1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
33 #include <linux/aer.h>
36 DEFINE_MUTEX(pci_slot_mutex);
38 const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 EXPORT_SYMBOL_GPL(pci_power_names);
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 EXPORT_SYMBOL(pci_pci_problems);
49 unsigned int pci_pm_d3hot_delay;
51 static void pci_pme_list_scan(struct work_struct *work);
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 struct pci_pme_device {
58 struct list_head list;
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 unsigned int delay = dev->d3hot_delay;
68 if (delay < pci_pm_d3hot_delay)
69 delay = pci_pm_d3hot_delay;
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
79 #define DEFAULT_CARDBUS_IO_SIZE (256)
80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
85 #define DEFAULT_HOTPLUG_IO_SIZE (256)
86 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
88 /* hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93 * pci=hpmemsize=nnM overrides both
95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
98 #define DEFAULT_HOTPLUG_BUS_SIZE 1
99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105 #elif defined CONFIG_PCIE_BUS_SAFE
106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109 #elif defined CONFIG_PCIE_BUS_PEER2PEER
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
116 * The default CLS is used if arch didn't set CLS explicitly and not
117 * all pci devices agree on the same value. Arch can override either
118 * the dfl or actual value as it sees fit. Don't forget this is
119 * measured in 32-bit words, not bytes.
121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
122 u8 pci_cache_line_size;
125 * If we set up a device for bus mastering, we need to check the latency
126 * timer as certain BIOSes forget to set it properly.
128 unsigned int pcibios_max_latency = 255;
130 /* If set, the PCIe ARI capability will not be used. */
131 static bool pcie_ari_disabled;
133 /* If set, the PCIe ATS capability will not be used. */
134 static bool pcie_ats_disabled;
136 /* If set, the PCI config space of each device is printed during boot. */
139 bool pci_ats_disabled(void)
141 return pcie_ats_disabled;
143 EXPORT_SYMBOL_GPL(pci_ats_disabled);
145 /* Disable bridge_d3 for all PCIe ports */
146 static bool pci_bridge_d3_disable;
147 /* Force bridge_d3 for all PCIe ports */
148 static bool pci_bridge_d3_force;
150 static int __init pcie_port_pm_setup(char *str)
152 if (!strcmp(str, "off"))
153 pci_bridge_d3_disable = true;
154 else if (!strcmp(str, "force"))
155 pci_bridge_d3_force = true;
158 __setup("pcie_port_pm=", pcie_port_pm_setup);
160 /* Time to wait after a reset for device to become responsive */
161 #define PCIE_RESET_READY_POLL_MS 60000
164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165 * @bus: pointer to PCI bus structure to search
167 * Given a PCI bus, returns the highest PCI bus number present in the set
168 * including the given PCI bus and its list of child PCI buses.
170 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
173 unsigned char max, n;
175 max = bus->busn_res.end;
176 list_for_each_entry(tmp, &bus->children, node) {
177 n = pci_bus_max_busnr(tmp);
183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187 * @pdev: the PCI device
189 * Returns error bits set in PCI_STATUS and clears them.
191 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
196 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
197 if (ret != PCIBIOS_SUCCESSFUL)
200 status &= PCI_STATUS_ERROR_BITS;
202 pci_write_config_word(pdev, PCI_STATUS, status);
206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
208 #ifdef CONFIG_HAS_IOMEM
209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
211 struct resource *res = &pdev->resource[bar];
214 * Make sure the BAR is actually a memory resource, not an IO resource
216 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
217 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
220 return ioremap(res->start, resource_size(res));
222 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
227 * Make sure the BAR is actually a memory resource, not an IO resource
229 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
233 return ioremap_wc(pci_resource_start(pdev, bar),
234 pci_resource_len(pdev, bar));
236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
240 * pci_dev_str_match_path - test if a path string matches a device
241 * @dev: the PCI device to test
242 * @path: string to match the device against
243 * @endptr: pointer to the string after the match
245 * Test if a string (typically from a kernel parameter) formatted as a
246 * path of device/function addresses matches a PCI device. The string must
249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
251 * A path for a device can be obtained using 'lspci -t'. Using a path
252 * is more robust against bus renumbering than using only a single bus,
253 * device and function address.
255 * Returns 1 if the string matches the device, 0 if it does not and
256 * a negative error code if it fails to parse the string.
258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
262 int seg, bus, slot, func;
266 *endptr = strchrnul(path, ';');
268 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
273 p = strrchr(wpath, '/');
276 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
282 if (dev->devfn != PCI_DEVFN(slot, func)) {
288 * Note: we don't need to get a reference to the upstream
289 * bridge because we hold a reference to the top level
290 * device which should hold a reference to the bridge,
293 dev = pci_upstream_bridge(dev);
302 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
306 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
313 ret = (seg == pci_domain_nr(dev->bus) &&
314 bus == dev->bus->number &&
315 dev->devfn == PCI_DEVFN(slot, func));
323 * pci_dev_str_match - test if a string matches a device
324 * @dev: the PCI device to test
325 * @p: string to match the device against
326 * @endptr: pointer to the string after the match
328 * Test if a string (typically from a kernel parameter) matches a specified
329 * PCI device. The string may be of one of the following formats:
331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
334 * The first format specifies a PCI bus/device/function address which
335 * may change if new hardware is inserted, if motherboard firmware changes,
336 * or due to changes caused in kernel parameters. If the domain is
337 * left unspecified, it is taken to be 0. In order to be robust against
338 * bus renumbering issues, a path of PCI device/function numbers may be used
339 * to address the specific device. The path for a device can be determined
340 * through the use of 'lspci -t'.
342 * The second format matches devices using IDs in the configuration
343 * space which may match multiple devices in the system. A value of 0
344 * for any field will match all devices. (Note: this differs from
345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346 * legacy reasons and convenience so users don't have to specify
347 * FFFFFFFFs on the command line.)
349 * Returns 1 if the string matches the device, 0 if it does not and
350 * a negative error code if the string cannot be parsed.
352 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
357 unsigned short vendor, device, subsystem_vendor, subsystem_device;
359 if (strncmp(p, "pci:", 4) == 0) {
360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
362 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
363 &subsystem_vendor, &subsystem_device, &count);
365 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
369 subsystem_vendor = 0;
370 subsystem_device = 0;
375 if ((!vendor || vendor == dev->vendor) &&
376 (!device || device == dev->device) &&
377 (!subsystem_vendor ||
378 subsystem_vendor == dev->subsystem_vendor) &&
379 (!subsystem_device ||
380 subsystem_device == dev->subsystem_device))
384 * PCI Bus, Device, Function IDs are specified
385 * (optionally, may include a path of devfns following it)
387 ret = pci_dev_str_match_path(dev, p, &p);
402 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
403 u8 pos, int cap, int *ttl)
408 pci_bus_read_config_byte(bus, devfn, pos, &pos);
414 pci_bus_read_config_word(bus, devfn, pos, &ent);
426 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
429 int ttl = PCI_FIND_CAP_TTL;
431 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
434 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
436 return __pci_find_next_cap(dev->bus, dev->devfn,
437 pos + PCI_CAP_LIST_NEXT, cap);
439 EXPORT_SYMBOL_GPL(pci_find_next_capability);
441 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
442 unsigned int devfn, u8 hdr_type)
446 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
447 if (!(status & PCI_STATUS_CAP_LIST))
451 case PCI_HEADER_TYPE_NORMAL:
452 case PCI_HEADER_TYPE_BRIDGE:
453 return PCI_CAPABILITY_LIST;
454 case PCI_HEADER_TYPE_CARDBUS:
455 return PCI_CB_CAPABILITY_LIST;
462 * pci_find_capability - query for devices' capabilities
463 * @dev: PCI device to query
464 * @cap: capability code
466 * Tell if a device supports a given PCI capability.
467 * Returns the address of the requested capability structure within the
468 * device's PCI configuration space or 0 in case the device does not
469 * support it. Possible values for @cap include:
471 * %PCI_CAP_ID_PM Power Management
472 * %PCI_CAP_ID_AGP Accelerated Graphics Port
473 * %PCI_CAP_ID_VPD Vital Product Data
474 * %PCI_CAP_ID_SLOTID Slot Identification
475 * %PCI_CAP_ID_MSI Message Signalled Interrupts
476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
477 * %PCI_CAP_ID_PCIX PCI-X
478 * %PCI_CAP_ID_EXP PCI Express
480 u8 pci_find_capability(struct pci_dev *dev, int cap)
484 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
486 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
490 EXPORT_SYMBOL(pci_find_capability);
493 * pci_bus_find_capability - query for devices' capabilities
494 * @bus: the PCI bus to query
495 * @devfn: PCI device to query
496 * @cap: capability code
498 * Like pci_find_capability() but works for PCI devices that do not have a
499 * pci_dev structure set up yet.
501 * Returns the address of the requested capability structure within the
502 * device's PCI configuration space or 0 in case the device does not
505 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
509 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
511 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
513 pos = __pci_find_next_cap(bus, devfn, pos, cap);
517 EXPORT_SYMBOL(pci_bus_find_capability);
520 * pci_find_next_ext_capability - Find an extended capability
521 * @dev: PCI device to query
522 * @start: address at which to start looking (0 to start at beginning of list)
523 * @cap: capability code
525 * Returns the address of the next matching extended capability structure
526 * within the device's PCI configuration space or 0 if the device does
527 * not support it. Some capabilities can occur several times, e.g., the
528 * vendor-specific capability, and this provides a way to find them all.
530 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
534 u16 pos = PCI_CFG_SPACE_SIZE;
536 /* minimum 8 bytes per capability */
537 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
539 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
545 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
549 * If we have no capabilities, this is indicated by cap ID,
550 * cap version and next pointer all being 0.
556 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
559 pos = PCI_EXT_CAP_NEXT(header);
560 if (pos < PCI_CFG_SPACE_SIZE)
563 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
569 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
572 * pci_find_ext_capability - Find an extended capability
573 * @dev: PCI device to query
574 * @cap: capability code
576 * Returns the address of the requested extended capability structure
577 * within the device's PCI configuration space or 0 if the device does
578 * not support it. Possible values for @cap include:
580 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
581 * %PCI_EXT_CAP_ID_VC Virtual Channel
582 * %PCI_EXT_CAP_ID_DSN Device Serial Number
583 * %PCI_EXT_CAP_ID_PWR Power Budgeting
585 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
587 return pci_find_next_ext_capability(dev, 0, cap);
589 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
592 * pci_get_dsn - Read and return the 8-byte Device Serial Number
593 * @dev: PCI device to query
595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
598 * Returns the DSN, or zero if the capability does not exist.
600 u64 pci_get_dsn(struct pci_dev *dev)
606 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
611 * The Device Serial Number is two dwords offset 4 bytes from the
612 * capability position. The specification says that the first dword is
613 * the lower half, and the second dword is the upper half.
616 pci_read_config_dword(dev, pos, &dword);
618 pci_read_config_dword(dev, pos + 4, &dword);
619 dsn |= ((u64)dword) << 32;
623 EXPORT_SYMBOL_GPL(pci_get_dsn);
625 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
627 int rc, ttl = PCI_FIND_CAP_TTL;
630 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
631 mask = HT_3BIT_CAP_MASK;
633 mask = HT_5BIT_CAP_MASK;
635 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
636 PCI_CAP_ID_HT, &ttl);
638 rc = pci_read_config_byte(dev, pos + 3, &cap);
639 if (rc != PCIBIOS_SUCCESSFUL)
642 if ((cap & mask) == ht_cap)
645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
646 pos + PCI_CAP_LIST_NEXT,
647 PCI_CAP_ID_HT, &ttl);
654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
655 * @dev: PCI device to query
656 * @pos: Position from which to continue searching
657 * @ht_cap: HyperTransport capability code
659 * To be used in conjunction with pci_find_ht_capability() to search for
660 * all capabilities matching @ht_cap. @pos should always be a value returned
661 * from pci_find_ht_capability().
663 * NB. To be 100% safe against broken PCI devices, the caller should take
664 * steps to avoid an infinite loop.
666 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
668 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
673 * pci_find_ht_capability - query a device's HyperTransport capabilities
674 * @dev: PCI device to query
675 * @ht_cap: HyperTransport capability code
677 * Tell if a device supports a given HyperTransport capability.
678 * Returns an address within the device's PCI configuration space
679 * or 0 in case the device does not support the request capability.
680 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
681 * which has a HyperTransport capability matching @ht_cap.
683 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
687 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
689 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
693 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
696 * pci_find_vsec_capability - Find a vendor-specific extended capability
697 * @dev: PCI device to query
698 * @vendor: Vendor ID for which capability is defined
699 * @cap: Vendor-specific capability ID
701 * If @dev has Vendor ID @vendor, search for a VSEC capability with
702 * VSEC ID @cap. If found, return the capability offset in
703 * config space; otherwise return 0.
705 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
710 if (vendor != dev->vendor)
713 while ((vsec = pci_find_next_ext_capability(dev, vsec,
714 PCI_EXT_CAP_ID_VNDR))) {
715 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
716 &header) == PCIBIOS_SUCCESSFUL &&
717 PCI_VNDR_HEADER_ID(header) == cap)
723 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
726 * pci_find_parent_resource - return resource region of parent bus of given
728 * @dev: PCI device structure contains resources to be searched
729 * @res: child resource record for which parent is sought
731 * For given resource region of given device, return the resource region of
732 * parent bus the given region is contained in.
734 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
735 struct resource *res)
737 const struct pci_bus *bus = dev->bus;
741 pci_bus_for_each_resource(bus, r, i) {
744 if (resource_contains(r, res)) {
747 * If the window is prefetchable but the BAR is
748 * not, the allocator made a mistake.
750 if (r->flags & IORESOURCE_PREFETCH &&
751 !(res->flags & IORESOURCE_PREFETCH))
755 * If we're below a transparent bridge, there may
756 * be both a positively-decoded aperture and a
757 * subtractively-decoded region that contain the BAR.
758 * We want the positively-decoded one, so this depends
759 * on pci_bus_for_each_resource() giving us those
767 EXPORT_SYMBOL(pci_find_parent_resource);
770 * pci_find_resource - Return matching PCI device resource
771 * @dev: PCI device to query
772 * @res: Resource to look for
774 * Goes over standard PCI resources (BARs) and checks if the given resource
775 * is partially or fully contained in any of them. In that case the
776 * matching resource is returned, %NULL otherwise.
778 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
782 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
783 struct resource *r = &dev->resource[i];
785 if (r->start && resource_contains(r, res))
791 EXPORT_SYMBOL(pci_find_resource);
794 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
795 * @dev: the PCI device to operate on
796 * @pos: config space offset of status word
797 * @mask: mask of bit(s) to care about in status word
799 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
801 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
805 /* Wait for Transaction Pending bit clean */
806 for (i = 0; i < 4; i++) {
809 msleep((1 << (i - 1)) * 100);
811 pci_read_config_word(dev, pos, &status);
812 if (!(status & mask))
819 static int pci_acs_enable;
822 * pci_request_acs - ask for ACS to be enabled if supported
824 void pci_request_acs(void)
829 static const char *disable_acs_redir_param;
832 * pci_disable_acs_redir - disable ACS redirect capabilities
833 * @dev: the PCI device
835 * For only devices specified in the disable_acs_redir parameter.
837 static void pci_disable_acs_redir(struct pci_dev *dev)
844 if (!disable_acs_redir_param)
847 p = disable_acs_redir_param;
849 ret = pci_dev_str_match(dev, p, &p);
851 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
852 disable_acs_redir_param);
855 } else if (ret == 1) {
860 if (*p != ';' && *p != ',') {
861 /* End of param or invalid format */
870 if (!pci_dev_specific_disable_acs_redir(dev))
875 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
879 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
881 /* P2P Request & Completion Redirect */
882 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
884 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
886 pci_info(dev, "disabled ACS redirect\n");
890 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
891 * @dev: the PCI device
893 static void pci_std_enable_acs(struct pci_dev *dev)
903 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
904 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
906 /* Source Validation */
907 ctrl |= (cap & PCI_ACS_SV);
909 /* P2P Request Redirect */
910 ctrl |= (cap & PCI_ACS_RR);
912 /* P2P Completion Redirect */
913 ctrl |= (cap & PCI_ACS_CR);
915 /* Upstream Forwarding */
916 ctrl |= (cap & PCI_ACS_UF);
918 /* Enable Translation Blocking for external devices */
919 if (dev->external_facing || dev->untrusted)
920 ctrl |= (cap & PCI_ACS_TB);
922 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
926 * pci_enable_acs - enable ACS if hardware support it
927 * @dev: the PCI device
929 static void pci_enable_acs(struct pci_dev *dev)
932 goto disable_acs_redir;
934 if (!pci_dev_specific_enable_acs(dev))
935 goto disable_acs_redir;
937 pci_std_enable_acs(dev);
941 * Note: pci_disable_acs_redir() must be called even if ACS was not
942 * enabled by the kernel because it may have been enabled by
943 * platform firmware. So if we are told to disable it, we should
944 * always disable it after setting the kernel's default
947 pci_disable_acs_redir(dev);
951 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
952 * @dev: PCI device to have its BARs restored
954 * Restore the BAR values for a given device, so as to make it
955 * accessible by its driver.
