pci_power_names);
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48 EXPORT_SYMBOL(pci_pci_problems);
50 unsigned int pci_pm_d3hot_delay;
52 static void pci_pme_list_scan(struct work_struct *work);
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 struct pci_pme_device {
59 struct list_head list;
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
67 unsigned int delay = dev->d3hot_delay;
69 if (delay < pci_pm_d3hot_delay)
70 delay = pci_pm_d3hot_delay;
76 #ifdef CONFIG_PCI_DOMAINS
77 int pci_domains_supported = 1;
80 #define DEFAULT_CARDBUS_IO_SIZE (256)
81 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
82 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
83 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
84 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86 #define DEFAULT_HOTPLUG_IO_SIZE (256)
87 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
88 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
89 /* hpiosize=nn can override this */
90 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
92 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
93 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
94 * pci=hpmemsize=nnM overrides both
96 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
97 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
99 #define DEFAULT_HOTPLUG_BUS_SIZE 1
100 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
103 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
104 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
105 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
106 #elif defined CONFIG_PCIE_BUS_SAFE
107 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
108 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
109 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
110 #elif defined CONFIG_PCIE_BUS_PEER2PEER
111 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
113 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
117 * The default CLS is used if arch didn't set CLS explicitly and not
118 * all pci devices agree on the same value. Arch can override either
119 * the dfl or actual value as it sees fit. Don't forget this is
120 * measured in 32-bit words, not bytes.
122 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
123 u8 pci_cache_line_size;
126 * If we set up a device for bus mastering, we need to check the latency
127 * timer as certain BIOSes forget to set it properly.
129 unsigned int pcibios_max_latency = 255;
131 /* If set, the PCIe ARI capability will not be used. */
132 static bool pcie_ari_disabled;
134 /* If set, the PCIe ATS capability will not be used. */
135 static bool pcie_ats_disabled;
137 /* If set, the PCI config space of each device is printed during boot. */
140 bool pci_ats_disabled(void)
142 return pcie_ats_disabled;
144 EXPORT_SYMBOL_GPL(pci_ats_disabled);
146 /* Disable bridge_d3 for all PCIe ports */
147 static bool pci_bridge_d3_disable;
148 /* Force bridge_d3 for all PCIe ports */
149 static bool pci_bridge_d3_force;
151 static int __init pcie_port_pm_setup(char *str)
153 if (!strcmp(str, "off"))
154 pci_bridge_d3_disable = true;
155 else if (!strcmp(str, "force"))
156 pci_bridge_d3_force = true;
159 __setup("pcie_port_pm=", pcie_port_pm_setup);
161 /* Time to wait after a reset for device to become responsive */
162 #define PCIE_RESET_READY_POLL_MS 60000
165 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
166 * @bus: pointer to PCI bus structure to search
168 * Given a PCI bus, returns the highest PCI bus number present in the set
169 * including the given PCI bus and its list of child PCI buses.
171 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
174 unsigned char max, n;
176 max = bus->busn_res.end;
177 list_for_each_entry(tmp, &bus->children, node) {
178 n = pci_bus_max_busnr(tmp);
184 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
187 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
188 * @pdev: the PCI device
190 * Returns error bits set in PCI_STATUS and clears them.
192 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
197 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
198 if (ret != PCIBIOS_SUCCESSFUL)
201 status &= PCI_STATUS_ERROR_BITS;
203 pci_write_config_word(pdev, PCI_STATUS, status);
207 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
209 #ifdef CONFIG_HAS_IOMEM
210 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
212 struct resource *res = &pdev->resource[bar];
215 * Make sure the BAR is actually a memory resource, not an IO resource
217 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
218 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
221 return ioremap(res->start, resource_size(res));
223 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
225 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
228 * Make sure the BAR is actually a memory resource, not an IO resource
230 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
234 return ioremap_wc(pci_resource_start(pdev, bar),
235 pci_resource_len(pdev, bar));
237 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
241 * pci_dev_str_match_path - test if a path string matches a device
242 * @dev: the PCI device to test
243 * @path: string to match the device against
244 * @endptr: pointer to the string after the match
246 * Test if a string (typically from a kernel parameter) formatted as a
247 * path of device/function addresses matches a PCI device. The string must
250 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
252 * A path for a device can be obtained using 'lspci -t'. Using a path
253 * is more robust against bus renumbering than using only a single bus,
254 * device and function address.
256 * Returns 1 if the string matches the device, 0 if it does not and
257 * a negative error code if it fails to parse the string.
259 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
263 int seg, bus, slot, func;
267 *endptr = strchrnul(path, ';');
269 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
274 p = strrchr(wpath, '/');
277 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
283 if (dev->devfn != PCI_DEVFN(slot, func)) {
289 * Note: we don't need to get a reference to the upstream
290 * bridge because we hold a reference to the top level
291 * device which should hold a reference to the bridge,
294 dev = pci_upstream_bridge(dev);
303 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
307 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
314 ret = (seg == pci_domain_nr(dev->bus) &&
315 bus == dev->bus->number &&
316 dev->devfn == PCI_DEVFN(slot, func));
324 * pci_dev_str_match - test if a string matches a device
325 * @dev: the PCI device to test
326 * @p: string to match the device against
327 * @endptr: pointer to the string after the match
329 * Test if a string (typically from a kernel parameter) matches a specified
330 * PCI device. The string may be of one of the following formats:
332 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
333 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
335 * The first format specifies a PCI bus/device/function address which
336 * may change if new hardware is inserted, if motherboard firmware changes,
337 * or due to changes caused in kernel parameters. If the domain is
338 * left unspecified, it is taken to be 0. In order to be robust against
339 * bus renumbering issues, a path of PCI device/function numbers may be used
340 * to address the specific device. The path for a device can be determined
341 * through the use of 'lspci -t'.
343 * The second format matches devices using IDs in the configuration
344 * space which may match multiple devices in the system. A value of 0
345 * for any field will match all devices. (Note: this differs from
346 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
347 * legacy reasons and convenience so users don't have to specify
348 * FFFFFFFFs on the command line.)
350 * Returns 1 if the string matches the device, 0 if it does not and
351 * a negative error code if the string cannot be parsed.
353 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
358 unsigned short vendor, device, subsystem_vendor, subsystem_device;
360 if (strncmp(p, "pci:", 4) == 0) {
361 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
363 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
364 &subsystem_vendor, &subsystem_device, &count);
366 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
370 subsystem_vendor = 0;
371 subsystem_device = 0;
376 if ((!vendor || vendor == dev->vendor) &&
377 (!device || device == dev->device) &&
378 (!subsystem_vendor ||
379 subsystem_vendor == dev->subsystem_vendor) &&
380 (!subsystem_device ||
381 subsystem_device == dev->subsystem_device))
385 * PCI Bus, Device, Function IDs are specified
386 * (optionally, may include a path of devfns following it)
388 ret = pci_dev_str_match_path(dev, p, &p);
403 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
404 u8 pos, int cap, int *ttl)
409 pci_bus_read_config_byte(bus, devfn, pos, &pos);
415 pci_bus_read_config_word(bus, devfn, pos, &ent);
427 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
430 int ttl = PCI_FIND_CAP_TTL;
432 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
435 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
437 return __pci_find_next_cap(dev->bus, dev->devfn,
438 pos + PCI_CAP_LIST_NEXT, cap);
440 EXPORT_SYMBOL_GPL(pci_find_next_capability);
442 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
443 unsigned int devfn, u8 hdr_type)
447 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
448 if (!(status & PCI_STATUS_CAP_LIST))
452 case PCI_HEADER_TYPE_NORMAL:
453 case PCI_HEADER_TYPE_BRIDGE:
454 return PCI_CAPABILITY_LIST;
455 case PCI_HEADER_TYPE_CARDBUS:
456 return PCI_CB_CAPABILITY_LIST;
463 * pci_find_capability - query for devices' capabilities
464 * @dev: PCI device to query
465 * @cap: capability code
467 * Tell if a device supports a given PCI capability.
468 * Returns the address of the requested capability structure within the
469 * device's PCI configuration space or 0 in case the device does not
470 * support it. Possible values for @cap include:
472 * %PCI_CAP_ID_PM Power Management
473 * %PCI_CAP_ID_AGP Accelerated Graphics Port
474 * %PCI_CAP_ID_VPD Vital Product Data
475 * %PCI_CAP_ID_SLOTID Slot Identification
476 * %PCI_CAP_ID_MSI Message Signalled Interrupts
477 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
478 * %PCI_CAP_ID_PCIX PCI-X
479 * %PCI_CAP_ID_EXP PCI Express
481 u8 pci_find_capability(struct pci_dev *dev, int cap)
485 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
487 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
491 EXPORT_SYMBOL(pci_find_capability);
494 * pci_bus_find_capability - query for devices' capabilities
495 * @bus: the PCI bus to query
496 * @devfn: PCI device to query
497 * @cap: capability code
499 * Like pci_find_capability() but works for PCI devices that do not have a
500 * pci_dev structure set up yet.
502 * Returns the address of the requested capability structure within the
503 * device's PCI configuration space or 0 in case the device does not
506 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
510 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
512 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
514 pos = __pci_find_next_cap(bus, devfn, pos, cap);
518 EXPORT_SYMBOL(pci_bus_find_capability);
521 * pci_find_next_ext_capability - Find an extended capability
522 * @dev: PCI device to query
523 * @start: address at which to start looking (0 to start at beginning of list)
524 * @cap: capability code
526 * Returns the address of the next matching extended capability structure
527 * within the device's PCI configuration space or 0 if the device does
528 * not support it. Some capabilities can occur several times, e.g., the
529 * vendor-specific capability, and this provides a way to find them all.
531 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
535 u16 pos = PCI_CFG_SPACE_SIZE;
537 /* minimum 8 bytes per capability */
538 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
540 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
546 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
550 * If we have no capabilities, this is indicated by cap ID,
551 * cap version and next pointer all being 0.
557 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
560 pos = PCI_EXT_CAP_NEXT(header);
561 if (pos < PCI_CFG_SPACE_SIZE)
564 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
570 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
573 * pci_find_ext_capability - Find an extended capability
574 * @dev: PCI device to query
575 * @cap: capability code
577 * Returns the address of the requested extended capability structure
578 * within the device's PCI configuration space or 0 if the device does
579 * not support it. Possible values for @cap include:
581 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
582 * %PCI_EXT_CAP_ID_VC Virtual Channel
583 * %PCI_EXT_CAP_ID_DSN Device Serial Number
584 * %PCI_EXT_CAP_ID_PWR Power Budgeting
586 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
588 return pci_find_next_ext_capability(dev, 0, cap);
590 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
593 * pci_get_dsn - Read and return the 8-byte Device Serial Number
594 * @dev: PCI device to query
596 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
599 * Returns the DSN, or zero if the capability does not exist.
601 u64 pci_get_dsn(struct pci_dev *dev)
607 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
612 * The Device Serial Number is two dwords offset 4 bytes from the
613 * capability position. The specification says that the first dword is
614 * the lower half, and the second dword is the upper half.
617 pci_read_config_dword(dev, pos, &dword);
619 pci_read_config_dword(dev, pos + 4, &dword);
620 dsn |= ((u64)dword) << 32;
624 EXPORT_SYMBOL_GPL(pci_get_dsn);
626 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
628 int rc, ttl = PCI_FIND_CAP_TTL;
631 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
632 mask = HT_3BIT_CAP_MASK;
634 mask = HT_5BIT_CAP_MASK;
636 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
637 PCI_CAP_ID_HT, &ttl);
639 rc = pci_read_config_byte(dev, pos + 3, &cap);
640 if (rc != PCIBIOS_SUCCESSFUL)
643 if ((cap & mask) == ht_cap)
646 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
647 pos + PCI_CAP_LIST_NEXT,
648 PCI_CAP_ID_HT, &ttl);
655 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
656 * @dev: PCI device to query
657 * @pos: Position from which to continue searching
658 * @ht_cap: HyperTransport capability code
660 * To be used in conjunction with pci_find_ht_capability() to search for
661 * all capabilities matching @ht_cap. @pos should always be a value returned
662 * from pci_find_ht_capability().
664 * NB. To be 100% safe against broken PCI devices, the caller should take
665 * steps to avoid an infinite loop.
667 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
669 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
671 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
674 * pci_find_ht_capability - query a device's HyperTransport capabilities
675 * @dev: PCI device to query
676 * @ht_cap: HyperTransport capability code
678 * Tell if a device supports a given HyperTransport capability.
679 * Returns an address within the device's PCI configuration space
680 * or 0 in case the device does not support the request capability.
681 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
682 * which has a HyperTransport capability matching @ht_cap.
684 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
688 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
690 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
694 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
697 * pci_find_vsec_capability - Find a vendor-specific extended capability
698 * @dev: PCI device to query
699 * @vendor: Vendor ID for which capability is defined
700 * @cap: Vendor-specific capability ID
702 * If @dev has Vendor ID @vendor, search for a VSEC capability with
703 * VSEC ID @cap. If found, return the capability offset in
704 * config space; otherwise return 0.
706 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
711 if (vendor != dev->vendor)
714 while ((vsec = pci_find_next_ext_capability(dev, vsec,
715 PCI_EXT_CAP_ID_VNDR))) {
716 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
717 &header) == PCIBIOS_SUCCESSFUL &&
718 PCI_VNDR_HEADER_ID(header) == cap)
724 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
727 * pci_find_parent_resource - return resource region of parent bus of given
729 * @dev: PCI device structure contains resources to be searched
730 * @res: child resource record for which parent is sought
732 * For given resource region of given device, return the resource region of
733 * parent bus the given region is contained in.
735 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
736 struct resource *res)
738 const struct pci_bus *bus = dev->bus;
742 pci_bus_for_each_resource(bus, r, i) {
745 if (resource_contains(r, res)) {
748 * If the window is prefetchable but the BAR is
749 * not, the allocator made a mistake.
751 if (r->flags & IORESOURCE_PREFETCH &&
752 !(res->flags & IORESOURCE_PREFETCH))
756 * If we're below a transparent bridge, there may
757 * be both a positively-decoded aperture and a
758 * subtractively-decoded region that contain the BAR.
759 * We want the positively-decoded one, so this depends
760 * on pci_bus_for_each_resource() giving us those
768 EXPORT_SYMBOL(pci_find_parent_resource);
771 * pci_find_resource - Return matching PCI device resource
772 * @dev: PCI device to query
773 * @res: Resource to look for
775 * Goes over standard PCI resources (BARs) and checks if the given resource
776 * is partially or fully contained in any of them. In that case the
777 * matching resource is returned, %NULL otherwise.
779 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
783 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
784 struct resource *r = &dev->resource[i];
786 if (r->start && resource_contains(r, res))
792 EXPORT_SYMBOL(pci_find_resource);
795 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
796 * @dev: the PCI device to operate on
797 * @pos: config space offset of status word
798 * @mask: mask of bit(s) to care about in status word
800 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
802 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
806 /* Wait for Transaction Pending bit clean */
807 for (i = 0; i < 4; i++) {
810 msleep((1 << (i - 1)) * 100);
812 pci_read_config_word(dev, pos, &status);
813 if (!(status & mask))
820 static int pci_acs_enable;
823 * pci_request_acs - ask for ACS to be enabled if supported
825 void pci_request_acs(void)
830 static const char *disable_acs_redir_param;
833 * pci_disable_acs_redir - disable ACS redirect capabilities
834 * @dev: the PCI device
836 * For only devices specified in the disable_acs_redir parameter.
838 static void pci_disable_acs_redir(struct pci_dev *dev)
845 if (!disable_acs_redir_param)
848 p = disable_acs_redir_param;
850 ret = pci_dev_str_match(dev, p, &p);
852 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
853 disable_acs_redir_param);
856 } else if (ret == 1) {
861 if (*p != ';' && *p != ',') {
862 /* End of param or invalid format */
871 if (!pci_dev_specific_disable_acs_redir(dev))
876 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
880 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
882 /* P2P Request & Completion Redirect */
883 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
885 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
887 pci_info(dev, "disabled ACS redirect\n");
891 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
892 * @dev: the PCI device
894 static void pci_std_enable_acs(struct pci_dev *dev)
904 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
905 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
907 /* Source Validation */
908 ctrl |= (cap & PCI_ACS_SV);
910 /* P2P Request Redirect */
911 ctrl |= (cap & PCI_ACS_RR);
913 /* P2P Completion Redirect */
914 ctrl |= (cap & PCI_ACS_CR);
916 /* Upstream Forwarding */
917 ctrl |= (cap & PCI_ACS_UF);
919 /* Enable Translation Blocking for external devices */
920 if (dev->external_facing || dev->untrusted)
921 ctrl |= (cap & PCI_ACS_TB);
923 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
927 * pci_enable_acs - enable ACS if hardware support it
928 * @dev: the PCI device
930 static void pci_enable_acs(struct pci_dev *dev)
933 goto disable_acs_redir;
935 if (!pci_dev_specific_enable_acs(dev))
936 goto disable_acs_redir;
938 pci_std_enable_acs(dev);
942 * Note: pci_disable_acs_redir() must be called even if ACS was not
943 * enabled by the kernel because it may have been enabled by
944 * platform firmware. So if we are told to disable it, we should
945 * always disable it after setting the kernel's default
948 pci_disable_acs_redir(dev);
952 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
953 * @dev: PCI device to have its BARs restored
955 * Restore the BAR values for a given device, so as to make it
956 * accessible by its driver.
