1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
37 DEFINE_MUTEX(pci_slot_mutex);
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 EXPORT_SYMBOL_GPL(pci_power_names);
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
50 EXPORT_SYMBOL(pci_pci_problems);
52 unsigned int pci_pm_d3hot_delay;
54 static void pci_pme_list_scan(struct work_struct *work);
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
60 struct pci_pme_device {
61 struct list_head list;
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
68 * Devices may extend the 1 sec period through Request Retry Status
69 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
70 * limit, but 60 sec ought to be enough for any device to become
73 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
75 static void pci_dev_d3_sleep(struct pci_dev *dev)
77 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
81 /* Use a 20% upper bound, 1ms minimum */
82 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
83 usleep_range(delay_ms * USEC_PER_MSEC,
84 (delay_ms + upper) * USEC_PER_MSEC);
88 bool pci_reset_supported(struct pci_dev *dev)
90 return dev->reset_methods[0] != 0;
93 #ifdef CONFIG_PCI_DOMAINS
94 int pci_domains_supported = 1;
97 #define DEFAULT_CARDBUS_IO_SIZE (256)
98 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
99 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
100 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
101 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
103 #define DEFAULT_HOTPLUG_IO_SIZE (256)
104 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
105 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
106 /* hpiosize=nn can override this */
107 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
109 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
110 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
111 * pci=hpmemsize=nnM overrides both
113 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
114 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
116 #define DEFAULT_HOTPLUG_BUS_SIZE 1
117 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
120 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
121 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
122 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
123 #elif defined CONFIG_PCIE_BUS_SAFE
124 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
125 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
126 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
127 #elif defined CONFIG_PCIE_BUS_PEER2PEER
128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
134 * The default CLS is used if arch didn't set CLS explicitly and not
135 * all pci devices agree on the same value. Arch can override either
136 * the dfl or actual value as it sees fit. Don't forget this is
137 * measured in 32-bit words, not bytes.
139 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
140 u8 pci_cache_line_size;
143 * If we set up a device for bus mastering, we need to check the latency
144 * timer as certain BIOSes forget to set it properly.
146 unsigned int pcibios_max_latency = 255;
148 /* If set, the PCIe ARI capability will not be used. */
149 static bool pcie_ari_disabled;
151 /* If set, the PCIe ATS capability will not be used. */
152 static bool pcie_ats_disabled;
154 /* If set, the PCI config space of each device is printed during boot. */
157 bool pci_ats_disabled(void)
159 return pcie_ats_disabled;
161 EXPORT_SYMBOL_GPL(pci_ats_disabled);
163 /* Disable bridge_d3 for all PCIe ports */
164 static bool pci_bridge_d3_disable;
165 /* Force bridge_d3 for all PCIe ports */
166 static bool pci_bridge_d3_force;
168 static int __init pcie_port_pm_setup(char *str)
170 if (!strcmp(str, "off"))
171 pci_bridge_d3_disable = true;
172 else if (!strcmp(str, "force"))
173 pci_bridge_d3_force = true;
176 __setup("pcie_port_pm=", pcie_port_pm_setup);
179 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
180 * @bus: pointer to PCI bus structure to search
182 * Given a PCI bus, returns the highest PCI bus number present in the set
183 * including the given PCI bus and its list of child PCI buses.
185 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
188 unsigned char max, n;
190 max = bus->busn_res.end;
191 list_for_each_entry(tmp, &bus->children, node) {
192 n = pci_bus_max_busnr(tmp);
198 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
201 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
202 * @pdev: the PCI device
204 * Returns error bits set in PCI_STATUS and clears them.
206 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
211 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
212 if (ret != PCIBIOS_SUCCESSFUL)
215 status &= PCI_STATUS_ERROR_BITS;
217 pci_write_config_word(pdev, PCI_STATUS, status);
221 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
223 #ifdef CONFIG_HAS_IOMEM
224 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
227 struct resource *res = &pdev->resource[bar];
228 resource_size_t start = res->start;
229 resource_size_t size = resource_size(res);
232 * Make sure the BAR is actually a memory resource, not an IO resource
234 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
235 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
240 return ioremap_wc(start, size);
242 return ioremap(start, size);
245 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
247 return __pci_ioremap_resource(pdev, bar, false);
249 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
251 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
253 return __pci_ioremap_resource(pdev, bar, true);
255 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
259 * pci_dev_str_match_path - test if a path string matches a device
260 * @dev: the PCI device to test
261 * @path: string to match the device against
262 * @endptr: pointer to the string after the match
264 * Test if a string (typically from a kernel parameter) formatted as a
265 * path of device/function addresses matches a PCI device. The string must
268 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
270 * A path for a device can be obtained using 'lspci -t'. Using a path
271 * is more robust against bus renumbering than using only a single bus,
272 * device and function address.
274 * Returns 1 if the string matches the device, 0 if it does not and
275 * a negative error code if it fails to parse the string.
277 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
281 unsigned int seg, bus, slot, func;
285 *endptr = strchrnul(path, ';');
287 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
292 p = strrchr(wpath, '/');
295 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
301 if (dev->devfn != PCI_DEVFN(slot, func)) {
307 * Note: we don't need to get a reference to the upstream
308 * bridge because we hold a reference to the top level
309 * device which should hold a reference to the bridge,
312 dev = pci_upstream_bridge(dev);
321 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
325 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 ret = (seg == pci_domain_nr(dev->bus) &&
333 bus == dev->bus->number &&
334 dev->devfn == PCI_DEVFN(slot, func));
342 * pci_dev_str_match - test if a string matches a device
343 * @dev: the PCI device to test
344 * @p: string to match the device against
345 * @endptr: pointer to the string after the match
347 * Test if a string (typically from a kernel parameter) matches a specified
348 * PCI device. The string may be of one of the following formats:
350 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
351 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
353 * The first format specifies a PCI bus/device/function address which
354 * may change if new hardware is inserted, if motherboard firmware changes,
355 * or due to changes caused in kernel parameters. If the domain is
356 * left unspecified, it is taken to be 0. In order to be robust against
357 * bus renumbering issues, a path of PCI device/function numbers may be used
358 * to address the specific device. The path for a device can be determined
359 * through the use of 'lspci -t'.
361 * The second format matches devices using IDs in the configuration
362 * space which may match multiple devices in the system. A value of 0
363 * for any field will match all devices. (Note: this differs from
364 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
365 * legacy reasons and convenience so users don't have to specify
366 * FFFFFFFFs on the command line.)
368 * Returns 1 if the string matches the device, 0 if it does not and
369 * a negative error code if the string cannot be parsed.
371 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
376 unsigned short vendor, device, subsystem_vendor, subsystem_device;
378 if (strncmp(p, "pci:", 4) == 0) {
379 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
381 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
382 &subsystem_vendor, &subsystem_device, &count);
384 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
388 subsystem_vendor = 0;
389 subsystem_device = 0;
394 if ((!vendor || vendor == dev->vendor) &&
395 (!device || device == dev->device) &&
396 (!subsystem_vendor ||
397 subsystem_vendor == dev->subsystem_vendor) &&
398 (!subsystem_device ||
399 subsystem_device == dev->subsystem_device))
403 * PCI Bus, Device, Function IDs are specified
404 * (optionally, may include a path of devfns following it)
406 ret = pci_dev_str_match_path(dev, p, &p);
421 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
422 u8 pos, int cap, int *ttl)
427 pci_bus_read_config_byte(bus, devfn, pos, &pos);
433 pci_bus_read_config_word(bus, devfn, pos, &ent);
445 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
448 int ttl = PCI_FIND_CAP_TTL;
450 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
453 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
455 return __pci_find_next_cap(dev->bus, dev->devfn,
456 pos + PCI_CAP_LIST_NEXT, cap);
458 EXPORT_SYMBOL_GPL(pci_find_next_capability);
460 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
461 unsigned int devfn, u8 hdr_type)
465 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
466 if (!(status & PCI_STATUS_CAP_LIST))
470 case PCI_HEADER_TYPE_NORMAL:
471 case PCI_HEADER_TYPE_BRIDGE:
472 return PCI_CAPABILITY_LIST;
473 case PCI_HEADER_TYPE_CARDBUS:
474 return PCI_CB_CAPABILITY_LIST;
481 * pci_find_capability - query for devices' capabilities
482 * @dev: PCI device to query
483 * @cap: capability code
485 * Tell if a device supports a given PCI capability.
486 * Returns the address of the requested capability structure within the
487 * device's PCI configuration space or 0 in case the device does not
488 * support it. Possible values for @cap include:
490 * %PCI_CAP_ID_PM Power Management
491 * %PCI_CAP_ID_AGP Accelerated Graphics Port
492 * %PCI_CAP_ID_VPD Vital Product Data
493 * %PCI_CAP_ID_SLOTID Slot Identification
494 * %PCI_CAP_ID_MSI Message Signalled Interrupts
495 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
496 * %PCI_CAP_ID_PCIX PCI-X
497 * %PCI_CAP_ID_EXP PCI Express
499 u8 pci_find_capability(struct pci_dev *dev, int cap)
503 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
505 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
509 EXPORT_SYMBOL(pci_find_capability);
512 * pci_bus_find_capability - query for devices' capabilities
513 * @bus: the PCI bus to query
514 * @devfn: PCI device to query
515 * @cap: capability code
517 * Like pci_find_capability() but works for PCI devices that do not have a
518 * pci_dev structure set up yet.
520 * Returns the address of the requested capability structure within the
521 * device's PCI configuration space or 0 in case the device does not
524 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
528 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
530 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
532 pos = __pci_find_next_cap(bus, devfn, pos, cap);
536 EXPORT_SYMBOL(pci_bus_find_capability);
539 * pci_find_next_ext_capability - Find an extended capability
540 * @dev: PCI device to query
541 * @start: address at which to start looking (0 to start at beginning of list)
542 * @cap: capability code
544 * Returns the address of the next matching extended capability structure
545 * within the device's PCI configuration space or 0 if the device does
546 * not support it. Some capabilities can occur several times, e.g., the
547 * vendor-specific capability, and this provides a way to find them all.
549 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
553 u16 pos = PCI_CFG_SPACE_SIZE;
555 /* minimum 8 bytes per capability */
556 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
558 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
564 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
568 * If we have no capabilities, this is indicated by cap ID,
569 * cap version and next pointer all being 0.
575 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
578 pos = PCI_EXT_CAP_NEXT(header);
579 if (pos < PCI_CFG_SPACE_SIZE)
582 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
588 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
591 * pci_find_ext_capability - Find an extended capability
592 * @dev: PCI device to query
593 * @cap: capability code
595 * Returns the address of the requested extended capability structure
596 * within the device's PCI configuration space or 0 if the device does
597 * not support it. Possible values for @cap include:
599 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
600 * %PCI_EXT_CAP_ID_VC Virtual Channel
601 * %PCI_EXT_CAP_ID_DSN Device Serial Number
602 * %PCI_EXT_CAP_ID_PWR Power Budgeting
604 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
606 return pci_find_next_ext_capability(dev, 0, cap);
608 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
611 * pci_get_dsn - Read and return the 8-byte Device Serial Number
612 * @dev: PCI device to query
614 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
617 * Returns the DSN, or zero if the capability does not exist.
619 u64 pci_get_dsn(struct pci_dev *dev)
625 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
630 * The Device Serial Number is two dwords offset 4 bytes from the
631 * capability position. The specification says that the first dword is
632 * the lower half, and the second dword is the upper half.
635 pci_read_config_dword(dev, pos, &dword);
637 pci_read_config_dword(dev, pos + 4, &dword);
638 dsn |= ((u64)dword) << 32;
642 EXPORT_SYMBOL_GPL(pci_get_dsn);
644 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
646 int rc, ttl = PCI_FIND_CAP_TTL;
649 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
650 mask = HT_3BIT_CAP_MASK;
652 mask = HT_5BIT_CAP_MASK;
654 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
655 PCI_CAP_ID_HT, &ttl);
657 rc = pci_read_config_byte(dev, pos + 3, &cap);
658 if (rc != PCIBIOS_SUCCESSFUL)
661 if ((cap & mask) == ht_cap)
664 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
665 pos + PCI_CAP_LIST_NEXT,
666 PCI_CAP_ID_HT, &ttl);
673 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
674 * @dev: PCI device to query
675 * @pos: Position from which to continue searching
676 * @ht_cap: HyperTransport capability code
678 * To be used in conjunction with pci_find_ht_capability() to search for
679 * all capabilities matching @ht_cap. @pos should always be a value returned
680 * from pci_find_ht_capability().
682 * NB. To be 100% safe against broken PCI devices, the caller should take
683 * steps to avoid an infinite loop.
685 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
687 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
689 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
692 * pci_find_ht_capability - query a device's HyperTransport capabilities
693 * @dev: PCI device to query
694 * @ht_cap: HyperTransport capability code
696 * Tell if a device supports a given HyperTransport capability.
697 * Returns an address within the device's PCI configuration space
698 * or 0 in case the device does not support the request capability.
699 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
700 * which has a HyperTransport capability matching @ht_cap.
702 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
706 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
708 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
712 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
715 * pci_find_vsec_capability - Find a vendor-specific extended capability
716 * @dev: PCI device to query
717 * @vendor: Vendor ID for which capability is defined
718 * @cap: Vendor-specific capability ID
720 * If @dev has Vendor ID @vendor, search for a VSEC capability with
721 * VSEC ID @cap. If found, return the capability offset in
722 * config space; otherwise return 0.
724 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
729 if (vendor != dev->vendor)
732 while ((vsec = pci_find_next_ext_capability(dev, vsec,
733 PCI_EXT_CAP_ID_VNDR))) {
734 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
735 &header) == PCIBIOS_SUCCESSFUL &&
736 PCI_VNDR_HEADER_ID(header) == cap)
742 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
745 * pci_find_dvsec_capability - Find DVSEC for vendor
746 * @dev: PCI device to query
747 * @vendor: Vendor ID to match for the DVSEC
748 * @dvsec: Designated Vendor-specific capability ID
750 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
751 * offset in config space; otherwise return 0.
753 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
757 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
764 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
765 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
766 if (vendor == v && dvsec == id)
769 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
774 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
777 * pci_find_parent_resource - return resource region of parent bus of given
779 * @dev: PCI device structure contains resources to be searched
780 * @res: child resource record for which parent is sought
782 * For given resource region of given device, return the resource region of
783 * parent bus the given region is contained in.
785 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
786 struct resource *res)
788 const struct pci_bus *bus = dev->bus;
791 pci_bus_for_each_resource(bus, r) {
794 if (resource_contains(r, res)) {
797 * If the window is prefetchable but the BAR is
798 * not, the allocator made a mistake.
800 if (r->flags & IORESOURCE_PREFETCH &&
801 !(res->flags & IORESOURCE_PREFETCH))
805 * If we're below a transparent bridge, there may
806 * be both a positively-decoded aperture and a
807 * subtractively-decoded region that contain the BAR.
808 * We want the positively-decoded one, so this depends
809 * on pci_bus_for_each_resource() giving us those
817 EXPORT_SYMBOL(pci_find_parent_resource);
820 * pci_find_resource - Return matching PCI device resource
821 * @dev: PCI device to query
822 * @res: Resource to look for
824 * Goes over standard PCI resources (BARs) and checks if the given resource
825 * is partially or fully contained in any of them. In that case the
826 * matching resource is returned, %NULL otherwise.
828 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
832 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
833 struct resource *r = &dev->resource[i];
835 if (r->start && resource_contains(r, res))
841 EXPORT_SYMBOL(pci_find_resource);
844 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
845 * @dev: the PCI device to operate on
846 * @pos: config space offset of status word
847 * @mask: mask of bit(s) to care about in status word
849 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
851 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
855 /* Wait for Transaction Pending bit clean */
856 for (i = 0; i < 4; i++) {
859 msleep((1 << (i - 1)) * 100);
861 pci_read_config_word(dev, pos, &status);
862 if (!(status & mask))
869 static int pci_acs_enable;
872 * pci_request_acs - ask for ACS to be enabled if supported
874 void pci_request_acs(void)
879 static const char *disable_acs_redir_param;
882 * pci_disable_acs_redir - disable ACS redirect capabilities
883 * @dev: the PCI device
885 * For only devices specified in the disable_acs_redir parameter.