957 static void pci_restore_bars(struct pci_dev *dev)
961 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
962 pci_update_resource(dev, i);
965 static const struct pci_platform_pm_ops *pci_platform_pm;
967 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
969 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
970 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
972 pci_platform_pm = ops;
976 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
978 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
981 static inline int platform_pci_set_power_state(struct pci_dev *dev,
984 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
987 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
989 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
992 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
994 if (pci_platform_pm && pci_platform_pm->refresh_state)
995 pci_platform_pm->refresh_state(dev);
998 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1000 return pci_platform_pm ?
1001 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1004 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1006 return pci_platform_pm ?
1007 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1010 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1012 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1015 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1017 if (pci_platform_pm && pci_platform_pm->bridge_d3)
1018 return pci_platform_pm->bridge_d3(dev);
1023 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1025 * @dev: PCI device to handle.
1026 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1029 * -EINVAL if the requested state is invalid.
1030 * -EIO if device does not support PCI PM or its PM capabilities register has a
1031 * wrong version, or device doesn't support the requested state.
1032 * 0 if device already is in the requested state.
1033 * 0 if device's power state has been successfully changed.
1035 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1038 bool need_restore = false;
1040 /* Check if we're already there */
1041 if (dev->current_state == state)
1047 if (state < PCI_D0 || state > PCI_D3hot)
1051 * Validate transition: We can enter D0 from any state, but if
1052 * we're already in a low-power state, we can only go deeper. E.g.,
1053 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1054 * we'd have to go from D3 to D0, then to D1.
1056 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1057 && dev->current_state > state) {
1058 pci_err(dev, "invalid power transition (from %s to %s)\n",
1059 pci_power_name(dev->current_state),
1060 pci_power_name(state));
1064 /* Check if this device supports the desired state */
1065 if ((state == PCI_D1 && !dev->d1_support)
1066 || (state == PCI_D2 && !dev->d2_support))
1069 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1070 if (pmcsr == (u16) ~0) {
1071 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1072 pci_power_name(dev->current_state),
1073 pci_power_name(state));
1078 * If we're (effectively) in D3, force entire word to 0.
1079 * This doesn't affect PME_Status, disables PME_En, and
1080 * sets PowerState to 0.
1082 switch (dev->current_state) {
1086 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1091 case PCI_UNKNOWN: /* Boot-up */
1092 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1093 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1094 need_restore = true;
1095 fallthrough; /* force to D0 */
1101 /* Enter specified state */
1102 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1105 * Mandatory power management transition delays; see PCI PM 1.1
1108 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1109 pci_dev_d3_sleep(dev);
1110 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1111 udelay(PCI_PM_D2_DELAY);
1113 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1114 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1115 if (dev->current_state != state)
1116 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1117 pci_power_name(dev->current_state),
1118 pci_power_name(state));
1121 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1122 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1123 * from D3hot to D0 _may_ perform an internal reset, thereby
1124 * going to "D0 Uninitialized" rather than "D0 Initialized".
1125 * For example, at least some versions of the 3c905B and the
1126 * 3c556B exhibit this behaviour.
1128 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1129 * devices in a D3hot state at boot. Consequently, we need to
1130 * restore at least the BARs so that the device will be
1131 * accessible to its driver.
1134 pci_restore_bars(dev);
1137 pcie_aspm_pm_state_change(dev->bus->self);
1143 * pci_update_current_state - Read power state of given device and cache it
1144 * @dev: PCI device to handle.
1145 * @state: State to cache in case the device doesn't have the PM capability
1147 * The power state is read from the PMCSR register, which however is
1148 * inaccessible in D3cold. The platform firmware is therefore queried first
1149 * to detect accessibility of the register. In case the platform firmware
1150 * reports an incorrect state or the device isn't power manageable by the
1151 * platform at all, we try to detect D3cold by testing accessibility of the
1152 * vendor ID in config space.
1154 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1156 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1157 !pci_device_is_present(dev)) {
1158 dev->current_state = PCI_D3cold;
1159 } else if (dev->pm_cap) {
1162 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1163 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1165 dev->current_state = state;
1170 * pci_refresh_power_state - Refresh the given device's power state data
1171 * @dev: Target PCI device.
1173 * Ask the platform to refresh the devices power state information and invoke
1174 * pci_update_current_state() to update its current PCI power state.
1176 void pci_refresh_power_state(struct pci_dev *dev)
1178 if (platform_pci_power_manageable(dev))
1179 platform_pci_refresh_power_state(dev);
1181 pci_update_current_state(dev, dev->current_state);
1185 * pci_platform_power_transition - Use platform to change device power state
1186 * @dev: PCI device to handle.
1187 * @state: State to put the device into.
1189 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1193 if (platform_pci_power_manageable(dev)) {
1194 error = platform_pci_set_power_state(dev, state);
1196 pci_update_current_state(dev, state);
1200 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1201 dev->current_state = PCI_D0;
1205 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1207 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1209 pm_request_resume(&pci_dev->dev);
1214 * pci_resume_bus - Walk given bus and runtime resume devices on it
1215 * @bus: Top bus of the subtree to walk.
1217 void pci_resume_bus(struct pci_bus *bus)
1220 pci_walk_bus(bus, pci_resume_one, NULL);
1223 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1229 * After reset, the device should not silently discard config
1230 * requests, but it may still indicate that it needs more time by
1231 * responding to them with CRS completions. The Root Port will
1232 * generally synthesize ~0 data to complete the read (except when
1233 * CRS SV is enabled and the read was for the Vendor ID; in that
1234 * case it synthesizes 0x0001 data).
1236 * Wait for the device to return a non-CRS completion. Read the
1237 * Command register instead of Vendor ID so we don't have to
1238 * contend with the CRS SV value.
1240 pci_read_config_dword(dev, PCI_COMMAND, &id);
1242 if (delay > timeout) {
1243 pci_warn(dev, "not ready %dms after %s; giving up\n",
1244 delay - 1, reset_type);
1249 pci_info(dev, "not ready %dms after %s; waiting\n",
1250 delay - 1, reset_type);
1254 pci_read_config_dword(dev, PCI_COMMAND, &id);
1258 pci_info(dev, "ready %dms after %s\n", delay - 1,
1265 * pci_power_up - Put the given device into D0
1266 * @dev: PCI device to power up
1268 int pci_power_up(struct pci_dev *dev)
1270 pci_platform_power_transition(dev, PCI_D0);
1273 * Mandatory power management transition delays are handled in
1274 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1275 * corresponding bridge.
1277 if (dev->runtime_d3cold) {
1279 * When powering on a bridge from D3cold, the whole hierarchy
1280 * may be powered on into D0uninitialized state, resume them to
1281 * give them a chance to suspend again
1283 pci_resume_bus(dev->subordinate);
1286 return pci_raw_set_power_state(dev, PCI_D0);
1290 * __pci_dev_set_current_state - Set current state of a PCI device
1291 * @dev: Device to handle
1292 * @data: pointer to state to be set
1294 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1296 pci_power_t state = *(pci_power_t *)data;
1298 dev->current_state = state;
1303 * pci_bus_set_current_state - Walk given bus and set current state of devices
1304 * @bus: Top bus of the subtree to walk.
1305 * @state: state to be set
1307 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1310 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1314 * pci_set_power_state - Set the power state of a PCI device
1315 * @dev: PCI device to handle.
1316 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1318 * Transition a device to a new power state, using the platform firmware and/or
1319 * the device's PCI PM registers.
1322 * -EINVAL if the requested state is invalid.
1323 * -EIO if device does not support PCI PM or its PM capabilities register has a
1324 * wrong version, or device doesn't support the requested state.
1325 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1326 * 0 if device already is in the requested state.
1327 * 0 if the transition is to D3 but D3 is not supported.
1328 * 0 if device's power state has been successfully changed.
1330 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1334 /* Bound the state we're entering */
1335 if (state > PCI_D3cold)
1337 else if (state < PCI_D0)
1339 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1342 * If the device or the parent bridge do not support PCI
1343 * PM, ignore the request if we're doing anything other
1344 * than putting it into D0 (which would only happen on
1349 /* Check if we're already there */
1350 if (dev->current_state == state)
1353 if (state == PCI_D0)
1354 return pci_power_up(dev);
1357 * This device is quirked not to be put into D3, so don't put it in
1360 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1364 * To put device in D3cold, we put device into D3hot in native
1365 * way, then put device into D3cold with platform ops
1367 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1370 if (pci_platform_power_transition(dev, state))
1373 /* Powering off a bridge may power off the whole hierarchy */
1374 if (state == PCI_D3cold)
1375 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1379 EXPORT_SYMBOL(pci_set_power_state);
1382 * pci_choose_state - Choose the power state of a PCI device
1383 * @dev: PCI device to be suspended
1384 * @state: target sleep state for the whole system. This is the value
1385 * that is passed to suspend() function.
1387 * Returns PCI power state suitable for given device and given system
1390 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1397 ret = platform_pci_choose_state(dev);
1398 if (ret != PCI_POWER_ERROR)
1401 switch (state.event) {
1404 case PM_EVENT_FREEZE:
1405 case PM_EVENT_PRETHAW:
1406 /* REVISIT both freeze and pre-thaw "should" use D0 */
1407 case PM_EVENT_SUSPEND:
1408 case PM_EVENT_HIBERNATE:
1411 pci_info(dev, "unrecognized suspend event %d\n",
1417 EXPORT_SYMBOL(pci_choose_state);
1419 #define PCI_EXP_SAVE_REGS 7
1421 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1422 u16 cap, bool extended)
1424 struct pci_cap_saved_state *tmp;
1426 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1427 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1433 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1435 return _pci_find_saved_cap(dev, cap, false);
1438 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1440 return _pci_find_saved_cap(dev, cap, true);
1443 static int pci_save_pcie_state(struct pci_dev *dev)
1446 struct pci_cap_saved_state *save_state;
1449 if (!pci_is_pcie(dev))
1452 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1454 pci_err(dev, "buffer not found in %s\n", __func__);
1458 cap = (u16 *)&save_state->cap.data[0];
1459 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1460 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1461 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1462 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1463 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1464 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1465 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1470 static void pci_restore_pcie_state(struct pci_dev *dev)
1473 struct pci_cap_saved_state *save_state;
1476 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1480 cap = (u16 *)&save_state->cap.data[0];
1481 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1482 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1483 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1484 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1485 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1486 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1487 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1490 static int pci_save_pcix_state(struct pci_dev *dev)
1493 struct pci_cap_saved_state *save_state;
1495 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1499 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1501 pci_err(dev, "buffer not found in %s\n", __func__);
1505 pci_read_config_word(dev, pos + PCI_X_CMD,
1506 (u16 *)save_state->cap.data);
1511 static void pci_restore_pcix_state(struct pci_dev *dev)
1514 struct pci_cap_saved_state *save_state;
1517 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1518 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1519 if (!save_state || !pos)
1521 cap = (u16 *)&save_state->cap.data[0];
1523 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1526 static void pci_save_ltr_state(struct pci_dev *dev)
1529 struct pci_cap_saved_state *save_state;
1532 if (!pci_is_pcie(dev))
1535 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1539 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1541 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1545 cap = (u16 *)&save_state->cap.data[0];
1546 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1547 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1550 static void pci_restore_ltr_state(struct pci_dev *dev)
1552 struct pci_cap_saved_state *save_state;
1556 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1557 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1558 if (!save_state || !ltr)
1561 cap = (u16 *)&save_state->cap.data[0];
1562 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1563 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1567 * pci_save_state - save the PCI configuration space of a device before
1569 * @dev: PCI device that we're dealing with
1571 int pci_save_state(struct pci_dev *dev)
1574 /* XXX: 100% dword access ok here? */
1575 for (i = 0; i < 16; i++) {
1576 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1577 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1578 i * 4, dev->saved_config_space[i]);
1580 dev->state_saved = true;
1582 i = pci_save_pcie_state(dev);
1586 i = pci_save_pcix_state(dev);
1590 pci_save_ltr_state(dev);
1591 pci_save_dpc_state(dev);
1592 pci_save_aer_state(dev);
1593 pci_save_ptm_state(dev);
1594 return pci_save_vc_state(dev);
1596 EXPORT_SYMBOL(pci_save_state);
1598 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1599 u32 saved_val, int retry, bool force)
1603 pci_read_config_dword(pdev, offset, &val);
1604 if (!force && val == saved_val)
1608 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1609 offset, val, saved_val);
1610 pci_write_config_dword(pdev, offset, saved_val);
1614 pci_read_config_dword(pdev, offset, &val);
1615 if (val == saved_val)
1622 static void pci_restore_config_space_range(struct pci_dev *pdev,
1623 int start, int end, int retry,
1628 for (index = end; index >= start; index--)
1629 pci_restore_config_dword(pdev, 4 * index,
1630 pdev->saved_config_space[index],
1634 static void pci_restore_config_space(struct pci_dev *pdev)
1636 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1637 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1638 /* Restore BARs before the command register. */
1639 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1640 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1641 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1642 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1645 * Force rewriting of prefetch registers to avoid S3 resume
1646 * issues on Intel PCI bridges that occur when these
1647 * registers are not explicitly written.
1649 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1650 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1652 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1656 static void pci_restore_rebar_state(struct pci_dev *pdev)
1658 unsigned int pos, nbars, i;
1661 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1665 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1666 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1667 PCI_REBAR_CTRL_NBAR_SHIFT;
1669 for (i = 0; i < nbars; i++, pos += 8) {
1670 struct resource *res;
1673 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1674 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1675 res = pdev->resource + bar_idx;
1676 size = pci_rebar_bytes_to_size(resource_size(res));
1677 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1678 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1679 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1684 * pci_restore_state - Restore the saved state of a PCI device
1685 * @dev: PCI device that we're dealing with
1687 void pci_restore_state(struct pci_dev *dev)
1689 if (!dev->state_saved)
1693 * Restore max latencies (in the LTR capability) before enabling
1694 * LTR itself (in the PCIe capability).
1696 pci_restore_ltr_state(dev);
1698 pci_restore_pcie_state(dev);
1699 pci_restore_pasid_state(dev);
1700 pci_restore_pri_state(dev);
1701 pci_restore_ats_state(dev);
1702 pci_restore_vc_state(dev);
1703 pci_restore_rebar_state(dev);
1704 pci_restore_dpc_state(dev);
1705 pci_restore_ptm_state(dev);
1707 pci_aer_clear_status(dev);
1708 pci_restore_aer_state(dev);
1710 pci_restore_config_space(dev);
1712 pci_restore_pcix_state(dev);
1713 pci_restore_msi_state(dev);
1715 /* Restore ACS and IOV configuration state */
1716 pci_enable_acs(dev);
1717 pci_restore_iov_state(dev);
1719 dev->state_saved = false;
1721 EXPORT_SYMBOL(pci_restore_state);
1723 struct pci_saved_state {
1724 u32 config_space[16];
1725 struct pci_cap_saved_data cap[];
1729 * pci_store_saved_state - Allocate and return an opaque struct containing
1730 * the device saved state.
1731 * @dev: PCI device that we're dealing with
1733 * Return NULL if no state or error.
1735 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1737 struct pci_saved_state *state;
1738 struct pci_cap_saved_state *tmp;
1739 struct pci_cap_saved_data *cap;
1742 if (!dev->state_saved)
1745 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1747 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1748 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1750 state = kzalloc(size, GFP_KERNEL);
1754 memcpy(state->config_space, dev->saved_config_space,
1755 sizeof(state->config_space));
1758 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1759 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1760 memcpy(cap, &tmp->cap, len);
1761 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1763 /* Empty cap_save terminates list */
1767 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1770 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1771 * @dev: PCI device that we're dealing with
1772 * @state: Saved state returned from pci_store_saved_state()
1774 int pci_load_saved_state(struct pci_dev *dev,
1775 struct pci_saved_state *state)
1777 struct pci_cap_saved_data *cap;
1779 dev->state_saved = false;
1784 memcpy(dev->saved_config_space, state->config_space,
1785 sizeof(state->config_space));
1789 struct pci_cap_saved_state *tmp;
1791 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1792 if (!tmp || tmp->cap.size != cap->size)
1795 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1796 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1797 sizeof(struct pci_cap_saved_data) + cap->size);
1800 dev->state_saved = true;
1803 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1806 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1807 * and free the memory allocated for it.
1808 * @dev: PCI device that we're dealing with
1809 * @state: Pointer to saved state returned from pci_store_saved_state()
1811 int pci_load_and_free_saved_state(struct pci_dev *dev,
1812 struct pci_saved_state **state)
1814 int ret = pci_load_saved_state(dev, *state);
1819 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1821 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1823 return pci_enable_resources(dev, bars);
1826 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1829 struct pci_dev *bridge;
1833 err = pci_set_power_state(dev, PCI_D0);
1834 if (err < 0 && err != -EIO)
1837 bridge = pci_upstream_bridge(dev);
1839 pcie_aspm_powersave_config_link(bridge);
1841 err = pcibios_enable_device(dev, bars);
1844 pci_fixup_device(pci_fixup_enable, dev);
1846 if (dev->msi_enabled || dev->msix_enabled)
1849 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1851 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1852 if (cmd & PCI_COMMAND_INTX_DISABLE)
1853 pci_write_config_word(dev, PCI_COMMAND,
1854 cmd & ~PCI_COMMAND_INTX_DISABLE);
1861 * pci_reenable_device - Resume abandoned device
1862 * @dev: PCI device to be resumed
1864 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1865 * to be called by normal code, write proper resume handler and use it instead.