958 static void pci_restore_bars(struct pci_dev *dev)
962 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
963 pci_update_resource(dev, i);
966 static const struct pci_platform_pm_ops *pci_platform_pm;
968 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
970 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
971 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
973 pci_platform_pm = ops;
977 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
979 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
982 static inline int platform_pci_set_power_state(struct pci_dev *dev,
985 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
988 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
990 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
993 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
995 if (pci_platform_pm && pci_platform_pm->refresh_state)
996 pci_platform_pm->refresh_state(dev);
999 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1001 return pci_platform_pm ?
1002 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1005 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1007 return pci_platform_pm ?
1008 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1011 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1013 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1016 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1018 if (pci_platform_pm && pci_platform_pm->bridge_d3)
1019 return pci_platform_pm->bridge_d3(dev);
1024 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1026 * @dev: PCI device to handle.
1027 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1030 * -EINVAL if the requested state is invalid.
1031 * -EIO if device does not support PCI PM or its PM capabilities register has a
1032 * wrong version, or device doesn't support the requested state.
1033 * 0 if device already is in the requested state.
1034 * 0 if device's power state has been successfully changed.
1036 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1039 bool need_restore = false;
1041 /* Check if we're already there */
1042 if (dev->current_state == state)
1048 if (state < PCI_D0 || state > PCI_D3hot)
1052 * Validate transition: We can enter D0 from any state, but if
1053 * we're already in a low-power state, we can only go deeper. E.g.,
1054 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1055 * we'd have to go from D3 to D0, then to D1.
1057 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1058 && dev->current_state > state) {
1059 pci_err(dev, "invalid power transition (from %s to %s)\n",
1060 pci_power_name(dev->current_state),
1061 pci_power_name(state));
1065 /* Check if this device supports the desired state */
1066 if ((state == PCI_D1 && !dev->d1_support)
1067 || (state == PCI_D2 && !dev->d2_support))
1070 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1071 if (pmcsr == (u16) ~0) {
1072 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1073 pci_power_name(dev->current_state),
1074 pci_power_name(state));
1079 * If we're (effectively) in D3, force entire word to 0.
1080 * This doesn't affect PME_Status, disables PME_En, and
1081 * sets PowerState to 0.
1083 switch (dev->current_state) {
1087 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1092 case PCI_UNKNOWN: /* Boot-up */
1093 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1094 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1095 need_restore = true;
1096 fallthrough; /* force to D0 */
1102 /* Enter specified state */
1103 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1106 * Mandatory power management transition delays; see PCI PM 1.1
1109 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1110 pci_dev_d3_sleep(dev);
1111 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1112 udelay(PCI_PM_D2_DELAY);
1114 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1115 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1116 if (dev->current_state != state)
1117 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1118 pci_power_name(dev->current_state),
1119 pci_power_name(state));
1122 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1123 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1124 * from D3hot to D0 _may_ perform an internal reset, thereby
1125 * going to "D0 Uninitialized" rather than "D0 Initialized".
1126 * For example, at least some versions of the 3c905B and the
1127 * 3c556B exhibit this behaviour.
1129 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1130 * devices in a D3hot state at boot. Consequently, we need to
1131 * restore at least the BARs so that the device will be
1132 * accessible to its driver.
1135 pci_restore_bars(dev);
1138 pcie_aspm_pm_state_change(dev->bus->self);
1144 * pci_update_current_state - Read power state of given device and cache it
1145 * @dev: PCI device to handle.
1146 * @state: State to cache in case the device doesn't have the PM capability
1148 * The power state is read from the PMCSR register, which however is
1149 * inaccessible in D3cold. The platform firmware is therefore queried first
1150 * to detect accessibility of the register. In case the platform firmware
1151 * reports an incorrect state or the device isn't power manageable by the
1152 * platform at all, we try to detect D3cold by testing accessibility of the
1153 * vendor ID in config space.
1155 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1157 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1158 !pci_device_is_present(dev)) {
1159 dev->current_state = PCI_D3cold;
1160 } else if (dev->pm_cap) {
1163 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1164 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1166 dev->current_state = state;
1171 * pci_refresh_power_state - Refresh the given device's power state data
1172 * @dev: Target PCI device.
1174 * Ask the platform to refresh the devices power state information and invoke
1175 * pci_update_current_state() to update its current PCI power state.
1177 void pci_refresh_power_state(struct pci_dev *dev)
1179 if (platform_pci_power_manageable(dev))
1180 platform_pci_refresh_power_state(dev);
1182 pci_update_current_state(dev, dev->current_state);
1186 * pci_platform_power_transition - Use platform to change device power state
1187 * @dev: PCI device to handle.
1188 * @state: State to put the device into.
1190 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1194 if (platform_pci_power_manageable(dev)) {
1195 error = platform_pci_set_power_state(dev, state);
1197 pci_update_current_state(dev, state);
1201 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1202 dev->current_state = PCI_D0;
1206 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1208 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1210 pm_request_resume(&pci_dev->dev);
1215 * pci_resume_bus - Walk given bus and runtime resume devices on it
1216 * @bus: Top bus of the subtree to walk.
1218 void pci_resume_bus(struct pci_bus *bus)
1221 pci_walk_bus(bus, pci_resume_one, NULL);
1224 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1230 * After reset, the device should not silently discard config
1231 * requests, but it may still indicate that it needs more time by
1232 * responding to them with CRS completions. The Root Port will
1233 * generally synthesize ~0 data to complete the read (except when
1234 * CRS SV is enabled and the read was for the Vendor ID; in that
1235 * case it synthesizes 0x0001 data).
1237 * Wait for the device to return a non-CRS completion. Read the
1238 * Command register instead of Vendor ID so we don't have to
1239 * contend with the CRS SV value.
1241 pci_read_config_dword(dev, PCI_COMMAND, &id);
1243 if (delay > timeout) {
1244 pci_warn(dev, "not ready %dms after %s; giving up\n",
1245 delay - 1, reset_type);
1250 pci_info(dev, "not ready %dms after %s; waiting\n",
1251 delay - 1, reset_type);
1255 pci_read_config_dword(dev, PCI_COMMAND, &id);
1259 pci_info(dev, "ready %dms after %s\n", delay - 1,
1266 * pci_power_up - Put the given device into D0
1267 * @dev: PCI device to power up
1269 int pci_power_up(struct pci_dev *dev)
1271 pci_platform_power_transition(dev, PCI_D0);
1274 * Mandatory power management transition delays are handled in
1275 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1276 * corresponding bridge.
1278 if (dev->runtime_d3cold) {
1280 * When powering on a bridge from D3cold, the whole hierarchy
1281 * may be powered on into D0uninitialized state, resume them to
1282 * give them a chance to suspend again
1284 pci_resume_bus(dev->subordinate);
1287 return pci_raw_set_power_state(dev, PCI_D0);
1291 * __pci_dev_set_current_state - Set current state of a PCI device
1292 * @dev: Device to handle
1293 * @data: pointer to state to be set
1295 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1297 pci_power_t state = *(pci_power_t *)data;
1299 dev->current_state = state;
1304 * pci_bus_set_current_state - Walk given bus and set current state of devices
1305 * @bus: Top bus of the subtree to walk.
1306 * @state: state to be set
1308 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1311 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1315 * pci_set_power_state - Set the power state of a PCI device
1316 * @dev: PCI device to handle.
1317 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1319 * Transition a device to a new power state, using the platform firmware and/or
1320 * the device's PCI PM registers.
1323 * -EINVAL if the requested state is invalid.
1324 * -EIO if device does not support PCI PM or its PM capabilities register has a
1325 * wrong version, or device doesn't support the requested state.
1326 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1327 * 0 if device already is in the requested state.
1328 * 0 if the transition is to D3 but D3 is not supported.
1329 * 0 if device's power state has been successfully changed.
1331 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1335 /* Bound the state we're entering */
1336 if (state > PCI_D3cold)
1338 else if (state < PCI_D0)
1340 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1343 * If the device or the parent bridge do not support PCI
1344 * PM, ignore the request if we're doing anything other
1345 * than putting it into D0 (which would only happen on
1350 /* Check if we're already there */
1351 if (dev->current_state == state)
1354 if (state == PCI_D0)
1355 return pci_power_up(dev);
1358 * This device is quirked not to be put into D3, so don't put it in
1361 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1365 * To put device in D3cold, we put device into D3hot in native
1366 * way, then put device into D3cold with platform ops
1368 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1371 if (pci_platform_power_transition(dev, state))
1374 /* Powering off a bridge may power off the whole hierarchy */
1375 if (state == PCI_D3cold)
1376 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1380 EXPORT_SYMBOL(pci_set_power_state);
1383 * pci_choose_state - Choose the power state of a PCI device
1384 * @dev: PCI device to be suspended
1385 * @state: target sleep state for the whole system. This is the value
1386 * that is passed to suspend() function.
1388 * Returns PCI power state suitable for given device and given system
1391 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1398 ret = platform_pci_choose_state(dev);
1399 if (ret != PCI_POWER_ERROR)
1402 switch (state.event) {
1405 case PM_EVENT_FREEZE:
1406 case PM_EVENT_PRETHAW:
1407 /* REVISIT both freeze and pre-thaw "should" use D0 */
1408 case PM_EVENT_SUSPEND:
1409 case PM_EVENT_HIBERNATE:
1412 pci_info(dev, "unrecognized suspend event %d\n",
1418 EXPORT_SYMBOL(pci_choose_state);
1420 #define PCI_EXP_SAVE_REGS 7
1422 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1423 u16 cap, bool extended)
1425 struct pci_cap_saved_state *tmp;
1427 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1428 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1434 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1436 return _pci_find_saved_cap(dev, cap, false);
1439 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1441 return _pci_find_saved_cap(dev, cap, true);
1444 static int pci_save_pcie_state(struct pci_dev *dev)
1447 struct pci_cap_saved_state *save_state;
1450 if (!pci_is_pcie(dev))
1453 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1455 pci_err(dev, "buffer not found in %s\n", __func__);
1459 cap = (u16 *)&save_state->cap.data[0];
1460 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1461 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1462 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1463 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1464 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1465 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1466 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1471 static void pci_restore_pcie_state(struct pci_dev *dev)
1474 struct pci_cap_saved_state *save_state;
1477 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1481 cap = (u16 *)&save_state->cap.data[0];
1482 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1483 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1484 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1485 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1486 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1487 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1488 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1491 static int pci_save_pcix_state(struct pci_dev *dev)
1494 struct pci_cap_saved_state *save_state;
1496 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1500 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1502 pci_err(dev, "buffer not found in %s\n", __func__);
1506 pci_read_config_word(dev, pos + PCI_X_CMD,
1507 (u16 *)save_state->cap.data);
1512 static void pci_restore_pcix_state(struct pci_dev *dev)
1515 struct pci_cap_saved_state *save_state;
1518 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1519 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1520 if (!save_state || !pos)
1522 cap = (u16 *)&save_state->cap.data[0];
1524 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1527 static void pci_save_ltr_state(struct pci_dev *dev)
1530 struct pci_cap_saved_state *save_state;
1533 if (!pci_is_pcie(dev))
1536 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1540 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1542 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1546 cap = (u16 *)&save_state->cap.data[0];
1547 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1548 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1551 static void pci_restore_ltr_state(struct pci_dev *dev)
1553 struct pci_cap_saved_state *save_state;
1557 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1558 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1559 if (!save_state || !ltr)
1562 cap = (u16 *)&save_state->cap.data[0];
1563 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1564 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1568 * pci_save_state - save the PCI configuration space of a device before
1570 * @dev: PCI device that we're dealing with
1572 int pci_save_state(struct pci_dev *dev)
1575 /* XXX: 100% dword access ok here? */
1576 for (i = 0; i < 16; i++) {
1577 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1578 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1579 i * 4, dev->saved_config_space[i]);
1581 dev->state_saved = true;
1583 i = pci_save_pcie_state(dev);
1587 i = pci_save_pcix_state(dev);
1591 pci_save_ltr_state(dev);
1592 pci_save_dpc_state(dev);
1593 pci_save_aer_state(dev);
1594 pci_save_ptm_state(dev);
1595 return pci_save_vc_state(dev);
1597 EXPORT_SYMBOL(pci_save_state);
1599 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1600 u32 saved_val, int retry, bool force)
1604 pci_read_config_dword(pdev, offset, &val);
1605 if (!force && val == saved_val)
1609 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1610 offset, val, saved_val);
1611 pci_write_config_dword(pdev, offset, saved_val);
1615 pci_read_config_dword(pdev, offset, &val);
1616 if (val == saved_val)
1623 static void pci_restore_config_space_range(struct pci_dev *pdev,
1624 int start, int end, int retry,
1629 for (index = end; index >= start; index--)
1630 pci_restore_config_dword(pdev, 4 * index,
1631 pdev->saved_config_space[index],
1635 static void pci_restore_config_space(struct pci_dev *pdev)
1637 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1638 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1639 /* Restore BARs before the command register. */
1640 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1641 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1642 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1643 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1646 * Force rewriting of prefetch registers to avoid S3 resume
1647 * issues on Intel PCI bridges that occur when these
1648 * registers are not explicitly written.
1650 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1651 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1653 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1657 static void pci_restore_rebar_state(struct pci_dev *pdev)
1659 unsigned int pos, nbars, i;
1662 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1666 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1667 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1668 PCI_REBAR_CTRL_NBAR_SHIFT;
1670 for (i = 0; i < nbars; i++, pos += 8) {
1671 struct resource *res;
1674 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1675 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1676 res = pdev->resource + bar_idx;
1677 size = pci_rebar_bytes_to_size(resource_size(res));
1678 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1679 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1680 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1685 * pci_restore_state - Restore the saved state of a PCI device
1686 * @dev: PCI device that we're dealing with
1688 void pci_restore_state(struct pci_dev *dev)
1690 if (!dev->state_saved)
1694 * Restore max latencies (in the LTR capability) before enabling
1695 * LTR itself (in the PCIe capability).
1697 pci_restore_ltr_state(dev);
1699 pci_restore_pcie_state(dev);
1700 pci_restore_pasid_state(dev);
1701 pci_restore_pri_state(dev);
1702 pci_restore_ats_state(dev);
1703 pci_restore_vc_state(dev);
1704 pci_restore_rebar_state(dev);
1705 pci_restore_dpc_state(dev);
1706 pci_restore_ptm_state(dev);
1708 pci_aer_clear_status(dev);
1709 pci_restore_aer_state(dev);
1711 pci_restore_config_space(dev);
1713 pci_restore_pcix_state(dev);
1714 pci_restore_msi_state(dev);
1716 /* Restore ACS and IOV configuration state */
1717 pci_enable_acs(dev);
1718 pci_restore_iov_state(dev);
1720 dev->state_saved = false;
1722 EXPORT_SYMBOL(pci_restore_state);
1724 struct pci_saved_state {
1725 u32 config_space[16];
1726 struct pci_cap_saved_data cap[];
1730 * pci_store_saved_state - Allocate and return an opaque struct containing
1731 * the device saved state.
1732 * @dev: PCI device that we're dealing with
1734 * Return NULL if no state or error.
1736 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1738 struct pci_saved_state *state;
1739 struct pci_cap_saved_state *tmp;
1740 struct pci_cap_saved_data *cap;
1743 if (!dev->state_saved)
1746 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1748 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1749 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1751 state = kzalloc(size, GFP_KERNEL);
1755 memcpy(state->config_space, dev->saved_config_space,
1756 sizeof(state->config_space));
1759 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1760 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1761 memcpy(cap, &tmp->cap, len);
1762 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1764 /* Empty cap_save terminates list */
1768 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1771 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1772 * @dev: PCI device that we're dealing with
1773 * @state: Saved state returned from pci_store_saved_state()
1775 int pci_load_saved_state(struct pci_dev *dev,
1776 struct pci_saved_state *state)
1778 struct pci_cap_saved_data *cap;
1780 dev->state_saved = false;
1785 memcpy(dev->saved_config_space, state->config_space,
1786 sizeof(state->config_space));
1790 struct pci_cap_saved_state *tmp;
1792 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1793 if (!tmp || tmp->cap.size != cap->size)
1796 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1797 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1798 sizeof(struct pci_cap_saved_data) + cap->size);
1801 dev->state_saved = true;
1804 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1807 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1808 * and free the memory allocated for it.
1809 * @dev: PCI device that we're dealing with
1810 * @state: Pointer to saved state returned from pci_store_saved_state()
1812 int pci_load_and_free_saved_state(struct pci_dev *dev,
1813 struct pci_saved_state **state)
1815 int ret = pci_load_saved_state(dev, *state);
1820 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1822 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1824 return pci_enable_resources(dev, bars);
1827 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1830 struct pci_dev *bridge;
1834 err = pci_set_power_state(dev, PCI_D0);
1835 if (err < 0 && err != -EIO)
1838 bridge = pci_upstream_bridge(dev);
1840 pcie_aspm_powersave_config_link(bridge);
1842 err = pcibios_enable_device(dev, bars);
1845 pci_fixup_device(pci_fixup_enable, dev);
1847 if (dev->msi_enabled || dev->msix_enabled)
1850 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1852 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1853 if (cmd & PCI_COMMAND_INTX_DISABLE)
1854 pci_write_config_word(dev, PCI_COMMAND,
1855 cmd & ~PCI_COMMAND_INTX_DISABLE);
1862 * pci_reenable_device - Resume abandoned device
1863 * @dev: PCI device to be resumed
1865 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1866 * to be called by normal code, write proper resume handler and use it instead.