887 static void pci_disable_acs_redir(struct pci_dev *dev)
894 if (!disable_acs_redir_param)
897 p = disable_acs_redir_param;
899 ret = pci_dev_str_match(dev, p, &p);
901 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
902 disable_acs_redir_param);
905 } else if (ret == 1) {
910 if (*p != ';' && *p != ',') {
911 /* End of param or invalid format */
920 if (!pci_dev_specific_disable_acs_redir(dev))
925 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
929 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
931 /* P2P Request & Completion Redirect */
932 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
934 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
936 pci_info(dev, "disabled ACS redirect\n");
940 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
941 * @dev: the PCI device
943 static void pci_std_enable_acs(struct pci_dev *dev)
953 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
954 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
956 /* Source Validation */
957 ctrl |= (cap & PCI_ACS_SV);
959 /* P2P Request Redirect */
960 ctrl |= (cap & PCI_ACS_RR);
962 /* P2P Completion Redirect */
963 ctrl |= (cap & PCI_ACS_CR);
965 /* Upstream Forwarding */
966 ctrl |= (cap & PCI_ACS_UF);
968 /* Enable Translation Blocking for external devices and noats */
969 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
970 ctrl |= (cap & PCI_ACS_TB);
972 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
976 * pci_enable_acs - enable ACS if hardware support it
977 * @dev: the PCI device
979 static void pci_enable_acs(struct pci_dev *dev)
982 goto disable_acs_redir;
984 if (!pci_dev_specific_enable_acs(dev))
985 goto disable_acs_redir;
987 pci_std_enable_acs(dev);
991 * Note: pci_disable_acs_redir() must be called even if ACS was not
992 * enabled by the kernel because it may have been enabled by
993 * platform firmware. So if we are told to disable it, we should
994 * always disable it after setting the kernel's default
997 pci_disable_acs_redir(dev);
1001 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1002 * @dev: PCI device to have its BARs restored
1004 * Restore the BAR values for a given device, so as to make it
1005 * accessible by its driver.
1007 static void pci_restore_bars(struct pci_dev *dev)
1011 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1012 pci_update_resource(dev, i);
1015 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1017 if (pci_use_mid_pm())
1020 return acpi_pci_power_manageable(dev);
1023 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1026 if (pci_use_mid_pm())
1027 return mid_pci_set_power_state(dev, t);
1029 return acpi_pci_set_power_state(dev, t);
1032 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1034 if (pci_use_mid_pm())
1035 return mid_pci_get_power_state(dev);
1037 return acpi_pci_get_power_state(dev);
1040 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1042 if (!pci_use_mid_pm())
1043 acpi_pci_refresh_power_state(dev);
1046 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1048 if (pci_use_mid_pm())
1049 return PCI_POWER_ERROR;
1051 return acpi_pci_choose_state(dev);
1054 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1056 if (pci_use_mid_pm())
1057 return PCI_POWER_ERROR;
1059 return acpi_pci_wakeup(dev, enable);
1062 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1064 if (pci_use_mid_pm())
1067 return acpi_pci_need_resume(dev);
1070 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1072 if (pci_use_mid_pm())
1075 return acpi_pci_bridge_d3(dev);
1079 * pci_update_current_state - Read power state of given device and cache it
1080 * @dev: PCI device to handle.
1081 * @state: State to cache in case the device doesn't have the PM capability
1083 * The power state is read from the PMCSR register, which however is
1084 * inaccessible in D3cold. The platform firmware is therefore queried first
1085 * to detect accessibility of the register. In case the platform firmware
1086 * reports an incorrect state or the device isn't power manageable by the
1087 * platform at all, we try to detect D3cold by testing accessibility of the
1088 * vendor ID in config space.
1090 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1092 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1093 dev->current_state = PCI_D3cold;
1094 } else if (dev->pm_cap) {
1097 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1098 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1099 dev->current_state = PCI_D3cold;
1102 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1104 dev->current_state = state;
1109 * pci_refresh_power_state - Refresh the given device's power state data
1110 * @dev: Target PCI device.
1112 * Ask the platform to refresh the devices power state information and invoke
1113 * pci_update_current_state() to update its current PCI power state.
1115 void pci_refresh_power_state(struct pci_dev *dev)
1117 platform_pci_refresh_power_state(dev);
1118 pci_update_current_state(dev, dev->current_state);
1122 * pci_platform_power_transition - Use platform to change device power state
1123 * @dev: PCI device to handle.
1124 * @state: State to put the device into.
1126 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1130 error = platform_pci_set_power_state(dev, state);
1132 pci_update_current_state(dev, state);
1133 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1134 dev->current_state = PCI_D0;
1138 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1140 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1142 pm_request_resume(&pci_dev->dev);
1147 * pci_resume_bus - Walk given bus and runtime resume devices on it
1148 * @bus: Top bus of the subtree to walk.
1150 void pci_resume_bus(struct pci_bus *bus)
1153 pci_walk_bus(bus, pci_resume_one, NULL);
1156 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1162 * After reset, the device should not silently discard config
1163 * requests, but it may still indicate that it needs more time by
1164 * responding to them with CRS completions. The Root Port will
1165 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1166 * the read (except when CRS SV is enabled and the read was for the
1167 * Vendor ID; in that case it synthesizes 0x0001 data).
1169 * Wait for the device to return a non-CRS completion. Read the
1170 * Command register instead of Vendor ID so we don't have to
1171 * contend with the CRS SV value.
1173 pci_read_config_dword(dev, PCI_COMMAND, &id);
1174 while (PCI_POSSIBLE_ERROR(id)) {
1175 if (delay > timeout) {
1176 pci_warn(dev, "not ready %dms after %s; giving up\n",
1177 delay - 1, reset_type);
1181 if (delay > PCI_RESET_WAIT)
1182 pci_info(dev, "not ready %dms after %s; waiting\n",
1183 delay - 1, reset_type);
1187 pci_read_config_dword(dev, PCI_COMMAND, &id);
1190 if (delay > PCI_RESET_WAIT)
1191 pci_info(dev, "ready %dms after %s\n", delay - 1,
1198 * pci_power_up - Put the given device into D0
1199 * @dev: PCI device to power up
1201 * On success, return 0 or 1, depending on whether or not it is necessary to
1202 * restore the device's BARs subsequently (1 is returned in that case).
1204 int pci_power_up(struct pci_dev *dev)
1210 platform_pci_set_power_state(dev, PCI_D0);
1213 state = platform_pci_get_power_state(dev);
1214 if (state == PCI_UNKNOWN)
1215 dev->current_state = PCI_D0;
1217 dev->current_state = state;
1219 if (state == PCI_D0)
1225 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1226 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1227 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1228 pci_power_name(dev->current_state));
1229 dev->current_state = PCI_D3cold;
1233 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1235 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1236 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1238 if (state == PCI_D0)
1242 * Force the entire word to 0. This doesn't affect PME_Status, disables
1243 * PME_En, and sets PowerState to 0.
1245 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1247 /* Mandatory transition delays; see PCI PM 1.2. */
1248 if (state == PCI_D3hot)
1249 pci_dev_d3_sleep(dev);
1250 else if (state == PCI_D2)
1251 udelay(PCI_PM_D2_DELAY);
1254 dev->current_state = PCI_D0;
1262 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1263 * @dev: PCI device to power up
1265 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1266 * to confirm the state change, restore its BARs if they might be lost and
1267 * reconfigure ASPM in acordance with the new power state.
1269 * If pci_restore_state() is going to be called right after a power state change
1270 * to D0, it is more efficient to use pci_power_up() directly instead of this
1273 static int pci_set_full_power_state(struct pci_dev *dev)
1278 ret = pci_power_up(dev);
1282 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1283 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1284 if (dev->current_state != PCI_D0) {
1285 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1286 pci_power_name(dev->current_state));
1287 } else if (ret > 0) {
1289 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1290 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1291 * from D3hot to D0 _may_ perform an internal reset, thereby
1292 * going to "D0 Uninitialized" rather than "D0 Initialized".
1293 * For example, at least some versions of the 3c905B and the
1294 * 3c556B exhibit this behaviour.
1296 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1297 * devices in a D3hot state at boot. Consequently, we need to
1298 * restore at least the BARs so that the device will be
1299 * accessible to its driver.
1301 pci_restore_bars(dev);
1308 * __pci_dev_set_current_state - Set current state of a PCI device
1309 * @dev: Device to handle
1310 * @data: pointer to state to be set
1312 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1314 pci_power_t state = *(pci_power_t *)data;
1316 dev->current_state = state;
1321 * pci_bus_set_current_state - Walk given bus and set current state of devices
1322 * @bus: Top bus of the subtree to walk.
1323 * @state: state to be set
1325 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1328 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1332 * pci_set_low_power_state - Put a PCI device into a low-power state.
1333 * @dev: PCI device to handle.
1334 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1336 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1339 * -EINVAL if the requested state is invalid.
1340 * -EIO if device does not support PCI PM or its PM capabilities register has a
1341 * wrong version, or device doesn't support the requested state.
1342 * 0 if device already is in the requested state.
1343 * 0 if device's power state has been successfully changed.
1345 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1353 * Validate transition: We can enter D0 from any state, but if
1354 * we're already in a low-power state, we can only go deeper. E.g.,
1355 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1356 * we'd have to go from D3 to D0, then to D1.
1358 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1359 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1360 pci_power_name(dev->current_state),
1361 pci_power_name(state));
1365 /* Check if this device supports the desired state */
1366 if ((state == PCI_D1 && !dev->d1_support)
1367 || (state == PCI_D2 && !dev->d2_support))
1370 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1371 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1372 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1373 pci_power_name(dev->current_state),
1374 pci_power_name(state));
1375 dev->current_state = PCI_D3cold;
1379 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1382 /* Enter specified state */
1383 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1385 /* Mandatory power management transition delays; see PCI PM 1.2. */
1386 if (state == PCI_D3hot)
1387 pci_dev_d3_sleep(dev);
1388 else if (state == PCI_D2)
1389 udelay(PCI_PM_D2_DELAY);
1391 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1392 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1393 if (dev->current_state != state)
1394 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1395 pci_power_name(dev->current_state),
1396 pci_power_name(state));
1402 * pci_set_power_state - Set the power state of a PCI device
1403 * @dev: PCI device to handle.
1404 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1406 * Transition a device to a new power state, using the platform firmware and/or
1407 * the device's PCI PM registers.
1410 * -EINVAL if the requested state is invalid.
1411 * -EIO if device does not support PCI PM or its PM capabilities register has a
1412 * wrong version, or device doesn't support the requested state.
1413 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1414 * 0 if device already is in the requested state.
1415 * 0 if the transition is to D3 but D3 is not supported.
1416 * 0 if device's power state has been successfully changed.
1418 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1422 /* Bound the state we're entering */
1423 if (state > PCI_D3cold)
1425 else if (state < PCI_D0)
1427 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1430 * If the device or the parent bridge do not support PCI
1431 * PM, ignore the request if we're doing anything other
1432 * than putting it into D0 (which would only happen on
1437 /* Check if we're already there */
1438 if (dev->current_state == state)
1441 if (state == PCI_D0)
1442 return pci_set_full_power_state(dev);
1445 * This device is quirked not to be put into D3, so don't put it in
1448 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1451 if (state == PCI_D3cold) {
1453 * To put the device in D3cold, put it into D3hot in the native
1454 * way, then put it into D3cold using platform ops.
1456 error = pci_set_low_power_state(dev, PCI_D3hot);
1458 if (pci_platform_power_transition(dev, PCI_D3cold))
1461 /* Powering off a bridge may power off the whole hierarchy */
1462 if (dev->current_state == PCI_D3cold)
1463 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1465 error = pci_set_low_power_state(dev, state);
1467 if (pci_platform_power_transition(dev, state))
1473 EXPORT_SYMBOL(pci_set_power_state);
1475 #define PCI_EXP_SAVE_REGS 7
1477 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1478 u16 cap, bool extended)
1480 struct pci_cap_saved_state *tmp;
1482 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1483 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1489 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1491 return _pci_find_saved_cap(dev, cap, false);
1494 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1496 return _pci_find_saved_cap(dev, cap, true);
1499 static int pci_save_pcie_state(struct pci_dev *dev)
1502 struct pci_cap_saved_state *save_state;
1505 if (!pci_is_pcie(dev))
1508 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1510 pci_err(dev, "buffer not found in %s\n", __func__);
1514 cap = (u16 *)&save_state->cap.data[0];
1515 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1516 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1517 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1518 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1519 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1520 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1521 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1526 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1528 #ifdef CONFIG_PCIEASPM
1529 struct pci_dev *bridge;
1532 bridge = pci_upstream_bridge(dev);
1533 if (bridge && bridge->ltr_path) {
1534 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1535 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1536 pci_dbg(bridge, "re-enabling LTR\n");
1537 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1538 PCI_EXP_DEVCTL2_LTR_EN);
1544 static void pci_restore_pcie_state(struct pci_dev *dev)
1547 struct pci_cap_saved_state *save_state;
1550 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1555 * Downstream ports reset the LTR enable bit when link goes down.
1556 * Check and re-configure the bit here before restoring device.
1557 * PCIe r5.0, sec 7.5.3.16.
1559 pci_bridge_reconfigure_ltr(dev);
1561 cap = (u16 *)&save_state->cap.data[0];
1562 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1563 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1564 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1565 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1566 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1567 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1568 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1571 static int pci_save_pcix_state(struct pci_dev *dev)
1574 struct pci_cap_saved_state *save_state;
1576 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1580 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1582 pci_err(dev, "buffer not found in %s\n", __func__);
1586 pci_read_config_word(dev, pos + PCI_X_CMD,
1587 (u16 *)save_state->cap.data);
1592 static void pci_restore_pcix_state(struct pci_dev *dev)
1595 struct pci_cap_saved_state *save_state;
1598 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1599 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1600 if (!save_state || !pos)
1602 cap = (u16 *)&save_state->cap.data[0];
1604 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1607 static void pci_save_ltr_state(struct pci_dev *dev)
1610 struct pci_cap_saved_state *save_state;
1613 if (!pci_is_pcie(dev))
1616 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1620 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1622 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1626 /* Some broken devices only support dword access to LTR */
1627 cap = &save_state->cap.data[0];
1628 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1631 static void pci_restore_ltr_state(struct pci_dev *dev)
1633 struct pci_cap_saved_state *save_state;
1637 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1638 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1639 if (!save_state || !ltr)
1642 /* Some broken devices only support dword access to LTR */
1643 cap = &save_state->cap.data[0];
1644 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1648 * pci_save_state - save the PCI configuration space of a device before
1650 * @dev: PCI device that we're dealing with
1652 int pci_save_state(struct pci_dev *dev)
1655 /* XXX: 100% dword access ok here? */
1656 for (i = 0; i < 16; i++) {
1657 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1658 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1659 i * 4, dev->saved_config_space[i]);
1661 dev->state_saved = true;
1663 i = pci_save_pcie_state(dev);
1667 i = pci_save_pcix_state(dev);
1671 pci_save_ltr_state(dev);
1672 pci_save_dpc_state(dev);
1673 pci_save_aer_state(dev);
1674 pci_save_ptm_state(dev);
1675 return pci_save_vc_state(dev);
1677 EXPORT_SYMBOL(pci_save_state);
1679 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1680 u32 saved_val, int retry, bool force)
1684 pci_read_config_dword(pdev, offset, &val);
1685 if (!force && val == saved_val)
1689 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1690 offset, val, saved_val);
1691 pci_write_config_dword(pdev, offset, saved_val);
1695 pci_read_config_dword(pdev, offset, &val);
1696 if (val == saved_val)
1703 static void pci_restore_config_space_range(struct pci_dev *pdev,
1704 int start, int end, int retry,
1709 for (index = end; index >= start; index--)
1710 pci_restore_config_dword(pdev, 4 * index,
1711 pdev->saved_config_space[index],
1715 static void pci_restore_config_space(struct pci_dev *pdev)
1717 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1718 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1719 /* Restore BARs before the command register. */
1720 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1721 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1722 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1723 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1726 * Force rewriting of prefetch registers to avoid S3 resume
1727 * issues on Intel PCI bridges that occur when these
1728 * registers are not explicitly written.
1730 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1731 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1733 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1737 static void pci_restore_rebar_state(struct pci_dev *pdev)
1739 unsigned int pos, nbars, i;
1742 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1746 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1747 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1748 PCI_REBAR_CTRL_NBAR_SHIFT;
1750 for (i = 0; i < nbars; i++, pos += 8) {
1751 struct resource *res;
1754 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1755 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1756 res = pdev->resource + bar_idx;
1757 size = pci_rebar_bytes_to_size(resource_size(res));
1758 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1759 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1760 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1765 * pci_restore_state - Restore the saved state of a PCI device
1766 * @dev: PCI device that we're dealing with
1768 void pci_restore_state(struct pci_dev *dev)
1770 if (!dev->state_saved)
1774 * Restore max latencies (in the LTR capability) before enabling
1775 * LTR itself (in the PCIe capability).