1867 int pci_reenable_device(struct pci_dev *dev)
1869 if (pci_is_enabled(dev))
1870 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1873 EXPORT_SYMBOL(pci_reenable_device);
1875 static void pci_enable_bridge(struct pci_dev *dev)
1877 struct pci_dev *bridge;
1880 bridge = pci_upstream_bridge(dev);
1882 pci_enable_bridge(bridge);
1884 if (pci_is_enabled(dev)) {
1885 if (!dev->is_busmaster)
1886 pci_set_master(dev);
1890 retval = pci_enable_device(dev);
1892 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1894 pci_set_master(dev);
1897 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1899 struct pci_dev *bridge;
1904 * Power state could be unknown at this point, either due to a fresh
1905 * boot or a device removal call. So get the current power state
1906 * so that things like MSI message writing will behave as expected
1907 * (e.g. if the device really is in D0 at enable time).
1911 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1912 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1915 if (atomic_inc_return(&dev->enable_cnt) > 1)
1916 return 0; /* already enabled */
1918 bridge = pci_upstream_bridge(dev);
1920 pci_enable_bridge(bridge);
1922 /* only skip sriov related */
1923 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1924 if (dev->resource[i].flags & flags)
1926 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1927 if (dev->resource[i].flags & flags)
1930 err = do_pci_enable_device(dev, bars);
1932 atomic_dec(&dev->enable_cnt);
1937 * pci_enable_device_io - Initialize a device for use with IO space
1938 * @dev: PCI device to be initialized
1940 * Initialize device before it's used by a driver. Ask low-level code
1941 * to enable I/O resources. Wake up the device if it was suspended.
1942 * Beware, this function can fail.
1944 int pci_enable_device_io(struct pci_dev *dev)
1946 return pci_enable_device_flags(dev, IORESOURCE_IO);
1948 EXPORT_SYMBOL(pci_enable_device_io);
1951 * pci_enable_device_mem - Initialize a device for use with Memory space
1952 * @dev: PCI device to be initialized
1954 * Initialize device before it's used by a driver. Ask low-level code
1955 * to enable Memory resources. Wake up the device if it was suspended.
1956 * Beware, this function can fail.
1958 int pci_enable_device_mem(struct pci_dev *dev)
1960 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1962 EXPORT_SYMBOL(pci_enable_device_mem);
1965 * pci_enable_device - Initialize device before it's used by a driver.
1966 * @dev: PCI device to be initialized
1968 * Initialize device before it's used by a driver. Ask low-level code
1969 * to enable I/O and memory. Wake up the device if it was suspended.
1970 * Beware, this function can fail.
1972 * Note we don't actually enable the device many times if we call
1973 * this function repeatedly (we just increment the count).
1975 int pci_enable_device(struct pci_dev *dev)
1977 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1979 EXPORT_SYMBOL(pci_enable_device);
1982 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1983 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1984 * there's no need to track it separately. pci_devres is initialized
1985 * when a device is enabled using managed PCI device enable interface.
1988 unsigned int enabled:1;
1989 unsigned int pinned:1;
1990 unsigned int orig_intx:1;
1991 unsigned int restore_intx:1;
1996 static void pcim_release(struct device *gendev, void *res)
1998 struct pci_dev *dev = to_pci_dev(gendev);
1999 struct pci_devres *this = res;
2002 if (dev->msi_enabled)
2003 pci_disable_msi(dev);
2004 if (dev->msix_enabled)
2005 pci_disable_msix(dev);
2007 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2008 if (this->region_mask & (1 << i))
2009 pci_release_region(dev, i);
2014 if (this->restore_intx)
2015 pci_intx(dev, this->orig_intx);
2017 if (this->enabled && !this->pinned)
2018 pci_disable_device(dev);
2021 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2023 struct pci_devres *dr, *new_dr;
2025 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2029 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2032 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2035 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2037 if (pci_is_managed(pdev))
2038 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2043 * pcim_enable_device - Managed pci_enable_device()
2044 * @pdev: PCI device to be initialized
2046 * Managed pci_enable_device().
2048 int pcim_enable_device(struct pci_dev *pdev)
2050 struct pci_devres *dr;
2053 dr = get_pci_dr(pdev);
2059 rc = pci_enable_device(pdev);
2061 pdev->is_managed = 1;
2066 EXPORT_SYMBOL(pcim_enable_device);
2069 * pcim_pin_device - Pin managed PCI device
2070 * @pdev: PCI device to pin
2072 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2073 * driver detach. @pdev must have been enabled with
2074 * pcim_enable_device().
2076 void pcim_pin_device(struct pci_dev *pdev)
2078 struct pci_devres *dr;
2080 dr = find_pci_dr(pdev);
2081 WARN_ON(!dr || !dr->enabled);
2085 EXPORT_SYMBOL(pcim_pin_device);
2088 * pcibios_add_device - provide arch specific hooks when adding device dev
2089 * @dev: the PCI device being added
2091 * Permits the platform to provide architecture specific functionality when
2092 * devices are added. This is the default implementation. Architecture
2093 * implementations can override this.
2095 int __weak pcibios_add_device(struct pci_dev *dev)
2101 * pcibios_release_device - provide arch specific hooks when releasing
2103 * @dev: the PCI device being released
2105 * Permits the platform to provide architecture specific functionality when
2106 * devices are released. This is the default implementation. Architecture
2107 * implementations can override this.
2109 void __weak pcibios_release_device(struct pci_dev *dev) {}
2112 * pcibios_disable_device - disable arch specific PCI resources for device dev
2113 * @dev: the PCI device to disable
2115 * Disables architecture specific PCI resources for the device. This
2116 * is the default implementation. Architecture implementations can
2119 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2122 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2123 * @irq: ISA IRQ to penalize
2124 * @active: IRQ active or not
2126 * Permits the platform to provide architecture-specific functionality when
2127 * penalizing ISA IRQs. This is the default implementation. Architecture
2128 * implementations can override this.
2130 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2132 static void do_pci_disable_device(struct pci_dev *dev)
2136 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2137 if (pci_command & PCI_COMMAND_MASTER) {
2138 pci_command &= ~PCI_COMMAND_MASTER;
2139 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2142 pcibios_disable_device(dev);
2146 * pci_disable_enabled_device - Disable device without updating enable_cnt
2147 * @dev: PCI device to disable
2149 * NOTE: This function is a backend of PCI power management routines and is
2150 * not supposed to be called drivers.
2152 void pci_disable_enabled_device(struct pci_dev *dev)
2154 if (pci_is_enabled(dev))
2155 do_pci_disable_device(dev);
2159 * pci_disable_device - Disable PCI device after use
2160 * @dev: PCI device to be disabled
2162 * Signal to the system that the PCI device is not in use by the system
2163 * anymore. This only involves disabling PCI bus-mastering, if active.
2165 * Note we don't actually disable the device until all callers of
2166 * pci_enable_device() have called pci_disable_device().
2168 void pci_disable_device(struct pci_dev *dev)
2170 struct pci_devres *dr;
2172 dr = find_pci_dr(dev);
2176 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2177 "disabling already-disabled device");
2179 if (atomic_dec_return(&dev->enable_cnt) != 0)
2182 do_pci_disable_device(dev);
2184 dev->is_busmaster = 0;
2186 EXPORT_SYMBOL(pci_disable_device);
2189 * pcibios_set_pcie_reset_state - set reset state for device dev
2190 * @dev: the PCIe device reset
2191 * @state: Reset state to enter into
2193 * Set the PCIe reset state for the device. This is the default
2194 * implementation. Architecture implementations can override this.
2196 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2197 enum pcie_reset_state state)
2203 * pci_set_pcie_reset_state - set reset state for device dev
2204 * @dev: the PCIe device reset
2205 * @state: Reset state to enter into
2207 * Sets the PCI reset state for the device.
2209 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2211 return pcibios_set_pcie_reset_state(dev, state);
2213 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2215 void pcie_clear_device_status(struct pci_dev *dev)
2219 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2220 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2224 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2225 * @dev: PCIe root port or event collector.
2227 void pcie_clear_root_pme_status(struct pci_dev *dev)
2229 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2233 * pci_check_pme_status - Check if given device has generated PME.
2234 * @dev: Device to check.
2236 * Check the PME status of the device and if set, clear it and clear PME enable
2237 * (if set). Return 'true' if PME status and PME enable were both set or
2238 * 'false' otherwise.
2240 bool pci_check_pme_status(struct pci_dev *dev)
2249 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2250 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2251 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2254 /* Clear PME status. */
2255 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2256 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2257 /* Disable PME to avoid interrupt flood. */
2258 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2262 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2268 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2269 * @dev: Device to handle.
2270 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2272 * Check if @dev has generated PME and queue a resume request for it in that
2275 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2277 if (pme_poll_reset && dev->pme_poll)
2278 dev->pme_poll = false;
2280 if (pci_check_pme_status(dev)) {
2281 pci_wakeup_event(dev);
2282 pm_request_resume(&dev->dev);
2288 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2289 * @bus: Top bus of the subtree to walk.
2291 void pci_pme_wakeup_bus(struct pci_bus *bus)
2294 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2299 * pci_pme_capable - check the capability of PCI device to generate PME#
2300 * @dev: PCI device to handle.
2301 * @state: PCI state from which device will issue PME#.
2303 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2308 return !!(dev->pme_support & (1 << state));
2310 EXPORT_SYMBOL(pci_pme_capable);
2312 static void pci_pme_list_scan(struct work_struct *work)
2314 struct pci_pme_device *pme_dev, *n;
2316 mutex_lock(&pci_pme_list_mutex);
2317 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2318 if (pme_dev->dev->pme_poll) {
2319 struct pci_dev *bridge;
2321 bridge = pme_dev->dev->bus->self;
2323 * If bridge is in low power state, the
2324 * configuration space of subordinate devices
2325 * may be not accessible
2327 if (bridge && bridge->current_state != PCI_D0)
2330 * If the device is in D3cold it should not be
2333 if (pme_dev->dev->current_state == PCI_D3cold)
2336 pci_pme_wakeup(pme_dev->dev, NULL);
2338 list_del(&pme_dev->list);
2342 if (!list_empty(&pci_pme_list))
2343 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2344 msecs_to_jiffies(PME_TIMEOUT));
2345 mutex_unlock(&pci_pme_list_mutex);
2348 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2352 if (!dev->pme_support)
2355 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2356 /* Clear PME_Status by writing 1 to it and enable PME# */
2357 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2359 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2361 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2365 * pci_pme_restore - Restore PME configuration after config space restore.
2366 * @dev: PCI device to update.
2368 void pci_pme_restore(struct pci_dev *dev)
2372 if (!dev->pme_support)
2375 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2376 if (dev->wakeup_prepared) {
2377 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2378 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2380 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2381 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2383 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2387 * pci_pme_active - enable or disable PCI device's PME# function
2388 * @dev: PCI device to handle.
2389 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2391 * The caller must verify that the device is capable of generating PME# before
2392 * calling this function with @enable equal to 'true'.
2394 void pci_pme_active(struct pci_dev *dev, bool enable)
2396 __pci_pme_active(dev, enable);
2399 * PCI (as opposed to PCIe) PME requires that the device have
2400 * its PME# line hooked up correctly. Not all hardware vendors
2401 * do this, so the PME never gets delivered and the device
2402 * remains asleep. The easiest way around this is to
2403 * periodically walk the list of suspended devices and check
2404 * whether any have their PME flag set. The assumption is that
2405 * we'll wake up often enough anyway that this won't be a huge
2406 * hit, and the power savings from the devices will still be a
2409 * Although PCIe uses in-band PME message instead of PME# line
2410 * to report PME, PME does not work for some PCIe devices in
2411 * reality. For example, there are devices that set their PME
2412 * status bits, but don't really bother to send a PME message;
2413 * there are PCI Express Root Ports that don't bother to
2414 * trigger interrupts when they receive PME messages from the
2415 * devices below. So PME poll is used for PCIe devices too.
2418 if (dev->pme_poll) {
2419 struct pci_pme_device *pme_dev;
2421 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2424 pci_warn(dev, "can't enable PME#\n");
2428 mutex_lock(&pci_pme_list_mutex);
2429 list_add(&pme_dev->list, &pci_pme_list);
2430 if (list_is_singular(&pci_pme_list))
2431 queue_delayed_work(system_freezable_wq,
2433 msecs_to_jiffies(PME_TIMEOUT));
2434 mutex_unlock(&pci_pme_list_mutex);
2436 mutex_lock(&pci_pme_list_mutex);
2437 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2438 if (pme_dev->dev == dev) {
2439 list_del(&pme_dev->list);
2444 mutex_unlock(&pci_pme_list_mutex);
2448 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2450 EXPORT_SYMBOL(pci_pme_active);
2453 * __pci_enable_wake - enable PCI device as wakeup event source
2454 * @dev: PCI device affected
2455 * @state: PCI state from which device will issue wakeup events
2456 * @enable: True to enable event generation; false to disable
2458 * This enables the device as a wakeup event source, or disables it.
2459 * When such events involves platform-specific hooks, those hooks are
2460 * called automatically by this routine.
2462 * Devices with legacy power management (no standard PCI PM capabilities)
2463 * always require such platform hooks.
2466 * 0 is returned on success
2467 * -EINVAL is returned if device is not supposed to wake up the system
2468 * Error code depending on the platform is returned if both the platform and
2469 * the native mechanism fail to enable the generation of wake-up events
2471 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2476 * Bridges that are not power-manageable directly only signal
2477 * wakeup on behalf of subordinate devices which is set up
2478 * elsewhere, so skip them. However, bridges that are
2479 * power-manageable may signal wakeup for themselves (for example,
2480 * on a hotplug event) and they need to be covered here.
2482 if (!pci_power_manageable(dev))
2485 /* Don't do the same thing twice in a row for one device. */
2486 if (!!enable == !!dev->wakeup_prepared)
2490 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2491 * Anderson we should be doing PME# wake enable followed by ACPI wake
2492 * enable. To disable wake-up we call the platform first, for symmetry.
2498 if (pci_pme_capable(dev, state))
2499 pci_pme_active(dev, true);
2502 error = platform_pci_set_wakeup(dev, true);
2506 dev->wakeup_prepared = true;
2508 platform_pci_set_wakeup(dev, false);
2509 pci_pme_active(dev, false);
2510 dev->wakeup_prepared = false;
2517 * pci_enable_wake - change wakeup settings for a PCI device
2518 * @pci_dev: Target device
2519 * @state: PCI state from which device will issue wakeup events
2520 * @enable: Whether or not to enable event generation
2522 * If @enable is set, check device_may_wakeup() for the device before calling
2523 * __pci_enable_wake() for it.
2525 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2527 if (enable && !device_may_wakeup(&pci_dev->dev))
2530 return __pci_enable_wake(pci_dev, state, enable);
2532 EXPORT_SYMBOL(pci_enable_wake);
2535 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2536 * @dev: PCI device to prepare
2537 * @enable: True to enable wake-up event generation; false to disable
2539 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2540 * and this function allows them to set that up cleanly - pci_enable_wake()
2541 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2542 * ordering constraints.
2544 * This function only returns error code if the device is not allowed to wake
2545 * up the system from sleep or it is not capable of generating PME# from both
2546 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2548 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2550 return pci_pme_capable(dev, PCI_D3cold) ?
2551 pci_enable_wake(dev, PCI_D3cold, enable) :
2552 pci_enable_wake(dev, PCI_D3hot, enable);
2554 EXPORT_SYMBOL(pci_wake_from_d3);
2557 * pci_target_state - find an appropriate low power state for a given PCI dev
2559 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2561 * Use underlying platform code to find a supported low power state for @dev.
2562 * If the platform can't manage @dev, return the deepest state from which it
2563 * can generate wake events, based on any available PME info.
2565 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2567 pci_power_t target_state = PCI_D3hot;
2569 if (platform_pci_power_manageable(dev)) {
2571 * Call the platform to find the target state for the device.
2573 pci_power_t state = platform_pci_choose_state(dev);
2576 case PCI_POWER_ERROR:
2581 if (pci_no_d1d2(dev))
2585 target_state = state;
2588 return target_state;
2592 target_state = PCI_D0;
2595 * If the device is in D3cold even though it's not power-manageable by
2596 * the platform, it may have been powered down by non-standard means.
2597 * Best to let it slumber.
2599 if (dev->current_state == PCI_D3cold)
2600 target_state = PCI_D3cold;
2604 * Find the deepest state from which the device can generate
2607 if (dev->pme_support) {
2609 && !(dev->pme_support & (1 << target_state)))
2614 return target_state;
2618 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2619 * into a sleep state
2620 * @dev: Device to handle.
2622 * Choose the power state appropriate for the device depending on whether
2623 * it can wake up the system and/or is power manageable by the platform
2624 * (PCI_D3hot is the default) and put the device into that state.