1868 int pci_reenable_device(struct pci_dev *dev)
1870 if (pci_is_enabled(dev))
1871 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1874 EXPORT_SYMBOL(pci_reenable_device);
1876 static void pci_enable_bridge(struct pci_dev *dev)
1878 struct pci_dev *bridge;
1881 bridge = pci_upstream_bridge(dev);
1883 pci_enable_bridge(bridge);
1885 if (pci_is_enabled(dev)) {
1886 if (!dev->is_busmaster)
1887 pci_set_master(dev);
1891 retval = pci_enable_device(dev);
1893 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1895 pci_set_master(dev);
1898 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1900 struct pci_dev *bridge;
1905 * Power state could be unknown at this point, either due to a fresh
1906 * boot or a device removal call. So get the current power state
1907 * so that things like MSI message writing will behave as expected
1908 * (e.g. if the device really is in D0 at enable time).
1912 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1913 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1916 if (atomic_inc_return(&dev->enable_cnt) > 1)
1917 return 0; /* already enabled */
1919 bridge = pci_upstream_bridge(dev);
1921 pci_enable_bridge(bridge);
1923 /* only skip sriov related */
1924 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1925 if (dev->resource[i].flags & flags)
1927 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1928 if (dev->resource[i].flags & flags)
1931 err = do_pci_enable_device(dev, bars);
1933 atomic_dec(&dev->enable_cnt);
1938 * pci_enable_device_io - Initialize a device for use with IO space
1939 * @dev: PCI device to be initialized
1941 * Initialize device before it's used by a driver. Ask low-level code
1942 * to enable I/O resources. Wake up the device if it was suspended.
1943 * Beware, this function can fail.
1945 int pci_enable_device_io(struct pci_dev *dev)
1947 return pci_enable_device_flags(dev, IORESOURCE_IO);
1949 EXPORT_SYMBOL(pci_enable_device_io);
1952 * pci_enable_device_mem - Initialize a device for use with Memory space
1953 * @dev: PCI device to be initialized
1955 * Initialize device before it's used by a driver. Ask low-level code
1956 * to enable Memory resources. Wake up the device if it was suspended.
1957 * Beware, this function can fail.
1959 int pci_enable_device_mem(struct pci_dev *dev)
1961 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1963 EXPORT_SYMBOL(pci_enable_device_mem);
1966 * pci_enable_device - Initialize device before it's used by a driver.
1967 * @dev: PCI device to be initialized
1969 * Initialize device before it's used by a driver. Ask low-level code
1970 * to enable I/O and memory. Wake up the device if it was suspended.
1971 * Beware, this function can fail.
1973 * Note we don't actually enable the device many times if we call
1974 * this function repeatedly (we just increment the count).
1976 int pci_enable_device(struct pci_dev *dev)
1978 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1980 EXPORT_SYMBOL(pci_enable_device);
1983 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1984 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1985 * there's no need to track it separately. pci_devres is initialized
1986 * when a device is enabled using managed PCI device enable interface.
1989 unsigned int enabled:1;
1990 unsigned int pinned:1;
1991 unsigned int orig_intx:1;
1992 unsigned int restore_intx:1;
1997 static void pcim_release(struct device *gendev, void *res)
1999 struct pci_dev *dev = to_pci_dev(gendev);
2000 struct pci_devres *this = res;
2003 if (dev->msi_enabled)
2004 pci_disable_msi(dev);
2005 if (dev->msix_enabled)
2006 pci_disable_msix(dev);
2008 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2009 if (this->region_mask & (1 << i))
2010 pci_release_region(dev, i);
2015 if (this->restore_intx)
2016 pci_intx(dev, this->orig_intx);
2018 if (this->enabled && !this->pinned)
2019 pci_disable_device(dev);
2022 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2024 struct pci_devres *dr, *new_dr;
2026 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2030 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2033 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2036 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2038 if (pci_is_managed(pdev))
2039 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2044 * pcim_enable_device - Managed pci_enable_device()
2045 * @pdev: PCI device to be initialized
2047 * Managed pci_enable_device().
2049 int pcim_enable_device(struct pci_dev *pdev)
2051 struct pci_devres *dr;
2054 dr = get_pci_dr(pdev);
2060 rc = pci_enable_device(pdev);
2062 pdev->is_managed = 1;
2067 EXPORT_SYMBOL(pcim_enable_device);
2070 * pcim_pin_device - Pin managed PCI device
2071 * @pdev: PCI device to pin
2073 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2074 * driver detach. @pdev must have been enabled with
2075 * pcim_enable_device().
2077 void pcim_pin_device(struct pci_dev *pdev)
2079 struct pci_devres *dr;
2081 dr = find_pci_dr(pdev);
2082 WARN_ON(!dr || !dr->enabled);
2086 EXPORT_SYMBOL(pcim_pin_device);
2089 * pcibios_add_device - provide arch specific hooks when adding device dev
2090 * @dev: the PCI device being added
2092 * Permits the platform to provide architecture specific functionality when
2093 * devices are added. This is the default implementation. Architecture
2094 * implementations can override this.
2096 int __weak pcibios_add_device(struct pci_dev *dev)
2102 * pcibios_release_device - provide arch specific hooks when releasing
2104 * @dev: the PCI device being released
2106 * Permits the platform to provide architecture specific functionality when
2107 * devices are released. This is the default implementation. Architecture
2108 * implementations can override this.
2110 void __weak pcibios_release_device(struct pci_dev *dev) {}
2113 * pcibios_disable_device - disable arch specific PCI resources for device dev
2114 * @dev: the PCI device to disable
2116 * Disables architecture specific PCI resources for the device. This
2117 * is the default implementation. Architecture implementations can
2120 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2123 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2124 * @irq: ISA IRQ to penalize
2125 * @active: IRQ active or not
2127 * Permits the platform to provide architecture-specific functionality when
2128 * penalizing ISA IRQs. This is the default implementation. Architecture
2129 * implementations can override this.
2131 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2133 static void do_pci_disable_device(struct pci_dev *dev)
2137 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2138 if (pci_command & PCI_COMMAND_MASTER) {
2139 pci_command &= ~PCI_COMMAND_MASTER;
2140 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2143 pcibios_disable_device(dev);
2147 * pci_disable_enabled_device - Disable device without updating enable_cnt
2148 * @dev: PCI device to disable
2150 * NOTE: This function is a backend of PCI power management routines and is
2151 * not supposed to be called drivers.
2153 void pci_disable_enabled_device(struct pci_dev *dev)
2155 if (pci_is_enabled(dev))
2156 do_pci_disable_device(dev);
2160 * pci_disable_device - Disable PCI device after use
2161 * @dev: PCI device to be disabled
2163 * Signal to the system that the PCI device is not in use by the system
2164 * anymore. This only involves disabling PCI bus-mastering, if active.
2166 * Note we don't actually disable the device until all callers of
2167 * pci_enable_device() have called pci_disable_device().
2169 void pci_disable_device(struct pci_dev *dev)
2171 struct pci_devres *dr;
2173 dr = find_pci_dr(dev);
2177 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2178 "disabling already-disabled device");
2180 if (atomic_dec_return(&dev->enable_cnt) != 0)
2183 do_pci_disable_device(dev);
2185 dev->is_busmaster = 0;
2187 EXPORT_SYMBOL(pci_disable_device);
2190 * pcibios_set_pcie_reset_state - set reset state for device dev
2191 * @dev: the PCIe device reset
2192 * @state: Reset state to enter into
2194 * Set the PCIe reset state for the device. This is the default
2195 * implementation. Architecture implementations can override this.
2197 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2198 enum pcie_reset_state state)
2204 * pci_set_pcie_reset_state - set reset state for device dev
2205 * @dev: the PCIe device reset
2206 * @state: Reset state to enter into
2208 * Sets the PCI reset state for the device.
2210 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2212 return pcibios_set_pcie_reset_state(dev, state);
2214 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2216 void pcie_clear_device_status(struct pci_dev *dev)
2220 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2221 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2225 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2226 * @dev: PCIe root port or event collector.
2228 void pcie_clear_root_pme_status(struct pci_dev *dev)
2230 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2234 * pci_check_pme_status - Check if given device has generated PME.
2235 * @dev: Device to check.
2237 * Check the PME status of the device and if set, clear it and clear PME enable
2238 * (if set). Return 'true' if PME status and PME enable were both set or
2239 * 'false' otherwise.
2241 bool pci_check_pme_status(struct pci_dev *dev)
2250 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2251 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2252 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2255 /* Clear PME status. */
2256 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2257 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2258 /* Disable PME to avoid interrupt flood. */
2259 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2263 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2269 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2270 * @dev: Device to handle.
2271 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2273 * Check if @dev has generated PME and queue a resume request for it in that
2276 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2278 if (pme_poll_reset && dev->pme_poll)
2279 dev->pme_poll = false;
2281 if (pci_check_pme_status(dev)) {
2282 pci_wakeup_event(dev);
2283 pm_request_resume(&dev->dev);
2289 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2290 * @bus: Top bus of the subtree to walk.
2292 void pci_pme_wakeup_bus(struct pci_bus *bus)
2295 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2300 * pci_pme_capable - check the capability of PCI device to generate PME#
2301 * @dev: PCI device to handle.
2302 * @state: PCI state from which device will issue PME#.
2304 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2309 return !!(dev->pme_support & (1 << state));
2311 EXPORT_SYMBOL(pci_pme_capable);
2313 static void pci_pme_list_scan(struct work_struct *work)
2315 struct pci_pme_device *pme_dev, *n;
2317 mutex_lock(&pci_pme_list_mutex);
2318 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2319 if (pme_dev->dev->pme_poll) {
2320 struct pci_dev *bridge;
2322 bridge = pme_dev->dev->bus->self;
2324 * If bridge is in low power state, the
2325 * configuration space of subordinate devices
2326 * may be not accessible
2328 if (bridge && bridge->current_state != PCI_D0)
2331 * If the device is in D3cold it should not be
2334 if (pme_dev->dev->current_state == PCI_D3cold)
2337 pci_pme_wakeup(pme_dev->dev, NULL);
2339 list_del(&pme_dev->list);
2343 if (!list_empty(&pci_pme_list))
2344 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2345 msecs_to_jiffies(PME_TIMEOUT));
2346 mutex_unlock(&pci_pme_list_mutex);
2349 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2353 if (!dev->pme_support)
2356 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2357 /* Clear PME_Status by writing 1 to it and enable PME# */
2358 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2360 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2362 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2366 * pci_pme_restore - Restore PME configuration after config space restore.
2367 * @dev: PCI device to update.
2369 void pci_pme_restore(struct pci_dev *dev)
2373 if (!dev->pme_support)
2376 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2377 if (dev->wakeup_prepared) {
2378 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2379 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2381 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2382 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2384 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2388 * pci_pme_active - enable or disable PCI device's PME# function
2389 * @dev: PCI device to handle.
2390 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2392 * The caller must verify that the device is capable of generating PME# before
2393 * calling this function with @enable equal to 'true'.
2395 void pci_pme_active(struct pci_dev *dev, bool enable)
2397 __pci_pme_active(dev, enable);
2400 * PCI (as opposed to PCIe) PME requires that the device have
2401 * its PME# line hooked up correctly. Not all hardware vendors
2402 * do this, so the PME never gets delivered and the device
2403 * remains asleep. The easiest way around this is to
2404 * periodically walk the list of suspended devices and check
2405 * whether any have their PME flag set. The assumption is that
2406 * we'll wake up often enough anyway that this won't be a huge
2407 * hit, and the power savings from the devices will still be a
2410 * Although PCIe uses in-band PME message instead of PME# line
2411 * to report PME, PME does not work for some PCIe devices in
2412 * reality. For example, there are devices that set their PME
2413 * status bits, but don't really bother to send a PME message;
2414 * there are PCI Express Root Ports that don't bother to
2415 * trigger interrupts when they receive PME messages from the
2416 * devices below. So PME poll is used for PCIe devices too.
2419 if (dev->pme_poll) {
2420 struct pci_pme_device *pme_dev;
2422 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2425 pci_warn(dev, "can't enable PME#\n");
2429 mutex_lock(&pci_pme_list_mutex);
2430 list_add(&pme_dev->list, &pci_pme_list);
2431 if (list_is_singular(&pci_pme_list))
2432 queue_delayed_work(system_freezable_wq,
2434 msecs_to_jiffies(PME_TIMEOUT));
2435 mutex_unlock(&pci_pme_list_mutex);
2437 mutex_lock(&pci_pme_list_mutex);
2438 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2439 if (pme_dev->dev == dev) {
2440 list_del(&pme_dev->list);
2445 mutex_unlock(&pci_pme_list_mutex);
2449 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2451 EXPORT_SYMBOL(pci_pme_active);
2454 * __pci_enable_wake - enable PCI device as wakeup event source
2455 * @dev: PCI device affected
2456 * @state: PCI state from which device will issue wakeup events
2457 * @enable: True to enable event generation; false to disable
2459 * This enables the device as a wakeup event source, or disables it.
2460 * When such events involves platform-specific hooks, those hooks are
2461 * called automatically by this routine.
2463 * Devices with legacy power management (no standard PCI PM capabilities)
2464 * always require such platform hooks.
2467 * 0 is returned on success
2468 * -EINVAL is returned if device is not supposed to wake up the system
2469 * Error code depending on the platform is returned if both the platform and
2470 * the native mechanism fail to enable the generation of wake-up events
2472 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2477 * Bridges that are not power-manageable directly only signal
2478 * wakeup on behalf of subordinate devices which is set up
2479 * elsewhere, so skip them. However, bridges that are
2480 * power-manageable may signal wakeup for themselves (for example,
2481 * on a hotplug event) and they need to be covered here.
2483 if (!pci_power_manageable(dev))
2486 /* Don't do the same thing twice in a row for one device. */
2487 if (!!enable == !!dev->wakeup_prepared)
2491 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2492 * Anderson we should be doing PME# wake enable followed by ACPI wake
2493 * enable. To disable wake-up we call the platform first, for symmetry.
2499 if (pci_pme_capable(dev, state))
2500 pci_pme_active(dev, true);
2503 error = platform_pci_set_wakeup(dev, true);
2507 dev->wakeup_prepared = true;
2509 platform_pci_set_wakeup(dev, false);
2510 pci_pme_active(dev, false);
2511 dev->wakeup_prepared = false;
2518 * pci_enable_wake - change wakeup settings for a PCI device
2519 * @pci_dev: Target device
2520 * @state: PCI state from which device will issue wakeup events
2521 * @enable: Whether or not to enable event generation
2523 * If @enable is set, check device_may_wakeup() for the device before calling
2524 * __pci_enable_wake() for it.
2526 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2528 if (enable && !device_may_wakeup(&pci_dev->dev))
2531 return __pci_enable_wake(pci_dev, state, enable);
2533 EXPORT_SYMBOL(pci_enable_wake);
2536 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2537 * @dev: PCI device to prepare
2538 * @enable: True to enable wake-up event generation; false to disable
2540 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2541 * and this function allows them to set that up cleanly - pci_enable_wake()
2542 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2543 * ordering constraints.
2545 * This function only returns error code if the device is not allowed to wake
2546 * up the system from sleep or it is not capable of generating PME# from both
2547 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2549 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2551 return pci_pme_capable(dev, PCI_D3cold) ?
2552 pci_enable_wake(dev, PCI_D3cold, enable) :
2553 pci_enable_wake(dev, PCI_D3hot, enable);
2555 EXPORT_SYMBOL(pci_wake_from_d3);
2558 * pci_target_state - find an appropriate low power state for a given PCI dev
2560 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2562 * Use underlying platform code to find a supported low power state for @dev.
2563 * If the platform can't manage @dev, return the deepest state from which it
2564 * can generate wake events, based on any available PME info.
2566 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2568 pci_power_t target_state = PCI_D3hot;
2570 if (platform_pci_power_manageable(dev)) {
2572 * Call the platform to find the target state for the device.
2574 pci_power_t state = platform_pci_choose_state(dev);
2577 case PCI_POWER_ERROR:
2582 if (pci_no_d1d2(dev))
2586 target_state = state;
2589 return target_state;
2593 target_state = PCI_D0;
2596 * If the device is in D3cold even though it's not power-manageable by
2597 * the platform, it may have been powered down by non-standard means.
2598 * Best to let it slumber.
2600 if (dev->current_state == PCI_D3cold)
2601 target_state = PCI_D3cold;
2605 * Find the deepest state from which the device can generate
2608 if (dev->pme_support) {
2610 && !(dev->pme_support & (1 << target_state)))
2615 return target_state;
2619 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2620 * into a sleep state
2621 * @dev: Device to handle.
2623 * Choose the power state appropriate for the device depending on whether
2624 * it can wake up the system and/or is power manageable by the platform
2625 * (PCI_D3hot is the default) and put the device into that state.