1777 pci_restore_ltr_state(dev);
1779 pci_restore_pcie_state(dev);
1780 pci_restore_pasid_state(dev);
1781 pci_restore_pri_state(dev);
1782 pci_restore_ats_state(dev);
1783 pci_restore_vc_state(dev);
1784 pci_restore_rebar_state(dev);
1785 pci_restore_dpc_state(dev);
1786 pci_restore_ptm_state(dev);
1788 pci_aer_clear_status(dev);
1789 pci_restore_aer_state(dev);
1791 pci_restore_config_space(dev);
1793 pci_restore_pcix_state(dev);
1794 pci_restore_msi_state(dev);
1796 /* Restore ACS and IOV configuration state */
1797 pci_enable_acs(dev);
1798 pci_restore_iov_state(dev);
1800 dev->state_saved = false;
1802 EXPORT_SYMBOL(pci_restore_state);
1804 struct pci_saved_state {
1805 u32 config_space[16];
1806 struct pci_cap_saved_data cap[];
1810 * pci_store_saved_state - Allocate and return an opaque struct containing
1811 * the device saved state.
1812 * @dev: PCI device that we're dealing with
1814 * Return NULL if no state or error.
1816 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1818 struct pci_saved_state *state;
1819 struct pci_cap_saved_state *tmp;
1820 struct pci_cap_saved_data *cap;
1823 if (!dev->state_saved)
1826 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1828 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1829 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1831 state = kzalloc(size, GFP_KERNEL);
1835 memcpy(state->config_space, dev->saved_config_space,
1836 sizeof(state->config_space));
1839 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1840 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1841 memcpy(cap, &tmp->cap, len);
1842 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1844 /* Empty cap_save terminates list */
1848 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1851 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1852 * @dev: PCI device that we're dealing with
1853 * @state: Saved state returned from pci_store_saved_state()
1855 int pci_load_saved_state(struct pci_dev *dev,
1856 struct pci_saved_state *state)
1858 struct pci_cap_saved_data *cap;
1860 dev->state_saved = false;
1865 memcpy(dev->saved_config_space, state->config_space,
1866 sizeof(state->config_space));
1870 struct pci_cap_saved_state *tmp;
1872 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1873 if (!tmp || tmp->cap.size != cap->size)
1876 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1877 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1878 sizeof(struct pci_cap_saved_data) + cap->size);
1881 dev->state_saved = true;
1884 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1887 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1888 * and free the memory allocated for it.
1889 * @dev: PCI device that we're dealing with
1890 * @state: Pointer to saved state returned from pci_store_saved_state()
1892 int pci_load_and_free_saved_state(struct pci_dev *dev,
1893 struct pci_saved_state **state)
1895 int ret = pci_load_saved_state(dev, *state);
1900 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1902 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1904 return pci_enable_resources(dev, bars);
1907 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1910 struct pci_dev *bridge;
1914 err = pci_set_power_state(dev, PCI_D0);
1915 if (err < 0 && err != -EIO)
1918 bridge = pci_upstream_bridge(dev);
1920 pcie_aspm_powersave_config_link(bridge);
1922 err = pcibios_enable_device(dev, bars);
1925 pci_fixup_device(pci_fixup_enable, dev);
1927 if (dev->msi_enabled || dev->msix_enabled)
1930 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1932 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1933 if (cmd & PCI_COMMAND_INTX_DISABLE)
1934 pci_write_config_word(dev, PCI_COMMAND,
1935 cmd & ~PCI_COMMAND_INTX_DISABLE);
1942 * pci_reenable_device - Resume abandoned device
1943 * @dev: PCI device to be resumed
1945 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1946 * to be called by normal code, write proper resume handler and use it instead.
1948 int pci_reenable_device(struct pci_dev *dev)
1950 if (pci_is_enabled(dev))
1951 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1954 EXPORT_SYMBOL(pci_reenable_device);
1956 static void pci_enable_bridge(struct pci_dev *dev)
1958 struct pci_dev *bridge;
1961 bridge = pci_upstream_bridge(dev);
1963 pci_enable_bridge(bridge);
1965 if (pci_is_enabled(dev)) {
1966 if (!dev->is_busmaster)
1967 pci_set_master(dev);
1971 retval = pci_enable_device(dev);
1973 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1975 pci_set_master(dev);
1978 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1980 struct pci_dev *bridge;
1985 * Power state could be unknown at this point, either due to a fresh
1986 * boot or a device removal call. So get the current power state
1987 * so that things like MSI message writing will behave as expected
1988 * (e.g. if the device really is in D0 at enable time).
1990 pci_update_current_state(dev, dev->current_state);
1992 if (atomic_inc_return(&dev->enable_cnt) > 1)
1993 return 0; /* already enabled */
1995 bridge = pci_upstream_bridge(dev);
1997 pci_enable_bridge(bridge);
1999 /* only skip sriov related */
2000 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2001 if (dev->resource[i].flags & flags)
2003 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2004 if (dev->resource[i].flags & flags)
2007 err = do_pci_enable_device(dev, bars);
2009 atomic_dec(&dev->enable_cnt);
2014 * pci_enable_device_io - Initialize a device for use with IO space
2015 * @dev: PCI device to be initialized
2017 * Initialize device before it's used by a driver. Ask low-level code
2018 * to enable I/O resources. Wake up the device if it was suspended.
2019 * Beware, this function can fail.
2021 int pci_enable_device_io(struct pci_dev *dev)
2023 return pci_enable_device_flags(dev, IORESOURCE_IO);
2025 EXPORT_SYMBOL(pci_enable_device_io);
2028 * pci_enable_device_mem - Initialize a device for use with Memory space
2029 * @dev: PCI device to be initialized
2031 * Initialize device before it's used by a driver. Ask low-level code
2032 * to enable Memory resources. Wake up the device if it was suspended.
2033 * Beware, this function can fail.
2035 int pci_enable_device_mem(struct pci_dev *dev)
2037 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2039 EXPORT_SYMBOL(pci_enable_device_mem);
2042 * pci_enable_device - Initialize device before it's used by a driver.
2043 * @dev: PCI device to be initialized
2045 * Initialize device before it's used by a driver. Ask low-level code
2046 * to enable I/O and memory. Wake up the device if it was suspended.
2047 * Beware, this function can fail.
2049 * Note we don't actually enable the device many times if we call
2050 * this function repeatedly (we just increment the count).
2052 int pci_enable_device(struct pci_dev *dev)
2054 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2056 EXPORT_SYMBOL(pci_enable_device);
2059 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2060 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2061 * there's no need to track it separately. pci_devres is initialized
2062 * when a device is enabled using managed PCI device enable interface.
2065 unsigned int enabled:1;
2066 unsigned int pinned:1;
2067 unsigned int orig_intx:1;
2068 unsigned int restore_intx:1;
2073 static void pcim_release(struct device *gendev, void *res)
2075 struct pci_dev *dev = to_pci_dev(gendev);
2076 struct pci_devres *this = res;
2079 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2080 if (this->region_mask & (1 << i))
2081 pci_release_region(dev, i);
2086 if (this->restore_intx)
2087 pci_intx(dev, this->orig_intx);
2089 if (this->enabled && !this->pinned)
2090 pci_disable_device(dev);
2093 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2095 struct pci_devres *dr, *new_dr;
2097 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2101 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2104 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2107 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2109 if (pci_is_managed(pdev))
2110 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2115 * pcim_enable_device - Managed pci_enable_device()
2116 * @pdev: PCI device to be initialized
2118 * Managed pci_enable_device().
2120 int pcim_enable_device(struct pci_dev *pdev)
2122 struct pci_devres *dr;
2125 dr = get_pci_dr(pdev);
2131 rc = pci_enable_device(pdev);
2133 pdev->is_managed = 1;
2138 EXPORT_SYMBOL(pcim_enable_device);
2141 * pcim_pin_device - Pin managed PCI device
2142 * @pdev: PCI device to pin
2144 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2145 * driver detach. @pdev must have been enabled with
2146 * pcim_enable_device().
2148 void pcim_pin_device(struct pci_dev *pdev)
2150 struct pci_devres *dr;
2152 dr = find_pci_dr(pdev);
2153 WARN_ON(!dr || !dr->enabled);
2157 EXPORT_SYMBOL(pcim_pin_device);
2160 * pcibios_device_add - provide arch specific hooks when adding device dev
2161 * @dev: the PCI device being added
2163 * Permits the platform to provide architecture specific functionality when
2164 * devices are added. This is the default implementation. Architecture
2165 * implementations can override this.
2167 int __weak pcibios_device_add(struct pci_dev *dev)
2173 * pcibios_release_device - provide arch specific hooks when releasing
2175 * @dev: the PCI device being released
2177 * Permits the platform to provide architecture specific functionality when
2178 * devices are released. This is the default implementation. Architecture
2179 * implementations can override this.
2181 void __weak pcibios_release_device(struct pci_dev *dev) {}
2184 * pcibios_disable_device - disable arch specific PCI resources for device dev
2185 * @dev: the PCI device to disable
2187 * Disables architecture specific PCI resources for the device. This
2188 * is the default implementation. Architecture implementations can
2191 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2194 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2195 * @irq: ISA IRQ to penalize
2196 * @active: IRQ active or not
2198 * Permits the platform to provide architecture-specific functionality when
2199 * penalizing ISA IRQs. This is the default implementation. Architecture
2200 * implementations can override this.
2202 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2204 static void do_pci_disable_device(struct pci_dev *dev)
2208 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2209 if (pci_command & PCI_COMMAND_MASTER) {
2210 pci_command &= ~PCI_COMMAND_MASTER;
2211 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2214 pcibios_disable_device(dev);
2218 * pci_disable_enabled_device - Disable device without updating enable_cnt
2219 * @dev: PCI device to disable
2221 * NOTE: This function is a backend of PCI power management routines and is
2222 * not supposed to be called drivers.
2224 void pci_disable_enabled_device(struct pci_dev *dev)
2226 if (pci_is_enabled(dev))
2227 do_pci_disable_device(dev);
2231 * pci_disable_device - Disable PCI device after use
2232 * @dev: PCI device to be disabled
2234 * Signal to the system that the PCI device is not in use by the system
2235 * anymore. This only involves disabling PCI bus-mastering, if active.
2237 * Note we don't actually disable the device until all callers of
2238 * pci_enable_device() have called pci_disable_device().
2240 void pci_disable_device(struct pci_dev *dev)
2242 struct pci_devres *dr;
2244 dr = find_pci_dr(dev);
2248 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2249 "disabling already-disabled device");
2251 if (atomic_dec_return(&dev->enable_cnt) != 0)
2254 do_pci_disable_device(dev);
2256 dev->is_busmaster = 0;
2258 EXPORT_SYMBOL(pci_disable_device);
2261 * pcibios_set_pcie_reset_state - set reset state for device dev
2262 * @dev: the PCIe device reset
2263 * @state: Reset state to enter into
2265 * Set the PCIe reset state for the device. This is the default
2266 * implementation. Architecture implementations can override this.
2268 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2269 enum pcie_reset_state state)
2275 * pci_set_pcie_reset_state - set reset state for device dev
2276 * @dev: the PCIe device reset
2277 * @state: Reset state to enter into
2279 * Sets the PCI reset state for the device.
2281 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2283 return pcibios_set_pcie_reset_state(dev, state);
2285 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2287 #ifdef CONFIG_PCIEAER
2288 void pcie_clear_device_status(struct pci_dev *dev)
2292 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2293 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2298 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2299 * @dev: PCIe root port or event collector.
2301 void pcie_clear_root_pme_status(struct pci_dev *dev)
2303 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2307 * pci_check_pme_status - Check if given device has generated PME.
2308 * @dev: Device to check.
2310 * Check the PME status of the device and if set, clear it and clear PME enable
2311 * (if set). Return 'true' if PME status and PME enable were both set or
2312 * 'false' otherwise.
2314 bool pci_check_pme_status(struct pci_dev *dev)
2323 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2324 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2325 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2328 /* Clear PME status. */
2329 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2330 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2331 /* Disable PME to avoid interrupt flood. */
2332 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2336 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2342 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2343 * @dev: Device to handle.
2344 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2346 * Check if @dev has generated PME and queue a resume request for it in that
2349 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2351 if (pme_poll_reset && dev->pme_poll)
2352 dev->pme_poll = false;
2354 if (pci_check_pme_status(dev)) {
2355 pci_wakeup_event(dev);
2356 pm_request_resume(&dev->dev);
2362 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2363 * @bus: Top bus of the subtree to walk.
2365 void pci_pme_wakeup_bus(struct pci_bus *bus)
2368 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2373 * pci_pme_capable - check the capability of PCI device to generate PME#
2374 * @dev: PCI device to handle.
2375 * @state: PCI state from which device will issue PME#.
2377 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2382 return !!(dev->pme_support & (1 << state));
2384 EXPORT_SYMBOL(pci_pme_capable);
2386 static void pci_pme_list_scan(struct work_struct *work)
2388 struct pci_pme_device *pme_dev, *n;
2390 mutex_lock(&pci_pme_list_mutex);
2391 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2392 if (pme_dev->dev->pme_poll) {
2393 struct pci_dev *bridge;
2395 bridge = pme_dev->dev->bus->self;
2397 * If bridge is in low power state, the
2398 * configuration space of subordinate devices
2399 * may be not accessible
2401 if (bridge && bridge->current_state != PCI_D0)
2404 * If the device is in D3cold it should not be
2407 if (pme_dev->dev->current_state == PCI_D3cold)
2410 pci_pme_wakeup(pme_dev->dev, NULL);
2412 list_del(&pme_dev->list);
2416 if (!list_empty(&pci_pme_list))
2417 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2418 msecs_to_jiffies(PME_TIMEOUT));
2419 mutex_unlock(&pci_pme_list_mutex);
2422 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2426 if (!dev->pme_support)
2429 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2430 /* Clear PME_Status by writing 1 to it and enable PME# */
2431 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2433 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2435 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2439 * pci_pme_restore - Restore PME configuration after config space restore.
2440 * @dev: PCI device to update.
2442 void pci_pme_restore(struct pci_dev *dev)
2446 if (!dev->pme_support)
2449 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2450 if (dev->wakeup_prepared) {
2451 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2452 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2454 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2455 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2457 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2461 * pci_pme_active - enable or disable PCI device's PME# function
2462 * @dev: PCI device to handle.
2463 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2465 * The caller must verify that the device is capable of generating PME# before
2466 * calling this function with @enable equal to 'true'.
2468 void pci_pme_active(struct pci_dev *dev, bool enable)
2470 __pci_pme_active(dev, enable);
2473 * PCI (as opposed to PCIe) PME requires that the device have
2474 * its PME# line hooked up correctly. Not all hardware vendors
2475 * do this, so the PME never gets delivered and the device
2476 * remains asleep. The easiest way around this is to
2477 * periodically walk the list of suspended devices and check
2478 * whether any have their PME flag set. The assumption is that
2479 * we'll wake up often enough anyway that this won't be a huge
2480 * hit, and the power savings from the devices will still be a
2483 * Although PCIe uses in-band PME message instead of PME# line
2484 * to report PME, PME does not work for some PCIe devices in
2485 * reality. For example, there are devices that set their PME
2486 * status bits, but don't really bother to send a PME message;
2487 * there are PCI Express Root Ports that don't bother to
2488 * trigger interrupts when they receive PME messages from the
2489 * devices below. So PME poll is used for PCIe devices too.
2492 if (dev->pme_poll) {
2493 struct pci_pme_device *pme_dev;
2495 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2498 pci_warn(dev, "can't enable PME#\n");
2502 mutex_lock(&pci_pme_list_mutex);
2503 list_add(&pme_dev->list, &pci_pme_list);
2504 if (list_is_singular(&pci_pme_list))
2505 queue_delayed_work(system_freezable_wq,
2507 msecs_to_jiffies(PME_TIMEOUT));
2508 mutex_unlock(&pci_pme_list_mutex);
2510 mutex_lock(&pci_pme_list_mutex);
2511 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2512 if (pme_dev->dev == dev) {
2513 list_del(&pme_dev->list);
2518 mutex_unlock(&pci_pme_list_mutex);
2522 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2524 EXPORT_SYMBOL(pci_pme_active);
2527 * __pci_enable_wake - enable PCI device as wakeup event source
2528 * @dev: PCI device affected
2529 * @state: PCI state from which device will issue wakeup events
2530 * @enable: True to enable event generation; false to disable
2532 * This enables the device as a wakeup event source, or disables it.