2626 int pci_prepare_to_sleep(struct pci_dev *dev)
2628 bool wakeup = device_may_wakeup(&dev->dev);
2629 pci_power_t target_state = pci_target_state(dev, wakeup);
2632 if (target_state == PCI_POWER_ERROR)
2636 * There are systems (for example, Intel mobile chips since Coffee
2637 * Lake) where the power drawn while suspended can be significantly
2638 * reduced by disabling PTM on PCIe root ports as this allows the
2639 * port to enter a lower-power PM state and the SoC to reach a
2640 * lower-power idle state as a whole.
2642 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2643 pci_disable_ptm(dev);
2645 pci_enable_wake(dev, target_state, wakeup);
2647 error = pci_set_power_state(dev, target_state);
2650 pci_enable_wake(dev, target_state, false);
2651 pci_restore_ptm_state(dev);
2656 EXPORT_SYMBOL(pci_prepare_to_sleep);
2659 * pci_back_from_sleep - turn PCI device on during system-wide transition
2660 * into working state
2661 * @dev: Device to handle.
2663 * Disable device's system wake-up capability and put it into D0.
2665 int pci_back_from_sleep(struct pci_dev *dev)
2667 pci_enable_wake(dev, PCI_D0, false);
2668 return pci_set_power_state(dev, PCI_D0);
2670 EXPORT_SYMBOL(pci_back_from_sleep);
2673 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2674 * @dev: PCI device being suspended.
2676 * Prepare @dev to generate wake-up events at run time and put it into a low
2679 int pci_finish_runtime_suspend(struct pci_dev *dev)
2681 pci_power_t target_state;
2684 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2685 if (target_state == PCI_POWER_ERROR)
2688 dev->runtime_d3cold = target_state == PCI_D3cold;
2691 * There are systems (for example, Intel mobile chips since Coffee
2692 * Lake) where the power drawn while suspended can be significantly
2693 * reduced by disabling PTM on PCIe root ports as this allows the
2694 * port to enter a lower-power PM state and the SoC to reach a
2695 * lower-power idle state as a whole.
2697 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2698 pci_disable_ptm(dev);
2700 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2702 error = pci_set_power_state(dev, target_state);
2705 pci_enable_wake(dev, target_state, false);
2706 pci_restore_ptm_state(dev);
2707 dev->runtime_d3cold = false;
2714 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2715 * @dev: Device to check.
2717 * Return true if the device itself is capable of generating wake-up events
2718 * (through the platform or using the native PCIe PME) or if the device supports
2719 * PME and one of its upstream bridges can generate wake-up events.
2721 bool pci_dev_run_wake(struct pci_dev *dev)
2723 struct pci_bus *bus = dev->bus;
2725 if (!dev->pme_support)
2728 /* PME-capable in principle, but not from the target power state */
2729 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2732 if (device_can_wakeup(&dev->dev))
2735 while (bus->parent) {
2736 struct pci_dev *bridge = bus->self;
2738 if (device_can_wakeup(&bridge->dev))
2744 /* We have reached the root bus. */
2746 return device_can_wakeup(bus->bridge);
2750 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2753 * pci_dev_need_resume - Check if it is necessary to resume the device.
2754 * @pci_dev: Device to check.
2756 * Return 'true' if the device is not runtime-suspended or it has to be
2757 * reconfigured due to wakeup settings difference between system and runtime
2758 * suspend, or the current power state of it is not suitable for the upcoming
2759 * (system-wide) transition.
2761 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2763 struct device *dev = &pci_dev->dev;
2764 pci_power_t target_state;
2766 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2769 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2772 * If the earlier platform check has not triggered, D3cold is just power
2773 * removal on top of D3hot, so no need to resume the device in that
2776 return target_state != pci_dev->current_state &&
2777 target_state != PCI_D3cold &&
2778 pci_dev->current_state != PCI_D3hot;
2782 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2783 * @pci_dev: Device to check.
2785 * If the device is suspended and it is not configured for system wakeup,
2786 * disable PME for it to prevent it from waking up the system unnecessarily.
2788 * Note that if the device's power state is D3cold and the platform check in
2789 * pci_dev_need_resume() has not triggered, the device's configuration need not
2792 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2794 struct device *dev = &pci_dev->dev;
2796 spin_lock_irq(&dev->power.lock);
2798 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2799 pci_dev->current_state < PCI_D3cold)
2800 __pci_pme_active(pci_dev, false);
2802 spin_unlock_irq(&dev->power.lock);
2806 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2807 * @pci_dev: Device to handle.
2809 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2810 * it might have been disabled during the prepare phase of system suspend if
2811 * the device was not configured for system wakeup.
2813 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2815 struct device *dev = &pci_dev->dev;
2817 if (!pci_dev_run_wake(pci_dev))
2820 spin_lock_irq(&dev->power.lock);
2822 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2823 __pci_pme_active(pci_dev, true);
2825 spin_unlock_irq(&dev->power.lock);
2828 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2830 struct device *dev = &pdev->dev;
2831 struct device *parent = dev->parent;
2834 pm_runtime_get_sync(parent);
2835 pm_runtime_get_noresume(dev);
2837 * pdev->current_state is set to PCI_D3cold during suspending,
2838 * so wait until suspending completes
2840 pm_runtime_barrier(dev);
2842 * Only need to resume devices in D3cold, because config
2843 * registers are still accessible for devices suspended but
2846 if (pdev->current_state == PCI_D3cold)
2847 pm_runtime_resume(dev);
2850 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2852 struct device *dev = &pdev->dev;
2853 struct device *parent = dev->parent;
2855 pm_runtime_put(dev);
2857 pm_runtime_put_sync(parent);
2860 static const struct dmi_system_id bridge_d3_blacklist[] = {
2864 * Gigabyte X299 root port is not marked as hotplug capable
2865 * which allows Linux to power manage it. However, this
2866 * confuses the BIOS SMI handler so don't power manage root
2867 * ports on that system.
2869 .ident = "X299 DESIGNARE EX-CF",
2871 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2872 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2880 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2881 * @bridge: Bridge to check
2883 * This function checks if it is possible to move the bridge to D3.
2884 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2886 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2888 if (!pci_is_pcie(bridge))
2891 switch (pci_pcie_type(bridge)) {
2892 case PCI_EXP_TYPE_ROOT_PORT:
2893 case PCI_EXP_TYPE_UPSTREAM:
2894 case PCI_EXP_TYPE_DOWNSTREAM:
2895 if (pci_bridge_d3_disable)
2899 * Hotplug ports handled by firmware in System Management Mode
2900 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2902 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2905 if (pci_bridge_d3_force)
2908 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2909 if (bridge->is_thunderbolt)
2912 /* Platform might know better if the bridge supports D3 */
2913 if (platform_pci_bridge_d3(bridge))
2917 * Hotplug ports handled natively by the OS were not validated
2918 * by vendors for runtime D3 at least until 2018 because there
2919 * was no OS support.
2921 if (bridge->is_hotplug_bridge)
2924 if (dmi_check_system(bridge_d3_blacklist))
2928 * It should be safe to put PCIe ports from 2015 or newer
2931 if (dmi_get_bios_year() >= 2015)
2939 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2941 bool *d3cold_ok = data;
2943 if (/* The device needs to be allowed to go D3cold ... */
2944 dev->no_d3cold || !dev->d3cold_allowed ||
2946 /* ... and if it is wakeup capable to do so from D3cold. */
2947 (device_may_wakeup(&dev->dev) &&
2948 !pci_pme_capable(dev, PCI_D3cold)) ||
2950 /* If it is a bridge it must be allowed to go to D3. */
2951 !pci_power_manageable(dev))
2959 * pci_bridge_d3_update - Update bridge D3 capabilities
2960 * @dev: PCI device which is changed
2962 * Update upstream bridge PM capabilities accordingly depending on if the
2963 * device PM configuration was changed or the device is being removed. The
2964 * change is also propagated upstream.
2966 void pci_bridge_d3_update(struct pci_dev *dev)
2968 bool remove = !device_is_registered(&dev->dev);
2969 struct pci_dev *bridge;
2970 bool d3cold_ok = true;
2972 bridge = pci_upstream_bridge(dev);
2973 if (!bridge || !pci_bridge_d3_possible(bridge))
2977 * If D3 is currently allowed for the bridge, removing one of its
2978 * children won't change that.
2980 if (remove && bridge->bridge_d3)
2984 * If D3 is currently allowed for the bridge and a child is added or
2985 * changed, disallowance of D3 can only be caused by that child, so
2986 * we only need to check that single device, not any of its siblings.
2988 * If D3 is currently not allowed for the bridge, checking the device
2989 * first may allow us to skip checking its siblings.
2992 pci_dev_check_d3cold(dev, &d3cold_ok);
2995 * If D3 is currently not allowed for the bridge, this may be caused
2996 * either by the device being changed/removed or any of its siblings,
2997 * so we need to go through all children to find out if one of them
2998 * continues to block D3.
3000 if (d3cold_ok && !bridge->bridge_d3)
3001 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3004 if (bridge->bridge_d3 != d3cold_ok) {
3005 bridge->bridge_d3 = d3cold_ok;
3006 /* Propagate change to upstream bridges */
3007 pci_bridge_d3_update(bridge);
3012 * pci_d3cold_enable - Enable D3cold for device
3013 * @dev: PCI device to handle
3015 * This function can be used in drivers to enable D3cold from the device
3016 * they handle. It also updates upstream PCI bridge PM capabilities
3019 void pci_d3cold_enable(struct pci_dev *dev)
3021 if (dev->no_d3cold) {
3022 dev->no_d3cold = false;
3023 pci_bridge_d3_update(dev);
3026 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3029 * pci_d3cold_disable - Disable D3cold for device
3030 * @dev: PCI device to handle
3032 * This function can be used in drivers to disable D3cold from the device
3033 * they handle. It also updates upstream PCI bridge PM capabilities
3036 void pci_d3cold_disable(struct pci_dev *dev)
3038 if (!dev->no_d3cold) {
3039 dev->no_d3cold = true;
3040 pci_bridge_d3_update(dev);
3043 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3046 * pci_pm_init - Initialize PM functions of given PCI device
3047 * @dev: PCI device to handle.
3049 void pci_pm_init(struct pci_dev *dev)
3055 pm_runtime_forbid(&dev->dev);
3056 pm_runtime_set_active(&dev->dev);
3057 pm_runtime_enable(&dev->dev);
3058 device_enable_async_suspend(&dev->dev);
3059 dev->wakeup_prepared = false;
3062 dev->pme_support = 0;
3064 /* find PCI PM capability in list */
3065 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3068 /* Check device's ability to generate PME# */
3069 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3071 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3072 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3073 pmc & PCI_PM_CAP_VER_MASK);
3078 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3079 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3080 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3081 dev->d3cold_allowed = true;
3083 dev->d1_support = false;
3084 dev->d2_support = false;
3085 if (!pci_no_d1d2(dev)) {
3086 if (pmc & PCI_PM_CAP_D1)
3087 dev->d1_support = true;
3088 if (pmc & PCI_PM_CAP_D2)
3089 dev->d2_support = true;
3091 if (dev->d1_support || dev->d2_support)
3092 pci_info(dev, "supports%s%s\n",
3093 dev->d1_support ? " D1" : "",
3094 dev->d2_support ? " D2" : "");
3097 pmc &= PCI_PM_CAP_PME_MASK;
3099 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3100 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3101 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3102 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3103 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3104 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3105 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3106 dev->pme_poll = true;
3108 * Make device's PM flags reflect the wake-up capability, but
3109 * let the user space enable it to wake up the system as needed.
3111 device_set_wakeup_capable(&dev->dev, true);
3112 /* Disable the PME# generation functionality */
3113 pci_pme_active(dev, false);
3116 pci_read_config_word(dev, PCI_STATUS, &status);
3117 if (status & PCI_STATUS_IMM_READY)
3121 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3123 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3127 case PCI_EA_P_VF_MEM:
3128 flags |= IORESOURCE_MEM;
3130 case PCI_EA_P_MEM_PREFETCH:
3131 case PCI_EA_P_VF_MEM_PREFETCH:
3132 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3135 flags |= IORESOURCE_IO;
3144 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3147 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3148 return &dev->resource[bei];
3149 #ifdef CONFIG_PCI_IOV
3150 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3151 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3152 return &dev->resource[PCI_IOV_RESOURCES +
3153 bei - PCI_EA_BEI_VF_BAR0];
3155 else if (bei == PCI_EA_BEI_ROM)
3156 return &dev->resource[PCI_ROM_RESOURCE];
3161 /* Read an Enhanced Allocation (EA) entry */
3162 static int pci_ea_read(struct pci_dev *dev, int offset)
3164 struct resource *res;
3165 int ent_size, ent_offset = offset;
3166 resource_size_t start, end;
3167 unsigned long flags;
3168 u32 dw0, bei, base, max_offset;
3170 bool support_64 = (sizeof(resource_size_t) >= 8);
3172 pci_read_config_dword(dev, ent_offset, &dw0);
3175 /* Entry size field indicates DWORDs after 1st */
3176 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3178 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3181 bei = (dw0 & PCI_EA_BEI) >> 4;
3182 prop = (dw0 & PCI_EA_PP) >> 8;
3185 * If the Property is in the reserved range, try the Secondary
3188 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3189 prop = (dw0 & PCI_EA_SP) >> 16;
3190 if (prop > PCI_EA_P_BRIDGE_IO)
3193 res = pci_ea_get_resource(dev, bei, prop);
3195 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3199 flags = pci_ea_flags(dev, prop);
3201 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3206 pci_read_config_dword(dev, ent_offset, &base);
3207 start = (base & PCI_EA_FIELD_MASK);
3210 /* Read MaxOffset */
3211 pci_read_config_dword(dev, ent_offset, &max_offset);
3214 /* Read Base MSBs (if 64-bit entry) */
3215 if (base & PCI_EA_IS_64) {
3218 pci_read_config_dword(dev, ent_offset, &base_upper);
3221 flags |= IORESOURCE_MEM_64;
3223 /* entry starts above 32-bit boundary, can't use */
3224 if (!support_64 && base_upper)
3228 start |= ((u64)base_upper << 32);
3231 end = start + (max_offset | 0x03);
3233 /* Read MaxOffset MSBs (if 64-bit entry) */
3234 if (max_offset & PCI_EA_IS_64) {
3235 u32 max_offset_upper;
3237 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3240 flags |= IORESOURCE_MEM_64;
3242 /* entry too big, can't use */
3243 if (!support_64 && max_offset_upper)
3247 end += ((u64)max_offset_upper << 32);
3251 pci_err(dev, "EA Entry crosses address boundary\n");
3255 if (ent_size != ent_offset - offset) {
3256 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3257 ent_size, ent_offset - offset);
3261 res->name = pci_name(dev);
3266 if (bei <= PCI_EA_BEI_BAR5)
3267 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3269 else if (bei == PCI_EA_BEI_ROM)
3270 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3272 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3273 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3274 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3276 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3280 return offset + ent_size;
3283 /* Enhanced Allocation Initialization */
3284 void pci_ea_init(struct pci_dev *dev)
3291 /* find PCI EA capability in list */
3292 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3296 /* determine the number of entries */
3297 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3299 num_ent &= PCI_EA_NUM_ENT_MASK;
3301 offset = ea + PCI_EA_FIRST_ENT;
3303 /* Skip DWORD 2 for type 1 functions */
3304 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3307 /* parse each EA entry */
3308 for (i = 0; i < num_ent; ++i)
3309 offset = pci_ea_read(dev, offset);
3312 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3313 struct pci_cap_saved_state *new_cap)
3315 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3319 * _pci_add_cap_save_buffer - allocate buffer for saving given
3320 * capability registers
3321 * @dev: the PCI device
3322 * @cap: the capability to allocate the buffer for
3323 * @extended: Standard or Extended capability ID
3324 * @size: requested size of the buffer
3326 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3327 bool extended, unsigned int size)
3330 struct pci_cap_saved_state *save_state;
3333 pos = pci_find_ext_capability(dev, cap);
3335 pos = pci_find_capability(dev, cap);
3340 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3344 save_state->cap.cap_nr = cap;
3345 save_state->cap.cap_extended = extended;
3346 save_state->cap.size = size;
3347 pci_add_saved_cap(dev, save_state);
3352 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3354 return _pci_add_cap_save_buffer(dev, cap, false, size);
3357 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3359 return _pci_add_cap_save_buffer(dev, cap, true, size);
3363 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3364 * @dev: the PCI device
3366 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3370 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3371 PCI_EXP_SAVE_REGS * sizeof(u16));
3373 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3375 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3377 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3379 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3382 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3384 pci_allocate_vc_save_buffers(dev);
3387 void pci_free_cap_save_buffers(struct pci_dev *dev)
3389 struct pci_cap_saved_state *tmp;
3390 struct hlist_node *n;
3392 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3397 * pci_configure_ari - enable or disable ARI forwarding
3398 * @dev: the PCI device
3400 * If @dev and its upstream bridge both support ARI, enable ARI in the
3401 * bridge. Otherwise, disable ARI in the bridge.