2627 int pci_prepare_to_sleep(struct pci_dev *dev)
2629 bool wakeup = device_may_wakeup(&dev->dev);
2630 pci_power_t target_state = pci_target_state(dev, wakeup);
2633 if (target_state == PCI_POWER_ERROR)
2637 * There are systems (for example, Intel mobile chips since Coffee
2638 * Lake) where the power drawn while suspended can be significantly
2639 * reduced by disabling PTM on PCIe root ports as this allows the
2640 * port to enter a lower-power PM state and the SoC to reach a
2641 * lower-power idle state as a whole.
2643 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2644 pci_disable_ptm(dev);
2646 pci_enable_wake(dev, target_state, wakeup);
2648 error = pci_set_power_state(dev, target_state);
2651 pci_enable_wake(dev, target_state, false);
2652 pci_restore_ptm_state(dev);
2657 EXPORT_SYMBOL(pci_prepare_to_sleep);
2660 * pci_back_from_sleep - turn PCI device on during system-wide transition
2661 * into working state
2662 * @dev: Device to handle.
2664 * Disable device's system wake-up capability and put it into D0.
2666 int pci_back_from_sleep(struct pci_dev *dev)
2668 pci_enable_wake(dev, PCI_D0, false);
2669 return pci_set_power_state(dev, PCI_D0);
2671 EXPORT_SYMBOL(pci_back_from_sleep);
2674 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2675 * @dev: PCI device being suspended.
2677 * Prepare @dev to generate wake-up events at run time and put it into a low
2680 int pci_finish_runtime_suspend(struct pci_dev *dev)
2682 pci_power_t target_state;
2685 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2686 if (target_state == PCI_POWER_ERROR)
2689 dev->runtime_d3cold = target_state == PCI_D3cold;
2692 * There are systems (for example, Intel mobile chips since Coffee
2693 * Lake) where the power drawn while suspended can be significantly
2694 * reduced by disabling PTM on PCIe root ports as this allows the
2695 * port to enter a lower-power PM state and the SoC to reach a
2696 * lower-power idle state as a whole.
2698 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2699 pci_disable_ptm(dev);
2701 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2703 error = pci_set_power_state(dev, target_state);
2706 pci_enable_wake(dev, target_state, false);
2707 pci_restore_ptm_state(dev);
2708 dev->runtime_d3cold = false;
2715 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2716 * @dev: Device to check.
2718 * Return true if the device itself is capable of generating wake-up events
2719 * (through the platform or using the native PCIe PME) or if the device supports
2720 * PME and one of its upstream bridges can generate wake-up events.
2722 bool pci_dev_run_wake(struct pci_dev *dev)
2724 struct pci_bus *bus = dev->bus;
2726 if (!dev->pme_support)
2729 /* PME-capable in principle, but not from the target power state */
2730 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2733 if (device_can_wakeup(&dev->dev))
2736 while (bus->parent) {
2737 struct pci_dev *bridge = bus->self;
2739 if (device_can_wakeup(&bridge->dev))
2745 /* We have reached the root bus. */
2747 return device_can_wakeup(bus->bridge);
2751 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2754 * pci_dev_need_resume - Check if it is necessary to resume the device.
2755 * @pci_dev: Device to check.
2757 * Return 'true' if the device is not runtime-suspended or it has to be
2758 * reconfigured due to wakeup settings difference between system and runtime
2759 * suspend, or the current power state of it is not suitable for the upcoming
2760 * (system-wide) transition.
2762 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2764 struct device *dev = &pci_dev->dev;
2765 pci_power_t target_state;
2767 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2770 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2773 * If the earlier platform check has not triggered, D3cold is just power
2774 * removal on top of D3hot, so no need to resume the device in that
2777 return target_state != pci_dev->current_state &&
2778 target_state != PCI_D3cold &&
2779 pci_dev->current_state != PCI_D3hot;
2783 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2784 * @pci_dev: Device to check.
2786 * If the device is suspended and it is not configured for system wakeup,
2787 * disable PME for it to prevent it from waking up the system unnecessarily.
2789 * Note that if the device's power state is D3cold and the platform check in
2790 * pci_dev_need_resume() has not triggered, the device's configuration need not
2793 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2795 struct device *dev = &pci_dev->dev;
2797 spin_lock_irq(&dev->power.lock);
2799 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2800 pci_dev->current_state < PCI_D3cold)
2801 __pci_pme_active(pci_dev, false);
2803 spin_unlock_irq(&dev->power.lock);
2807 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2808 * @pci_dev: Device to handle.
2810 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2811 * it might have been disabled during the prepare phase of system suspend if
2812 * the device was not configured for system wakeup.
2814 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2816 struct device *dev = &pci_dev->dev;
2818 if (!pci_dev_run_wake(pci_dev))
2821 spin_lock_irq(&dev->power.lock);
2823 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2824 __pci_pme_active(pci_dev, true);
2826 spin_unlock_irq(&dev->power.lock);
2829 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2831 struct device *dev = &pdev->dev;
2832 struct device *parent = dev->parent;
2835 pm_runtime_get_sync(parent);
2836 pm_runtime_get_noresume(dev);
2838 * pdev->current_state is set to PCI_D3cold during suspending,
2839 * so wait until suspending completes
2841 pm_runtime_barrier(dev);
2843 * Only need to resume devices in D3cold, because config
2844 * registers are still accessible for devices suspended but
2847 if (pdev->current_state == PCI_D3cold)
2848 pm_runtime_resume(dev);
2851 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2853 struct device *dev = &pdev->dev;
2854 struct device *parent = dev->parent;
2856 pm_runtime_put(dev);
2858 pm_runtime_put_sync(parent);
2861 static const struct dmi_system_id bridge_d3_blacklist[] = {
2865 * Gigabyte X299 root port is not marked as hotplug capable
2866 * which allows Linux to power manage it. However, this
2867 * confuses the BIOS SMI handler so don't power manage root
2868 * ports on that system.
2870 .ident = "X299 DESIGNARE EX-CF",
2872 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2873 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2881 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2882 * @bridge: Bridge to check
2884 * This function checks if it is possible to move the bridge to D3.
2885 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2887 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2889 if (!pci_is_pcie(bridge))
2892 switch (pci_pcie_type(bridge)) {
2893 case PCI_EXP_TYPE_ROOT_PORT:
2894 case PCI_EXP_TYPE_UPSTREAM:
2895 case PCI_EXP_TYPE_DOWNSTREAM:
2896 if (pci_bridge_d3_disable)
2900 * Hotplug ports handled by firmware in System Management Mode
2901 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2903 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2906 if (pci_bridge_d3_force)
2909 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2910 if (bridge->is_thunderbolt)
2913 /* Platform might know better if the bridge supports D3 */
2914 if (platform_pci_bridge_d3(bridge))
2918 * Hotplug ports handled natively by the OS were not validated
2919 * by vendors for runtime D3 at least until 2018 because there
2920 * was no OS support.
2922 if (bridge->is_hotplug_bridge)
2925 if (dmi_check_system(bridge_d3_blacklist))
2929 * It should be safe to put PCIe ports from 2015 or newer
2932 if (dmi_get_bios_year() >= 2015)
2940 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2942 bool *d3cold_ok = data;
2944 if (/* The device needs to be allowed to go D3cold ... */
2945 dev->no_d3cold || !dev->d3cold_allowed ||
2947 /* ... and if it is wakeup capable to do so from D3cold. */
2948 (device_may_wakeup(&dev->dev) &&
2949 !pci_pme_capable(dev, PCI_D3cold)) ||
2951 /* If it is a bridge it must be allowed to go to D3. */
2952 !pci_power_manageable(dev))
2960 * pci_bridge_d3_update - Update bridge D3 capabilities
2961 * @dev: PCI device which is changed
2963 * Update upstream bridge PM capabilities accordingly depending on if the
2964 * device PM configuration was changed or the device is being removed. The
2965 * change is also propagated upstream.
2967 void pci_bridge_d3_update(struct pci_dev *dev)
2969 bool remove = !device_is_registered(&dev->dev);
2970 struct pci_dev *bridge;
2971 bool d3cold_ok = true;
2973 bridge = pci_upstream_bridge(dev);
2974 if (!bridge || !pci_bridge_d3_possible(bridge))
2978 * If D3 is currently allowed for the bridge, removing one of its
2979 * children won't change that.
2981 if (remove && bridge->bridge_d3)
2985 * If D3 is currently allowed for the bridge and a child is added or
2986 * changed, disallowance of D3 can only be caused by that child, so
2987 * we only need to check that single device, not any of its siblings.
2989 * If D3 is currently not allowed for the bridge, checking the device
2990 * first may allow us to skip checking its siblings.
2993 pci_dev_check_d3cold(dev, &d3cold_ok);
2996 * If D3 is currently not allowed for the bridge, this may be caused
2997 * either by the device being changed/removed or any of its siblings,
2998 * so we need to go through all children to find out if one of them
2999 * continues to block D3.
3001 if (d3cold_ok && !bridge->bridge_d3)
3002 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3005 if (bridge->bridge_d3 != d3cold_ok) {
3006 bridge->bridge_d3 = d3cold_ok;
3007 /* Propagate change to upstream bridges */
3008 pci_bridge_d3_update(bridge);
3013 * pci_d3cold_enable - Enable D3cold for device
3014 * @dev: PCI device to handle
3016 * This function can be used in drivers to enable D3cold from the device
3017 * they handle. It also updates upstream PCI bridge PM capabilities
3020 void pci_d3cold_enable(struct pci_dev *dev)
3022 if (dev->no_d3cold) {
3023 dev->no_d3cold = false;
3024 pci_bridge_d3_update(dev);
3027 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3030 * pci_d3cold_disable - Disable D3cold for device
3031 * @dev: PCI device to handle
3033 * This function can be used in drivers to disable D3cold from the device
3034 * they handle. It also updates upstream PCI bridge PM capabilities
3037 void pci_d3cold_disable(struct pci_dev *dev)
3039 if (!dev->no_d3cold) {
3040 dev->no_d3cold = true;
3041 pci_bridge_d3_update(dev);
3044 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3047 * pci_pm_init - Initialize PM functions of given PCI device
3048 * @dev: PCI device to handle.
3050 void pci_pm_init(struct pci_dev *dev)
3056 pm_runtime_forbid(&dev->dev);
3057 pm_runtime_set_active(&dev->dev);
3058 pm_runtime_enable(&dev->dev);
3059 device_enable_async_suspend(&dev->dev);
3060 dev->wakeup_prepared = false;
3063 dev->pme_support = 0;
3065 /* find PCI PM capability in list */
3066 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3069 /* Check device's ability to generate PME# */
3070 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3072 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3073 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3074 pmc & PCI_PM_CAP_VER_MASK);
3079 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3080 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3081 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3082 dev->d3cold_allowed = true;
3084 dev->d1_support = false;
3085 dev->d2_support = false;
3086 if (!pci_no_d1d2(dev)) {
3087 if (pmc & PCI_PM_CAP_D1)
3088 dev->d1_support = true;
3089 if (pmc & PCI_PM_CAP_D2)
3090 dev->d2_support = true;
3092 if (dev->d1_support || dev->d2_support)
3093 pci_info(dev, "supports%s%s\n",
3094 dev->d1_support ? " D1" : "",
3095 dev->d2_support ? " D2" : "");
3098 pmc &= PCI_PM_CAP_PME_MASK;
3100 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3101 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3102 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3103 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3104 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3105 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3106 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3107 dev->pme_poll = true;
3109 * Make device's PM flags reflect the wake-up capability, but
3110 * let the user space enable it to wake up the system as needed.
3112 device_set_wakeup_capable(&dev->dev, true);
3113 /* Disable the PME# generation functionality */
3114 pci_pme_active(dev, false);
3117 pci_read_config_word(dev, PCI_STATUS, &status);
3118 if (status & PCI_STATUS_IMM_READY)
3122 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3124 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3128 case PCI_EA_P_VF_MEM:
3129 flags |= IORESOURCE_MEM;
3131 case PCI_EA_P_MEM_PREFETCH:
3132 case PCI_EA_P_VF_MEM_PREFETCH:
3133 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3136 flags |= IORESOURCE_IO;
3145 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3148 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3149 return &dev->resource[bei];
3150 #ifdef CONFIG_PCI_IOV
3151 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3152 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3153 return &dev->resource[PCI_IOV_RESOURCES +
3154 bei - PCI_EA_BEI_VF_BAR0];
3156 else if (bei == PCI_EA_BEI_ROM)
3157 return &dev->resource[PCI_ROM_RESOURCE];
3162 /* Read an Enhanced Allocation (EA) entry */
3163 static int pci_ea_read(struct pci_dev *dev, int offset)
3165 struct resource *res;
3166 int ent_size, ent_offset = offset;
3167 resource_size_t start, end;
3168 unsigned long flags;
3169 u32 dw0, bei, base, max_offset;
3171 bool support_64 = (sizeof(resource_size_t) >= 8);
3173 pci_read_config_dword(dev, ent_offset, &dw0);
3176 /* Entry size field indicates DWORDs after 1st */
3177 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3179 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3182 bei = (dw0 & PCI_EA_BEI) >> 4;
3183 prop = (dw0 & PCI_EA_PP) >> 8;
3186 * If the Property is in the reserved range, try the Secondary
3189 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3190 prop = (dw0 & PCI_EA_SP) >> 16;
3191 if (prop > PCI_EA_P_BRIDGE_IO)
3194 res = pci_ea_get_resource(dev, bei, prop);
3196 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3200 flags = pci_ea_flags(dev, prop);
3202 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3207 pci_read_config_dword(dev, ent_offset, &base);
3208 start = (base & PCI_EA_FIELD_MASK);
3211 /* Read MaxOffset */
3212 pci_read_config_dword(dev, ent_offset, &max_offset);
3215 /* Read Base MSBs (if 64-bit entry) */
3216 if (base & PCI_EA_IS_64) {
3219 pci_read_config_dword(dev, ent_offset, &base_upper);
3222 flags |= IORESOURCE_MEM_64;
3224 /* entry starts above 32-bit boundary, can't use */
3225 if (!support_64 && base_upper)
3229 start |= ((u64)base_upper << 32);
3232 end = start + (max_offset | 0x03);
3234 /* Read MaxOffset MSBs (if 64-bit entry) */
3235 if (max_offset & PCI_EA_IS_64) {
3236 u32 max_offset_upper;
3238 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3241 flags |= IORESOURCE_MEM_64;
3243 /* entry too big, can't use */
3244 if (!support_64 && max_offset_upper)
3248 end += ((u64)max_offset_upper << 32);
3252 pci_err(dev, "EA Entry crosses address boundary\n");
3256 if (ent_size != ent_offset - offset) {
3257 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3258 ent_size, ent_offset - offset);
3262 res->name = pci_name(dev);
3267 if (bei <= PCI_EA_BEI_BAR5)
3268 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3270 else if (bei == PCI_EA_BEI_ROM)
3271 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3273 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3274 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3275 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3277 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3281 return offset + ent_size;
3284 /* Enhanced Allocation Initialization */
3285 void pci_ea_init(struct pci_dev *dev)
3292 /* find PCI EA capability in list */
3293 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3297 /* determine the number of entries */
3298 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3300 num_ent &= PCI_EA_NUM_ENT_MASK;
3302 offset = ea + PCI_EA_FIRST_ENT;
3304 /* Skip DWORD 2 for type 1 functions */
3305 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3308 /* parse each EA entry */
3309 for (i = 0; i < num_ent; ++i)
3310 offset = pci_ea_read(dev, offset);
3313 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3314 struct pci_cap_saved_state *new_cap)
3316 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3320 * _pci_add_cap_save_buffer - allocate buffer for saving given
3321 * capability registers
3322 * @dev: the PCI device
3323 * @cap: the capability to allocate the buffer for
3324 * @extended: Standard or Extended capability ID
3325 * @size: requested size of the buffer
3327 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3328 bool extended, unsigned int size)
3331 struct pci_cap_saved_state *save_state;
3334 pos = pci_find_ext_capability(dev, cap);
3336 pos = pci_find_capability(dev, cap);
3341 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3345 save_state->cap.cap_nr = cap;
3346 save_state->cap.cap_extended = extended;
3347 save_state->cap.size = size;
3348 pci_add_saved_cap(dev, save_state);
3353 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3355 return _pci_add_cap_save_buffer(dev, cap, false, size);
3358 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3360 return _pci_add_cap_save_buffer(dev, cap, true, size);
3364 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3365 * @dev: the PCI device
3367 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3371 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3372 PCI_EXP_SAVE_REGS * sizeof(u16));
3374 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3376 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3378 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3380 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3383 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3385 pci_allocate_vc_save_buffers(dev);
3388 void pci_free_cap_save_buffers(struct pci_dev *dev)
3390 struct pci_cap_saved_state *tmp;
3391 struct hlist_node *n;
3393 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3398 * pci_configure_ari - enable or disable ARI forwarding
3399 * @dev: the PCI device
3401 * If @dev and its upstream bridge both support ARI, enable ARI in the
3402 * bridge. Otherwise, disable ARI in the bridge.