2533 * When such events involves platform-specific hooks, those hooks are
2534 * called automatically by this routine.
2536 * Devices with legacy power management (no standard PCI PM capabilities)
2537 * always require such platform hooks.
2540 * 0 is returned on success
2541 * -EINVAL is returned if device is not supposed to wake up the system
2542 * Error code depending on the platform is returned if both the platform and
2543 * the native mechanism fail to enable the generation of wake-up events
2545 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2550 * Bridges that are not power-manageable directly only signal
2551 * wakeup on behalf of subordinate devices which is set up
2552 * elsewhere, so skip them. However, bridges that are
2553 * power-manageable may signal wakeup for themselves (for example,
2554 * on a hotplug event) and they need to be covered here.
2556 if (!pci_power_manageable(dev))
2559 /* Don't do the same thing twice in a row for one device. */
2560 if (!!enable == !!dev->wakeup_prepared)
2564 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2565 * Anderson we should be doing PME# wake enable followed by ACPI wake
2566 * enable. To disable wake-up we call the platform first, for symmetry.
2573 * Enable PME signaling if the device can signal PME from
2574 * D3cold regardless of whether or not it can signal PME from
2575 * the current target state, because that will allow it to
2576 * signal PME when the hierarchy above it goes into D3cold and
2577 * the device itself ends up in D3cold as a result of that.
2579 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2580 pci_pme_active(dev, true);
2583 error = platform_pci_set_wakeup(dev, true);
2587 dev->wakeup_prepared = true;
2589 platform_pci_set_wakeup(dev, false);
2590 pci_pme_active(dev, false);
2591 dev->wakeup_prepared = false;
2598 * pci_enable_wake - change wakeup settings for a PCI device
2599 * @pci_dev: Target device
2600 * @state: PCI state from which device will issue wakeup events
2601 * @enable: Whether or not to enable event generation
2603 * If @enable is set, check device_may_wakeup() for the device before calling
2604 * __pci_enable_wake() for it.
2606 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2608 if (enable && !device_may_wakeup(&pci_dev->dev))
2611 return __pci_enable_wake(pci_dev, state, enable);
2613 EXPORT_SYMBOL(pci_enable_wake);
2616 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2617 * @dev: PCI device to prepare
2618 * @enable: True to enable wake-up event generation; false to disable
2620 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2621 * and this function allows them to set that up cleanly - pci_enable_wake()
2622 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2623 * ordering constraints.
2625 * This function only returns error code if the device is not allowed to wake
2626 * up the system from sleep or it is not capable of generating PME# from both
2627 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2629 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2631 return pci_pme_capable(dev, PCI_D3cold) ?
2632 pci_enable_wake(dev, PCI_D3cold, enable) :
2633 pci_enable_wake(dev, PCI_D3hot, enable);
2635 EXPORT_SYMBOL(pci_wake_from_d3);
2638 * pci_target_state - find an appropriate low power state for a given PCI dev
2640 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2642 * Use underlying platform code to find a supported low power state for @dev.
2643 * If the platform can't manage @dev, return the deepest state from which it
2644 * can generate wake events, based on any available PME info.
2646 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2648 if (platform_pci_power_manageable(dev)) {
2650 * Call the platform to find the target state for the device.
2652 pci_power_t state = platform_pci_choose_state(dev);
2655 case PCI_POWER_ERROR:
2661 if (pci_no_d1d2(dev))
2669 * If the device is in D3cold even though it's not power-manageable by
2670 * the platform, it may have been powered down by non-standard means.
2671 * Best to let it slumber.
2673 if (dev->current_state == PCI_D3cold)
2675 else if (!dev->pm_cap)
2678 if (wakeup && dev->pme_support) {
2679 pci_power_t state = PCI_D3hot;
2682 * Find the deepest state from which the device can generate
2685 while (state && !(dev->pme_support & (1 << state)))
2690 else if (dev->pme_support & 1)
2698 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2699 * into a sleep state
2700 * @dev: Device to handle.
2702 * Choose the power state appropriate for the device depending on whether
2703 * it can wake up the system and/or is power manageable by the platform
2704 * (PCI_D3hot is the default) and put the device into that state.
2706 int pci_prepare_to_sleep(struct pci_dev *dev)
2708 bool wakeup = device_may_wakeup(&dev->dev);
2709 pci_power_t target_state = pci_target_state(dev, wakeup);
2712 if (target_state == PCI_POWER_ERROR)
2715 pci_enable_wake(dev, target_state, wakeup);
2717 error = pci_set_power_state(dev, target_state);
2720 pci_enable_wake(dev, target_state, false);
2724 EXPORT_SYMBOL(pci_prepare_to_sleep);
2727 * pci_back_from_sleep - turn PCI device on during system-wide transition
2728 * into working state
2729 * @dev: Device to handle.
2731 * Disable device's system wake-up capability and put it into D0.
2733 int pci_back_from_sleep(struct pci_dev *dev)
2735 int ret = pci_set_power_state(dev, PCI_D0);
2740 pci_enable_wake(dev, PCI_D0, false);
2743 EXPORT_SYMBOL(pci_back_from_sleep);
2746 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2747 * @dev: PCI device being suspended.
2749 * Prepare @dev to generate wake-up events at run time and put it into a low
2752 int pci_finish_runtime_suspend(struct pci_dev *dev)
2754 pci_power_t target_state;
2757 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2758 if (target_state == PCI_POWER_ERROR)
2761 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2763 error = pci_set_power_state(dev, target_state);
2766 pci_enable_wake(dev, target_state, false);
2772 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2773 * @dev: Device to check.
2775 * Return true if the device itself is capable of generating wake-up events
2776 * (through the platform or using the native PCIe PME) or if the device supports
2777 * PME and one of its upstream bridges can generate wake-up events.
2779 bool pci_dev_run_wake(struct pci_dev *dev)
2781 struct pci_bus *bus = dev->bus;
2783 if (!dev->pme_support)
2786 /* PME-capable in principle, but not from the target power state */
2787 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2790 if (device_can_wakeup(&dev->dev))
2793 while (bus->parent) {
2794 struct pci_dev *bridge = bus->self;
2796 if (device_can_wakeup(&bridge->dev))
2802 /* We have reached the root bus. */
2804 return device_can_wakeup(bus->bridge);
2808 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2811 * pci_dev_need_resume - Check if it is necessary to resume the device.
2812 * @pci_dev: Device to check.
2814 * Return 'true' if the device is not runtime-suspended or it has to be
2815 * reconfigured due to wakeup settings difference between system and runtime
2816 * suspend, or the current power state of it is not suitable for the upcoming
2817 * (system-wide) transition.
2819 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2821 struct device *dev = &pci_dev->dev;
2822 pci_power_t target_state;
2824 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2827 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2830 * If the earlier platform check has not triggered, D3cold is just power
2831 * removal on top of D3hot, so no need to resume the device in that
2834 return target_state != pci_dev->current_state &&
2835 target_state != PCI_D3cold &&
2836 pci_dev->current_state != PCI_D3hot;
2840 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2841 * @pci_dev: Device to check.
2843 * If the device is suspended and it is not configured for system wakeup,
2844 * disable PME for it to prevent it from waking up the system unnecessarily.
2846 * Note that if the device's power state is D3cold and the platform check in
2847 * pci_dev_need_resume() has not triggered, the device's configuration need not
2850 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2852 struct device *dev = &pci_dev->dev;
2854 spin_lock_irq(&dev->power.lock);
2856 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2857 pci_dev->current_state < PCI_D3cold)
2858 __pci_pme_active(pci_dev, false);
2860 spin_unlock_irq(&dev->power.lock);
2864 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2865 * @pci_dev: Device to handle.
2867 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2868 * it might have been disabled during the prepare phase of system suspend if
2869 * the device was not configured for system wakeup.
2871 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2873 struct device *dev = &pci_dev->dev;
2875 if (!pci_dev_run_wake(pci_dev))
2878 spin_lock_irq(&dev->power.lock);
2880 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2881 __pci_pme_active(pci_dev, true);
2883 spin_unlock_irq(&dev->power.lock);
2887 * pci_choose_state - Choose the power state of a PCI device.
2888 * @dev: Target PCI device.
2889 * @state: Target state for the whole system.
2891 * Returns PCI power state suitable for @dev and @state.
2893 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2895 if (state.event == PM_EVENT_ON)
2898 return pci_target_state(dev, false);
2900 EXPORT_SYMBOL(pci_choose_state);
2902 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2904 struct device *dev = &pdev->dev;
2905 struct device *parent = dev->parent;
2908 pm_runtime_get_sync(parent);
2909 pm_runtime_get_noresume(dev);
2911 * pdev->current_state is set to PCI_D3cold during suspending,
2912 * so wait until suspending completes
2914 pm_runtime_barrier(dev);
2916 * Only need to resume devices in D3cold, because config
2917 * registers are still accessible for devices suspended but
2920 if (pdev->current_state == PCI_D3cold)
2921 pm_runtime_resume(dev);
2924 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2926 struct device *dev = &pdev->dev;
2927 struct device *parent = dev->parent;
2929 pm_runtime_put(dev);
2931 pm_runtime_put_sync(parent);
2934 static const struct dmi_system_id bridge_d3_blacklist[] = {
2938 * Gigabyte X299 root port is not marked as hotplug capable
2939 * which allows Linux to power manage it. However, this
2940 * confuses the BIOS SMI handler so don't power manage root
2941 * ports on that system.
2943 .ident = "X299 DESIGNARE EX-CF",
2945 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2946 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2951 * Downstream device is not accessible after putting a root port
2952 * into D3cold and back into D0 on Elo i2.
2956 DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2957 DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2958 DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2966 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2967 * @bridge: Bridge to check
2969 * This function checks if it is possible to move the bridge to D3.
2970 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2972 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2974 if (!pci_is_pcie(bridge))
2977 switch (pci_pcie_type(bridge)) {
2978 case PCI_EXP_TYPE_ROOT_PORT:
2979 case PCI_EXP_TYPE_UPSTREAM:
2980 case PCI_EXP_TYPE_DOWNSTREAM:
2981 if (pci_bridge_d3_disable)
2985 * Hotplug ports handled by firmware in System Management Mode
2986 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2988 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2991 if (pci_bridge_d3_force)
2994 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2995 if (bridge->is_thunderbolt)
2998 /* Platform might know better if the bridge supports D3 */
2999 if (platform_pci_bridge_d3(bridge))
3003 * Hotplug ports handled natively by the OS were not validated
3004 * by vendors for runtime D3 at least until 2018 because there
3005 * was no OS support.
3007 if (bridge->is_hotplug_bridge)
3010 if (dmi_check_system(bridge_d3_blacklist))
3014 * It should be safe to put PCIe ports from 2015 or newer
3017 if (dmi_get_bios_year() >= 2015)
3025 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3027 bool *d3cold_ok = data;
3029 if (/* The device needs to be allowed to go D3cold ... */
3030 dev->no_d3cold || !dev->d3cold_allowed ||
3032 /* ... and if it is wakeup capable to do so from D3cold. */
3033 (device_may_wakeup(&dev->dev) &&
3034 !pci_pme_capable(dev, PCI_D3cold)) ||
3036 /* If it is a bridge it must be allowed to go to D3. */
3037 !pci_power_manageable(dev))
3045 * pci_bridge_d3_update - Update bridge D3 capabilities
3046 * @dev: PCI device which is changed
3048 * Update upstream bridge PM capabilities accordingly depending on if the
3049 * device PM configuration was changed or the device is being removed. The
3050 * change is also propagated upstream.
3052 void pci_bridge_d3_update(struct pci_dev *dev)
3054 bool remove = !device_is_registered(&dev->dev);
3055 struct pci_dev *bridge;
3056 bool d3cold_ok = true;
3058 bridge = pci_upstream_bridge(dev);
3059 if (!bridge || !pci_bridge_d3_possible(bridge))
3063 * If D3 is currently allowed for the bridge, removing one of its
3064 * children won't change that.
3066 if (remove && bridge->bridge_d3)
3070 * If D3 is currently allowed for the bridge and a child is added or
3071 * changed, disallowance of D3 can only be caused by that child, so
3072 * we only need to check that single device, not any of its siblings.
3074 * If D3 is currently not allowed for the bridge, checking the device
3075 * first may allow us to skip checking its siblings.
3078 pci_dev_check_d3cold(dev, &d3cold_ok);
3081 * If D3 is currently not allowed for the bridge, this may be caused
3082 * either by the device being changed/removed or any of its siblings,
3083 * so we need to go through all children to find out if one of them
3084 * continues to block D3.
3086 if (d3cold_ok && !bridge->bridge_d3)
3087 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3090 if (bridge->bridge_d3 != d3cold_ok) {
3091 bridge->bridge_d3 = d3cold_ok;
3092 /* Propagate change to upstream bridges */
3093 pci_bridge_d3_update(bridge);
3098 * pci_d3cold_enable - Enable D3cold for device
3099 * @dev: PCI device to handle
3101 * This function can be used in drivers to enable D3cold from the device
3102 * they handle. It also updates upstream PCI bridge PM capabilities
3105 void pci_d3cold_enable(struct pci_dev *dev)
3107 if (dev->no_d3cold) {
3108 dev->no_d3cold = false;
3109 pci_bridge_d3_update(dev);
3112 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3115 * pci_d3cold_disable - Disable D3cold for device
3116 * @dev: PCI device to handle
3118 * This function can be used in drivers to disable D3cold from the device
3119 * they handle. It also updates upstream PCI bridge PM capabilities
3122 void pci_d3cold_disable(struct pci_dev *dev)
3124 if (!dev->no_d3cold) {
3125 dev->no_d3cold = true;
3126 pci_bridge_d3_update(dev);
3129 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3132 * pci_pm_init - Initialize PM functions of given PCI device
3133 * @dev: PCI device to handle.
3135 void pci_pm_init(struct pci_dev *dev)
3141 pm_runtime_forbid(&dev->dev);
3142 pm_runtime_set_active(&dev->dev);
3143 pm_runtime_enable(&dev->dev);
3144 device_enable_async_suspend(&dev->dev);
3145 dev->wakeup_prepared = false;
3148 dev->pme_support = 0;
3150 /* find PCI PM capability in list */
3151 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3154 /* Check device's ability to generate PME# */
3155 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3157 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3158 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3159 pmc & PCI_PM_CAP_VER_MASK);
3164 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3165 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3166 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3167 dev->d3cold_allowed = true;
3169 dev->d1_support = false;
3170 dev->d2_support = false;
3171 if (!pci_no_d1d2(dev)) {
3172 if (pmc & PCI_PM_CAP_D1)
3173 dev->d1_support = true;
3174 if (pmc & PCI_PM_CAP_D2)
3175 dev->d2_support = true;
3177 if (dev->d1_support || dev->d2_support)
3178 pci_info(dev, "supports%s%s\n",
3179 dev->d1_support ? " D1" : "",
3180 dev->d2_support ? " D2" : "");
3183 pmc &= PCI_PM_CAP_PME_MASK;
3185 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3186 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3187 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3188 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3189 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3190 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3191 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3192 dev->pme_poll = true;
3194 * Make device's PM flags reflect the wake-up capability, but
3195 * let the user space enable it to wake up the system as needed.