3403 void pci_configure_ari(struct pci_dev *dev)
3406 struct pci_dev *bridge;
3408 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3411 bridge = dev->bus->self;
3415 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3416 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3419 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3420 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3421 PCI_EXP_DEVCTL2_ARI);
3422 bridge->ari_enabled = 1;
3424 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3425 PCI_EXP_DEVCTL2_ARI);
3426 bridge->ari_enabled = 0;
3430 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3435 pos = pdev->acs_cap;
3440 * Except for egress control, capabilities are either required
3441 * or only required if controllable. Features missing from the
3442 * capability field can therefore be assumed as hard-wired enabled.
3444 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3445 acs_flags &= (cap | PCI_ACS_EC);
3447 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3448 return (ctrl & acs_flags) == acs_flags;
3452 * pci_acs_enabled - test ACS against required flags for a given device
3453 * @pdev: device to test
3454 * @acs_flags: required PCI ACS flags
3456 * Return true if the device supports the provided flags. Automatically
3457 * filters out flags that are not implemented on multifunction devices.
3459 * Note that this interface checks the effective ACS capabilities of the
3460 * device rather than the actual capabilities. For instance, most single
3461 * function endpoints are not required to support ACS because they have no
3462 * opportunity for peer-to-peer access. We therefore return 'true'
3463 * regardless of whether the device exposes an ACS capability. This makes
3464 * it much easier for callers of this function to ignore the actual type
3465 * or topology of the device when testing ACS support.
3467 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3471 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3476 * Conventional PCI and PCI-X devices never support ACS, either
3477 * effectively or actually. The shared bus topology implies that
3478 * any device on the bus can receive or snoop DMA.
3480 if (!pci_is_pcie(pdev))
3483 switch (pci_pcie_type(pdev)) {
3485 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3486 * but since their primary interface is PCI/X, we conservatively
3487 * handle them as we would a non-PCIe device.
3489 case PCI_EXP_TYPE_PCIE_BRIDGE:
3491 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3492 * applicable... must never implement an ACS Extended Capability...".
3493 * This seems arbitrary, but we take a conservative interpretation
3494 * of this statement.
3496 case PCI_EXP_TYPE_PCI_BRIDGE:
3497 case PCI_EXP_TYPE_RC_EC:
3500 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3501 * implement ACS in order to indicate their peer-to-peer capabilities,
3502 * regardless of whether they are single- or multi-function devices.
3504 case PCI_EXP_TYPE_DOWNSTREAM:
3505 case PCI_EXP_TYPE_ROOT_PORT:
3506 return pci_acs_flags_enabled(pdev, acs_flags);
3508 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3509 * implemented by the remaining PCIe types to indicate peer-to-peer
3510 * capabilities, but only when they are part of a multifunction
3511 * device. The footnote for section 6.12 indicates the specific
3512 * PCIe types included here.
3514 case PCI_EXP_TYPE_ENDPOINT:
3515 case PCI_EXP_TYPE_UPSTREAM:
3516 case PCI_EXP_TYPE_LEG_END:
3517 case PCI_EXP_TYPE_RC_END:
3518 if (!pdev->multifunction)
3521 return pci_acs_flags_enabled(pdev, acs_flags);
3525 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3526 * to single function devices with the exception of downstream ports.
3532 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3533 * @start: starting downstream device
3534 * @end: ending upstream device or NULL to search to the root bus
3535 * @acs_flags: required flags
3537 * Walk up a device tree from start to end testing PCI ACS support. If
3538 * any step along the way does not support the required flags, return false.
3540 bool pci_acs_path_enabled(struct pci_dev *start,
3541 struct pci_dev *end, u16 acs_flags)
3543 struct pci_dev *pdev, *parent = start;
3548 if (!pci_acs_enabled(pdev, acs_flags))
3551 if (pci_is_root_bus(pdev->bus))
3552 return (end == NULL);
3554 parent = pdev->bus->self;
3555 } while (pdev != end);
3561 * pci_acs_init - Initialize ACS if hardware supports it
3562 * @dev: the PCI device
3564 void pci_acs_init(struct pci_dev *dev)
3566 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3569 * Attempt to enable ACS regardless of capability because some Root
3570 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3571 * the standard ACS capability but still support ACS via those
3574 pci_enable_acs(dev);
3578 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3582 * Helper to find the position of the ctrl register for a BAR.
3583 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3584 * Returns -ENOENT if no ctrl register for the BAR could be found.
3586 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3588 unsigned int pos, nbars, i;
3591 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3595 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3596 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3597 PCI_REBAR_CTRL_NBAR_SHIFT;
3599 for (i = 0; i < nbars; i++, pos += 8) {
3602 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3603 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3612 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3614 * @bar: BAR to query
3616 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3617 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3619 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3624 pos = pci_rebar_find_pos(pdev, bar);
3628 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3629 cap &= PCI_REBAR_CAP_SIZES;
3631 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3632 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3633 bar == 0 && cap == 0x7000)
3638 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3641 * pci_rebar_get_current_size - get the current size of a BAR
3643 * @bar: BAR to set size to
3645 * Read the size of a BAR from the resizable BAR config.
3646 * Returns size if found or negative error code.
3648 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3653 pos = pci_rebar_find_pos(pdev, bar);
3657 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3658 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3662 * pci_rebar_set_size - set a new size for a BAR
3664 * @bar: BAR to set size to
3665 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3667 * Set the new size of a BAR as defined in the spec.
3668 * Returns zero if resizing was successful, error code otherwise.
3670 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3675 pos = pci_rebar_find_pos(pdev, bar);
3679 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3680 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3681 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3682 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3687 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3688 * @dev: the PCI device
3689 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3690 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3691 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3692 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3694 * Return 0 if all upstream bridges support AtomicOp routing, egress
3695 * blocking is disabled on all upstream ports, and the root port supports
3696 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3697 * AtomicOp completion), or negative otherwise.
3699 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3701 struct pci_bus *bus = dev->bus;
3702 struct pci_dev *bridge;
3705 if (!pci_is_pcie(dev))
3709 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3710 * AtomicOp requesters. For now, we only support endpoints as
3711 * requesters and root ports as completers. No endpoints as
3712 * completers, and no peer-to-peer.
3715 switch (pci_pcie_type(dev)) {
3716 case PCI_EXP_TYPE_ENDPOINT:
3717 case PCI_EXP_TYPE_LEG_END:
3718 case PCI_EXP_TYPE_RC_END:
3724 while (bus->parent) {
3727 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3729 switch (pci_pcie_type(bridge)) {
3730 /* Ensure switch ports support AtomicOp routing */
3731 case PCI_EXP_TYPE_UPSTREAM:
3732 case PCI_EXP_TYPE_DOWNSTREAM:
3733 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3737 /* Ensure root port supports all the sizes we care about */
3738 case PCI_EXP_TYPE_ROOT_PORT:
3739 if ((cap & cap_mask) != cap_mask)
3744 /* Ensure upstream ports don't block AtomicOps on egress */
3745 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3746 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3748 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3755 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3756 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3759 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3762 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3763 * @dev: the PCI device
3764 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3766 * Perform INTx swizzling for a device behind one level of bridge. This is
3767 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3768 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3769 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3770 * the PCI Express Base Specification, Revision 2.1)
3772 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3776 if (pci_ari_enabled(dev->bus))
3779 slot = PCI_SLOT(dev->devfn);
3781 return (((pin - 1) + slot) % 4) + 1;
3784 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3792 while (!pci_is_root_bus(dev->bus)) {
3793 pin = pci_swizzle_interrupt_pin(dev, pin);
3794 dev = dev->bus->self;
3801 * pci_common_swizzle - swizzle INTx all the way to root bridge
3802 * @dev: the PCI device
3803 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3805 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3806 * bridges all the way up to a PCI root bus.
3808 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3812 while (!pci_is_root_bus(dev->bus)) {
3813 pin = pci_swizzle_interrupt_pin(dev, pin);
3814 dev = dev->bus->self;
3817 return PCI_SLOT(dev->devfn);
3819 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3822 * pci_release_region - Release a PCI bar
3823 * @pdev: PCI device whose resources were previously reserved by
3824 * pci_request_region()
3825 * @bar: BAR to release
3827 * Releases the PCI I/O and memory resources previously reserved by a
3828 * successful call to pci_request_region(). Call this function only
3829 * after all use of the PCI regions has ceased.
3831 void pci_release_region(struct pci_dev *pdev, int bar)
3833 struct pci_devres *dr;
3835 if (pci_resource_len(pdev, bar) == 0)
3837 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3838 release_region(pci_resource_start(pdev, bar),
3839 pci_resource_len(pdev, bar));
3840 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3841 release_mem_region(pci_resource_start(pdev, bar),
3842 pci_resource_len(pdev, bar));
3844 dr = find_pci_dr(pdev);
3846 dr->region_mask &= ~(1 << bar);
3848 EXPORT_SYMBOL(pci_release_region);
3851 * __pci_request_region - Reserved PCI I/O and memory resource
3852 * @pdev: PCI device whose resources are to be reserved
3853 * @bar: BAR to be reserved
3854 * @res_name: Name to be associated with resource.
3855 * @exclusive: whether the region access is exclusive or not
3857 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3858 * being reserved by owner @res_name. Do not access any
3859 * address inside the PCI regions unless this call returns
3862 * If @exclusive is set, then the region is marked so that userspace
3863 * is explicitly not allowed to map the resource via /dev/mem or
3864 * sysfs MMIO access.
3866 * Returns 0 on success, or %EBUSY on error. A warning
3867 * message is also printed on failure.
3869 static int __pci_request_region(struct pci_dev *pdev, int bar,
3870 const char *res_name, int exclusive)
3872 struct pci_devres *dr;
3874 if (pci_resource_len(pdev, bar) == 0)
3877 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3878 if (!request_region(pci_resource_start(pdev, bar),
3879 pci_resource_len(pdev, bar), res_name))
3881 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3882 if (!__request_mem_region(pci_resource_start(pdev, bar),
3883 pci_resource_len(pdev, bar), res_name,
3888 dr = find_pci_dr(pdev);
3890 dr->region_mask |= 1 << bar;
3895 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3896 &pdev->resource[bar]);
3901 * pci_request_region - Reserve PCI I/O and memory resource
3902 * @pdev: PCI device whose resources are to be reserved
3903 * @bar: BAR to be reserved
3904 * @res_name: Name to be associated with resource
3906 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3907 * being reserved by owner @res_name. Do not access any
3908 * address inside the PCI regions unless this call returns
3911 * Returns 0 on success, or %EBUSY on error. A warning
3912 * message is also printed on failure.
3914 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3916 return __pci_request_region(pdev, bar, res_name, 0);
3918 EXPORT_SYMBOL(pci_request_region);
3921 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3922 * @pdev: PCI device whose resources were previously reserved
3923 * @bars: Bitmask of BARs to be released
3925 * Release selected PCI I/O and memory resources previously reserved.
3926 * Call this function only after all use of the PCI regions has ceased.
3928 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3932 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3933 if (bars & (1 << i))
3934 pci_release_region(pdev, i);
3936 EXPORT_SYMBOL(pci_release_selected_regions);
3938 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3939 const char *res_name, int excl)
3943 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3944 if (bars & (1 << i))
3945 if (__pci_request_region(pdev, i, res_name, excl))
3951 if (bars & (1 << i))
3952 pci_release_region(pdev, i);
3959 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3960 * @pdev: PCI device whose resources are to be reserved
3961 * @bars: Bitmask of BARs to be requested
3962 * @res_name: Name to be associated with resource
3964 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3965 const char *res_name)
3967 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3969 EXPORT_SYMBOL(pci_request_selected_regions);
3971 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3972 const char *res_name)
3974 return __pci_request_selected_regions(pdev, bars, res_name,
3975 IORESOURCE_EXCLUSIVE);
3977 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3980 * pci_release_regions - Release reserved PCI I/O and memory resources
3981 * @pdev: PCI device whose resources were previously reserved by
3982 * pci_request_regions()
3984 * Releases all PCI I/O and memory resources previously reserved by a
3985 * successful call to pci_request_regions(). Call this function only
3986 * after all use of the PCI regions has ceased.
3989 void pci_release_regions(struct pci_dev *pdev)
3991 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3993 EXPORT_SYMBOL(pci_release_regions);
3996 * pci_request_regions - Reserve PCI I/O and memory resources
3997 * @pdev: PCI device whose resources are to be reserved
3998 * @res_name: Name to be associated with resource.
4000 * Mark all PCI regions associated with PCI device @pdev as
4001 * being reserved by owner @res_name. Do not access any
4002 * address inside the PCI regions unless this call returns
4005 * Returns 0 on success, or %EBUSY on error. A warning
4006 * message is also printed on failure.
4008 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4010 return pci_request_selected_regions(pdev,
4011 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4013 EXPORT_SYMBOL(pci_request_regions);
4016 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4017 * @pdev: PCI device whose resources are to be reserved
4018 * @res_name: Name to be associated with resource.
4020 * Mark all PCI regions associated with PCI device @pdev as being reserved
4021 * by owner @res_name. Do not access any address inside the PCI regions
4022 * unless this call returns successfully.
4024 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4025 * and the sysfs MMIO access will not be allowed.
4027 * Returns 0 on success, or %EBUSY on error. A warning message is also
4028 * printed on failure.
4030 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4032 return pci_request_selected_regions_exclusive(pdev,
4033 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4035 EXPORT_SYMBOL(pci_request_regions_exclusive);
4038 * Record the PCI IO range (expressed as CPU physical address + size).
4039 * Return a negative value if an error has occurred, zero otherwise
4041 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4042 resource_size_t size)
4046 struct logic_pio_hwaddr *range;
4048 if (!size || addr + size < addr)
4051 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4055 range->fwnode = fwnode;
4057 range->hw_start = addr;
4058 range->flags = LOGIC_PIO_CPU_MMIO;
4060 ret = logic_pio_register_range(range);
4064 /* Ignore duplicates due to deferred probing */
4072 phys_addr_t pci_pio_to_address(unsigned long pio)
4074 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4077 if (pio >= MMIO_UPPER_LIMIT)
4080 address = logic_pio_to_hwaddr(pio);
4085 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4087 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4090 return logic_pio_trans_cpuaddr(address);
4092 if (address > IO_SPACE_LIMIT)
4093 return (unsigned long)-1;
4095 return (unsigned long) address;
4100 * pci_remap_iospace - Remap the memory mapped I/O space
4101 * @res: Resource describing the I/O space
4102 * @phys_addr: physical address of range to be mapped
4104 * Remap the memory mapped I/O space described by the @res and the CPU
4105 * physical address @phys_addr into virtual address space. Only
4106 * architectures that have memory mapped IO functions defined (and the
4107 * PCI_IOBASE value defined) should call this function.
4109 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4111 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4112 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4114 if (!(res->flags & IORESOURCE_IO))
4117 if (res->end > IO_SPACE_LIMIT)
4120 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4121 pgprot_device(PAGE_KERNEL));
4124 * This architecture does not have memory mapped I/O space,
4125 * so this function should never be called
4127 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4131 EXPORT_SYMBOL(pci_remap_iospace);
4134 * pci_unmap_iospace - Unmap the memory mapped I/O space
4135 * @res: resource to be unmapped
4137 * Unmap the CPU virtual address @res from virtual address space. Only
4138 * architectures that have memory mapped IO functions defined (and the
4139 * PCI_IOBASE value defined) should call this function.
4141 void pci_unmap_iospace(struct resource *res)
4143 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4144 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4146 vunmap_range(vaddr, vaddr + resource_size(res));
4149 EXPORT_SYMBOL(pci_unmap_iospace);
4151 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4153 struct resource **res = ptr;
4155 pci_unmap_iospace(*res);
4159 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4160 * @dev: Generic device to remap IO address for
4161 * @res: Resource describing the I/O space
4162 * @phys_addr: physical address of range to be mapped
4164 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4167 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4168 phys_addr_t phys_addr)
4170 const struct resource **ptr;
4173 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4177 error = pci_remap_iospace(res, phys_addr);
4182 devres_add(dev, ptr);
4187 EXPORT_SYMBOL(devm_pci_remap_iospace);
4190 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4191 * @dev: Generic device to remap IO address for
4192 * @offset: Resource address to map
4193 * @size: Size of map
4195 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4198 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4199 resource_size_t offset,
4200 resource_size_t size)
4202 void __iomem **ptr, *addr;
4204 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4208 addr = pci_remap_cfgspace(offset, size);
4211 devres_add(dev, ptr);
4217 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4220 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4221 * @dev: generic device to handle the resource for
4222 * @res: configuration space resource to be handled
4224 * Checks that a resource is a valid memory region, requests the memory
4225 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4226 * proper PCI configuration space memory attributes are guaranteed.
4228 * All operations are managed and will be undone on driver detach.