3404 void pci_configure_ari(struct pci_dev *dev)
3407 struct pci_dev *bridge;
3409 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3412 bridge = dev->bus->self;
3416 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3417 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3420 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3421 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3422 PCI_EXP_DEVCTL2_ARI);
3423 bridge->ari_enabled = 1;
3425 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3426 PCI_EXP_DEVCTL2_ARI);
3427 bridge->ari_enabled = 0;
3431 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3436 pos = pdev->acs_cap;
3441 * Except for egress control, capabilities are either required
3442 * or only required if controllable. Features missing from the
3443 * capability field can therefore be assumed as hard-wired enabled.
3445 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3446 acs_flags &= (cap | PCI_ACS_EC);
3448 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3449 return (ctrl & acs_flags) == acs_flags;
3453 * pci_acs_enabled - test ACS against required flags for a given device
3454 * @pdev: device to test
3455 * @acs_flags: required PCI ACS flags
3457 * Return true if the device supports the provided flags. Automatically
3458 * filters out flags that are not implemented on multifunction devices.
3460 * Note that this interface checks the effective ACS capabilities of the
3461 * device rather than the actual capabilities. For instance, most single
3462 * function endpoints are not required to support ACS because they have no
3463 * opportunity for peer-to-peer access. We therefore return 'true'
3464 * regardless of whether the device exposes an ACS capability. This makes
3465 * it much easier for callers of this function to ignore the actual type
3466 * or topology of the device when testing ACS support.
3468 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3472 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3477 * Conventional PCI and PCI-X devices never support ACS, either
3478 * effectively or actually. The shared bus topology implies that
3479 * any device on the bus can receive or snoop DMA.
3481 if (!pci_is_pcie(pdev))
3484 switch (pci_pcie_type(pdev)) {
3486 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3487 * but since their primary interface is PCI/X, we conservatively
3488 * handle them as we would a non-PCIe device.
3490 case PCI_EXP_TYPE_PCIE_BRIDGE:
3492 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3493 * applicable... must never implement an ACS Extended Capability...".
3494 * This seems arbitrary, but we take a conservative interpretation
3495 * of this statement.
3497 case PCI_EXP_TYPE_PCI_BRIDGE:
3498 case PCI_EXP_TYPE_RC_EC:
3501 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3502 * implement ACS in order to indicate their peer-to-peer capabilities,
3503 * regardless of whether they are single- or multi-function devices.
3505 case PCI_EXP_TYPE_DOWNSTREAM:
3506 case PCI_EXP_TYPE_ROOT_PORT:
3507 return pci_acs_flags_enabled(pdev, acs_flags);
3509 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3510 * implemented by the remaining PCIe types to indicate peer-to-peer
3511 * capabilities, but only when they are part of a multifunction
3512 * device. The footnote for section 6.12 indicates the specific
3513 * PCIe types included here.
3515 case PCI_EXP_TYPE_ENDPOINT:
3516 case PCI_EXP_TYPE_UPSTREAM:
3517 case PCI_EXP_TYPE_LEG_END:
3518 case PCI_EXP_TYPE_RC_END:
3519 if (!pdev->multifunction)
3522 return pci_acs_flags_enabled(pdev, acs_flags);
3526 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3527 * to single function devices with the exception of downstream ports.
3533 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3534 * @start: starting downstream device
3535 * @end: ending upstream device or NULL to search to the root bus
3536 * @acs_flags: required flags
3538 * Walk up a device tree from start to end testing PCI ACS support. If
3539 * any step along the way does not support the required flags, return false.
3541 bool pci_acs_path_enabled(struct pci_dev *start,
3542 struct pci_dev *end, u16 acs_flags)
3544 struct pci_dev *pdev, *parent = start;
3549 if (!pci_acs_enabled(pdev, acs_flags))
3552 if (pci_is_root_bus(pdev->bus))
3553 return (end == NULL);
3555 parent = pdev->bus->self;
3556 } while (pdev != end);
3562 * pci_acs_init - Initialize ACS if hardware supports it
3563 * @dev: the PCI device
3565 void pci_acs_init(struct pci_dev *dev)
3567 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3570 * Attempt to enable ACS regardless of capability because some Root
3571 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3572 * the standard ACS capability but still support ACS via those
3575 pci_enable_acs(dev);
3579 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3583 * Helper to find the position of the ctrl register for a BAR.
3584 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3585 * Returns -ENOENT if no ctrl register for the BAR could be found.
3587 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3589 unsigned int pos, nbars, i;
3592 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3596 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3597 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3598 PCI_REBAR_CTRL_NBAR_SHIFT;
3600 for (i = 0; i < nbars; i++, pos += 8) {
3603 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3604 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3613 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3615 * @bar: BAR to query
3617 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3618 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3620 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3625 pos = pci_rebar_find_pos(pdev, bar);
3629 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3630 cap &= PCI_REBAR_CAP_SIZES;
3632 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3633 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3634 bar == 0 && cap == 0x7000)
3639 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3642 * pci_rebar_get_current_size - get the current size of a BAR
3644 * @bar: BAR to set size to
3646 * Read the size of a BAR from the resizable BAR config.
3647 * Returns size if found or negative error code.
3649 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3654 pos = pci_rebar_find_pos(pdev, bar);
3658 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3659 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3663 * pci_rebar_set_size - set a new size for a BAR
3665 * @bar: BAR to set size to
3666 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3668 * Set the new size of a BAR as defined in the spec.
3669 * Returns zero if resizing was successful, error code otherwise.
3671 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3676 pos = pci_rebar_find_pos(pdev, bar);
3680 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3681 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3682 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3683 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3688 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3689 * @dev: the PCI device
3690 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3691 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3692 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3693 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3695 * Return 0 if all upstream bridges support AtomicOp routing, egress
3696 * blocking is disabled on all upstream ports, and the root port supports
3697 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3698 * AtomicOp completion), or negative otherwise.
3700 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3702 struct pci_bus *bus = dev->bus;
3703 struct pci_dev *bridge;
3706 if (!pci_is_pcie(dev))
3710 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3711 * AtomicOp requesters. For now, we only support endpoints as
3712 * requesters and root ports as completers. No endpoints as
3713 * completers, and no peer-to-peer.
3716 switch (pci_pcie_type(dev)) {
3717 case PCI_EXP_TYPE_ENDPOINT:
3718 case PCI_EXP_TYPE_LEG_END:
3719 case PCI_EXP_TYPE_RC_END:
3725 while (bus->parent) {
3728 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3730 switch (pci_pcie_type(bridge)) {
3731 /* Ensure switch ports support AtomicOp routing */
3732 case PCI_EXP_TYPE_UPSTREAM:
3733 case PCI_EXP_TYPE_DOWNSTREAM:
3734 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3738 /* Ensure root port supports all the sizes we care about */
3739 case PCI_EXP_TYPE_ROOT_PORT:
3740 if ((cap & cap_mask) != cap_mask)
3745 /* Ensure upstream ports don't block AtomicOps on egress */
3746 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3747 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3749 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3756 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3757 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3760 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3763 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3764 * @dev: the PCI device
3765 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3767 * Perform INTx swizzling for a device behind one level of bridge. This is
3768 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3769 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3770 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3771 * the PCI Express Base Specification, Revision 2.1)
3773 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3777 if (pci_ari_enabled(dev->bus))
3780 slot = PCI_SLOT(dev->devfn);
3782 return (((pin - 1) + slot) % 4) + 1;
3785 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3793 while (!pci_is_root_bus(dev->bus)) {
3794 pin = pci_swizzle_interrupt_pin(dev, pin);
3795 dev = dev->bus->self;
3802 * pci_common_swizzle - swizzle INTx all the way to root bridge
3803 * @dev: the PCI device
3804 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3806 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3807 * bridges all the way up to a PCI root bus.
3809 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3813 while (!pci_is_root_bus(dev->bus)) {
3814 pin = pci_swizzle_interrupt_pin(dev, pin);
3815 dev = dev->bus->self;
3818 return PCI_SLOT(dev->devfn);
3820 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3823 * pci_release_region - Release a PCI bar
3824 * @pdev: PCI device whose resources were previously reserved by
3825 * pci_request_region()
3826 * @bar: BAR to release
3828 * Releases the PCI I/O and memory resources previously reserved by a
3829 * successful call to pci_request_region(). Call this function only
3830 * after all use of the PCI regions has ceased.
3832 void pci_release_region(struct pci_dev *pdev, int bar)
3834 struct pci_devres *dr;
3836 if (pci_resource_len(pdev, bar) == 0)
3838 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3839 release_region(pci_resource_start(pdev, bar),
3840 pci_resource_len(pdev, bar));
3841 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3842 release_mem_region(pci_resource_start(pdev, bar),
3843 pci_resource_len(pdev, bar));
3845 dr = find_pci_dr(pdev);
3847 dr->region_mask &= ~(1 << bar);
3849 EXPORT_SYMBOL(pci_release_region);
3852 * __pci_request_region - Reserved PCI I/O and memory resource
3853 * @pdev: PCI device whose resources are to be reserved
3854 * @bar: BAR to be reserved
3855 * @res_name: Name to be associated with resource.
3856 * @exclusive: whether the region access is exclusive or not
3858 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3859 * being reserved by owner @res_name. Do not access any
3860 * address inside the PCI regions unless this call returns
3863 * If @exclusive is set, then the region is marked so that userspace
3864 * is explicitly not allowed to map the resource via /dev/mem or
3865 * sysfs MMIO access.
3867 * Returns 0 on success, or %EBUSY on error. A warning
3868 * message is also printed on failure.
3870 static int __pci_request_region(struct pci_dev *pdev, int bar,
3871 const char *res_name, int exclusive)
3873 struct pci_devres *dr;
3875 if (pci_resource_len(pdev, bar) == 0)
3878 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3879 if (!request_region(pci_resource_start(pdev, bar),
3880 pci_resource_len(pdev, bar), res_name))
3882 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3883 if (!__request_mem_region(pci_resource_start(pdev, bar),
3884 pci_resource_len(pdev, bar), res_name,
3889 dr = find_pci_dr(pdev);
3891 dr->region_mask |= 1 << bar;
3896 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3897 &pdev->resource[bar]);
3902 * pci_request_region - Reserve PCI I/O and memory resource
3903 * @pdev: PCI device whose resources are to be reserved
3904 * @bar: BAR to be reserved
3905 * @res_name: Name to be associated with resource
3907 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3908 * being reserved by owner @res_name. Do not access any
3909 * address inside the PCI regions unless this call returns
3912 * Returns 0 on success, or %EBUSY on error. A warning
3913 * message is also printed on failure.
3915 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3917 return __pci_request_region(pdev, bar, res_name, 0);
3919 EXPORT_SYMBOL(pci_request_region);
3922 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3923 * @pdev: PCI device whose resources were previously reserved
3924 * @bars: Bitmask of BARs to be released
3926 * Release selected PCI I/O and memory resources previously reserved.
3927 * Call this function only after all use of the PCI regions has ceased.
3929 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3933 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3934 if (bars & (1 << i))
3935 pci_release_region(pdev, i);
3937 EXPORT_SYMBOL(pci_release_selected_regions);
3939 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3940 const char *res_name, int excl)
3944 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3945 if (bars & (1 << i))
3946 if (__pci_request_region(pdev, i, res_name, excl))
3952 if (bars & (1 << i))
3953 pci_release_region(pdev, i);
3960 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3961 * @pdev: PCI device whose resources are to be reserved
3962 * @bars: Bitmask of BARs to be requested
3963 * @res_name: Name to be associated with resource
3965 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3966 const char *res_name)
3968 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3970 EXPORT_SYMBOL(pci_request_selected_regions);
3972 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3973 const char *res_name)
3975 return __pci_request_selected_regions(pdev, bars, res_name,
3976 IORESOURCE_EXCLUSIVE);
3978 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3981 * pci_release_regions - Release reserved PCI I/O and memory resources
3982 * @pdev: PCI device whose resources were previously reserved by
3983 * pci_request_regions()
3985 * Releases all PCI I/O and memory resources previously reserved by a
3986 * successful call to pci_request_regions(). Call this function only
3987 * after all use of the PCI regions has ceased.
3990 void pci_release_regions(struct pci_dev *pdev)
3992 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3994 EXPORT_SYMBOL(pci_release_regions);
3997 * pci_request_regions - Reserve PCI I/O and memory resources
3998 * @pdev: PCI device whose resources are to be reserved
3999 * @res_name: Name to be associated with resource.
4001 * Mark all PCI regions associated with PCI device @pdev as
4002 * being reserved by owner @res_name. Do not access any
4003 * address inside the PCI regions unless this call returns
4006 * Returns 0 on success, or %EBUSY on error. A warning
4007 * message is also printed on failure.
4009 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4011 return pci_request_selected_regions(pdev,
4012 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4014 EXPORT_SYMBOL(pci_request_regions);
4017 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4018 * @pdev: PCI device whose resources are to be reserved
4019 * @res_name: Name to be associated with resource.
4021 * Mark all PCI regions associated with PCI device @pdev as being reserved
4022 * by owner @res_name. Do not access any address inside the PCI regions
4023 * unless this call returns successfully.
4025 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4026 * and the sysfs MMIO access will not be allowed.
4028 * Returns 0 on success, or %EBUSY on error. A warning message is also
4029 * printed on failure.
4031 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4033 return pci_request_selected_regions_exclusive(pdev,
4034 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4036 EXPORT_SYMBOL(pci_request_regions_exclusive);
4039 * Record the PCI IO range (expressed as CPU physical address + size).
4040 * Return a negative value if an error has occurred, zero otherwise
4042 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4043 resource_size_t size)
4047 struct logic_pio_hwaddr *range;
4049 if (!size || addr + size < addr)
4052 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4056 range->fwnode = fwnode;
4058 range->hw_start = addr;
4059 range->flags = LOGIC_PIO_CPU_MMIO;
4061 ret = logic_pio_register_range(range);
4065 /* Ignore duplicates due to deferred probing */
4073 phys_addr_t pci_pio_to_address(unsigned long pio)
4075 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4078 if (pio >= MMIO_UPPER_LIMIT)
4081 address = logic_pio_to_hwaddr(pio);
4086 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4088 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4091 return logic_pio_trans_cpuaddr(address);
4093 if (address > IO_SPACE_LIMIT)
4094 return (unsigned long)-1;
4096 return (unsigned long) address;
4101 * pci_remap_iospace - Remap the memory mapped I/O space
4102 * @res: Resource describing the I/O space
4103 * @phys_addr: physical address of range to be mapped
4105 * Remap the memory mapped I/O space described by the @res and the CPU
4106 * physical address @phys_addr into virtual address space. Only
4107 * architectures that have memory mapped IO functions defined (and the
4108 * PCI_IOBASE value defined) should call this function.
4110 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4112 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4113 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4115 if (!(res->flags & IORESOURCE_IO))
4118 if (res->end > IO_SPACE_LIMIT)
4121 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4122 pgprot_device(PAGE_KERNEL));
4125 * This architecture does not have memory mapped I/O space,
4126 * so this function should never be called
4128 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4132 EXPORT_SYMBOL(pci_remap_iospace);
4135 * pci_unmap_iospace - Unmap the memory mapped I/O space
4136 * @res: resource to be unmapped
4138 * Unmap the CPU virtual address @res from virtual address space. Only
4139 * architectures that have memory mapped IO functions defined (and the
4140 * PCI_IOBASE value defined) should call this function.
4142 void pci_unmap_iospace(struct resource *res)
4144 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4145 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4147 vunmap_range(vaddr, vaddr + resource_size(res));
4150 EXPORT_SYMBOL(pci_unmap_iospace);
4152 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4154 struct resource **res = ptr;
4156 pci_unmap_iospace(*res);
4160 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4161 * @dev: Generic device to remap IO address for
4162 * @res: Resource describing the I/O space
4163 * @phys_addr: physical address of range to be mapped
4165 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4168 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4169 phys_addr_t phys_addr)
4171 const struct resource **ptr;
4174 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4178 error = pci_remap_iospace(res, phys_addr);
4183 devres_add(dev, ptr);
4188 EXPORT_SYMBOL(devm_pci_remap_iospace);
4191 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4192 * @dev: Generic device to remap IO address for
4193 * @offset: Resource address to map
4194 * @size: Size of map
4196 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4199 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4200 resource_size_t offset,
4201 resource_size_t size)
4203 void __iomem **ptr, *addr;
4205 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4209 addr = pci_remap_cfgspace(offset, size);
4212 devres_add(dev, ptr);
4218 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4221 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4222 * @dev: generic device to handle the resource for
4223 * @res: configuration space resource to be handled
4225 * Checks that a resource is a valid memory region, requests the memory
4226 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4227 * proper PCI configuration space memory attributes are guaranteed.
4229 * All operations are managed and will be undone on driver detach.