3197 device_set_wakeup_capable(&dev->dev, true);
3198 /* Disable the PME# generation functionality */
3199 pci_pme_active(dev, false);
3202 pci_read_config_word(dev, PCI_STATUS, &status);
3203 if (status & PCI_STATUS_IMM_READY)
3207 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3209 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3213 case PCI_EA_P_VF_MEM:
3214 flags |= IORESOURCE_MEM;
3216 case PCI_EA_P_MEM_PREFETCH:
3217 case PCI_EA_P_VF_MEM_PREFETCH:
3218 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3221 flags |= IORESOURCE_IO;
3230 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3233 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3234 return &dev->resource[bei];
3235 #ifdef CONFIG_PCI_IOV
3236 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3237 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3238 return &dev->resource[PCI_IOV_RESOURCES +
3239 bei - PCI_EA_BEI_VF_BAR0];
3241 else if (bei == PCI_EA_BEI_ROM)
3242 return &dev->resource[PCI_ROM_RESOURCE];
3247 /* Read an Enhanced Allocation (EA) entry */
3248 static int pci_ea_read(struct pci_dev *dev, int offset)
3250 struct resource *res;
3251 int ent_size, ent_offset = offset;
3252 resource_size_t start, end;
3253 unsigned long flags;
3254 u32 dw0, bei, base, max_offset;
3256 bool support_64 = (sizeof(resource_size_t) >= 8);
3258 pci_read_config_dword(dev, ent_offset, &dw0);
3261 /* Entry size field indicates DWORDs after 1st */
3262 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3264 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3267 bei = (dw0 & PCI_EA_BEI) >> 4;
3268 prop = (dw0 & PCI_EA_PP) >> 8;
3271 * If the Property is in the reserved range, try the Secondary
3274 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3275 prop = (dw0 & PCI_EA_SP) >> 16;
3276 if (prop > PCI_EA_P_BRIDGE_IO)
3279 res = pci_ea_get_resource(dev, bei, prop);
3281 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3285 flags = pci_ea_flags(dev, prop);
3287 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3292 pci_read_config_dword(dev, ent_offset, &base);
3293 start = (base & PCI_EA_FIELD_MASK);
3296 /* Read MaxOffset */
3297 pci_read_config_dword(dev, ent_offset, &max_offset);
3300 /* Read Base MSBs (if 64-bit entry) */
3301 if (base & PCI_EA_IS_64) {
3304 pci_read_config_dword(dev, ent_offset, &base_upper);
3307 flags |= IORESOURCE_MEM_64;
3309 /* entry starts above 32-bit boundary, can't use */
3310 if (!support_64 && base_upper)
3314 start |= ((u64)base_upper << 32);
3317 end = start + (max_offset | 0x03);
3319 /* Read MaxOffset MSBs (if 64-bit entry) */
3320 if (max_offset & PCI_EA_IS_64) {
3321 u32 max_offset_upper;
3323 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3326 flags |= IORESOURCE_MEM_64;
3328 /* entry too big, can't use */
3329 if (!support_64 && max_offset_upper)
3333 end += ((u64)max_offset_upper << 32);
3337 pci_err(dev, "EA Entry crosses address boundary\n");
3341 if (ent_size != ent_offset - offset) {
3342 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3343 ent_size, ent_offset - offset);
3347 res->name = pci_name(dev);
3352 if (bei <= PCI_EA_BEI_BAR5)
3353 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3355 else if (bei == PCI_EA_BEI_ROM)
3356 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3358 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3359 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3360 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3362 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3366 return offset + ent_size;
3369 /* Enhanced Allocation Initialization */
3370 void pci_ea_init(struct pci_dev *dev)
3377 /* find PCI EA capability in list */
3378 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3382 /* determine the number of entries */
3383 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3385 num_ent &= PCI_EA_NUM_ENT_MASK;
3387 offset = ea + PCI_EA_FIRST_ENT;
3389 /* Skip DWORD 2 for type 1 functions */
3390 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3393 /* parse each EA entry */
3394 for (i = 0; i < num_ent; ++i)
3395 offset = pci_ea_read(dev, offset);
3398 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3399 struct pci_cap_saved_state *new_cap)
3401 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3405 * _pci_add_cap_save_buffer - allocate buffer for saving given
3406 * capability registers
3407 * @dev: the PCI device
3408 * @cap: the capability to allocate the buffer for
3409 * @extended: Standard or Extended capability ID
3410 * @size: requested size of the buffer
3412 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3413 bool extended, unsigned int size)
3416 struct pci_cap_saved_state *save_state;
3419 pos = pci_find_ext_capability(dev, cap);
3421 pos = pci_find_capability(dev, cap);
3426 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3430 save_state->cap.cap_nr = cap;
3431 save_state->cap.cap_extended = extended;
3432 save_state->cap.size = size;
3433 pci_add_saved_cap(dev, save_state);
3438 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3440 return _pci_add_cap_save_buffer(dev, cap, false, size);
3443 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3445 return _pci_add_cap_save_buffer(dev, cap, true, size);
3449 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3450 * @dev: the PCI device
3452 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3456 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3457 PCI_EXP_SAVE_REGS * sizeof(u16));
3459 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3461 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3463 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3465 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3468 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3470 pci_allocate_vc_save_buffers(dev);
3473 void pci_free_cap_save_buffers(struct pci_dev *dev)
3475 struct pci_cap_saved_state *tmp;
3476 struct hlist_node *n;
3478 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3483 * pci_configure_ari - enable or disable ARI forwarding
3484 * @dev: the PCI device
3486 * If @dev and its upstream bridge both support ARI, enable ARI in the
3487 * bridge. Otherwise, disable ARI in the bridge.
3489 void pci_configure_ari(struct pci_dev *dev)
3492 struct pci_dev *bridge;
3494 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3497 bridge = dev->bus->self;
3501 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3502 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3505 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3506 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3507 PCI_EXP_DEVCTL2_ARI);
3508 bridge->ari_enabled = 1;
3510 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3511 PCI_EXP_DEVCTL2_ARI);
3512 bridge->ari_enabled = 0;
3516 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3521 pos = pdev->acs_cap;
3526 * Except for egress control, capabilities are either required
3527 * or only required if controllable. Features missing from the
3528 * capability field can therefore be assumed as hard-wired enabled.
3530 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3531 acs_flags &= (cap | PCI_ACS_EC);
3533 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3534 return (ctrl & acs_flags) == acs_flags;
3538 * pci_acs_enabled - test ACS against required flags for a given device
3539 * @pdev: device to test
3540 * @acs_flags: required PCI ACS flags
3542 * Return true if the device supports the provided flags. Automatically
3543 * filters out flags that are not implemented on multifunction devices.
3545 * Note that this interface checks the effective ACS capabilities of the
3546 * device rather than the actual capabilities. For instance, most single
3547 * function endpoints are not required to support ACS because they have no
3548 * opportunity for peer-to-peer access. We therefore return 'true'
3549 * regardless of whether the device exposes an ACS capability. This makes
3550 * it much easier for callers of this function to ignore the actual type
3551 * or topology of the device when testing ACS support.
3553 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3557 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3562 * Conventional PCI and PCI-X devices never support ACS, either
3563 * effectively or actually. The shared bus topology implies that
3564 * any device on the bus can receive or snoop DMA.
3566 if (!pci_is_pcie(pdev))
3569 switch (pci_pcie_type(pdev)) {
3571 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3572 * but since their primary interface is PCI/X, we conservatively
3573 * handle them as we would a non-PCIe device.
3575 case PCI_EXP_TYPE_PCIE_BRIDGE:
3577 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3578 * applicable... must never implement an ACS Extended Capability...".
3579 * This seems arbitrary, but we take a conservative interpretation
3580 * of this statement.
3582 case PCI_EXP_TYPE_PCI_BRIDGE:
3583 case PCI_EXP_TYPE_RC_EC:
3586 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3587 * implement ACS in order to indicate their peer-to-peer capabilities,
3588 * regardless of whether they are single- or multi-function devices.
3590 case PCI_EXP_TYPE_DOWNSTREAM:
3591 case PCI_EXP_TYPE_ROOT_PORT:
3592 return pci_acs_flags_enabled(pdev, acs_flags);
3594 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3595 * implemented by the remaining PCIe types to indicate peer-to-peer
3596 * capabilities, but only when they are part of a multifunction
3597 * device. The footnote for section 6.12 indicates the specific
3598 * PCIe types included here.
3600 case PCI_EXP_TYPE_ENDPOINT:
3601 case PCI_EXP_TYPE_UPSTREAM:
3602 case PCI_EXP_TYPE_LEG_END:
3603 case PCI_EXP_TYPE_RC_END:
3604 if (!pdev->multifunction)
3607 return pci_acs_flags_enabled(pdev, acs_flags);
3611 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3612 * to single function devices with the exception of downstream ports.
3618 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3619 * @start: starting downstream device
3620 * @end: ending upstream device or NULL to search to the root bus
3621 * @acs_flags: required flags
3623 * Walk up a device tree from start to end testing PCI ACS support. If
3624 * any step along the way does not support the required flags, return false.
3626 bool pci_acs_path_enabled(struct pci_dev *start,
3627 struct pci_dev *end, u16 acs_flags)
3629 struct pci_dev *pdev, *parent = start;
3634 if (!pci_acs_enabled(pdev, acs_flags))
3637 if (pci_is_root_bus(pdev->bus))
3638 return (end == NULL);
3640 parent = pdev->bus->self;
3641 } while (pdev != end);
3647 * pci_acs_init - Initialize ACS if hardware supports it
3648 * @dev: the PCI device
3650 void pci_acs_init(struct pci_dev *dev)
3652 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3655 * Attempt to enable ACS regardless of capability because some Root
3656 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3657 * the standard ACS capability but still support ACS via those
3660 pci_enable_acs(dev);
3664 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3668 * Helper to find the position of the ctrl register for a BAR.
3669 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3670 * Returns -ENOENT if no ctrl register for the BAR could be found.
3672 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3674 unsigned int pos, nbars, i;
3677 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3681 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3682 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3683 PCI_REBAR_CTRL_NBAR_SHIFT;
3685 for (i = 0; i < nbars; i++, pos += 8) {
3688 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3689 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3698 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3700 * @bar: BAR to query
3702 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3703 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3705 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3710 pos = pci_rebar_find_pos(pdev, bar);
3714 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3715 cap &= PCI_REBAR_CAP_SIZES;
3717 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3718 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3719 bar == 0 && cap == 0x7000)
3724 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3727 * pci_rebar_get_current_size - get the current size of a BAR
3729 * @bar: BAR to set size to
3731 * Read the size of a BAR from the resizable BAR config.
3732 * Returns size if found or negative error code.
3734 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3739 pos = pci_rebar_find_pos(pdev, bar);
3743 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3744 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3748 * pci_rebar_set_size - set a new size for a BAR
3750 * @bar: BAR to set size to
3751 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3753 * Set the new size of a BAR as defined in the spec.
3754 * Returns zero if resizing was successful, error code otherwise.
3756 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3761 pos = pci_rebar_find_pos(pdev, bar);
3765 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3766 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3767 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3768 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3773 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3774 * @dev: the PCI device
3775 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3776 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3777 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3778 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3780 * Return 0 if all upstream bridges support AtomicOp routing, egress
3781 * blocking is disabled on all upstream ports, and the root port supports
3782 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3783 * AtomicOp completion), or negative otherwise.
3785 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3787 struct pci_bus *bus = dev->bus;
3788 struct pci_dev *bridge;
3792 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3793 * in Device Control 2 is reserved in VFs and the PF value applies
3794 * to all associated VFs.
3799 if (!pci_is_pcie(dev))
3803 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3804 * AtomicOp requesters. For now, we only support endpoints as
3805 * requesters and root ports as completers. No endpoints as
3806 * completers, and no peer-to-peer.
3809 switch (pci_pcie_type(dev)) {
3810 case PCI_EXP_TYPE_ENDPOINT:
3811 case PCI_EXP_TYPE_LEG_END:
3812 case PCI_EXP_TYPE_RC_END:
3818 while (bus->parent) {
3821 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3823 switch (pci_pcie_type(bridge)) {
3824 /* Ensure switch ports support AtomicOp routing */
3825 case PCI_EXP_TYPE_UPSTREAM:
3826 case PCI_EXP_TYPE_DOWNSTREAM:
3827 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3831 /* Ensure root port supports all the sizes we care about */
3832 case PCI_EXP_TYPE_ROOT_PORT:
3833 if ((cap & cap_mask) != cap_mask)
3838 /* Ensure upstream ports don't block AtomicOps on egress */
3839 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3840 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3842 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3849 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3850 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3853 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3856 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3857 * @dev: the PCI device
3858 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3860 * Perform INTx swizzling for a device behind one level of bridge. This is
3861 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3862 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3863 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3864 * the PCI Express Base Specification, Revision 2.1)
3866 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3870 if (pci_ari_enabled(dev->bus))
3873 slot = PCI_SLOT(dev->devfn);
3875 return (((pin - 1) + slot) % 4) + 1;
3878 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3886 while (!pci_is_root_bus(dev->bus)) {
3887 pin = pci_swizzle_interrupt_pin(dev, pin);
3888 dev = dev->bus->self;
3895 * pci_common_swizzle - swizzle INTx all the way to root bridge
3896 * @dev: the PCI device
3897 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3899 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3900 * bridges all the way up to a PCI root bus.
3902 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3906 while (!pci_is_root_bus(dev->bus)) {
3907 pin = pci_swizzle_interrupt_pin(dev, pin);
3908 dev = dev->bus->self;
3911 return PCI_SLOT(dev->devfn);
3913 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3916 * pci_release_region - Release a PCI bar
3917 * @pdev: PCI device whose resources were previously reserved by
3918 * pci_request_region()
3919 * @bar: BAR to release
3921 * Releases the PCI I/O and memory resources previously reserved by a
3922 * successful call to pci_request_region(). Call this function only
3923 * after all use of the PCI regions has ceased.
3925 void pci_release_region(struct pci_dev *pdev, int bar)
3927 struct pci_devres *dr;
3929 if (pci_resource_len(pdev, bar) == 0)
3931 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3932 release_region(pci_resource_start(pdev, bar),
3933 pci_resource_len(pdev, bar));
3934 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3935 release_mem_region(pci_resource_start(pdev, bar),
3936 pci_resource_len(pdev, bar));
3938 dr = find_pci_dr(pdev);
3940 dr->region_mask &= ~(1 << bar);
3942 EXPORT_SYMBOL(pci_release_region);
3945 * __pci_request_region - Reserved PCI I/O and memory resource
3946 * @pdev: PCI device whose resources are to be reserved
3947 * @bar: BAR to be reserved
3948 * @res_name: Name to be associated with resource.
3949 * @exclusive: whether the region access is exclusive or not
3951 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3952 * being reserved by owner @res_name. Do not access any
3953 * address inside the PCI regions unless this call returns
3956 * If @exclusive is set, then the region is marked so that userspace
3957 * is explicitly not allowed to map the resource via /dev/mem or
3958 * sysfs MMIO access.
3960 * Returns 0 on success, or %EBUSY on error. A warning
3961 * message is also printed on failure.
3963 static int __pci_request_region(struct pci_dev *pdev, int bar,
3964 const char *res_name, int exclusive)
3966 struct pci_devres *dr;
3968 if (pci_resource_len(pdev, bar) == 0)
3971 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3972 if (!request_region(pci_resource_start(pdev, bar),
3973 pci_resource_len(pdev, bar), res_name))
3975 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3976 if (!__request_mem_region(pci_resource_start(pdev, bar),
3977 pci_resource_len(pdev, bar), res_name,
3982 dr = find_pci_dr(pdev);
3984 dr->region_mask |= 1 << bar;
3989 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3990 &pdev->resource[bar]);
3995 * pci_request_region - Reserve PCI I/O and memory resource
3996 * @pdev: PCI device whose resources are to be reserved
3997 * @bar: BAR to be reserved
3998 * @res_name: Name to be associated with resource
4000 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4001 * being reserved by owner @res_name. Do not access any
4002 * address inside the PCI regions unless this call returns
4005 * Returns 0 on success, or %EBUSY on error. A warning
4006 * message is also printed on failure.
4008 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4010 return __pci_request_region(pdev, bar, res_name, 0);
4012 EXPORT_SYMBOL(pci_request_region);
4015 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4016 * @pdev: PCI device whose resources were previously reserved
4017 * @bars: Bitmask of BARs to be released
4019 * Release selected PCI I/O and memory resources previously reserved.
4020 * Call this function only after all use of the PCI regions has ceased.
4022 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4026 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4027 if (bars & (1 << i))
4028 pci_release_region(pdev, i);
4030 EXPORT_SYMBOL(pci_release_selected_regions);
4032 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4033 const char *res_name, int excl)
4037 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4038 if (bars & (1 << i))
4039 if (__pci_request_region(pdev, i, res_name, excl))
4045 if (bars & (1 << i))
4046 pci_release_region(pdev, i);
4053 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4054 * @pdev: PCI device whose resources are to be reserved
4055 * @bars: Bitmask of BARs to be requested
4056 * @res_name: Name to be associated with resource
4058 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4059 const char *res_name)
4061 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4063 EXPORT_SYMBOL(pci_request_selected_regions);
4065 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4066 const char *res_name)
4068 return __pci_request_selected_regions(pdev, bars, res_name,
4069 IORESOURCE_EXCLUSIVE);
4071 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4074 * pci_release_regions - Release reserved PCI I/O and memory resources
4075 * @pdev: PCI device whose resources were previously reserved by
4076 * pci_request_regions()
4078 * Releases all PCI I/O and memory resources previously reserved by a
4079 * successful call to pci_request_regions(). Call this function only
4080 * after all use of the PCI regions has ceased.