4230 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4231 * on failure. Usage example::
4233 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4234 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4236 * return PTR_ERR(base);
4238 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4239 struct resource *res)
4241 resource_size_t size;
4243 void __iomem *dest_ptr;
4247 if (!res || resource_type(res) != IORESOURCE_MEM) {
4248 dev_err(dev, "invalid resource\n");
4249 return IOMEM_ERR_PTR(-EINVAL);
4252 size = resource_size(res);
4255 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4258 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4260 return IOMEM_ERR_PTR(-ENOMEM);
4262 if (!devm_request_mem_region(dev, res->start, size, name)) {
4263 dev_err(dev, "can't request region for resource %pR\n", res);
4264 return IOMEM_ERR_PTR(-EBUSY);
4267 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4269 dev_err(dev, "ioremap failed for resource %pR\n", res);
4270 devm_release_mem_region(dev, res->start, size);
4271 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4276 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4278 static void __pci_set_master(struct pci_dev *dev, bool enable)
4282 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4284 cmd = old_cmd | PCI_COMMAND_MASTER;
4286 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4287 if (cmd != old_cmd) {
4288 pci_dbg(dev, "%s bus mastering\n",
4289 enable ? "enabling" : "disabling");
4290 pci_write_config_word(dev, PCI_COMMAND, cmd);
4292 dev->is_busmaster = enable;
4296 * pcibios_setup - process "pci=" kernel boot arguments
4297 * @str: string used to pass in "pci=" kernel boot arguments
4299 * Process kernel boot arguments. This is the default implementation.
4300 * Architecture specific implementations can override this as necessary.
4302 char * __weak __init pcibios_setup(char *str)
4308 * pcibios_set_master - enable PCI bus-mastering for device dev
4309 * @dev: the PCI device to enable
4311 * Enables PCI bus-mastering for the device. This is the default
4312 * implementation. Architecture specific implementations can override
4313 * this if necessary.
4315 void __weak pcibios_set_master(struct pci_dev *dev)
4319 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4320 if (pci_is_pcie(dev))
4323 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4325 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4326 else if (lat > pcibios_max_latency)
4327 lat = pcibios_max_latency;
4331 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4335 * pci_set_master - enables bus-mastering for device dev
4336 * @dev: the PCI device to enable
4338 * Enables bus-mastering on the device and calls pcibios_set_master()
4339 * to do the needed arch specific settings.
4341 void pci_set_master(struct pci_dev *dev)
4343 __pci_set_master(dev, true);
4344 pcibios_set_master(dev);
4346 EXPORT_SYMBOL(pci_set_master);
4349 * pci_clear_master - disables bus-mastering for device dev
4350 * @dev: the PCI device to disable
4352 void pci_clear_master(struct pci_dev *dev)
4354 __pci_set_master(dev, false);
4356 EXPORT_SYMBOL(pci_clear_master);
4359 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4360 * @dev: the PCI device for which MWI is to be enabled
4362 * Helper function for pci_set_mwi.
4363 * Originally copied from drivers/net/acenic.c.
4364 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4366 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4368 int pci_set_cacheline_size(struct pci_dev *dev)
4372 if (!pci_cache_line_size)
4375 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4376 equal to or multiple of the right value. */
4377 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4378 if (cacheline_size >= pci_cache_line_size &&
4379 (cacheline_size % pci_cache_line_size) == 0)
4382 /* Write the correct value. */
4383 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4385 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4386 if (cacheline_size == pci_cache_line_size)
4389 pci_dbg(dev, "cache line size of %d is not supported\n",
4390 pci_cache_line_size << 2);
4394 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4397 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4398 * @dev: the PCI device for which MWI is enabled
4400 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4402 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4404 int pci_set_mwi(struct pci_dev *dev)
4406 #ifdef PCI_DISABLE_MWI
4412 rc = pci_set_cacheline_size(dev);
4416 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4417 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4418 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4419 cmd |= PCI_COMMAND_INVALIDATE;
4420 pci_write_config_word(dev, PCI_COMMAND, cmd);
4425 EXPORT_SYMBOL(pci_set_mwi);
4428 * pcim_set_mwi - a device-managed pci_set_mwi()
4429 * @dev: the PCI device for which MWI is enabled
4431 * Managed pci_set_mwi().
4433 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4435 int pcim_set_mwi(struct pci_dev *dev)
4437 struct pci_devres *dr;
4439 dr = find_pci_dr(dev);
4444 return pci_set_mwi(dev);
4446 EXPORT_SYMBOL(pcim_set_mwi);
4449 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4450 * @dev: the PCI device for which MWI is enabled
4452 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4453 * Callers are not required to check the return value.
4455 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4457 int pci_try_set_mwi(struct pci_dev *dev)
4459 #ifdef PCI_DISABLE_MWI
4462 return pci_set_mwi(dev);
4465 EXPORT_SYMBOL(pci_try_set_mwi);
4468 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4469 * @dev: the PCI device to disable
4471 * Disables PCI Memory-Write-Invalidate transaction on the device
4473 void pci_clear_mwi(struct pci_dev *dev)
4475 #ifndef PCI_DISABLE_MWI
4478 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4479 if (cmd & PCI_COMMAND_INVALIDATE) {
4480 cmd &= ~PCI_COMMAND_INVALIDATE;
4481 pci_write_config_word(dev, PCI_COMMAND, cmd);
4485 EXPORT_SYMBOL(pci_clear_mwi);
4488 * pci_disable_parity - disable parity checking for device
4489 * @dev: the PCI device to operate on
4491 * Disable parity checking for device @dev
4493 void pci_disable_parity(struct pci_dev *dev)
4497 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4498 if (cmd & PCI_COMMAND_PARITY) {
4499 cmd &= ~PCI_COMMAND_PARITY;
4500 pci_write_config_word(dev, PCI_COMMAND, cmd);
4505 * pci_intx - enables/disables PCI INTx for device dev
4506 * @pdev: the PCI device to operate on
4507 * @enable: boolean: whether to enable or disable PCI INTx
4509 * Enables/disables PCI INTx for device @pdev
4511 void pci_intx(struct pci_dev *pdev, int enable)
4513 u16 pci_command, new;
4515 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4518 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4520 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4522 if (new != pci_command) {
4523 struct pci_devres *dr;
4525 pci_write_config_word(pdev, PCI_COMMAND, new);
4527 dr = find_pci_dr(pdev);
4528 if (dr && !dr->restore_intx) {
4529 dr->restore_intx = 1;
4530 dr->orig_intx = !enable;
4534 EXPORT_SYMBOL_GPL(pci_intx);
4536 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4538 struct pci_bus *bus = dev->bus;
4539 bool mask_updated = true;
4540 u32 cmd_status_dword;
4541 u16 origcmd, newcmd;
4542 unsigned long flags;
4546 * We do a single dword read to retrieve both command and status.
4547 * Document assumptions that make this possible.
4549 BUILD_BUG_ON(PCI_COMMAND % 4);
4550 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4552 raw_spin_lock_irqsave(&pci_lock, flags);
4554 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4556 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4559 * Check interrupt status register to see whether our device
4560 * triggered the interrupt (when masking) or the next IRQ is
4561 * already pending (when unmasking).
4563 if (mask != irq_pending) {
4564 mask_updated = false;
4568 origcmd = cmd_status_dword;
4569 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4571 newcmd |= PCI_COMMAND_INTX_DISABLE;
4572 if (newcmd != origcmd)
4573 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4576 raw_spin_unlock_irqrestore(&pci_lock, flags);
4578 return mask_updated;
4582 * pci_check_and_mask_intx - mask INTx on pending interrupt
4583 * @dev: the PCI device to operate on
4585 * Check if the device dev has its INTx line asserted, mask it and return
4586 * true in that case. False is returned if no interrupt was pending.
4588 bool pci_check_and_mask_intx(struct pci_dev *dev)
4590 return pci_check_and_set_intx_mask(dev, true);
4592 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4595 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4596 * @dev: the PCI device to operate on
4598 * Check if the device dev has its INTx line asserted, unmask it if not and
4599 * return true. False is returned and the mask remains active if there was
4600 * still an interrupt pending.
4602 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4604 return pci_check_and_set_intx_mask(dev, false);
4606 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4609 * pci_wait_for_pending_transaction - wait for pending transaction
4610 * @dev: the PCI device to operate on
4612 * Return 0 if transaction is pending 1 otherwise.
4614 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4616 if (!pci_is_pcie(dev))
4619 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4620 PCI_EXP_DEVSTA_TRPND);
4622 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4625 * pcie_has_flr - check if a device supports function level resets
4626 * @dev: device to check
4628 * Returns true if the device advertises support for PCIe function level
4631 bool pcie_has_flr(struct pci_dev *dev)
4635 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4638 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4639 return cap & PCI_EXP_DEVCAP_FLR;
4641 EXPORT_SYMBOL_GPL(pcie_has_flr);
4644 * pcie_flr - initiate a PCIe function level reset
4645 * @dev: device to reset
4647 * Initiate a function level reset on @dev. The caller should ensure the
4648 * device supports FLR before calling this function, e.g. by using the
4649 * pcie_has_flr() helper.
4651 int pcie_flr(struct pci_dev *dev)
4653 if (!pci_wait_for_pending_transaction(dev))
4654 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4656 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4662 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4663 * 100ms, but may silently discard requests while the FLR is in
4664 * progress. Wait 100ms before trying to access the device.
4668 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4670 EXPORT_SYMBOL_GPL(pcie_flr);
4672 static int pci_af_flr(struct pci_dev *dev, int probe)
4677 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4681 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4684 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4685 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4692 * Wait for Transaction Pending bit to clear. A word-aligned test
4693 * is used, so we use the control offset rather than status and shift
4694 * the test bit to match.
4696 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4697 PCI_AF_STATUS_TP << 8))
4698 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4700 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4706 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4707 * updated 27 July 2006; a device must complete an FLR within
4708 * 100ms, but may silently discard requests while the FLR is in
4709 * progress. Wait 100ms before trying to access the device.
4713 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4717 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4718 * @dev: Device to reset.
4719 * @probe: If set, only check if the device can be reset this way.
4721 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4722 * unset, it will be reinitialized internally when going from PCI_D3hot to
4723 * PCI_D0. If that's the case and the device is not in a low-power state
4724 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4726 * NOTE: This causes the caller to sleep for twice the device power transition
4727 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4728 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4729 * Moreover, only devices in D0 can be reset by this function.
4731 static int pci_pm_reset(struct pci_dev *dev, int probe)
4735 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4738 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4739 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4745 if (dev->current_state != PCI_D0)
4748 csr &= ~PCI_PM_CTRL_STATE_MASK;
4750 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4751 pci_dev_d3_sleep(dev);
4753 csr &= ~PCI_PM_CTRL_STATE_MASK;
4755 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4756 pci_dev_d3_sleep(dev);
4758 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4762 * pcie_wait_for_link_delay - Wait until link is active or inactive
4763 * @pdev: Bridge device
4764 * @active: waiting for active or inactive?
4765 * @delay: Delay to wait after link has become active (in ms)
4767 * Use this to wait till link becomes active or inactive.
4769 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4777 * Some controllers might not implement link active reporting. In this
4778 * case, we wait for 1000 ms + any delay requested by the caller.
4780 if (!pdev->link_active_reporting) {
4781 msleep(timeout + delay);
4786 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4787 * after which we should expect an link active if the reset was
4788 * successful. If so, software must wait a minimum 100ms before sending
4789 * configuration requests to devices downstream this port.
4791 * If the link fails to activate, either the device was physically
4792 * removed or the link is permanently failed.
4797 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4798 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4809 return ret == active;
4813 * pcie_wait_for_link - Wait until link is active or inactive
4814 * @pdev: Bridge device
4815 * @active: waiting for active or inactive?
4817 * Use this to wait till link becomes active or inactive.
4819 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4821 return pcie_wait_for_link_delay(pdev, active, 100);
4825 * Find maximum D3cold delay required by all the devices on the bus. The
4826 * spec says 100 ms, but firmware can lower it and we allow drivers to
4827 * increase it as well.
4829 * Called with @pci_bus_sem locked for reading.
4831 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4833 const struct pci_dev *pdev;
4834 int min_delay = 100;
4837 list_for_each_entry(pdev, &bus->devices, bus_list) {
4838 if (pdev->d3cold_delay < min_delay)
4839 min_delay = pdev->d3cold_delay;
4840 if (pdev->d3cold_delay > max_delay)
4841 max_delay = pdev->d3cold_delay;
4844 return max(min_delay, max_delay);
4848 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4851 * Handle necessary delays before access to the devices on the secondary
4852 * side of the bridge are permitted after D3cold to D0 transition.
4854 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4855 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4858 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4860 struct pci_dev *child;
4863 if (pci_dev_is_disconnected(dev))
4866 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4869 down_read(&pci_bus_sem);
4872 * We only deal with devices that are present currently on the bus.
4873 * For any hot-added devices the access delay is handled in pciehp
4874 * board_added(). In case of ACPI hotplug the firmware is expected
4875 * to configure the devices before OS is notified.
4877 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4878 up_read(&pci_bus_sem);
4882 /* Take d3cold_delay requirements into account */
4883 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4885 up_read(&pci_bus_sem);
4889 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4891 up_read(&pci_bus_sem);
4894 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4895 * accessing the device after reset (that is 1000 ms + 100 ms). In
4896 * practice this should not be needed because we don't do power
4897 * management for them (see pci_bridge_d3_possible()).
4899 if (!pci_is_pcie(dev)) {
4900 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4901 msleep(1000 + delay);
4906 * For PCIe downstream and root ports that do not support speeds
4907 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4908 * speeds (gen3) we need to wait first for the data link layer to
4911 * However, 100 ms is the minimum and the PCIe spec says the
4912 * software must allow at least 1s before it can determine that the
4913 * device that did not respond is a broken device. There is
4914 * evidence that 100 ms is not always enough, for example certain
4915 * Titan Ridge xHCI controller does not always respond to
4916 * configuration requests if we only wait for 100 ms (see
4917 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4919 * Therefore we wait for 100 ms and check for the device presence.
4920 * If it is still not present give it an additional 100 ms.
4922 if (!pcie_downstream_port(dev))
4925 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4926 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4929 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4931 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4932 /* Did not train, no need to wait any further */
4933 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4938 if (!pci_device_is_present(child)) {
4939 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4944 void pci_reset_secondary_bus(struct pci_dev *dev)
4948 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4949 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4950 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4953 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4954 * this to 2ms to ensure that we meet the minimum requirement.
4958 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4959 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4962 * Trhfa for conventional PCI is 2^25 clock cycles.
4963 * Assuming a minimum 33MHz clock this results in a 1s
4964 * delay before we can consider subordinate devices to
4965 * be re-initialized. PCIe has some ways to shorten this,
4966 * but we don't make use of them yet.
4971 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4973 pci_reset_secondary_bus(dev);
4977 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4978 * @dev: Bridge device
4980 * Use the bridge control register to assert reset on the secondary bus.
4981 * Devices on the secondary bus are left in power-on state.
4983 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4985 pcibios_reset_secondary_bus(dev);
4987 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4989 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4991 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4993 struct pci_dev *pdev;
4995 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4996 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4999 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5006 return pci_bridge_secondary_bus_reset(dev->bus->self);
5009 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
5013 if (!hotplug || !try_module_get(hotplug->owner))
5016 if (hotplug->ops->reset_slot)
5017 rc = hotplug->ops->reset_slot(hotplug, probe);
5019 module_put(hotplug->owner);
5024 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
5026 if (dev->multifunction || dev->subordinate || !dev->slot ||
5027 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5030 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5033 static int pci_reset_bus_function(struct pci_dev *dev, int probe)
5037 rc = pci_dev_reset_slot_function(dev, probe);
5040 return pci_parent_bus_reset(dev, probe);
5043 static void pci_dev_lock(struct pci_dev *dev)
5045 pci_cfg_access_lock(dev);
5046 /* block PM suspend, driver probe, etc. */
5047 device_lock(&dev->dev);
5050 /* Return 1 on successful lock, 0 on contention */
5051 int pci_dev_trylock(struct pci_dev *dev)
5053 if (pci_cfg_access_trylock(dev)) {
5054 if (device_trylock(&dev->dev))
5056 pci_cfg_access_unlock(dev);
5061 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5063 void pci_dev_unlock(struct pci_dev *dev)
5065 device_unlock(&dev->dev);
5066 pci_cfg_access_unlock(dev);
5068 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5070 static void pci_dev_save_and_disable(struct pci_dev *dev)
5072 const struct pci_error_handlers *err_handler =
5073 dev->driver ? dev->driver->err_handler : NULL;
5076 * dev->driver->err_handler->reset_prepare() is protected against
5077 * races with ->remove() by the device lock, which must be held by
5080 if (err_handler && err_handler->reset_prepare)
5081 err_handler->reset_prepare(dev);
5084 * Wake-up device prior to save. PM registers default to D0 after
5085 * reset and a simple register restore doesn't reliably return
5086 * to a non-D0 state anyway.
5088 pci_set_power_state(dev, PCI_D0);
5090 pci_save_state(dev);
5092 * Disable the device by clearing the Command register, except for
5093 * INTx-disable which is set. This not only disables MMIO and I/O port
5094 * BARs, but also prevents the device from being Bus Master, preventing
5095 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5096 * compliant devices, INTx-disable prevents legacy interrupts.
5098 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5101 static void pci_dev_restore(struct pci_dev *dev)
5103 const struct pci_error_handlers *err_handler =
5104 dev->driver ? dev->driver->err_handler : NULL;
5106 pci_restore_state(dev);
5109 * dev->driver->err_handler->reset_done() is protected against
5110 * races with ->remove() by the device lock, which must be held by
5113 if (err_handler && err_handler->reset_done)
5114 err_handler->reset_done(dev);
5118 * __pci_reset_function_locked - reset a PCI device function while holding
5119 * the @dev mutex lock.