4231 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4232 * on failure. Usage example::
4234 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4235 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4237 * return PTR_ERR(base);
4239 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4240 struct resource *res)
4242 resource_size_t size;
4244 void __iomem *dest_ptr;
4248 if (!res || resource_type(res) != IORESOURCE_MEM) {
4249 dev_err(dev, "invalid resource\n");
4250 return IOMEM_ERR_PTR(-EINVAL);
4253 size = resource_size(res);
4256 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4259 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4261 return IOMEM_ERR_PTR(-ENOMEM);
4263 if (!devm_request_mem_region(dev, res->start, size, name)) {
4264 dev_err(dev, "can't request region for resource %pR\n", res);
4265 return IOMEM_ERR_PTR(-EBUSY);
4268 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4270 dev_err(dev, "ioremap failed for resource %pR\n", res);
4271 devm_release_mem_region(dev, res->start, size);
4272 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4277 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4279 static void __pci_set_master(struct pci_dev *dev, bool enable)
4283 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4285 cmd = old_cmd | PCI_COMMAND_MASTER;
4287 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4288 if (cmd != old_cmd) {
4289 pci_dbg(dev, "%s bus mastering\n",
4290 enable ? "enabling" : "disabling");
4291 pci_write_config_word(dev, PCI_COMMAND, cmd);
4293 dev->is_busmaster = enable;
4297 * pcibios_setup - process "pci=" kernel boot arguments
4298 * @str: string used to pass in "pci=" kernel boot arguments
4300 * Process kernel boot arguments. This is the default implementation.
4301 * Architecture specific implementations can override this as necessary.
4303 char * __weak __init pcibios_setup(char *str)
4309 * pcibios_set_master - enable PCI bus-mastering for device dev
4310 * @dev: the PCI device to enable
4312 * Enables PCI bus-mastering for the device. This is the default
4313 * implementation. Architecture specific implementations can override
4314 * this if necessary.
4316 void __weak pcibios_set_master(struct pci_dev *dev)
4320 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4321 if (pci_is_pcie(dev))
4324 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4326 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4327 else if (lat > pcibios_max_latency)
4328 lat = pcibios_max_latency;
4332 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4336 * pci_set_master - enables bus-mastering for device dev
4337 * @dev: the PCI device to enable
4339 * Enables bus-mastering on the device and calls pcibios_set_master()
4340 * to do the needed arch specific settings.
4342 void pci_set_master(struct pci_dev *dev)
4344 __pci_set_master(dev, true);
4345 pcibios_set_master(dev);
4347 EXPORT_SYMBOL(pci_set_master);
4350 * pci_clear_master - disables bus-mastering for device dev
4351 * @dev: the PCI device to disable
4353 void pci_clear_master(struct pci_dev *dev)
4355 __pci_set_master(dev, false);
4357 EXPORT_SYMBOL(pci_clear_master);
4360 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4361 * @dev: the PCI device for which MWI is to be enabled
4363 * Helper function for pci_set_mwi.
4364 * Originally copied from drivers/net/acenic.c.
4365 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4367 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4369 int pci_set_cacheline_size(struct pci_dev *dev)
4373 if (!pci_cache_line_size)
4376 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4377 equal to or multiple of the right value. */
4378 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4379 if (cacheline_size >= pci_cache_line_size &&
4380 (cacheline_size % pci_cache_line_size) == 0)
4383 /* Write the correct value. */
4384 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4386 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4387 if (cacheline_size == pci_cache_line_size)
4390 pci_dbg(dev, "cache line size of %d is not supported\n",
4391 pci_cache_line_size << 2);
4395 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4398 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4399 * @dev: the PCI device for which MWI is enabled
4401 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4403 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4405 int pci_set_mwi(struct pci_dev *dev)
4407 #ifdef PCI_DISABLE_MWI
4413 rc = pci_set_cacheline_size(dev);
4417 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4418 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4419 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4420 cmd |= PCI_COMMAND_INVALIDATE;
4421 pci_write_config_word(dev, PCI_COMMAND, cmd);
4426 EXPORT_SYMBOL(pci_set_mwi);
4429 * pcim_set_mwi - a device-managed pci_set_mwi()
4430 * @dev: the PCI device for which MWI is enabled
4432 * Managed pci_set_mwi().
4434 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4436 int pcim_set_mwi(struct pci_dev *dev)
4438 struct pci_devres *dr;
4440 dr = find_pci_dr(dev);
4445 return pci_set_mwi(dev);
4447 EXPORT_SYMBOL(pcim_set_mwi);
4450 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4451 * @dev: the PCI device for which MWI is enabled
4453 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4454 * Callers are not required to check the return value.
4456 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4458 int pci_try_set_mwi(struct pci_dev *dev)
4460 #ifdef PCI_DISABLE_MWI
4463 return pci_set_mwi(dev);
4466 EXPORT_SYMBOL(pci_try_set_mwi);
4469 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4470 * @dev: the PCI device to disable
4472 * Disables PCI Memory-Write-Invalidate transaction on the device
4474 void pci_clear_mwi(struct pci_dev *dev)
4476 #ifndef PCI_DISABLE_MWI
4479 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4480 if (cmd & PCI_COMMAND_INVALIDATE) {
4481 cmd &= ~PCI_COMMAND_INVALIDATE;
4482 pci_write_config_word(dev, PCI_COMMAND, cmd);
4486 EXPORT_SYMBOL(pci_clear_mwi);
4489 * pci_disable_parity - disable parity checking for device
4490 * @dev: the PCI device to operate on
4492 * Disable parity checking for device @dev
4494 void pci_disable_parity(struct pci_dev *dev)
4498 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4499 if (cmd & PCI_COMMAND_PARITY) {
4500 cmd &= ~PCI_COMMAND_PARITY;
4501 pci_write_config_word(dev, PCI_COMMAND, cmd);
4506 * pci_intx - enables/disables PCI INTx for device dev
4507 * @pdev: the PCI device to operate on
4508 * @enable: boolean: whether to enable or disable PCI INTx
4510 * Enables/disables PCI INTx for device @pdev
4512 void pci_intx(struct pci_dev *pdev, int enable)
4514 u16 pci_command, new;
4516 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4519 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4521 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4523 if (new != pci_command) {
4524 struct pci_devres *dr;
4526 pci_write_config_word(pdev, PCI_COMMAND, new);
4528 dr = find_pci_dr(pdev);
4529 if (dr && !dr->restore_intx) {
4530 dr->restore_intx = 1;
4531 dr->orig_intx = !enable;
4535 EXPORT_SYMBOL_GPL(pci_intx);
4537 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4539 struct pci_bus *bus = dev->bus;
4540 bool mask_updated = true;
4541 u32 cmd_status_dword;
4542 u16 origcmd, newcmd;
4543 unsigned long flags;
4547 * We do a single dword read to retrieve both command and status.
4548 * Document assumptions that make this possible.
4550 BUILD_BUG_ON(PCI_COMMAND % 4);
4551 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4553 raw_spin_lock_irqsave(&pci_lock, flags);
4555 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4557 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4560 * Check interrupt status register to see whether our device
4561 * triggered the interrupt (when masking) or the next IRQ is
4562 * already pending (when unmasking).
4564 if (mask != irq_pending) {
4565 mask_updated = false;
4569 origcmd = cmd_status_dword;
4570 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4572 newcmd |= PCI_COMMAND_INTX_DISABLE;
4573 if (newcmd != origcmd)
4574 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4577 raw_spin_unlock_irqrestore(&pci_lock, flags);
4579 return mask_updated;
4583 * pci_check_and_mask_intx - mask INTx on pending interrupt
4584 * @dev: the PCI device to operate on
4586 * Check if the device dev has its INTx line asserted, mask it and return
4587 * true in that case. False is returned if no interrupt was pending.
4589 bool pci_check_and_mask_intx(struct pci_dev *dev)
4591 return pci_check_and_set_intx_mask(dev, true);
4593 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4596 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4597 * @dev: the PCI device to operate on
4599 * Check if the device dev has its INTx line asserted, unmask it if not and
4600 * return true. False is returned and the mask remains active if there was
4601 * still an interrupt pending.
4603 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4605 return pci_check_and_set_intx_mask(dev, false);
4607 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4610 * pci_wait_for_pending_transaction - wait for pending transaction
4611 * @dev: the PCI device to operate on
4613 * Return 0 if transaction is pending 1 otherwise.
4615 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4617 if (!pci_is_pcie(dev))
4620 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4621 PCI_EXP_DEVSTA_TRPND);
4623 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4626 * pcie_flr - initiate a PCIe function level reset
4627 * @dev: device to reset
4629 * Initiate a function level reset unconditionally on @dev without
4630 * checking any flags and DEVCAP
4632 int pcie_flr(struct pci_dev *dev)
4634 if (!pci_wait_for_pending_transaction(dev))
4635 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4637 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4643 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4644 * 100ms, but may silently discard requests while the FLR is in
4645 * progress. Wait 100ms before trying to access the device.
4649 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4651 EXPORT_SYMBOL_GPL(pcie_flr);
4654 * pcie_reset_flr - initiate a PCIe function level reset
4655 * @dev: device to reset
4656 * @probe: If set, only check if the device can be reset this way.
4658 * Initiate a function level reset on @dev.
4660 int pcie_reset_flr(struct pci_dev *dev, int probe)
4662 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4665 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4671 return pcie_flr(dev);
4673 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4675 static int pci_af_flr(struct pci_dev *dev, int probe)
4680 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4684 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4687 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4688 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4695 * Wait for Transaction Pending bit to clear. A word-aligned test
4696 * is used, so we use the control offset rather than status and shift
4697 * the test bit to match.
4699 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4700 PCI_AF_STATUS_TP << 8))
4701 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4703 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4709 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4710 * updated 27 July 2006; a device must complete an FLR within
4711 * 100ms, but may silently discard requests while the FLR is in
4712 * progress. Wait 100ms before trying to access the device.
4716 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4720 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4721 * @dev: Device to reset.
4722 * @probe: If set, only check if the device can be reset this way.
4724 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4725 * unset, it will be reinitialized internally when going from PCI_D3hot to
4726 * PCI_D0. If that's the case and the device is not in a low-power state
4727 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4729 * NOTE: This causes the caller to sleep for twice the device power transition
4730 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4731 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4732 * Moreover, only devices in D0 can be reset by this function.
4734 static int pci_pm_reset(struct pci_dev *dev, int probe)
4738 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4741 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4742 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4748 if (dev->current_state != PCI_D0)
4751 csr &= ~PCI_PM_CTRL_STATE_MASK;
4753 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4754 pci_dev_d3_sleep(dev);
4756 csr &= ~PCI_PM_CTRL_STATE_MASK;
4758 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4759 pci_dev_d3_sleep(dev);
4761 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4765 * pcie_wait_for_link_delay - Wait until link is active or inactive
4766 * @pdev: Bridge device
4767 * @active: waiting for active or inactive?
4768 * @delay: Delay to wait after link has become active (in ms)
4770 * Use this to wait till link becomes active or inactive.
4772 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4780 * Some controllers might not implement link active reporting. In this
4781 * case, we wait for 1000 ms + any delay requested by the caller.
4783 if (!pdev->link_active_reporting) {
4784 msleep(timeout + delay);
4789 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4790 * after which we should expect an link active if the reset was
4791 * successful. If so, software must wait a minimum 100ms before sending
4792 * configuration requests to devices downstream this port.
4794 * If the link fails to activate, either the device was physically
4795 * removed or the link is permanently failed.
4800 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4801 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4812 return ret == active;
4816 * pcie_wait_for_link - Wait until link is active or inactive
4817 * @pdev: Bridge device
4818 * @active: waiting for active or inactive?
4820 * Use this to wait till link becomes active or inactive.
4822 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4824 return pcie_wait_for_link_delay(pdev, active, 100);
4828 * Find maximum D3cold delay required by all the devices on the bus. The
4829 * spec says 100 ms, but firmware can lower it and we allow drivers to
4830 * increase it as well.
4832 * Called with @pci_bus_sem locked for reading.
4834 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4836 const struct pci_dev *pdev;
4837 int min_delay = 100;
4840 list_for_each_entry(pdev, &bus->devices, bus_list) {
4841 if (pdev->d3cold_delay < min_delay)
4842 min_delay = pdev->d3cold_delay;
4843 if (pdev->d3cold_delay > max_delay)
4844 max_delay = pdev->d3cold_delay;
4847 return max(min_delay, max_delay);
4851 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4854 * Handle necessary delays before access to the devices on the secondary
4855 * side of the bridge are permitted after D3cold to D0 transition.
4857 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4858 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4861 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4863 struct pci_dev *child;
4866 if (pci_dev_is_disconnected(dev))
4869 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4872 down_read(&pci_bus_sem);
4875 * We only deal with devices that are present currently on the bus.
4876 * For any hot-added devices the access delay is handled in pciehp
4877 * board_added(). In case of ACPI hotplug the firmware is expected
4878 * to configure the devices before OS is notified.
4880 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4881 up_read(&pci_bus_sem);
4885 /* Take d3cold_delay requirements into account */
4886 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4888 up_read(&pci_bus_sem);
4892 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4894 up_read(&pci_bus_sem);
4897 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4898 * accessing the device after reset (that is 1000 ms + 100 ms). In
4899 * practice this should not be needed because we don't do power
4900 * management for them (see pci_bridge_d3_possible()).
4902 if (!pci_is_pcie(dev)) {
4903 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4904 msleep(1000 + delay);
4909 * For PCIe downstream and root ports that do not support speeds
4910 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4911 * speeds (gen3) we need to wait first for the data link layer to
4914 * However, 100 ms is the minimum and the PCIe spec says the
4915 * software must allow at least 1s before it can determine that the
4916 * device that did not respond is a broken device. There is
4917 * evidence that 100 ms is not always enough, for example certain
4918 * Titan Ridge xHCI controller does not always respond to
4919 * configuration requests if we only wait for 100 ms (see
4920 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4922 * Therefore we wait for 100 ms and check for the device presence.
4923 * If it is still not present give it an additional 100 ms.
4925 if (!pcie_downstream_port(dev))
4928 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4929 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4932 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4934 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4935 /* Did not train, no need to wait any further */
4936 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4941 if (!pci_device_is_present(child)) {
4942 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4947 void pci_reset_secondary_bus(struct pci_dev *dev)
4951 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4952 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4953 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4956 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4957 * this to 2ms to ensure that we meet the minimum requirement.
4961 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4962 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4965 * Trhfa for conventional PCI is 2^25 clock cycles.
4966 * Assuming a minimum 33MHz clock this results in a 1s
4967 * delay before we can consider subordinate devices to
4968 * be re-initialized. PCIe has some ways to shorten this,
4969 * but we don't make use of them yet.
4974 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4976 pci_reset_secondary_bus(dev);
4980 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4981 * @dev: Bridge device
4983 * Use the bridge control register to assert reset on the secondary bus.
4984 * Devices on the secondary bus are left in power-on state.
4986 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4988 pcibios_reset_secondary_bus(dev);
4990 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4992 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4994 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4996 struct pci_dev *pdev;
4998 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4999 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5002 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5009 return pci_bridge_secondary_bus_reset(dev->bus->self);
5012 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
5016 if (!hotplug || !try_module_get(hotplug->owner))
5019 if (hotplug->ops->reset_slot)
5020 rc = hotplug->ops->reset_slot(hotplug, probe);
5022 module_put(hotplug->owner);
5027 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
5029 if (dev->multifunction || dev->subordinate || !dev->slot ||
5030 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5033 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5036 static int pci_reset_bus_function(struct pci_dev *dev, int probe)
5040 rc = pci_dev_reset_slot_function(dev, probe);
5043 return pci_parent_bus_reset(dev, probe);
5046 static void pci_dev_lock(struct pci_dev *dev)
5048 pci_cfg_access_lock(dev);
5049 /* block PM suspend, driver probe, etc. */
5050 device_lock(&dev->dev);
5053 /* Return 1 on successful lock, 0 on contention */
5054 int pci_dev_trylock(struct pci_dev *dev)
5056 if (pci_cfg_access_trylock(dev)) {
5057 if (device_trylock(&dev->dev))
5059 pci_cfg_access_unlock(dev);
5064 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5066 void pci_dev_unlock(struct pci_dev *dev)
5068 device_unlock(&dev->dev);
5069 pci_cfg_access_unlock(dev);
5071 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5073 static void pci_dev_save_and_disable(struct pci_dev *dev)
5075 const struct pci_error_handlers *err_handler =
5076 dev->driver ? dev->driver->err_handler : NULL;
5079 * dev->driver->err_handler->reset_prepare() is protected against
5080 * races with ->remove() by the device lock, which must be held by
5083 if (err_handler && err_handler->reset_prepare)
5084 err_handler->reset_prepare(dev);
5087 * Wake-up device prior to save. PM registers default to D0 after
5088 * reset and a simple register restore doesn't reliably return
5089 * to a non-D0 state anyway.
5091 pci_set_power_state(dev, PCI_D0);
5093 pci_save_state(dev);
5095 * Disable the device by clearing the Command register, except for
5096 * INTx-disable which is set. This not only disables MMIO and I/O port
5097 * BARs, but also prevents the device from being Bus Master, preventing
5098 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5099 * compliant devices, INTx-disable prevents legacy interrupts.
5101 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5104 static void pci_dev_restore(struct pci_dev *dev)
5106 const struct pci_error_handlers *err_handler =
5107 dev->driver ? dev->driver->err_handler : NULL;
5109 pci_restore_state(dev);
5112 * dev->driver->err_handler->reset_done() is protected against
5113 * races with ->remove() by the device lock, which must be held by
5116 if (err_handler && err_handler->reset_done)
5117 err_handler->reset_done(dev);
5121 * __pci_reset_function_locked - reset a PCI device function while holding
5122 * the @dev mutex lock.