4083 void pci_release_regions(struct pci_dev *pdev)
4085 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4087 EXPORT_SYMBOL(pci_release_regions);
4090 * pci_request_regions - Reserve PCI I/O and memory resources
4091 * @pdev: PCI device whose resources are to be reserved
4092 * @res_name: Name to be associated with resource.
4094 * Mark all PCI regions associated with PCI device @pdev as
4095 * being reserved by owner @res_name. Do not access any
4096 * address inside the PCI regions unless this call returns
4099 * Returns 0 on success, or %EBUSY on error. A warning
4100 * message is also printed on failure.
4102 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4104 return pci_request_selected_regions(pdev,
4105 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4107 EXPORT_SYMBOL(pci_request_regions);
4110 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4111 * @pdev: PCI device whose resources are to be reserved
4112 * @res_name: Name to be associated with resource.
4114 * Mark all PCI regions associated with PCI device @pdev as being reserved
4115 * by owner @res_name. Do not access any address inside the PCI regions
4116 * unless this call returns successfully.
4118 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4119 * and the sysfs MMIO access will not be allowed.
4121 * Returns 0 on success, or %EBUSY on error. A warning message is also
4122 * printed on failure.
4124 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4126 return pci_request_selected_regions_exclusive(pdev,
4127 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4129 EXPORT_SYMBOL(pci_request_regions_exclusive);
4132 * Record the PCI IO range (expressed as CPU physical address + size).
4133 * Return a negative value if an error has occurred, zero otherwise
4135 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4136 resource_size_t size)
4140 struct logic_pio_hwaddr *range;
4142 if (!size || addr + size < addr)
4145 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4149 range->fwnode = fwnode;
4151 range->hw_start = addr;
4152 range->flags = LOGIC_PIO_CPU_MMIO;
4154 ret = logic_pio_register_range(range);
4158 /* Ignore duplicates due to deferred probing */
4166 phys_addr_t pci_pio_to_address(unsigned long pio)
4168 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4171 if (pio >= MMIO_UPPER_LIMIT)
4174 address = logic_pio_to_hwaddr(pio);
4179 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4181 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4184 return logic_pio_trans_cpuaddr(address);
4186 if (address > IO_SPACE_LIMIT)
4187 return (unsigned long)-1;
4189 return (unsigned long) address;
4194 * pci_remap_iospace - Remap the memory mapped I/O space
4195 * @res: Resource describing the I/O space
4196 * @phys_addr: physical address of range to be mapped
4198 * Remap the memory mapped I/O space described by the @res and the CPU
4199 * physical address @phys_addr into virtual address space. Only
4200 * architectures that have memory mapped IO functions defined (and the
4201 * PCI_IOBASE value defined) should call this function.
4203 #ifndef pci_remap_iospace
4204 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4206 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4207 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4209 if (!(res->flags & IORESOURCE_IO))
4212 if (res->end > IO_SPACE_LIMIT)
4215 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4216 pgprot_device(PAGE_KERNEL));
4219 * This architecture does not have memory mapped I/O space,
4220 * so this function should never be called
4222 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4226 EXPORT_SYMBOL(pci_remap_iospace);
4230 * pci_unmap_iospace - Unmap the memory mapped I/O space
4231 * @res: resource to be unmapped
4233 * Unmap the CPU virtual address @res from virtual address space. Only
4234 * architectures that have memory mapped IO functions defined (and the
4235 * PCI_IOBASE value defined) should call this function.
4237 void pci_unmap_iospace(struct resource *res)
4239 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4240 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4242 vunmap_range(vaddr, vaddr + resource_size(res));
4245 EXPORT_SYMBOL(pci_unmap_iospace);
4247 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4249 struct resource **res = ptr;
4251 pci_unmap_iospace(*res);
4255 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4256 * @dev: Generic device to remap IO address for
4257 * @res: Resource describing the I/O space
4258 * @phys_addr: physical address of range to be mapped
4260 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4263 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4264 phys_addr_t phys_addr)
4266 const struct resource **ptr;
4269 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4273 error = pci_remap_iospace(res, phys_addr);
4278 devres_add(dev, ptr);
4283 EXPORT_SYMBOL(devm_pci_remap_iospace);
4286 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4287 * @dev: Generic device to remap IO address for
4288 * @offset: Resource address to map
4289 * @size: Size of map
4291 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4294 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4295 resource_size_t offset,
4296 resource_size_t size)
4298 void __iomem **ptr, *addr;
4300 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4304 addr = pci_remap_cfgspace(offset, size);
4307 devres_add(dev, ptr);
4313 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4316 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4317 * @dev: generic device to handle the resource for
4318 * @res: configuration space resource to be handled
4320 * Checks that a resource is a valid memory region, requests the memory
4321 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4322 * proper PCI configuration space memory attributes are guaranteed.
4324 * All operations are managed and will be undone on driver detach.
4326 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4327 * on failure. Usage example::
4329 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4330 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4332 * return PTR_ERR(base);
4334 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4335 struct resource *res)
4337 resource_size_t size;
4339 void __iomem *dest_ptr;
4343 if (!res || resource_type(res) != IORESOURCE_MEM) {
4344 dev_err(dev, "invalid resource\n");
4345 return IOMEM_ERR_PTR(-EINVAL);
4348 size = resource_size(res);
4351 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4354 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4356 return IOMEM_ERR_PTR(-ENOMEM);
4358 if (!devm_request_mem_region(dev, res->start, size, name)) {
4359 dev_err(dev, "can't request region for resource %pR\n", res);
4360 return IOMEM_ERR_PTR(-EBUSY);
4363 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4365 dev_err(dev, "ioremap failed for resource %pR\n", res);
4366 devm_release_mem_region(dev, res->start, size);
4367 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4372 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4374 static void __pci_set_master(struct pci_dev *dev, bool enable)
4378 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4380 cmd = old_cmd | PCI_COMMAND_MASTER;
4382 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4383 if (cmd != old_cmd) {
4384 pci_dbg(dev, "%s bus mastering\n",
4385 enable ? "enabling" : "disabling");
4386 pci_write_config_word(dev, PCI_COMMAND, cmd);
4388 dev->is_busmaster = enable;
4392 * pcibios_setup - process "pci=" kernel boot arguments
4393 * @str: string used to pass in "pci=" kernel boot arguments
4395 * Process kernel boot arguments. This is the default implementation.
4396 * Architecture specific implementations can override this as necessary.
4398 char * __weak __init pcibios_setup(char *str)
4404 * pcibios_set_master - enable PCI bus-mastering for device dev
4405 * @dev: the PCI device to enable
4407 * Enables PCI bus-mastering for the device. This is the default
4408 * implementation. Architecture specific implementations can override
4409 * this if necessary.
4411 void __weak pcibios_set_master(struct pci_dev *dev)
4415 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4416 if (pci_is_pcie(dev))
4419 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4421 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4422 else if (lat > pcibios_max_latency)
4423 lat = pcibios_max_latency;
4427 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4431 * pci_set_master - enables bus-mastering for device dev
4432 * @dev: the PCI device to enable
4434 * Enables bus-mastering on the device and calls pcibios_set_master()
4435 * to do the needed arch specific settings.
4437 void pci_set_master(struct pci_dev *dev)
4439 __pci_set_master(dev, true);
4440 pcibios_set_master(dev);
4442 EXPORT_SYMBOL(pci_set_master);
4445 * pci_clear_master - disables bus-mastering for device dev
4446 * @dev: the PCI device to disable
4448 void pci_clear_master(struct pci_dev *dev)
4450 __pci_set_master(dev, false);
4452 EXPORT_SYMBOL(pci_clear_master);
4455 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4456 * @dev: the PCI device for which MWI is to be enabled
4458 * Helper function for pci_set_mwi.
4459 * Originally copied from drivers/net/acenic.c.
4460 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4462 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4464 int pci_set_cacheline_size(struct pci_dev *dev)
4468 if (!pci_cache_line_size)
4471 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4472 equal to or multiple of the right value. */
4473 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4474 if (cacheline_size >= pci_cache_line_size &&
4475 (cacheline_size % pci_cache_line_size) == 0)
4478 /* Write the correct value. */
4479 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4481 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4482 if (cacheline_size == pci_cache_line_size)
4485 pci_dbg(dev, "cache line size of %d is not supported\n",
4486 pci_cache_line_size << 2);
4490 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4493 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4494 * @dev: the PCI device for which MWI is enabled
4496 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4498 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4500 int pci_set_mwi(struct pci_dev *dev)
4502 #ifdef PCI_DISABLE_MWI
4508 rc = pci_set_cacheline_size(dev);
4512 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4513 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4514 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4515 cmd |= PCI_COMMAND_INVALIDATE;
4516 pci_write_config_word(dev, PCI_COMMAND, cmd);
4521 EXPORT_SYMBOL(pci_set_mwi);
4524 * pcim_set_mwi - a device-managed pci_set_mwi()
4525 * @dev: the PCI device for which MWI is enabled
4527 * Managed pci_set_mwi().
4529 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4531 int pcim_set_mwi(struct pci_dev *dev)
4533 struct pci_devres *dr;
4535 dr = find_pci_dr(dev);
4540 return pci_set_mwi(dev);
4542 EXPORT_SYMBOL(pcim_set_mwi);
4545 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4546 * @dev: the PCI device for which MWI is enabled
4548 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4549 * Callers are not required to check the return value.
4551 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4553 int pci_try_set_mwi(struct pci_dev *dev)
4555 #ifdef PCI_DISABLE_MWI
4558 return pci_set_mwi(dev);
4561 EXPORT_SYMBOL(pci_try_set_mwi);
4564 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4565 * @dev: the PCI device to disable
4567 * Disables PCI Memory-Write-Invalidate transaction on the device
4569 void pci_clear_mwi(struct pci_dev *dev)
4571 #ifndef PCI_DISABLE_MWI
4574 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4575 if (cmd & PCI_COMMAND_INVALIDATE) {
4576 cmd &= ~PCI_COMMAND_INVALIDATE;
4577 pci_write_config_word(dev, PCI_COMMAND, cmd);
4581 EXPORT_SYMBOL(pci_clear_mwi);
4584 * pci_disable_parity - disable parity checking for device
4585 * @dev: the PCI device to operate on
4587 * Disable parity checking for device @dev
4589 void pci_disable_parity(struct pci_dev *dev)
4593 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4594 if (cmd & PCI_COMMAND_PARITY) {
4595 cmd &= ~PCI_COMMAND_PARITY;
4596 pci_write_config_word(dev, PCI_COMMAND, cmd);
4601 * pci_intx - enables/disables PCI INTx for device dev
4602 * @pdev: the PCI device to operate on
4603 * @enable: boolean: whether to enable or disable PCI INTx
4605 * Enables/disables PCI INTx for device @pdev
4607 void pci_intx(struct pci_dev *pdev, int enable)
4609 u16 pci_command, new;
4611 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4614 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4616 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4618 if (new != pci_command) {
4619 struct pci_devres *dr;
4621 pci_write_config_word(pdev, PCI_COMMAND, new);
4623 dr = find_pci_dr(pdev);
4624 if (dr && !dr->restore_intx) {
4625 dr->restore_intx = 1;
4626 dr->orig_intx = !enable;
4630 EXPORT_SYMBOL_GPL(pci_intx);
4632 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4634 struct pci_bus *bus = dev->bus;
4635 bool mask_updated = true;
4636 u32 cmd_status_dword;
4637 u16 origcmd, newcmd;
4638 unsigned long flags;
4642 * We do a single dword read to retrieve both command and status.
4643 * Document assumptions that make this possible.
4645 BUILD_BUG_ON(PCI_COMMAND % 4);
4646 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4648 raw_spin_lock_irqsave(&pci_lock, flags);
4650 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4652 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4655 * Check interrupt status register to see whether our device
4656 * triggered the interrupt (when masking) or the next IRQ is
4657 * already pending (when unmasking).
4659 if (mask != irq_pending) {
4660 mask_updated = false;
4664 origcmd = cmd_status_dword;
4665 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4667 newcmd |= PCI_COMMAND_INTX_DISABLE;
4668 if (newcmd != origcmd)
4669 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4672 raw_spin_unlock_irqrestore(&pci_lock, flags);
4674 return mask_updated;
4678 * pci_check_and_mask_intx - mask INTx on pending interrupt
4679 * @dev: the PCI device to operate on
4681 * Check if the device dev has its INTx line asserted, mask it and return
4682 * true in that case. False is returned if no interrupt was pending.
4684 bool pci_check_and_mask_intx(struct pci_dev *dev)
4686 return pci_check_and_set_intx_mask(dev, true);
4688 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4691 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4692 * @dev: the PCI device to operate on
4694 * Check if the device dev has its INTx line asserted, unmask it if not and
4695 * return true. False is returned and the mask remains active if there was
4696 * still an interrupt pending.
4698 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4700 return pci_check_and_set_intx_mask(dev, false);
4702 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4705 * pci_wait_for_pending_transaction - wait for pending transaction
4706 * @dev: the PCI device to operate on
4708 * Return 0 if transaction is pending 1 otherwise.
4710 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4712 if (!pci_is_pcie(dev))
4715 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4716 PCI_EXP_DEVSTA_TRPND);
4718 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4721 * pcie_flr - initiate a PCIe function level reset
4722 * @dev: device to reset
4724 * Initiate a function level reset unconditionally on @dev without
4725 * checking any flags and DEVCAP
4727 int pcie_flr(struct pci_dev *dev)
4729 if (!pci_wait_for_pending_transaction(dev))
4730 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4732 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4738 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4739 * 100ms, but may silently discard requests while the FLR is in
4740 * progress. Wait 100ms before trying to access the device.
4744 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4746 EXPORT_SYMBOL_GPL(pcie_flr);
4749 * pcie_reset_flr - initiate a PCIe function level reset
4750 * @dev: device to reset
4751 * @probe: if true, return 0 if device can be reset this way
4753 * Initiate a function level reset on @dev.
4755 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4757 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4760 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4766 return pcie_flr(dev);
4768 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4770 static int pci_af_flr(struct pci_dev *dev, bool probe)
4775 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4779 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4782 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4783 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4790 * Wait for Transaction Pending bit to clear. A word-aligned test
4791 * is used, so we use the control offset rather than status and shift
4792 * the test bit to match.
4794 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4795 PCI_AF_STATUS_TP << 8))
4796 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4798 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4804 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4805 * updated 27 July 2006; a device must complete an FLR within
4806 * 100ms, but may silently discard requests while the FLR is in
4807 * progress. Wait 100ms before trying to access the device.
4811 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4815 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4816 * @dev: Device to reset.
4817 * @probe: if true, return 0 if the device can be reset this way.
4819 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4820 * unset, it will be reinitialized internally when going from PCI_D3hot to
4821 * PCI_D0. If that's the case and the device is not in a low-power state
4822 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4824 * NOTE: This causes the caller to sleep for twice the device power transition
4825 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4826 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4827 * Moreover, only devices in D0 can be reset by this function.
4829 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4833 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4836 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4837 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4843 if (dev->current_state != PCI_D0)
4846 csr &= ~PCI_PM_CTRL_STATE_MASK;
4848 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4849 pci_dev_d3_sleep(dev);
4851 csr &= ~PCI_PM_CTRL_STATE_MASK;
4853 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4854 pci_dev_d3_sleep(dev);
4856 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4860 * pcie_wait_for_link_delay - Wait until link is active or inactive
4861 * @pdev: Bridge device
4862 * @active: waiting for active or inactive?
4863 * @delay: Delay to wait after link has become active (in ms)
4865 * Use this to wait till link becomes active or inactive.
4867 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4875 * Some controllers might not implement link active reporting. In this
4876 * case, we wait for 1000 ms + any delay requested by the caller.
4878 if (!pdev->link_active_reporting) {
4879 msleep(timeout + delay);
4884 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4885 * after which we should expect an link active if the reset was
4886 * successful. If so, software must wait a minimum 100ms before sending
4887 * configuration requests to devices downstream this port.
4889 * If the link fails to activate, either the device was physically
4890 * removed or the link is permanently failed.
4895 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4896 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4907 return ret == active;
4911 * pcie_wait_for_link - Wait until link is active or inactive
4912 * @pdev: Bridge device
4913 * @active: waiting for active or inactive?
4915 * Use this to wait till link becomes active or inactive.
4917 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4919 return pcie_wait_for_link_delay(pdev, active, 100);
4923 * Find maximum D3cold delay required by all the devices on the bus. The
4924 * spec says 100 ms, but firmware can lower it and we allow drivers to
4925 * increase it as well.
4927 * Called with @pci_bus_sem locked for reading.