5120 * @dev: PCI device to reset
5122 * Some devices allow an individual function to be reset without affecting
5123 * other functions in the same device. The PCI device must be responsive
5124 * to PCI config space in order to use this function.
5126 * The device function is presumed to be unused and the caller is holding
5127 * the device mutex lock when this function is called.
5129 * Resetting the device will make the contents of PCI configuration space
5130 * random, so any caller of this must be prepared to reinitialise the
5131 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5134 * Returns 0 if the device function was successfully reset or negative if the
5135 * device doesn't support resetting a single function.
5137 int __pci_reset_function_locked(struct pci_dev *dev)
5144 * A reset method returns -ENOTTY if it doesn't support this device
5145 * and we should try the next method.
5147 * If it returns 0 (success), we're finished. If it returns any
5148 * other error, we're also finished: this indicates that further
5149 * reset mechanisms might be broken on the device.
5151 rc = pci_dev_specific_reset(dev, 0);
5154 if (pcie_has_flr(dev)) {
5159 rc = pci_af_flr(dev, 0);
5162 rc = pci_pm_reset(dev, 0);
5165 return pci_reset_bus_function(dev, 0);
5167 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5170 * pci_probe_reset_function - check whether the device can be safely reset
5171 * @dev: PCI device to reset
5173 * Some devices allow an individual function to be reset without affecting
5174 * other functions in the same device. The PCI device must be responsive
5175 * to PCI config space in order to use this function.
5177 * Returns 0 if the device function can be reset or negative if the
5178 * device doesn't support resetting a single function.
5180 int pci_probe_reset_function(struct pci_dev *dev)
5186 rc = pci_dev_specific_reset(dev, 1);
5189 if (pcie_has_flr(dev))
5191 rc = pci_af_flr(dev, 1);
5194 rc = pci_pm_reset(dev, 1);
5198 return pci_reset_bus_function(dev, 1);
5202 * pci_reset_function - quiesce and reset a PCI device function
5203 * @dev: PCI device to reset
5205 * Some devices allow an individual function to be reset without affecting
5206 * other functions in the same device. The PCI device must be responsive
5207 * to PCI config space in order to use this function.
5209 * This function does not just reset the PCI portion of a device, but
5210 * clears all the state associated with the device. This function differs
5211 * from __pci_reset_function_locked() in that it saves and restores device state
5212 * over the reset and takes the PCI device lock.
5214 * Returns 0 if the device function was successfully reset or negative if the
5215 * device doesn't support resetting a single function.
5217 int pci_reset_function(struct pci_dev *dev)
5225 pci_dev_save_and_disable(dev);
5227 rc = __pci_reset_function_locked(dev);
5229 pci_dev_restore(dev);
5230 pci_dev_unlock(dev);
5234 EXPORT_SYMBOL_GPL(pci_reset_function);
5237 * pci_reset_function_locked - quiesce and reset a PCI device function
5238 * @dev: PCI device to reset
5240 * Some devices allow an individual function to be reset without affecting
5241 * other functions in the same device. The PCI device must be responsive
5242 * to PCI config space in order to use this function.
5244 * This function does not just reset the PCI portion of a device, but
5245 * clears all the state associated with the device. This function differs
5246 * from __pci_reset_function_locked() in that it saves and restores device state
5247 * over the reset. It also differs from pci_reset_function() in that it
5248 * requires the PCI device lock to be held.
5250 * Returns 0 if the device function was successfully reset or negative if the
5251 * device doesn't support resetting a single function.
5253 int pci_reset_function_locked(struct pci_dev *dev)
5260 pci_dev_save_and_disable(dev);
5262 rc = __pci_reset_function_locked(dev);
5264 pci_dev_restore(dev);
5268 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5271 * pci_try_reset_function - quiesce and reset a PCI device function
5272 * @dev: PCI device to reset
5274 * Same as above, except return -EAGAIN if unable to lock device.
5276 int pci_try_reset_function(struct pci_dev *dev)
5283 if (!pci_dev_trylock(dev))
5286 pci_dev_save_and_disable(dev);
5287 rc = __pci_reset_function_locked(dev);
5288 pci_dev_restore(dev);
5289 pci_dev_unlock(dev);
5293 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5295 /* Do any devices on or below this bus prevent a bus reset? */
5296 static bool pci_bus_resetable(struct pci_bus *bus)
5298 struct pci_dev *dev;
5301 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5304 list_for_each_entry(dev, &bus->devices, bus_list) {
5305 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5306 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5313 /* Lock devices from the top of the tree down */
5314 static void pci_bus_lock(struct pci_bus *bus)
5316 struct pci_dev *dev;
5318 list_for_each_entry(dev, &bus->devices, bus_list) {
5320 if (dev->subordinate)
5321 pci_bus_lock(dev->subordinate);
5325 /* Unlock devices from the bottom of the tree up */
5326 static void pci_bus_unlock(struct pci_bus *bus)
5328 struct pci_dev *dev;
5330 list_for_each_entry(dev, &bus->devices, bus_list) {
5331 if (dev->subordinate)
5332 pci_bus_unlock(dev->subordinate);
5333 pci_dev_unlock(dev);
5337 /* Return 1 on successful lock, 0 on contention */
5338 static int pci_bus_trylock(struct pci_bus *bus)
5340 struct pci_dev *dev;
5342 list_for_each_entry(dev, &bus->devices, bus_list) {
5343 if (!pci_dev_trylock(dev))
5345 if (dev->subordinate) {
5346 if (!pci_bus_trylock(dev->subordinate)) {
5347 pci_dev_unlock(dev);
5355 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5356 if (dev->subordinate)
5357 pci_bus_unlock(dev->subordinate);
5358 pci_dev_unlock(dev);
5363 /* Do any devices on or below this slot prevent a bus reset? */
5364 static bool pci_slot_resetable(struct pci_slot *slot)
5366 struct pci_dev *dev;
5368 if (slot->bus->self &&
5369 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5372 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5373 if (!dev->slot || dev->slot != slot)
5375 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5376 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5383 /* Lock devices from the top of the tree down */
5384 static void pci_slot_lock(struct pci_slot *slot)
5386 struct pci_dev *dev;
5388 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5389 if (!dev->slot || dev->slot != slot)
5392 if (dev->subordinate)
5393 pci_bus_lock(dev->subordinate);
5397 /* Unlock devices from the bottom of the tree up */
5398 static void pci_slot_unlock(struct pci_slot *slot)
5400 struct pci_dev *dev;
5402 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5403 if (!dev->slot || dev->slot != slot)
5405 if (dev->subordinate)
5406 pci_bus_unlock(dev->subordinate);
5407 pci_dev_unlock(dev);
5411 /* Return 1 on successful lock, 0 on contention */
5412 static int pci_slot_trylock(struct pci_slot *slot)
5414 struct pci_dev *dev;
5416 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5417 if (!dev->slot || dev->slot != slot)
5419 if (!pci_dev_trylock(dev))
5421 if (dev->subordinate) {
5422 if (!pci_bus_trylock(dev->subordinate)) {
5423 pci_dev_unlock(dev);
5431 list_for_each_entry_continue_reverse(dev,
5432 &slot->bus->devices, bus_list) {
5433 if (!dev->slot || dev->slot != slot)
5435 if (dev->subordinate)
5436 pci_bus_unlock(dev->subordinate);
5437 pci_dev_unlock(dev);
5443 * Save and disable devices from the top of the tree down while holding
5444 * the @dev mutex lock for the entire tree.
5446 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5448 struct pci_dev *dev;
5450 list_for_each_entry(dev, &bus->devices, bus_list) {
5451 pci_dev_save_and_disable(dev);
5452 if (dev->subordinate)
5453 pci_bus_save_and_disable_locked(dev->subordinate);
5458 * Restore devices from top of the tree down while holding @dev mutex lock
5459 * for the entire tree. Parent bridges need to be restored before we can
5460 * get to subordinate devices.
5462 static void pci_bus_restore_locked(struct pci_bus *bus)
5464 struct pci_dev *dev;
5466 list_for_each_entry(dev, &bus->devices, bus_list) {
5467 pci_dev_restore(dev);
5468 if (dev->subordinate)
5469 pci_bus_restore_locked(dev->subordinate);
5474 * Save and disable devices from the top of the tree down while holding
5475 * the @dev mutex lock for the entire tree.
5477 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5479 struct pci_dev *dev;
5481 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5482 if (!dev->slot || dev->slot != slot)
5484 pci_dev_save_and_disable(dev);
5485 if (dev->subordinate)
5486 pci_bus_save_and_disable_locked(dev->subordinate);
5491 * Restore devices from top of the tree down while holding @dev mutex lock
5492 * for the entire tree. Parent bridges need to be restored before we can
5493 * get to subordinate devices.
5495 static void pci_slot_restore_locked(struct pci_slot *slot)
5497 struct pci_dev *dev;
5499 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5500 if (!dev->slot || dev->slot != slot)
5502 pci_dev_restore(dev);
5503 if (dev->subordinate)
5504 pci_bus_restore_locked(dev->subordinate);
5508 static int pci_slot_reset(struct pci_slot *slot, int probe)
5512 if (!slot || !pci_slot_resetable(slot))
5516 pci_slot_lock(slot);
5520 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5523 pci_slot_unlock(slot);
5529 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5530 * @slot: PCI slot to probe
5532 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5534 int pci_probe_reset_slot(struct pci_slot *slot)
5536 return pci_slot_reset(slot, 1);
5538 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5541 * __pci_reset_slot - Try to reset a PCI slot
5542 * @slot: PCI slot to reset
5544 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5545 * independent of other slots. For instance, some slots may support slot power
5546 * control. In the case of a 1:1 bus to slot architecture, this function may
5547 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5548 * Generally a slot reset should be attempted before a bus reset. All of the
5549 * function of the slot and any subordinate buses behind the slot are reset
5550 * through this function. PCI config space of all devices in the slot and
5551 * behind the slot is saved before and restored after reset.
5553 * Same as above except return -EAGAIN if the slot cannot be locked
5555 static int __pci_reset_slot(struct pci_slot *slot)
5559 rc = pci_slot_reset(slot, 1);
5563 if (pci_slot_trylock(slot)) {
5564 pci_slot_save_and_disable_locked(slot);
5566 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5567 pci_slot_restore_locked(slot);
5568 pci_slot_unlock(slot);
5575 static int pci_bus_reset(struct pci_bus *bus, int probe)
5579 if (!bus->self || !pci_bus_resetable(bus))
5589 ret = pci_bridge_secondary_bus_reset(bus->self);
5591 pci_bus_unlock(bus);
5597 * pci_bus_error_reset - reset the bridge's subordinate bus
5598 * @bridge: The parent device that connects to the bus to reset
5600 * This function will first try to reset the slots on this bus if the method is
5601 * available. If slot reset fails or is not available, this will fall back to a
5602 * secondary bus reset.
5604 int pci_bus_error_reset(struct pci_dev *bridge)
5606 struct pci_bus *bus = bridge->subordinate;
5607 struct pci_slot *slot;
5612 mutex_lock(&pci_slot_mutex);
5613 if (list_empty(&bus->slots))
5616 list_for_each_entry(slot, &bus->slots, list)
5617 if (pci_probe_reset_slot(slot))
5620 list_for_each_entry(slot, &bus->slots, list)
5621 if (pci_slot_reset(slot, 0))
5624 mutex_unlock(&pci_slot_mutex);
5627 mutex_unlock(&pci_slot_mutex);
5628 return pci_bus_reset(bridge->subordinate, 0);
5632 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5633 * @bus: PCI bus to probe
5635 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5637 int pci_probe_reset_bus(struct pci_bus *bus)
5639 return pci_bus_reset(bus, 1);
5641 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5644 * __pci_reset_bus - Try to reset a PCI bus
5645 * @bus: top level PCI bus to reset
5647 * Same as above except return -EAGAIN if the bus cannot be locked
5649 static int __pci_reset_bus(struct pci_bus *bus)
5653 rc = pci_bus_reset(bus, 1);
5657 if (pci_bus_trylock(bus)) {
5658 pci_bus_save_and_disable_locked(bus);
5660 rc = pci_bridge_secondary_bus_reset(bus->self);
5661 pci_bus_restore_locked(bus);
5662 pci_bus_unlock(bus);
5670 * pci_reset_bus - Try to reset a PCI bus
5671 * @pdev: top level PCI device to reset via slot/bus
5673 * Same as above except return -EAGAIN if the bus cannot be locked
5675 int pci_reset_bus(struct pci_dev *pdev)
5677 return (!pci_probe_reset_slot(pdev->slot)) ?
5678 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5680 EXPORT_SYMBOL_GPL(pci_reset_bus);
5683 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5684 * @dev: PCI device to query
5686 * Returns mmrbc: maximum designed memory read count in bytes or
5687 * appropriate error value.
5689 int pcix_get_max_mmrbc(struct pci_dev *dev)
5694 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5698 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5701 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5703 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5706 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5707 * @dev: PCI device to query
5709 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5712 int pcix_get_mmrbc(struct pci_dev *dev)
5717 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5721 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5724 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5726 EXPORT_SYMBOL(pcix_get_mmrbc);
5729 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5730 * @dev: PCI device to query
5731 * @mmrbc: maximum memory read count in bytes
5732 * valid values are 512, 1024, 2048, 4096
5734 * If possible sets maximum memory read byte count, some bridges have errata
5735 * that prevent this.
5737 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5743 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5746 v = ffs(mmrbc) - 10;
5748 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5752 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5755 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5758 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5761 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5763 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5766 cmd &= ~PCI_X_CMD_MAX_READ;
5768 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5773 EXPORT_SYMBOL(pcix_set_mmrbc);
5776 * pcie_get_readrq - get PCI Express read request size
5777 * @dev: PCI device to query
5779 * Returns maximum memory read request in bytes or appropriate error value.
5781 int pcie_get_readrq(struct pci_dev *dev)
5785 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5787 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5789 EXPORT_SYMBOL(pcie_get_readrq);
5792 * pcie_set_readrq - set PCI Express maximum memory read request
5793 * @dev: PCI device to query
5794 * @rq: maximum memory read count in bytes
5795 * valid values are 128, 256, 512, 1024, 2048, 4096
5797 * If possible sets maximum memory read request in bytes
5799 int pcie_set_readrq(struct pci_dev *dev, int rq)
5804 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5808 * If using the "performance" PCIe config, we clamp the read rq
5809 * size to the max packet size to keep the host bridge from
5810 * generating requests larger than we can cope with.
5812 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5813 int mps = pcie_get_mps(dev);
5819 v = (ffs(rq) - 8) << 12;
5821 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5822 PCI_EXP_DEVCTL_READRQ, v);
5824 return pcibios_err_to_errno(ret);
5826 EXPORT_SYMBOL(pcie_set_readrq);
5829 * pcie_get_mps - get PCI Express maximum payload size
5830 * @dev: PCI device to query
5832 * Returns maximum payload size in bytes
5834 int pcie_get_mps(struct pci_dev *dev)
5838 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5840 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5842 EXPORT_SYMBOL(pcie_get_mps);
5845 * pcie_set_mps - set PCI Express maximum payload size
5846 * @dev: PCI device to query
5847 * @mps: maximum payload size in bytes
5848 * valid values are 128, 256, 512, 1024, 2048, 4096
5850 * If possible sets maximum payload size
5852 int pcie_set_mps(struct pci_dev *dev, int mps)
5857 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5861 if (v > dev->pcie_mpss)
5865 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5866 PCI_EXP_DEVCTL_PAYLOAD, v);
5868 return pcibios_err_to_errno(ret);
5870 EXPORT_SYMBOL(pcie_set_mps);
5873 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5874 * device and its bandwidth limitation
5875 * @dev: PCI device to query
5876 * @limiting_dev: storage for device causing the bandwidth limitation
5877 * @speed: storage for speed of limiting device
5878 * @width: storage for width of limiting device
5880 * Walk up the PCI device chain and find the point where the minimum
5881 * bandwidth is available. Return the bandwidth available there and (if
5882 * limiting_dev, speed, and width pointers are supplied) information about
5883 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5886 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5887 enum pci_bus_speed *speed,
5888 enum pcie_link_width *width)
5891 enum pci_bus_speed next_speed;
5892 enum pcie_link_width next_width;
5896 *speed = PCI_SPEED_UNKNOWN;
5898 *width = PCIE_LNK_WIDTH_UNKNOWN;
5903 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5905 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5906 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5907 PCI_EXP_LNKSTA_NLW_SHIFT;
5909 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5911 /* Check if current device limits the total bandwidth */
5912 if (!bw || next_bw <= bw) {
5916 *limiting_dev = dev;
5918 *speed = next_speed;
5920 *width = next_width;
5923 dev = pci_upstream_bridge(dev);
5928 EXPORT_SYMBOL(pcie_bandwidth_available);
5931 * pcie_get_speed_cap - query for the PCI device's link speed capability
5932 * @dev: PCI device to query
5934 * Query the PCI device speed capability. Return the maximum link speed
5935 * supported by the device.
5937 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5939 u32 lnkcap2, lnkcap;
5942 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5943 * implementation note there recommends using the Supported Link
5944 * Speeds Vector in Link Capabilities 2 when supported.