5123 * @dev: PCI device to reset
5125 * Some devices allow an individual function to be reset without affecting
5126 * other functions in the same device. The PCI device must be responsive
5127 * to PCI config space in order to use this function.
5129 * The device function is presumed to be unused and the caller is holding
5130 * the device mutex lock when this function is called.
5132 * Resetting the device will make the contents of PCI configuration space
5133 * random, so any caller of this must be prepared to reinitialise the
5134 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5137 * Returns 0 if the device function was successfully reset or negative if the
5138 * device doesn't support resetting a single function.
5140 int __pci_reset_function_locked(struct pci_dev *dev)
5147 * A reset method returns -ENOTTY if it doesn't support this device
5148 * and we should try the next method.
5150 * If it returns 0 (success), we're finished. If it returns any
5151 * other error, we're also finished: this indicates that further
5152 * reset mechanisms might be broken on the device.
5154 rc = pci_dev_specific_reset(dev, 0);
5157 rc = pcie_reset_flr(dev, 0);
5160 rc = pci_af_flr(dev, 0);
5163 rc = pci_pm_reset(dev, 0);
5166 return pci_reset_bus_function(dev, 0);
5168 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5171 * pci_probe_reset_function - check whether the device can be safely reset
5172 * @dev: PCI device to reset
5174 * Some devices allow an individual function to be reset without affecting
5175 * other functions in the same device. The PCI device must be responsive
5176 * to PCI config space in order to use this function.
5178 * Returns 0 if the device function can be reset or negative if the
5179 * device doesn't support resetting a single function.
5181 int pci_probe_reset_function(struct pci_dev *dev)
5187 rc = pci_dev_specific_reset(dev, 1);
5190 rc = pcie_reset_flr(dev, 1);
5193 rc = pci_af_flr(dev, 1);
5196 rc = pci_pm_reset(dev, 1);
5200 return pci_reset_bus_function(dev, 1);
5204 * pci_reset_function - quiesce and reset a PCI device function
5205 * @dev: PCI device to reset
5207 * Some devices allow an individual function to be reset without affecting
5208 * other functions in the same device. The PCI device must be responsive
5209 * to PCI config space in order to use this function.
5211 * This function does not just reset the PCI portion of a device, but
5212 * clears all the state associated with the device. This function differs
5213 * from __pci_reset_function_locked() in that it saves and restores device state
5214 * over the reset and takes the PCI device lock.
5216 * Returns 0 if the device function was successfully reset or negative if the
5217 * device doesn't support resetting a single function.
5219 int pci_reset_function(struct pci_dev *dev)
5227 pci_dev_save_and_disable(dev);
5229 rc = __pci_reset_function_locked(dev);
5231 pci_dev_restore(dev);
5232 pci_dev_unlock(dev);
5236 EXPORT_SYMBOL_GPL(pci_reset_function);
5239 * pci_reset_function_locked - quiesce and reset a PCI device function
5240 * @dev: PCI device to reset
5242 * Some devices allow an individual function to be reset without affecting
5243 * other functions in the same device. The PCI device must be responsive
5244 * to PCI config space in order to use this function.
5246 * This function does not just reset the PCI portion of a device, but
5247 * clears all the state associated with the device. This function differs
5248 * from __pci_reset_function_locked() in that it saves and restores device state
5249 * over the reset. It also differs from pci_reset_function() in that it
5250 * requires the PCI device lock to be held.
5252 * Returns 0 if the device function was successfully reset or negative if the
5253 * device doesn't support resetting a single function.
5255 int pci_reset_function_locked(struct pci_dev *dev)
5262 pci_dev_save_and_disable(dev);
5264 rc = __pci_reset_function_locked(dev);
5266 pci_dev_restore(dev);
5270 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5273 * pci_try_reset_function - quiesce and reset a PCI device function
5274 * @dev: PCI device to reset
5276 * Same as above, except return -EAGAIN if unable to lock device.
5278 int pci_try_reset_function(struct pci_dev *dev)
5285 if (!pci_dev_trylock(dev))
5288 pci_dev_save_and_disable(dev);
5289 rc = __pci_reset_function_locked(dev);
5290 pci_dev_restore(dev);
5291 pci_dev_unlock(dev);
5295 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5297 /* Do any devices on or below this bus prevent a bus reset? */
5298 static bool pci_bus_resetable(struct pci_bus *bus)
5300 struct pci_dev *dev;
5303 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5306 list_for_each_entry(dev, &bus->devices, bus_list) {
5307 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5308 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5315 /* Lock devices from the top of the tree down */
5316 static void pci_bus_lock(struct pci_bus *bus)
5318 struct pci_dev *dev;
5320 list_for_each_entry(dev, &bus->devices, bus_list) {
5322 if (dev->subordinate)
5323 pci_bus_lock(dev->subordinate);
5327 /* Unlock devices from the bottom of the tree up */
5328 static void pci_bus_unlock(struct pci_bus *bus)
5330 struct pci_dev *dev;
5332 list_for_each_entry(dev, &bus->devices, bus_list) {
5333 if (dev->subordinate)
5334 pci_bus_unlock(dev->subordinate);
5335 pci_dev_unlock(dev);
5339 /* Return 1 on successful lock, 0 on contention */
5340 static int pci_bus_trylock(struct pci_bus *bus)
5342 struct pci_dev *dev;
5344 list_for_each_entry(dev, &bus->devices, bus_list) {
5345 if (!pci_dev_trylock(dev))
5347 if (dev->subordinate) {
5348 if (!pci_bus_trylock(dev->subordinate)) {
5349 pci_dev_unlock(dev);
5357 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5358 if (dev->subordinate)
5359 pci_bus_unlock(dev->subordinate);
5360 pci_dev_unlock(dev);
5365 /* Do any devices on or below this slot prevent a bus reset? */
5366 static bool pci_slot_resetable(struct pci_slot *slot)
5368 struct pci_dev *dev;
5370 if (slot->bus->self &&
5371 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5374 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5375 if (!dev->slot || dev->slot != slot)
5377 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5378 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5385 /* Lock devices from the top of the tree down */
5386 static void pci_slot_lock(struct pci_slot *slot)
5388 struct pci_dev *dev;
5390 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5391 if (!dev->slot || dev->slot != slot)
5394 if (dev->subordinate)
5395 pci_bus_lock(dev->subordinate);
5399 /* Unlock devices from the bottom of the tree up */
5400 static void pci_slot_unlock(struct pci_slot *slot)
5402 struct pci_dev *dev;
5404 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5405 if (!dev->slot || dev->slot != slot)
5407 if (dev->subordinate)
5408 pci_bus_unlock(dev->subordinate);
5409 pci_dev_unlock(dev);
5413 /* Return 1 on successful lock, 0 on contention */
5414 static int pci_slot_trylock(struct pci_slot *slot)
5416 struct pci_dev *dev;
5418 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5419 if (!dev->slot || dev->slot != slot)
5421 if (!pci_dev_trylock(dev))
5423 if (dev->subordinate) {
5424 if (!pci_bus_trylock(dev->subordinate)) {
5425 pci_dev_unlock(dev);
5433 list_for_each_entry_continue_reverse(dev,
5434 &slot->bus->devices, bus_list) {
5435 if (!dev->slot || dev->slot != slot)
5437 if (dev->subordinate)
5438 pci_bus_unlock(dev->subordinate);
5439 pci_dev_unlock(dev);
5445 * Save and disable devices from the top of the tree down while holding
5446 * the @dev mutex lock for the entire tree.
5448 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5450 struct pci_dev *dev;
5452 list_for_each_entry(dev, &bus->devices, bus_list) {
5453 pci_dev_save_and_disable(dev);
5454 if (dev->subordinate)
5455 pci_bus_save_and_disable_locked(dev->subordinate);
5460 * Restore devices from top of the tree down while holding @dev mutex lock
5461 * for the entire tree. Parent bridges need to be restored before we can
5462 * get to subordinate devices.
5464 static void pci_bus_restore_locked(struct pci_bus *bus)
5466 struct pci_dev *dev;
5468 list_for_each_entry(dev, &bus->devices, bus_list) {
5469 pci_dev_restore(dev);
5470 if (dev->subordinate)
5471 pci_bus_restore_locked(dev->subordinate);
5476 * Save and disable devices from the top of the tree down while holding
5477 * the @dev mutex lock for the entire tree.
5479 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5481 struct pci_dev *dev;
5483 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5484 if (!dev->slot || dev->slot != slot)
5486 pci_dev_save_and_disable(dev);
5487 if (dev->subordinate)
5488 pci_bus_save_and_disable_locked(dev->subordinate);
5493 * Restore devices from top of the tree down while holding @dev mutex lock
5494 * for the entire tree. Parent bridges need to be restored before we can
5495 * get to subordinate devices.
5497 static void pci_slot_restore_locked(struct pci_slot *slot)
5499 struct pci_dev *dev;
5501 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5502 if (!dev->slot || dev->slot != slot)
5504 pci_dev_restore(dev);
5505 if (dev->subordinate)
5506 pci_bus_restore_locked(dev->subordinate);
5510 static int pci_slot_reset(struct pci_slot *slot, int probe)
5514 if (!slot || !pci_slot_resetable(slot))
5518 pci_slot_lock(slot);
5522 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5525 pci_slot_unlock(slot);
5531 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5532 * @slot: PCI slot to probe
5534 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5536 int pci_probe_reset_slot(struct pci_slot *slot)
5538 return pci_slot_reset(slot, 1);
5540 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5543 * __pci_reset_slot - Try to reset a PCI slot
5544 * @slot: PCI slot to reset
5546 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5547 * independent of other slots. For instance, some slots may support slot power
5548 * control. In the case of a 1:1 bus to slot architecture, this function may
5549 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5550 * Generally a slot reset should be attempted before a bus reset. All of the
5551 * function of the slot and any subordinate buses behind the slot are reset
5552 * through this function. PCI config space of all devices in the slot and
5553 * behind the slot is saved before and restored after reset.
5555 * Same as above except return -EAGAIN if the slot cannot be locked
5557 static int __pci_reset_slot(struct pci_slot *slot)
5561 rc = pci_slot_reset(slot, 1);
5565 if (pci_slot_trylock(slot)) {
5566 pci_slot_save_and_disable_locked(slot);
5568 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5569 pci_slot_restore_locked(slot);
5570 pci_slot_unlock(slot);
5577 static int pci_bus_reset(struct pci_bus *bus, int probe)
5581 if (!bus->self || !pci_bus_resetable(bus))
5591 ret = pci_bridge_secondary_bus_reset(bus->self);
5593 pci_bus_unlock(bus);
5599 * pci_bus_error_reset - reset the bridge's subordinate bus
5600 * @bridge: The parent device that connects to the bus to reset
5602 * This function will first try to reset the slots on this bus if the method is
5603 * available. If slot reset fails or is not available, this will fall back to a
5604 * secondary bus reset.
5606 int pci_bus_error_reset(struct pci_dev *bridge)
5608 struct pci_bus *bus = bridge->subordinate;
5609 struct pci_slot *slot;
5614 mutex_lock(&pci_slot_mutex);
5615 if (list_empty(&bus->slots))
5618 list_for_each_entry(slot, &bus->slots, list)
5619 if (pci_probe_reset_slot(slot))
5622 list_for_each_entry(slot, &bus->slots, list)
5623 if (pci_slot_reset(slot, 0))
5626 mutex_unlock(&pci_slot_mutex);
5629 mutex_unlock(&pci_slot_mutex);
5630 return pci_bus_reset(bridge->subordinate, 0);
5634 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5635 * @bus: PCI bus to probe
5637 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5639 int pci_probe_reset_bus(struct pci_bus *bus)
5641 return pci_bus_reset(bus, 1);
5643 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5646 * __pci_reset_bus - Try to reset a PCI bus
5647 * @bus: top level PCI bus to reset
5649 * Same as above except return -EAGAIN if the bus cannot be locked
5651 static int __pci_reset_bus(struct pci_bus *bus)
5655 rc = pci_bus_reset(bus, 1);
5659 if (pci_bus_trylock(bus)) {
5660 pci_bus_save_and_disable_locked(bus);
5662 rc = pci_bridge_secondary_bus_reset(bus->self);
5663 pci_bus_restore_locked(bus);
5664 pci_bus_unlock(bus);
5672 * pci_reset_bus - Try to reset a PCI bus
5673 * @pdev: top level PCI device to reset via slot/bus
5675 * Same as above except return -EAGAIN if the bus cannot be locked
5677 int pci_reset_bus(struct pci_dev *pdev)
5679 return (!pci_probe_reset_slot(pdev->slot)) ?
5680 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5682 EXPORT_SYMBOL_GPL(pci_reset_bus);
5685 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5686 * @dev: PCI device to query
5688 * Returns mmrbc: maximum designed memory read count in bytes or
5689 * appropriate error value.
5691 int pcix_get_max_mmrbc(struct pci_dev *dev)
5696 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5700 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5703 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5705 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5708 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5709 * @dev: PCI device to query
5711 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5714 int pcix_get_mmrbc(struct pci_dev *dev)
5719 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5723 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5726 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5728 EXPORT_SYMBOL(pcix_get_mmrbc);
5731 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5732 * @dev: PCI device to query
5733 * @mmrbc: maximum memory read count in bytes
5734 * valid values are 512, 1024, 2048, 4096
5736 * If possible sets maximum memory read byte count, some bridges have errata
5737 * that prevent this.
5739 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5745 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5748 v = ffs(mmrbc) - 10;
5750 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5754 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5757 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5760 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5763 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5765 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5768 cmd &= ~PCI_X_CMD_MAX_READ;
5770 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5775 EXPORT_SYMBOL(pcix_set_mmrbc);
5778 * pcie_get_readrq - get PCI Express read request size
5779 * @dev: PCI device to query
5781 * Returns maximum memory read request in bytes or appropriate error value.
5783 int pcie_get_readrq(struct pci_dev *dev)
5787 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5789 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5791 EXPORT_SYMBOL(pcie_get_readrq);
5794 * pcie_set_readrq - set PCI Express maximum memory read request
5795 * @dev: PCI device to query
5796 * @rq: maximum memory read count in bytes
5797 * valid values are 128, 256, 512, 1024, 2048, 4096
5799 * If possible sets maximum memory read request in bytes
5801 int pcie_set_readrq(struct pci_dev *dev, int rq)
5806 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5810 * If using the "performance" PCIe config, we clamp the read rq
5811 * size to the max packet size to keep the host bridge from
5812 * generating requests larger than we can cope with.
5814 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5815 int mps = pcie_get_mps(dev);
5821 v = (ffs(rq) - 8) << 12;
5823 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5824 PCI_EXP_DEVCTL_READRQ, v);
5826 return pcibios_err_to_errno(ret);
5828 EXPORT_SYMBOL(pcie_set_readrq);
5831 * pcie_get_mps - get PCI Express maximum payload size
5832 * @dev: PCI device to query
5834 * Returns maximum payload size in bytes
5836 int pcie_get_mps(struct pci_dev *dev)
5840 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5842 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5844 EXPORT_SYMBOL(pcie_get_mps);
5847 * pcie_set_mps - set PCI Express maximum payload size
5848 * @dev: PCI device to query
5849 * @mps: maximum payload size in bytes
5850 * valid values are 128, 256, 512, 1024, 2048, 4096
5852 * If possible sets maximum payload size
5854 int pcie_set_mps(struct pci_dev *dev, int mps)
5859 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5863 if (v > dev->pcie_mpss)
5867 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5868 PCI_EXP_DEVCTL_PAYLOAD, v);
5870 return pcibios_err_to_errno(ret);
5872 EXPORT_SYMBOL(pcie_set_mps);
5875 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5876 * device and its bandwidth limitation
5877 * @dev: PCI device to query
5878 * @limiting_dev: storage for device causing the bandwidth limitation
5879 * @speed: storage for speed of limiting device
5880 * @width: storage for width of limiting device
5882 * Walk up the PCI device chain and find the point where the minimum
5883 * bandwidth is available. Return the bandwidth available there and (if
5884 * limiting_dev, speed, and width pointers are supplied) information about
5885 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5888 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5889 enum pci_bus_speed *speed,
5890 enum pcie_link_width *width)
5893 enum pci_bus_speed next_speed;
5894 enum pcie_link_width next_width;
5898 *speed = PCI_SPEED_UNKNOWN;
5900 *width = PCIE_LNK_WIDTH_UNKNOWN;
5905 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5907 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5908 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5909 PCI_EXP_LNKSTA_NLW_SHIFT;
5911 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5913 /* Check if current device limits the total bandwidth */
5914 if (!bw || next_bw <= bw) {
5918 *limiting_dev = dev;
5920 *speed = next_speed;
5922 *width = next_width;
5925 dev = pci_upstream_bridge(dev);
5930 EXPORT_SYMBOL(pcie_bandwidth_available);
5933 * pcie_get_speed_cap - query for the PCI device's link speed capability
5934 * @dev: PCI device to query
5936 * Query the PCI device speed capability. Return the maximum link speed
5937 * supported by the device.
5939 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5941 u32 lnkcap2, lnkcap;
5944 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5945 * implementation note there recommends using the Supported Link
5946 * Speeds Vector in Link Capabilities 2 when supported.