4929 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4931 const struct pci_dev *pdev;
4932 int min_delay = 100;
4935 list_for_each_entry(pdev, &bus->devices, bus_list) {
4936 if (pdev->d3cold_delay < min_delay)
4937 min_delay = pdev->d3cold_delay;
4938 if (pdev->d3cold_delay > max_delay)
4939 max_delay = pdev->d3cold_delay;
4942 return max(min_delay, max_delay);
4946 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4948 * @reset_type: reset type in human-readable form
4950 * Handle necessary delays before access to the devices on the secondary
4951 * side of the bridge are permitted after D3cold to D0 transition
4952 * or Conventional Reset.
4954 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4955 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4958 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4959 * failed to become accessible.
4961 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4963 struct pci_dev *child;
4966 if (pci_dev_is_disconnected(dev))
4969 if (!pci_is_bridge(dev))
4972 down_read(&pci_bus_sem);
4975 * We only deal with devices that are present currently on the bus.
4976 * For any hot-added devices the access delay is handled in pciehp
4977 * board_added(). In case of ACPI hotplug the firmware is expected
4978 * to configure the devices before OS is notified.
4980 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4981 up_read(&pci_bus_sem);
4985 /* Take d3cold_delay requirements into account */
4986 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4988 up_read(&pci_bus_sem);
4992 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4994 up_read(&pci_bus_sem);
4997 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4998 * accessing the device after reset (that is 1000 ms + 100 ms).
5000 if (!pci_is_pcie(dev)) {
5001 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5002 msleep(1000 + delay);
5007 * For PCIe downstream and root ports that do not support speeds
5008 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5009 * speeds (gen3) we need to wait first for the data link layer to
5012 * However, 100 ms is the minimum and the PCIe spec says the
5013 * software must allow at least 1s before it can determine that the
5014 * device that did not respond is a broken device. There is
5015 * evidence that 100 ms is not always enough, for example certain
5016 * Titan Ridge xHCI controller does not always respond to
5017 * configuration requests if we only wait for 100 ms (see
5018 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5020 * Therefore we wait for 100 ms and check for the device presence
5021 * until the timeout expires.
5023 if (!pcie_downstream_port(dev))
5026 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5027 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5030 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5032 if (!pcie_wait_for_link_delay(dev, true, delay)) {
5033 /* Did not train, no need to wait any further */
5034 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5039 return pci_dev_wait(child, reset_type,
5040 PCIE_RESET_READY_POLL_MS - delay);
5043 void pci_reset_secondary_bus(struct pci_dev *dev)
5047 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5048 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5049 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5052 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5053 * this to 2ms to ensure that we meet the minimum requirement.
5057 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5058 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5061 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5063 pci_reset_secondary_bus(dev);
5067 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5068 * @dev: Bridge device
5070 * Use the bridge control register to assert reset on the secondary bus.
5071 * Devices on the secondary bus are left in power-on state.
5073 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5075 pcibios_reset_secondary_bus(dev);
5077 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5079 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5081 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5083 struct pci_dev *pdev;
5085 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5086 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5089 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5096 return pci_bridge_secondary_bus_reset(dev->bus->self);
5099 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5103 if (!hotplug || !try_module_get(hotplug->owner))
5106 if (hotplug->ops->reset_slot)
5107 rc = hotplug->ops->reset_slot(hotplug, probe);
5109 module_put(hotplug->owner);
5114 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5116 if (dev->multifunction || dev->subordinate || !dev->slot ||
5117 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5120 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5123 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5127 rc = pci_dev_reset_slot_function(dev, probe);
5130 return pci_parent_bus_reset(dev, probe);
5133 void pci_dev_lock(struct pci_dev *dev)
5135 /* block PM suspend, driver probe, etc. */
5136 device_lock(&dev->dev);
5137 pci_cfg_access_lock(dev);
5139 EXPORT_SYMBOL_GPL(pci_dev_lock);
5141 /* Return 1 on successful lock, 0 on contention */
5142 int pci_dev_trylock(struct pci_dev *dev)
5144 if (device_trylock(&dev->dev)) {
5145 if (pci_cfg_access_trylock(dev))
5147 device_unlock(&dev->dev);
5152 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5154 void pci_dev_unlock(struct pci_dev *dev)
5156 pci_cfg_access_unlock(dev);
5157 device_unlock(&dev->dev);
5159 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5161 static void pci_dev_save_and_disable(struct pci_dev *dev)
5163 const struct pci_error_handlers *err_handler =
5164 dev->driver ? dev->driver->err_handler : NULL;
5167 * dev->driver->err_handler->reset_prepare() is protected against
5168 * races with ->remove() by the device lock, which must be held by
5171 if (err_handler && err_handler->reset_prepare)
5172 err_handler->reset_prepare(dev);
5175 * Wake-up device prior to save. PM registers default to D0 after
5176 * reset and a simple register restore doesn't reliably return
5177 * to a non-D0 state anyway.
5179 pci_set_power_state(dev, PCI_D0);
5181 pci_save_state(dev);
5183 * Disable the device by clearing the Command register, except for
5184 * INTx-disable which is set. This not only disables MMIO and I/O port
5185 * BARs, but also prevents the device from being Bus Master, preventing
5186 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5187 * compliant devices, INTx-disable prevents legacy interrupts.
5189 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5192 static void pci_dev_restore(struct pci_dev *dev)
5194 const struct pci_error_handlers *err_handler =
5195 dev->driver ? dev->driver->err_handler : NULL;
5197 pci_restore_state(dev);
5200 * dev->driver->err_handler->reset_done() is protected against
5201 * races with ->remove() by the device lock, which must be held by
5204 if (err_handler && err_handler->reset_done)
5205 err_handler->reset_done(dev);
5208 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5209 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5211 { pci_dev_specific_reset, .name = "device_specific" },
5212 { pci_dev_acpi_reset, .name = "acpi" },
5213 { pcie_reset_flr, .name = "flr" },
5214 { pci_af_flr, .name = "af_flr" },
5215 { pci_pm_reset, .name = "pm" },
5216 { pci_reset_bus_function, .name = "bus" },
5219 static ssize_t reset_method_show(struct device *dev,
5220 struct device_attribute *attr, char *buf)
5222 struct pci_dev *pdev = to_pci_dev(dev);
5226 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5227 m = pdev->reset_methods[i];
5231 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5232 pci_reset_fn_methods[m].name);
5236 len += sysfs_emit_at(buf, len, "\n");
5241 static int reset_method_lookup(const char *name)
5245 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5246 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5250 return 0; /* not found */
5253 static ssize_t reset_method_store(struct device *dev,
5254 struct device_attribute *attr,
5255 const char *buf, size_t count)
5257 struct pci_dev *pdev = to_pci_dev(dev);
5258 char *options, *name;
5260 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5262 if (sysfs_streq(buf, "")) {
5263 pdev->reset_methods[0] = 0;
5264 pci_warn(pdev, "All device reset methods disabled by user");
5268 if (sysfs_streq(buf, "default")) {
5269 pci_init_reset_methods(pdev);
5273 options = kstrndup(buf, count, GFP_KERNEL);
5278 while ((name = strsep(&options, " ")) != NULL) {
5279 if (sysfs_streq(name, ""))
5284 m = reset_method_lookup(name);
5286 pci_err(pdev, "Invalid reset method '%s'", name);
5290 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5291 pci_err(pdev, "Unsupported reset method '%s'", name);
5295 if (n == PCI_NUM_RESET_METHODS - 1) {
5296 pci_err(pdev, "Too many reset methods\n");
5300 reset_methods[n++] = m;
5303 reset_methods[n] = 0;
5305 /* Warn if dev-specific supported but not highest priority */
5306 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5307 reset_methods[0] != 1)
5308 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5309 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5314 /* Leave previous methods unchanged */
5318 static DEVICE_ATTR_RW(reset_method);
5320 static struct attribute *pci_dev_reset_method_attrs[] = {
5321 &dev_attr_reset_method.attr,
5325 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5326 struct attribute *a, int n)
5328 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5330 if (!pci_reset_supported(pdev))
5336 const struct attribute_group pci_dev_reset_method_attr_group = {
5337 .attrs = pci_dev_reset_method_attrs,
5338 .is_visible = pci_dev_reset_method_attr_is_visible,
5342 * __pci_reset_function_locked - reset a PCI device function while holding
5343 * the @dev mutex lock.
5344 * @dev: PCI device to reset
5346 * Some devices allow an individual function to be reset without affecting
5347 * other functions in the same device. The PCI device must be responsive
5348 * to PCI config space in order to use this function.
5350 * The device function is presumed to be unused and the caller is holding
5351 * the device mutex lock when this function is called.
5353 * Resetting the device will make the contents of PCI configuration space
5354 * random, so any caller of this must be prepared to reinitialise the
5355 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5358 * Returns 0 if the device function was successfully reset or negative if the
5359 * device doesn't support resetting a single function.
5361 int __pci_reset_function_locked(struct pci_dev *dev)
5368 * A reset method returns -ENOTTY if it doesn't support this device and
5369 * we should try the next method.
5371 * If it returns 0 (success), we're finished. If it returns any other
5372 * error, we're also finished: this indicates that further reset
5373 * mechanisms might be broken on the device.
5375 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5376 m = dev->reset_methods[i];
5380 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5389 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5392 * pci_init_reset_methods - check whether device can be safely reset
5393 * and store supported reset mechanisms.
5394 * @dev: PCI device to check for reset mechanisms
5396 * Some devices allow an individual function to be reset without affecting
5397 * other functions in the same device. The PCI device must be in D0-D3hot
5400 * Stores reset mechanisms supported by device in reset_methods byte array
5401 * which is a member of struct pci_dev.
5403 void pci_init_reset_methods(struct pci_dev *dev)
5407 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5412 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5413 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5415 dev->reset_methods[i++] = m;
5416 else if (rc != -ENOTTY)
5420 dev->reset_methods[i] = 0;
5424 * pci_reset_function - quiesce and reset a PCI device function
5425 * @dev: PCI device to reset
5427 * Some devices allow an individual function to be reset without affecting
5428 * other functions in the same device. The PCI device must be responsive
5429 * to PCI config space in order to use this function.
5431 * This function does not just reset the PCI portion of a device, but
5432 * clears all the state associated with the device. This function differs
5433 * from __pci_reset_function_locked() in that it saves and restores device state
5434 * over the reset and takes the PCI device lock.
5436 * Returns 0 if the device function was successfully reset or negative if the
5437 * device doesn't support resetting a single function.
5439 int pci_reset_function(struct pci_dev *dev)
5443 if (!pci_reset_supported(dev))
5447 pci_dev_save_and_disable(dev);
5449 rc = __pci_reset_function_locked(dev);
5451 pci_dev_restore(dev);
5452 pci_dev_unlock(dev);
5456 EXPORT_SYMBOL_GPL(pci_reset_function);
5459 * pci_reset_function_locked - quiesce and reset a PCI device function
5460 * @dev: PCI device to reset
5462 * Some devices allow an individual function to be reset without affecting
5463 * other functions in the same device. The PCI device must be responsive
5464 * to PCI config space in order to use this function.
5466 * This function does not just reset the PCI portion of a device, but
5467 * clears all the state associated with the device. This function differs
5468 * from __pci_reset_function_locked() in that it saves and restores device state
5469 * over the reset. It also differs from pci_reset_function() in that it
5470 * requires the PCI device lock to be held.
5472 * Returns 0 if the device function was successfully reset or negative if the
5473 * device doesn't support resetting a single function.
5475 int pci_reset_function_locked(struct pci_dev *dev)
5479 if (!pci_reset_supported(dev))
5482 pci_dev_save_and_disable(dev);
5484 rc = __pci_reset_function_locked(dev);
5486 pci_dev_restore(dev);
5490 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5493 * pci_try_reset_function - quiesce and reset a PCI device function
5494 * @dev: PCI device to reset
5496 * Same as above, except return -EAGAIN if unable to lock device.
5498 int pci_try_reset_function(struct pci_dev *dev)
5502 if (!pci_reset_supported(dev))
5505 if (!pci_dev_trylock(dev))
5508 pci_dev_save_and_disable(dev);
5509 rc = __pci_reset_function_locked(dev);
5510 pci_dev_restore(dev);
5511 pci_dev_unlock(dev);
5515 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5517 /* Do any devices on or below this bus prevent a bus reset? */
5518 static bool pci_bus_resetable(struct pci_bus *bus)
5520 struct pci_dev *dev;
5523 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5526 list_for_each_entry(dev, &bus->devices, bus_list) {
5527 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5528 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5535 /* Lock devices from the top of the tree down */
5536 static void pci_bus_lock(struct pci_bus *bus)
5538 struct pci_dev *dev;
5540 list_for_each_entry(dev, &bus->devices, bus_list) {
5542 if (dev->subordinate)
5543 pci_bus_lock(dev->subordinate);
5547 /* Unlock devices from the bottom of the tree up */
5548 static void pci_bus_unlock(struct pci_bus *bus)
5550 struct pci_dev *dev;
5552 list_for_each_entry(dev, &bus->devices, bus_list) {
5553 if (dev->subordinate)
5554 pci_bus_unlock(dev->subordinate);
5555 pci_dev_unlock(dev);
5559 /* Return 1 on successful lock, 0 on contention */
5560 static int pci_bus_trylock(struct pci_bus *bus)
5562 struct pci_dev *dev;
5564 list_for_each_entry(dev, &bus->devices, bus_list) {
5565 if (!pci_dev_trylock(dev))
5567 if (dev->subordinate) {
5568 if (!pci_bus_trylock(dev->subordinate)) {
5569 pci_dev_unlock(dev);
5577 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5578 if (dev->subordinate)
5579 pci_bus_unlock(dev->subordinate);
5580 pci_dev_unlock(dev);
5585 /* Do any devices on or below this slot prevent a bus reset? */
5586 static bool pci_slot_resetable(struct pci_slot *slot)
5588 struct pci_dev *dev;
5590 if (slot->bus->self &&
5591 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5594 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5595 if (!dev->slot || dev->slot != slot)
5597 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5598 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5605 /* Lock devices from the top of the tree down */
5606 static void pci_slot_lock(struct pci_slot *slot)
5608 struct pci_dev *dev;
5610 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5611 if (!dev->slot || dev->slot != slot)
5614 if (dev->subordinate)
5615 pci_bus_lock(dev->subordinate);
5619 /* Unlock devices from the bottom of the tree up */
5620 static void pci_slot_unlock(struct pci_slot *slot)
5622 struct pci_dev *dev;
5624 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5625 if (!dev->slot || dev->slot != slot)
5627 if (dev->subordinate)
5628 pci_bus_unlock(dev->subordinate);
5629 pci_dev_unlock(dev);
5633 /* Return 1 on successful lock, 0 on contention */
5634 static int pci_slot_trylock(struct pci_slot *slot)
5636 struct pci_dev *dev;
5638 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5639 if (!dev->slot || dev->slot != slot)
5641 if (!pci_dev_trylock(dev))
5643 if (dev->subordinate) {
5644 if (!pci_bus_trylock(dev->subordinate)) {
5645 pci_dev_unlock(dev);
5653 list_for_each_entry_continue_reverse(dev,
5654 &slot->bus->devices, bus_list) {
5655 if (!dev->slot || dev->slot != slot)
5657 if (dev->subordinate)
5658 pci_bus_unlock(dev->subordinate);
5659 pci_dev_unlock(dev);
5665 * Save and disable devices from the top of the tree down while holding
5666 * the @dev mutex lock for the entire tree.
5668 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5670 struct pci_dev *dev;
5672 list_for_each_entry(dev, &bus->devices, bus_list) {
5673 pci_dev_save_and_disable(dev);
5674 if (dev->subordinate)
5675 pci_bus_save_and_disable_locked(dev->subordinate);
5680 * Restore devices from top of the tree down while holding @dev mutex lock
5681 * for the entire tree. Parent bridges need to be restored before we can
5682 * get to subordinate devices.
5684 static void pci_bus_restore_locked(struct pci_bus *bus)
5686 struct pci_dev *dev;
5688 list_for_each_entry(dev, &bus->devices, bus_list) {
5689 pci_dev_restore(dev);
5690 if (dev->subordinate)
5691 pci_bus_restore_locked(dev->subordinate);
5696 * Save and disable devices from the top of the tree down while holding
5697 * the @dev mutex lock for the entire tree.
5699 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5701 struct pci_dev *dev;
5703 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5704 if (!dev->slot || dev->slot != slot)
5706 pci_dev_save_and_disable(dev);
5707 if (dev->subordinate)
5708 pci_bus_save_and_disable_locked(dev->subordinate);
5713 * Restore devices from top of the tree down while holding @dev mutex lock
5714 * for the entire tree. Parent bridges need to be restored before we can
5715 * get to subordinate devices.