5946 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5947 * should use the Supported Link Speeds field in Link Capabilities,
5948 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5950 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5952 /* PCIe r3.0-compliant */
5954 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5956 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5957 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5958 return PCIE_SPEED_5_0GT;
5959 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5960 return PCIE_SPEED_2_5GT;
5962 return PCI_SPEED_UNKNOWN;
5964 EXPORT_SYMBOL(pcie_get_speed_cap);
5967 * pcie_get_width_cap - query for the PCI device's link width capability
5968 * @dev: PCI device to query
5970 * Query the PCI device width capability. Return the maximum link width
5971 * supported by the device.
5973 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5977 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5979 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5981 return PCIE_LNK_WIDTH_UNKNOWN;
5983 EXPORT_SYMBOL(pcie_get_width_cap);
5986 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5988 * @speed: storage for link speed
5989 * @width: storage for link width
5991 * Calculate a PCI device's link bandwidth by querying for its link speed
5992 * and width, multiplying them, and applying encoding overhead. The result
5993 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5995 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5996 enum pcie_link_width *width)
5998 *speed = pcie_get_speed_cap(dev);
5999 *width = pcie_get_width_cap(dev);
6001 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6004 return *width * PCIE_SPEED2MBS_ENC(*speed);
6008 * __pcie_print_link_status - Report the PCI device's link speed and width
6009 * @dev: PCI device to query
6010 * @verbose: Print info even when enough bandwidth is available
6012 * If the available bandwidth at the device is less than the device is
6013 * capable of, report the device's maximum possible bandwidth and the
6014 * upstream link that limits its performance. If @verbose, always print
6015 * the available bandwidth, even if the device isn't constrained.
6017 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6019 enum pcie_link_width width, width_cap;
6020 enum pci_bus_speed speed, speed_cap;
6021 struct pci_dev *limiting_dev = NULL;
6022 u32 bw_avail, bw_cap;
6024 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6025 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6027 if (bw_avail >= bw_cap && verbose)
6028 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6029 bw_cap / 1000, bw_cap % 1000,
6030 pci_speed_string(speed_cap), width_cap);
6031 else if (bw_avail < bw_cap)
6032 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6033 bw_avail / 1000, bw_avail % 1000,
6034 pci_speed_string(speed), width,
6035 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6036 bw_cap / 1000, bw_cap % 1000,
6037 pci_speed_string(speed_cap), width_cap);
6041 * pcie_print_link_status - Report the PCI device's link speed and width
6042 * @dev: PCI device to query
6044 * Report the available bandwidth at the device.
6046 void pcie_print_link_status(struct pci_dev *dev)
6048 __pcie_print_link_status(dev, true);
6050 EXPORT_SYMBOL(pcie_print_link_status);
6053 * pci_select_bars - Make BAR mask from the type of resource
6054 * @dev: the PCI device for which BAR mask is made
6055 * @flags: resource type mask to be selected
6057 * This helper routine makes bar mask from the type of resource.
6059 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6062 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6063 if (pci_resource_flags(dev, i) & flags)
6067 EXPORT_SYMBOL(pci_select_bars);
6069 /* Some architectures require additional programming to enable VGA */
6070 static arch_set_vga_state_t arch_set_vga_state;
6072 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6074 arch_set_vga_state = func; /* NULL disables */
6077 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6078 unsigned int command_bits, u32 flags)
6080 if (arch_set_vga_state)
6081 return arch_set_vga_state(dev, decode, command_bits,
6087 * pci_set_vga_state - set VGA decode state on device and parents if requested
6088 * @dev: the PCI device
6089 * @decode: true = enable decoding, false = disable decoding
6090 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6091 * @flags: traverse ancestors and change bridges
6092 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6094 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6095 unsigned int command_bits, u32 flags)
6097 struct pci_bus *bus;
6098 struct pci_dev *bridge;
6102 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6104 /* ARCH specific VGA enables */
6105 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6109 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6110 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6112 cmd |= command_bits;
6114 cmd &= ~command_bits;
6115 pci_write_config_word(dev, PCI_COMMAND, cmd);
6118 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6125 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6128 cmd |= PCI_BRIDGE_CTL_VGA;
6130 cmd &= ~PCI_BRIDGE_CTL_VGA;
6131 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6140 bool pci_pr3_present(struct pci_dev *pdev)
6142 struct acpi_device *adev;
6147 adev = ACPI_COMPANION(&pdev->dev);
6151 return adev->power.flags.power_resources &&
6152 acpi_has_method(adev->handle, "_PR3");
6154 EXPORT_SYMBOL_GPL(pci_pr3_present);
6158 * pci_add_dma_alias - Add a DMA devfn alias for a device
6159 * @dev: the PCI device for which alias is added
6160 * @devfn_from: alias slot and function
6161 * @nr_devfns: number of subsequent devfns to alias
6163 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6164 * which is used to program permissible bus-devfn source addresses for DMA
6165 * requests in an IOMMU. These aliases factor into IOMMU group creation
6166 * and are useful for devices generating DMA requests beyond or different
6167 * from their logical bus-devfn. Examples include device quirks where the
6168 * device simply uses the wrong devfn, as well as non-transparent bridges
6169 * where the alias may be a proxy for devices in another domain.
6171 * IOMMU group creation is performed during device discovery or addition,
6172 * prior to any potential DMA mapping and therefore prior to driver probing
6173 * (especially for userspace assigned devices where IOMMU group definition
6174 * cannot be left as a userspace activity). DMA aliases should therefore
6175 * be configured via quirks, such as the PCI fixup header quirk.
6177 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6181 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6182 devfn_to = devfn_from + nr_devfns - 1;
6184 if (!dev->dma_alias_mask)
6185 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6186 if (!dev->dma_alias_mask) {
6187 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6191 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6194 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6195 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6196 else if (nr_devfns > 1)
6197 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6198 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6199 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6202 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6204 return (dev1->dma_alias_mask &&
6205 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6206 (dev2->dma_alias_mask &&
6207 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6208 pci_real_dma_dev(dev1) == dev2 ||
6209 pci_real_dma_dev(dev2) == dev1;
6212 bool pci_device_is_present(struct pci_dev *pdev)
6216 if (pci_dev_is_disconnected(pdev))
6218 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6220 EXPORT_SYMBOL_GPL(pci_device_is_present);
6222 void pci_ignore_hotplug(struct pci_dev *dev)
6224 struct pci_dev *bridge = dev->bus->self;
6226 dev->ignore_hotplug = 1;
6227 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6229 bridge->ignore_hotplug = 1;
6231 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6234 * pci_real_dma_dev - Get PCI DMA device for PCI device
6235 * @dev: the PCI device that may have a PCI DMA alias
6237 * Permits the platform to provide architecture-specific functionality to
6238 * devices needing to alias DMA to another PCI device on another PCI bus. If
6239 * the PCI device is on the same bus, it is recommended to use
6240 * pci_add_dma_alias(). This is the default implementation. Architecture
6241 * implementations can override this.
6243 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6248 resource_size_t __weak pcibios_default_alignment(void)
6254 * Arches that don't want to expose struct resource to userland as-is in
6255 * sysfs and /proc can implement their own pci_resource_to_user().
6257 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6258 const struct resource *rsrc,
6259 resource_size_t *start, resource_size_t *end)
6261 *start = rsrc->start;
6265 static char *resource_alignment_param;
6266 static DEFINE_SPINLOCK(resource_alignment_lock);
6269 * pci_specified_resource_alignment - get resource alignment specified by user.
6270 * @dev: the PCI device to get
6271 * @resize: whether or not to change resources' size when reassigning alignment
6273 * RETURNS: Resource alignment if it is specified.
6274 * Zero if it is not specified.
6276 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6279 int align_order, count;
6280 resource_size_t align = pcibios_default_alignment();
6284 spin_lock(&resource_alignment_lock);
6285 p = resource_alignment_param;
6288 if (pci_has_flag(PCI_PROBE_ONLY)) {
6290 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6296 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6299 if (align_order > 63) {
6300 pr_err("PCI: Invalid requested alignment (order %d)\n",
6302 align_order = PAGE_SHIFT;
6305 align_order = PAGE_SHIFT;
6308 ret = pci_dev_str_match(dev, p, &p);
6311 align = 1ULL << align_order;
6313 } else if (ret < 0) {
6314 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6319 if (*p != ';' && *p != ',') {
6320 /* End of param or invalid format */
6326 spin_unlock(&resource_alignment_lock);
6330 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6331 resource_size_t align, bool resize)
6333 struct resource *r = &dev->resource[bar];
6334 resource_size_t size;
6336 if (!(r->flags & IORESOURCE_MEM))
6339 if (r->flags & IORESOURCE_PCI_FIXED) {
6340 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6341 bar, r, (unsigned long long)align);
6345 size = resource_size(r);
6350 * Increase the alignment of the resource. There are two ways we
6353 * 1) Increase the size of the resource. BARs are aligned on their
6354 * size, so when we reallocate space for this resource, we'll
6355 * allocate it with the larger alignment. This also prevents
6356 * assignment of any other BARs inside the alignment region, so
6357 * if we're requesting page alignment, this means no other BARs
6358 * will share the page.
6360 * The disadvantage is that this makes the resource larger than
6361 * the hardware BAR, which may break drivers that compute things
6362 * based on the resource size, e.g., to find registers at a
6363 * fixed offset before the end of the BAR.
6365 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6366 * set r->start to the desired alignment. By itself this
6367 * doesn't prevent other BARs being put inside the alignment
6368 * region, but if we realign *every* resource of every device in
6369 * the system, none of them will share an alignment region.
6371 * When the user has requested alignment for only some devices via
6372 * the "pci=resource_alignment" argument, "resize" is true and we
6373 * use the first method. Otherwise we assume we're aligning all
6374 * devices and we use the second.
6377 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6378 bar, r, (unsigned long long)align);
6384 r->flags &= ~IORESOURCE_SIZEALIGN;
6385 r->flags |= IORESOURCE_STARTALIGN;
6387 r->end = r->start + size - 1;
6389 r->flags |= IORESOURCE_UNSET;
6393 * This function disables memory decoding and releases memory resources
6394 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6395 * It also rounds up size to specified alignment.
6396 * Later on, the kernel will assign page-aligned memory resource back
6399 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6403 resource_size_t align;
6405 bool resize = false;
6408 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6409 * 3.4.1.11. Their resources are allocated from the space
6410 * described by the VF BARx register in the PF's SR-IOV capability.
6411 * We can't influence their alignment here.
6416 /* check if specified PCI is target device to reassign */
6417 align = pci_specified_resource_alignment(dev, &resize);
6421 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6422 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6423 pci_warn(dev, "Can't reassign resources to host bridge\n");
6427 pci_read_config_word(dev, PCI_COMMAND, &command);
6428 command &= ~PCI_COMMAND_MEMORY;
6429 pci_write_config_word(dev, PCI_COMMAND, command);
6431 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6432 pci_request_resource_alignment(dev, i, align, resize);
6435 * Need to disable bridge's resource window,
6436 * to enable the kernel to reassign new resource
6439 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6440 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6441 r = &dev->resource[i];
6442 if (!(r->flags & IORESOURCE_MEM))
6444 r->flags |= IORESOURCE_UNSET;
6445 r->end = resource_size(r) - 1;
6448 pci_disable_bridge_window(dev);
6452 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6456 spin_lock(&resource_alignment_lock);
6457 if (resource_alignment_param)
6458 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6459 spin_unlock(&resource_alignment_lock);
6464 static ssize_t resource_alignment_store(struct bus_type *bus,
6465 const char *buf, size_t count)
6467 char *param, *old, *end;
6469 if (count >= (PAGE_SIZE - 1))
6472 param = kstrndup(buf, count, GFP_KERNEL);
6476 end = strchr(param, '\n');
6480 spin_lock(&resource_alignment_lock);
6481 old = resource_alignment_param;
6482 if (strlen(param)) {
6483 resource_alignment_param = param;
6486 resource_alignment_param = NULL;
6488 spin_unlock(&resource_alignment_lock);
6495 static BUS_ATTR_RW(resource_alignment);
6497 static int __init pci_resource_alignment_sysfs_init(void)
6499 return bus_create_file(&pci_bus_type,
6500 &bus_attr_resource_alignment);
6502 late_initcall(pci_resource_alignment_sysfs_init);
6504 static void pci_no_domains(void)
6506 #ifdef CONFIG_PCI_DOMAINS
6507 pci_domains_supported = 0;
6511 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6512 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6514 static int pci_get_new_domain_nr(void)
6516 return atomic_inc_return(&__domain_nr);
6519 static int of_pci_bus_find_domain_nr(struct device *parent)
6521 static int use_dt_domains = -1;
6525 domain = of_get_pci_domain_nr(parent->of_node);
6528 * Check DT domain and use_dt_domains values.
6530 * If DT domain property is valid (domain >= 0) and
6531 * use_dt_domains != 0, the DT assignment is valid since this means
6532 * we have not previously allocated a domain number by using
6533 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6534 * 1, to indicate that we have just assigned a domain number from
6537 * If DT domain property value is not valid (ie domain < 0), and we
6538 * have not previously assigned a domain number from DT
6539 * (use_dt_domains != 1) we should assign a domain number by
6542 * pci_get_new_domain_nr()
6544 * API and update the use_dt_domains value to keep track of method we
6545 * are using to assign domain numbers (use_dt_domains = 0).
6547 * All other combinations imply we have a platform that is trying
6548 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6549 * which is a recipe for domain mishandling and it is prevented by
6550 * invalidating the domain value (domain = -1) and printing a
6551 * corresponding error.
6553 if (domain >= 0 && use_dt_domains) {
6555 } else if (domain < 0 && use_dt_domains != 1) {
6557 domain = pci_get_new_domain_nr();
6560 pr_err("Node %pOF has ", parent->of_node);
6561 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6568 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6570 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6571 acpi_pci_bus_find_domain_nr(bus);
6576 * pci_ext_cfg_avail - can we access extended PCI config space?
6578 * Returns 1 if we can access PCI extended config space (offsets
6579 * greater than 0xff). This is the default implementation. Architecture
6580 * implementations can override this.
6582 int __weak pci_ext_cfg_avail(void)
6587 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6590 EXPORT_SYMBOL(pci_fixup_cardbus);
6592 static int __init pci_setup(char *str)
6595 char *k = strchr(str, ',');
6598 if (*str && (str = pcibios_setup(str)) && *str) {
6599 if (!strcmp(str, "nomsi")) {
6601 } else if (!strncmp(str, "noats", 5)) {
6602 pr_info("PCIe: ATS is disabled\n");
6603 pcie_ats_disabled = true;
6604 } else if (!strcmp(str, "noaer")) {
6606 } else if (!strcmp(str, "earlydump")) {
6607 pci_early_dump = true;
6608 } else if (!strncmp(str, "realloc=", 8)) {
6609 pci_realloc_get_opt(str + 8);
6610 } else if (!strncmp(str, "realloc", 7)) {
6611 pci_realloc_get_opt("on");
6612 } else if (!strcmp(str, "nodomains")) {
6614 } else if (!strncmp(str, "noari", 5)) {
6615 pcie_ari_disabled = true;
6616 } else if (!strncmp(str, "cbiosize=", 9)) {
6617 pci_cardbus_io_size = memparse(str + 9, &str);
6618 } else if (!strncmp(str, "cbmemsize=", 10)) {
6619 pci_cardbus_mem_size = memparse(str + 10, &str);
6620 } else if (!strncmp(str, "resource_alignment=", 19)) {
6621 resource_alignment_param = str + 19;
6622 } else if (!strncmp(str, "ecrc=", 5)) {
6623 pcie_ecrc_get_policy(str + 5);
6624 } else if (!strncmp(str, "hpiosize=", 9)) {
6625 pci_hotplug_io_size = memparse(str + 9, &str);
6626 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6627 pci_hotplug_mmio_size = memparse(str + 11, &str);
6628 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6629 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6630 } else if (!strncmp(str, "hpmemsize=", 10)) {
6631 pci_hotplug_mmio_size = memparse(str + 10, &str);
6632 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6633 } else if (!strncmp(str, "hpbussize=", 10)) {
6634 pci_hotplug_bus_size =
6635 simple_strtoul(str + 10, &str, 0);
6636 if (pci_hotplug_bus_size > 0xff)
6637 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6638 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6639 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6640 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6641 pcie_bus_config = PCIE_BUS_SAFE;
6642 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6643 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6644 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6645 pcie_bus_config = PCIE_BUS_PEER2PEER;
6646 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6647 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6648 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6649 disable_acs_redir_param = str + 18;
6651 pr_err("PCI: Unknown option `%s'\n", str);
6658 early_param("pci", pci_setup);
6661 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6662 * in pci_setup(), above, to point to data in the __initdata section which
6663 * will be freed after the init sequence is complete. We can't allocate memory
6664 * in pci_setup() because some architectures do not have any memory allocation
6665 * service available during an early_param() call. So we allocate memory and
6666 * copy the variable here before the init section is freed.
6669 static int __init pci_realloc_setup_params(void)
6671 resource_alignment_param = kstrdup(resource_alignment_param,
6673 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6677 pure_initcall(pci_realloc_setup_params);