5948 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5949 * should use the Supported Link Speeds field in Link Capabilities,
5950 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5952 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5954 /* PCIe r3.0-compliant */
5956 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5958 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5959 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5960 return PCIE_SPEED_5_0GT;
5961 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5962 return PCIE_SPEED_2_5GT;
5964 return PCI_SPEED_UNKNOWN;
5966 EXPORT_SYMBOL(pcie_get_speed_cap);
5969 * pcie_get_width_cap - query for the PCI device's link width capability
5970 * @dev: PCI device to query
5972 * Query the PCI device width capability. Return the maximum link width
5973 * supported by the device.
5975 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5979 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5981 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5983 return PCIE_LNK_WIDTH_UNKNOWN;
5985 EXPORT_SYMBOL(pcie_get_width_cap);
5988 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5990 * @speed: storage for link speed
5991 * @width: storage for link width
5993 * Calculate a PCI device's link bandwidth by querying for its link speed
5994 * and width, multiplying them, and applying encoding overhead. The result
5995 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5997 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5998 enum pcie_link_width *width)
6000 *speed = pcie_get_speed_cap(dev);
6001 *width = pcie_get_width_cap(dev);
6003 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6006 return *width * PCIE_SPEED2MBS_ENC(*speed);
6010 * __pcie_print_link_status - Report the PCI device's link speed and width
6011 * @dev: PCI device to query
6012 * @verbose: Print info even when enough bandwidth is available
6014 * If the available bandwidth at the device is less than the device is
6015 * capable of, report the device's maximum possible bandwidth and the
6016 * upstream link that limits its performance. If @verbose, always print
6017 * the available bandwidth, even if the device isn't constrained.
6019 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6021 enum pcie_link_width width, width_cap;
6022 enum pci_bus_speed speed, speed_cap;
6023 struct pci_dev *limiting_dev = NULL;
6024 u32 bw_avail, bw_cap;
6026 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6027 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6029 if (bw_avail >= bw_cap && verbose)
6030 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6031 bw_cap / 1000, bw_cap % 1000,
6032 pci_speed_string(speed_cap), width_cap);
6033 else if (bw_avail < bw_cap)
6034 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6035 bw_avail / 1000, bw_avail % 1000,
6036 pci_speed_string(speed), width,
6037 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6038 bw_cap / 1000, bw_cap % 1000,
6039 pci_speed_string(speed_cap), width_cap);
6043 * pcie_print_link_status - Report the PCI device's link speed and width
6044 * @dev: PCI device to query
6046 * Report the available bandwidth at the device.
6048 void pcie_print_link_status(struct pci_dev *dev)
6050 __pcie_print_link_status(dev, true);
6052 EXPORT_SYMBOL(pcie_print_link_status);
6055 * pci_select_bars - Make BAR mask from the type of resource
6056 * @dev: the PCI device for which BAR mask is made
6057 * @flags: resource type mask to be selected
6059 * This helper routine makes bar mask from the type of resource.
6061 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6064 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6065 if (pci_resource_flags(dev, i) & flags)
6069 EXPORT_SYMBOL(pci_select_bars);
6071 /* Some architectures require additional programming to enable VGA */
6072 static arch_set_vga_state_t arch_set_vga_state;
6074 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6076 arch_set_vga_state = func; /* NULL disables */
6079 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6080 unsigned int command_bits, u32 flags)
6082 if (arch_set_vga_state)
6083 return arch_set_vga_state(dev, decode, command_bits,
6089 * pci_set_vga_state - set VGA decode state on device and parents if requested
6090 * @dev: the PCI device
6091 * @decode: true = enable decoding, false = disable decoding
6092 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6093 * @flags: traverse ancestors and change bridges
6094 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6096 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6097 unsigned int command_bits, u32 flags)
6099 struct pci_bus *bus;
6100 struct pci_dev *bridge;
6104 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6106 /* ARCH specific VGA enables */
6107 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6111 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6112 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6114 cmd |= command_bits;
6116 cmd &= ~command_bits;
6117 pci_write_config_word(dev, PCI_COMMAND, cmd);
6120 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6127 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6130 cmd |= PCI_BRIDGE_CTL_VGA;
6132 cmd &= ~PCI_BRIDGE_CTL_VGA;
6133 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6142 bool pci_pr3_present(struct pci_dev *pdev)
6144 struct acpi_device *adev;
6149 adev = ACPI_COMPANION(&pdev->dev);
6153 return adev->power.flags.power_resources &&
6154 acpi_has_method(adev->handle, "_PR3");
6156 EXPORT_SYMBOL_GPL(pci_pr3_present);
6160 * pci_add_dma_alias - Add a DMA devfn alias for a device
6161 * @dev: the PCI device for which alias is added
6162 * @devfn_from: alias slot and function
6163 * @nr_devfns: number of subsequent devfns to alias
6165 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6166 * which is used to program permissible bus-devfn source addresses for DMA
6167 * requests in an IOMMU. These aliases factor into IOMMU group creation
6168 * and are useful for devices generating DMA requests beyond or different
6169 * from their logical bus-devfn. Examples include device quirks where the
6170 * device simply uses the wrong devfn, as well as non-transparent bridges
6171 * where the alias may be a proxy for devices in another domain.
6173 * IOMMU group creation is performed during device discovery or addition,
6174 * prior to any potential DMA mapping and therefore prior to driver probing
6175 * (especially for userspace assigned devices where IOMMU group definition
6176 * cannot be left as a userspace activity). DMA aliases should therefore
6177 * be configured via quirks, such as the PCI fixup header quirk.
6179 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6183 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6184 devfn_to = devfn_from + nr_devfns - 1;
6186 if (!dev->dma_alias_mask)
6187 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6188 if (!dev->dma_alias_mask) {
6189 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6193 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6196 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6197 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6198 else if (nr_devfns > 1)
6199 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6200 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6201 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6204 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6206 return (dev1->dma_alias_mask &&
6207 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6208 (dev2->dma_alias_mask &&
6209 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6210 pci_real_dma_dev(dev1) == dev2 ||
6211 pci_real_dma_dev(dev2) == dev1;
6214 bool pci_device_is_present(struct pci_dev *pdev)
6218 if (pci_dev_is_disconnected(pdev))
6220 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6222 EXPORT_SYMBOL_GPL(pci_device_is_present);
6224 void pci_ignore_hotplug(struct pci_dev *dev)
6226 struct pci_dev *bridge = dev->bus->self;
6228 dev->ignore_hotplug = 1;
6229 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6231 bridge->ignore_hotplug = 1;
6233 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6236 * pci_real_dma_dev - Get PCI DMA device for PCI device
6237 * @dev: the PCI device that may have a PCI DMA alias
6239 * Permits the platform to provide architecture-specific functionality to
6240 * devices needing to alias DMA to another PCI device on another PCI bus. If
6241 * the PCI device is on the same bus, it is recommended to use
6242 * pci_add_dma_alias(). This is the default implementation. Architecture
6243 * implementations can override this.
6245 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6250 resource_size_t __weak pcibios_default_alignment(void)
6256 * Arches that don't want to expose struct resource to userland as-is in
6257 * sysfs and /proc can implement their own pci_resource_to_user().
6259 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6260 const struct resource *rsrc,
6261 resource_size_t *start, resource_size_t *end)
6263 *start = rsrc->start;
6267 static char *resource_alignment_param;
6268 static DEFINE_SPINLOCK(resource_alignment_lock);
6271 * pci_specified_resource_alignment - get resource alignment specified by user.
6272 * @dev: the PCI device to get
6273 * @resize: whether or not to change resources' size when reassigning alignment
6275 * RETURNS: Resource alignment if it is specified.
6276 * Zero if it is not specified.
6278 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6281 int align_order, count;
6282 resource_size_t align = pcibios_default_alignment();
6286 spin_lock(&resource_alignment_lock);
6287 p = resource_alignment_param;
6290 if (pci_has_flag(PCI_PROBE_ONLY)) {
6292 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6298 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6301 if (align_order > 63) {
6302 pr_err("PCI: Invalid requested alignment (order %d)\n",
6304 align_order = PAGE_SHIFT;
6307 align_order = PAGE_SHIFT;
6310 ret = pci_dev_str_match(dev, p, &p);
6313 align = 1ULL << align_order;
6315 } else if (ret < 0) {
6316 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6321 if (*p != ';' && *p != ',') {
6322 /* End of param or invalid format */
6328 spin_unlock(&resource_alignment_lock);
6332 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6333 resource_size_t align, bool resize)
6335 struct resource *r = &dev->resource[bar];
6336 resource_size_t size;
6338 if (!(r->flags & IORESOURCE_MEM))
6341 if (r->flags & IORESOURCE_PCI_FIXED) {
6342 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6343 bar, r, (unsigned long long)align);
6347 size = resource_size(r);
6352 * Increase the alignment of the resource. There are two ways we
6355 * 1) Increase the size of the resource. BARs are aligned on their
6356 * size, so when we reallocate space for this resource, we'll
6357 * allocate it with the larger alignment. This also prevents
6358 * assignment of any other BARs inside the alignment region, so
6359 * if we're requesting page alignment, this means no other BARs
6360 * will share the page.
6362 * The disadvantage is that this makes the resource larger than
6363 * the hardware BAR, which may break drivers that compute things
6364 * based on the resource size, e.g., to find registers at a
6365 * fixed offset before the end of the BAR.
6367 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6368 * set r->start to the desired alignment. By itself this
6369 * doesn't prevent other BARs being put inside the alignment
6370 * region, but if we realign *every* resource of every device in
6371 * the system, none of them will share an alignment region.
6373 * When the user has requested alignment for only some devices via
6374 * the "pci=resource_alignment" argument, "resize" is true and we
6375 * use the first method. Otherwise we assume we're aligning all
6376 * devices and we use the second.
6379 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6380 bar, r, (unsigned long long)align);
6386 r->flags &= ~IORESOURCE_SIZEALIGN;
6387 r->flags |= IORESOURCE_STARTALIGN;
6389 r->end = r->start + size - 1;
6391 r->flags |= IORESOURCE_UNSET;
6395 * This function disables memory decoding and releases memory resources
6396 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6397 * It also rounds up size to specified alignment.
6398 * Later on, the kernel will assign page-aligned memory resource back
6401 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6405 resource_size_t align;
6407 bool resize = false;
6410 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6411 * 3.4.1.11. Their resources are allocated from the space
6412 * described by the VF BARx register in the PF's SR-IOV capability.
6413 * We can't influence their alignment here.
6418 /* check if specified PCI is target device to reassign */
6419 align = pci_specified_resource_alignment(dev, &resize);
6423 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6424 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6425 pci_warn(dev, "Can't reassign resources to host bridge\n");
6429 pci_read_config_word(dev, PCI_COMMAND, &command);
6430 command &= ~PCI_COMMAND_MEMORY;
6431 pci_write_config_word(dev, PCI_COMMAND, command);
6433 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6434 pci_request_resource_alignment(dev, i, align, resize);
6437 * Need to disable bridge's resource window,
6438 * to enable the kernel to reassign new resource
6441 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6442 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6443 r = &dev->resource[i];
6444 if (!(r->flags & IORESOURCE_MEM))
6446 r->flags |= IORESOURCE_UNSET;
6447 r->end = resource_size(r) - 1;
6450 pci_disable_bridge_window(dev);
6454 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6458 spin_lock(&resource_alignment_lock);
6459 if (resource_alignment_param)
6460 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6461 spin_unlock(&resource_alignment_lock);
6466 static ssize_t resource_alignment_store(struct bus_type *bus,
6467 const char *buf, size_t count)
6469 char *param, *old, *end;
6471 if (count >= (PAGE_SIZE - 1))
6474 param = kstrndup(buf, count, GFP_KERNEL);
6478 end = strchr(param, '\n');
6482 spin_lock(&resource_alignment_lock);
6483 old = resource_alignment_param;
6484 if (strlen(param)) {
6485 resource_alignment_param = param;
6488 resource_alignment_param = NULL;
6490 spin_unlock(&resource_alignment_lock);
6497 static BUS_ATTR_RW(resource_alignment);
6499 static int __init pci_resource_alignment_sysfs_init(void)
6501 return bus_create_file(&pci_bus_type,
6502 &bus_attr_resource_alignment);
6504 late_initcall(pci_resource_alignment_sysfs_init);
6506 static void pci_no_domains(void)
6508 #ifdef CONFIG_PCI_DOMAINS
6509 pci_domains_supported = 0;
6513 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6514 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6516 static int pci_get_new_domain_nr(void)
6518 return atomic_inc_return(&__domain_nr);
6521 static int of_pci_bus_find_domain_nr(struct device *parent)
6523 static int use_dt_domains = -1;
6527 domain = of_get_pci_domain_nr(parent->of_node);
6530 * Check DT domain and use_dt_domains values.
6532 * If DT domain property is valid (domain >= 0) and
6533 * use_dt_domains != 0, the DT assignment is valid since this means
6534 * we have not previously allocated a domain number by using
6535 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6536 * 1, to indicate that we have just assigned a domain number from
6539 * If DT domain property value is not valid (ie domain < 0), and we
6540 * have not previously assigned a domain number from DT
6541 * (use_dt_domains != 1) we should assign a domain number by
6544 * pci_get_new_domain_nr()
6546 * API and update the use_dt_domains value to keep track of method we
6547 * are using to assign domain numbers (use_dt_domains = 0).
6549 * All other combinations imply we have a platform that is trying
6550 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6551 * which is a recipe for domain mishandling and it is prevented by
6552 * invalidating the domain value (domain = -1) and printing a
6553 * corresponding error.
6555 if (domain >= 0 && use_dt_domains) {
6557 } else if (domain < 0 && use_dt_domains != 1) {
6559 domain = pci_get_new_domain_nr();
6562 pr_err("Node %pOF has ", parent->of_node);
6563 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6570 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6572 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6573 acpi_pci_bus_find_domain_nr(bus);
6578 * pci_ext_cfg_avail - can we access extended PCI config space?
6580 * Returns 1 if we can access PCI extended config space (offsets
6581 * greater than 0xff). This is the default implementation. Architecture
6582 * implementations can override this.
6584 int __weak pci_ext_cfg_avail(void)
6589 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6592 EXPORT_SYMBOL(pci_fixup_cardbus);
6594 static int __init pci_setup(char *str)
6597 char *k = strchr(str, ',');
6600 if (*str && (str = pcibios_setup(str)) && *str) {
6601 if (!strcmp(str, "nomsi")) {
6603 } else if (!strncmp(str, "noats", 5)) {
6604 pr_info("PCIe: ATS is disabled\n");
6605 pcie_ats_disabled = true;
6606 } else if (!strcmp(str, "noaer")) {
6608 } else if (!strcmp(str, "earlydump")) {
6609 pci_early_dump = true;
6610 } else if (!strncmp(str, "realloc=", 8)) {
6611 pci_realloc_get_opt(str + 8);
6612 } else if (!strncmp(str, "realloc", 7)) {
6613 pci_realloc_get_opt("on");
6614 } else if (!strcmp(str, "nodomains")) {
6616 } else if (!strncmp(str, "noari", 5)) {
6617 pcie_ari_disabled = true;
6618 } else if (!strncmp(str, "cbiosize=", 9)) {
6619 pci_cardbus_io_size = memparse(str + 9, &str);
6620 } else if (!strncmp(str, "cbmemsize=", 10)) {
6621 pci_cardbus_mem_size = memparse(str + 10, &str);
6622 } else if (!strncmp(str, "resource_alignment=", 19)) {
6623 resource_alignment_param = str + 19;
6624 } else if (!strncmp(str, "ecrc=", 5)) {
6625 pcie_ecrc_get_policy(str + 5);
6626 } else if (!strncmp(str, "hpiosize=", 9)) {
6627 pci_hotplug_io_size = memparse(str + 9, &str);
6628 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6629 pci_hotplug_mmio_size = memparse(str + 11, &str);
6630 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6631 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6632 } else if (!strncmp(str, "hpmemsize=", 10)) {
6633 pci_hotplug_mmio_size = memparse(str + 10, &str);
6634 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6635 } else if (!strncmp(str, "hpbussize=", 10)) {
6636 pci_hotplug_bus_size =
6637 simple_strtoul(str + 10, &str, 0);
6638 if (pci_hotplug_bus_size > 0xff)
6639 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6640 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6641 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6642 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6643 pcie_bus_config = PCIE_BUS_SAFE;
6644 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6645 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6646 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6647 pcie_bus_config = PCIE_BUS_PEER2PEER;
6648 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6649 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6650 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6651 disable_acs_redir_param = str + 18;
6653 pr_err("PCI: Unknown option `%s'\n", str);
6660 early_param("pci", pci_setup);
6663 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6664 * in pci_setup(), above, to point to data in the __initdata section which
6665 * will be freed after the init sequence is complete. We can't allocate memory
6666 * in pci_setup() because some architectures do not have any memory allocation
6667 * service available during an early_param() call. So we allocate memory and
6668 * copy the variable here before the init section is freed.
6671 static int __init pci_realloc_setup_params(void)
6673 resource_alignment_param = kstrdup(resource_alignment_param,
6675 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6679 pure_initcall(pci_realloc_setup_params);