5717 static void pci_slot_restore_locked(struct pci_slot *slot)
5719 struct pci_dev *dev;
5721 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5722 if (!dev->slot || dev->slot != slot)
5724 pci_dev_restore(dev);
5725 if (dev->subordinate)
5726 pci_bus_restore_locked(dev->subordinate);
5730 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5734 if (!slot || !pci_slot_resetable(slot))
5738 pci_slot_lock(slot);
5742 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5745 pci_slot_unlock(slot);
5751 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5752 * @slot: PCI slot to probe
5754 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5756 int pci_probe_reset_slot(struct pci_slot *slot)
5758 return pci_slot_reset(slot, PCI_RESET_PROBE);
5760 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5763 * __pci_reset_slot - Try to reset a PCI slot
5764 * @slot: PCI slot to reset
5766 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5767 * independent of other slots. For instance, some slots may support slot power
5768 * control. In the case of a 1:1 bus to slot architecture, this function may
5769 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5770 * Generally a slot reset should be attempted before a bus reset. All of the
5771 * function of the slot and any subordinate buses behind the slot are reset
5772 * through this function. PCI config space of all devices in the slot and
5773 * behind the slot is saved before and restored after reset.
5775 * Same as above except return -EAGAIN if the slot cannot be locked
5777 static int __pci_reset_slot(struct pci_slot *slot)
5781 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5785 if (pci_slot_trylock(slot)) {
5786 pci_slot_save_and_disable_locked(slot);
5788 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5789 pci_slot_restore_locked(slot);
5790 pci_slot_unlock(slot);
5797 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5801 if (!bus->self || !pci_bus_resetable(bus))
5811 ret = pci_bridge_secondary_bus_reset(bus->self);
5813 pci_bus_unlock(bus);
5819 * pci_bus_error_reset - reset the bridge's subordinate bus
5820 * @bridge: The parent device that connects to the bus to reset
5822 * This function will first try to reset the slots on this bus if the method is
5823 * available. If slot reset fails or is not available, this will fall back to a
5824 * secondary bus reset.
5826 int pci_bus_error_reset(struct pci_dev *bridge)
5828 struct pci_bus *bus = bridge->subordinate;
5829 struct pci_slot *slot;
5834 mutex_lock(&pci_slot_mutex);
5835 if (list_empty(&bus->slots))
5838 list_for_each_entry(slot, &bus->slots, list)
5839 if (pci_probe_reset_slot(slot))
5842 list_for_each_entry(slot, &bus->slots, list)
5843 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5846 mutex_unlock(&pci_slot_mutex);
5849 mutex_unlock(&pci_slot_mutex);
5850 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5854 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5855 * @bus: PCI bus to probe
5857 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5859 int pci_probe_reset_bus(struct pci_bus *bus)
5861 return pci_bus_reset(bus, PCI_RESET_PROBE);
5863 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5866 * __pci_reset_bus - Try to reset a PCI bus
5867 * @bus: top level PCI bus to reset
5869 * Same as above except return -EAGAIN if the bus cannot be locked
5871 static int __pci_reset_bus(struct pci_bus *bus)
5875 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5879 if (pci_bus_trylock(bus)) {
5880 pci_bus_save_and_disable_locked(bus);
5882 rc = pci_bridge_secondary_bus_reset(bus->self);
5883 pci_bus_restore_locked(bus);
5884 pci_bus_unlock(bus);
5892 * pci_reset_bus - Try to reset a PCI bus
5893 * @pdev: top level PCI device to reset via slot/bus
5895 * Same as above except return -EAGAIN if the bus cannot be locked
5897 int pci_reset_bus(struct pci_dev *pdev)
5899 return (!pci_probe_reset_slot(pdev->slot)) ?
5900 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5902 EXPORT_SYMBOL_GPL(pci_reset_bus);
5905 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5906 * @dev: PCI device to query
5908 * Returns mmrbc: maximum designed memory read count in bytes or
5909 * appropriate error value.
5911 int pcix_get_max_mmrbc(struct pci_dev *dev)
5916 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5920 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5923 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5925 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5928 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5929 * @dev: PCI device to query
5931 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5934 int pcix_get_mmrbc(struct pci_dev *dev)
5939 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5943 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5946 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5948 EXPORT_SYMBOL(pcix_get_mmrbc);
5951 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5952 * @dev: PCI device to query
5953 * @mmrbc: maximum memory read count in bytes
5954 * valid values are 512, 1024, 2048, 4096
5956 * If possible sets maximum memory read byte count, some bridges have errata
5957 * that prevent this.
5959 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5965 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5968 v = ffs(mmrbc) - 10;
5970 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5974 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5977 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5980 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5983 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5985 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5988 cmd &= ~PCI_X_CMD_MAX_READ;
5990 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5995 EXPORT_SYMBOL(pcix_set_mmrbc);
5998 * pcie_get_readrq - get PCI Express read request size
5999 * @dev: PCI device to query
6001 * Returns maximum memory read request in bytes or appropriate error value.
6003 int pcie_get_readrq(struct pci_dev *dev)
6007 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6009 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6011 EXPORT_SYMBOL(pcie_get_readrq);
6014 * pcie_set_readrq - set PCI Express maximum memory read request
6015 * @dev: PCI device to query
6016 * @rq: maximum memory read count in bytes
6017 * valid values are 128, 256, 512, 1024, 2048, 4096
6019 * If possible sets maximum memory read request in bytes
6021 int pcie_set_readrq(struct pci_dev *dev, int rq)
6025 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6027 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6031 * If using the "performance" PCIe config, we clamp the read rq
6032 * size to the max packet size to keep the host bridge from
6033 * generating requests larger than we can cope with.
6035 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6036 int mps = pcie_get_mps(dev);
6042 v = (ffs(rq) - 8) << 12;
6044 if (bridge->no_inc_mrrs) {
6045 int max_mrrs = pcie_get_readrq(dev);
6047 if (rq > max_mrrs) {
6048 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6053 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6054 PCI_EXP_DEVCTL_READRQ, v);
6056 return pcibios_err_to_errno(ret);
6058 EXPORT_SYMBOL(pcie_set_readrq);
6061 * pcie_get_mps - get PCI Express maximum payload size
6062 * @dev: PCI device to query
6064 * Returns maximum payload size in bytes
6066 int pcie_get_mps(struct pci_dev *dev)
6070 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6072 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6074 EXPORT_SYMBOL(pcie_get_mps);
6077 * pcie_set_mps - set PCI Express maximum payload size
6078 * @dev: PCI device to query
6079 * @mps: maximum payload size in bytes
6080 * valid values are 128, 256, 512, 1024, 2048, 4096
6082 * If possible sets maximum payload size
6084 int pcie_set_mps(struct pci_dev *dev, int mps)
6089 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6093 if (v > dev->pcie_mpss)
6097 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6098 PCI_EXP_DEVCTL_PAYLOAD, v);
6100 return pcibios_err_to_errno(ret);
6102 EXPORT_SYMBOL(pcie_set_mps);
6105 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6106 * device and its bandwidth limitation
6107 * @dev: PCI device to query
6108 * @limiting_dev: storage for device causing the bandwidth limitation
6109 * @speed: storage for speed of limiting device
6110 * @width: storage for width of limiting device
6112 * Walk up the PCI device chain and find the point where the minimum
6113 * bandwidth is available. Return the bandwidth available there and (if
6114 * limiting_dev, speed, and width pointers are supplied) information about
6115 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6118 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6119 enum pci_bus_speed *speed,
6120 enum pcie_link_width *width)
6123 enum pci_bus_speed next_speed;
6124 enum pcie_link_width next_width;
6128 *speed = PCI_SPEED_UNKNOWN;
6130 *width = PCIE_LNK_WIDTH_UNKNOWN;
6135 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6137 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6138 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6139 PCI_EXP_LNKSTA_NLW_SHIFT;
6141 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6143 /* Check if current device limits the total bandwidth */
6144 if (!bw || next_bw <= bw) {
6148 *limiting_dev = dev;
6150 *speed = next_speed;
6152 *width = next_width;
6155 dev = pci_upstream_bridge(dev);
6160 EXPORT_SYMBOL(pcie_bandwidth_available);
6163 * pcie_get_speed_cap - query for the PCI device's link speed capability
6164 * @dev: PCI device to query
6166 * Query the PCI device speed capability. Return the maximum link speed
6167 * supported by the device.
6169 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6171 u32 lnkcap2, lnkcap;
6174 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6175 * implementation note there recommends using the Supported Link
6176 * Speeds Vector in Link Capabilities 2 when supported.
6178 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6179 * should use the Supported Link Speeds field in Link Capabilities,
6180 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6182 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6184 /* PCIe r3.0-compliant */
6186 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6188 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6189 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6190 return PCIE_SPEED_5_0GT;
6191 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6192 return PCIE_SPEED_2_5GT;
6194 return PCI_SPEED_UNKNOWN;
6196 EXPORT_SYMBOL(pcie_get_speed_cap);
6199 * pcie_get_width_cap - query for the PCI device's link width capability
6200 * @dev: PCI device to query
6202 * Query the PCI device width capability. Return the maximum link width
6203 * supported by the device.
6205 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6209 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6211 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6213 return PCIE_LNK_WIDTH_UNKNOWN;
6215 EXPORT_SYMBOL(pcie_get_width_cap);
6218 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6220 * @speed: storage for link speed
6221 * @width: storage for link width
6223 * Calculate a PCI device's link bandwidth by querying for its link speed
6224 * and width, multiplying them, and applying encoding overhead. The result
6225 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6227 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6228 enum pcie_link_width *width)
6230 *speed = pcie_get_speed_cap(dev);
6231 *width = pcie_get_width_cap(dev);
6233 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6236 return *width * PCIE_SPEED2MBS_ENC(*speed);
6240 * __pcie_print_link_status - Report the PCI device's link speed and width
6241 * @dev: PCI device to query
6242 * @verbose: Print info even when enough bandwidth is available
6244 * If the available bandwidth at the device is less than the device is
6245 * capable of, report the device's maximum possible bandwidth and the
6246 * upstream link that limits its performance. If @verbose, always print
6247 * the available bandwidth, even if the device isn't constrained.
6249 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6251 enum pcie_link_width width, width_cap;
6252 enum pci_bus_speed speed, speed_cap;
6253 struct pci_dev *limiting_dev = NULL;
6254 u32 bw_avail, bw_cap;
6256 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6257 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6259 if (bw_avail >= bw_cap && verbose)
6260 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6261 bw_cap / 1000, bw_cap % 1000,
6262 pci_speed_string(speed_cap), width_cap);
6263 else if (bw_avail < bw_cap)
6264 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6265 bw_avail / 1000, bw_avail % 1000,
6266 pci_speed_string(speed), width,
6267 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6268 bw_cap / 1000, bw_cap % 1000,
6269 pci_speed_string(speed_cap), width_cap);
6273 * pcie_print_link_status - Report the PCI device's link speed and width
6274 * @dev: PCI device to query
6276 * Report the available bandwidth at the device.
6278 void pcie_print_link_status(struct pci_dev *dev)
6280 __pcie_print_link_status(dev, true);
6282 EXPORT_SYMBOL(pcie_print_link_status);
6285 * pci_select_bars - Make BAR mask from the type of resource
6286 * @dev: the PCI device for which BAR mask is made
6287 * @flags: resource type mask to be selected
6289 * This helper routine makes bar mask from the type of resource.
6291 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6294 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6295 if (pci_resource_flags(dev, i) & flags)
6299 EXPORT_SYMBOL(pci_select_bars);
6301 /* Some architectures require additional programming to enable VGA */
6302 static arch_set_vga_state_t arch_set_vga_state;
6304 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6306 arch_set_vga_state = func; /* NULL disables */
6309 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6310 unsigned int command_bits, u32 flags)
6312 if (arch_set_vga_state)
6313 return arch_set_vga_state(dev, decode, command_bits,
6319 * pci_set_vga_state - set VGA decode state on device and parents if requested
6320 * @dev: the PCI device
6321 * @decode: true = enable decoding, false = disable decoding
6322 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6323 * @flags: traverse ancestors and change bridges
6324 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6326 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6327 unsigned int command_bits, u32 flags)
6329 struct pci_bus *bus;
6330 struct pci_dev *bridge;
6334 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6336 /* ARCH specific VGA enables */
6337 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6341 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6342 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6344 cmd |= command_bits;
6346 cmd &= ~command_bits;
6347 pci_write_config_word(dev, PCI_COMMAND, cmd);
6350 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6357 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6360 cmd |= PCI_BRIDGE_CTL_VGA;
6362 cmd &= ~PCI_BRIDGE_CTL_VGA;
6363 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6372 bool pci_pr3_present(struct pci_dev *pdev)
6374 struct acpi_device *adev;
6379 adev = ACPI_COMPANION(&pdev->dev);
6383 return adev->power.flags.power_resources &&
6384 acpi_has_method(adev->handle, "_PR3");
6386 EXPORT_SYMBOL_GPL(pci_pr3_present);
6390 * pci_add_dma_alias - Add a DMA devfn alias for a device
6391 * @dev: the PCI device for which alias is added
6392 * @devfn_from: alias slot and function
6393 * @nr_devfns: number of subsequent devfns to alias
6395 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6396 * which is used to program permissible bus-devfn source addresses for DMA
6397 * requests in an IOMMU. These aliases factor into IOMMU group creation
6398 * and are useful for devices generating DMA requests beyond or different
6399 * from their logical bus-devfn. Examples include device quirks where the
6400 * device simply uses the wrong devfn, as well as non-transparent bridges
6401 * where the alias may be a proxy for devices in another domain.
6403 * IOMMU group creation is performed during device discovery or addition,
6404 * prior to any potential DMA mapping and therefore prior to driver probing
6405 * (especially for userspace assigned devices where IOMMU group definition
6406 * cannot be left as a userspace activity). DMA aliases should therefore
6407 * be configured via quirks, such as the PCI fixup header quirk.
6409 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6410 unsigned int nr_devfns)
6414 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6415 devfn_to = devfn_from + nr_devfns - 1;
6417 if (!dev->dma_alias_mask)
6418 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6419 if (!dev->dma_alias_mask) {
6420 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6424 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6427 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6428 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6429 else if (nr_devfns > 1)
6430 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6431 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6432 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6435 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6437 return (dev1->dma_alias_mask &&
6438 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6439 (dev2->dma_alias_mask &&
6440 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6441 pci_real_dma_dev(dev1) == dev2 ||
6442 pci_real_dma_dev(dev2) == dev1;
6445 bool pci_device_is_present(struct pci_dev *pdev)
6449 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6450 pdev = pci_physfn(pdev);
6451 if (pci_dev_is_disconnected(pdev))
6453 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6455 EXPORT_SYMBOL_GPL(pci_device_is_present);
6457 void pci_ignore_hotplug(struct pci_dev *dev)
6459 struct pci_dev *bridge = dev->bus->self;
6461 dev->ignore_hotplug = 1;
6462 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6464 bridge->ignore_hotplug = 1;
6466 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6469 * pci_real_dma_dev - Get PCI DMA device for PCI device
6470 * @dev: the PCI device that may have a PCI DMA alias
6472 * Permits the platform to provide architecture-specific functionality to
6473 * devices needing to alias DMA to another PCI device on another PCI bus. If
6474 * the PCI device is on the same bus, it is recommended to use
6475 * pci_add_dma_alias(). This is the default implementation. Architecture
6476 * implementations can override this.
6478 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6483 resource_size_t __weak pcibios_default_alignment(void)
6489 * Arches that don't want to expose struct resource to userland as-is in
6490 * sysfs and /proc can implement their own pci_resource_to_user().
6492 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6493 const struct resource *rsrc,
6494 resource_size_t *start, resource_size_t *end)
6496 *start = rsrc->start;
6500 static char *resource_alignment_param;
6501 static DEFINE_SPINLOCK(resource_alignment_lock);
6504 * pci_specified_resource_alignment - get resource alignment specified by user.
6505 * @dev: the PCI device to get
6506 * @resize: whether or not to change resources' size when reassigning alignment
6508 * RETURNS: Resource alignment if it is specified.
6509 * Zero if it is not specified.
6511 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6514 int align_order, count;
6515 resource_size_t align = pcibios_default_alignment();
6519 spin_lock(&resource_alignment_lock);
6520 p = resource_alignment_param;
6523 if (pci_has_flag(PCI_PROBE_ONLY)) {
6525 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6531 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6534 if (align_order > 63) {
6535 pr_err("PCI: Invalid requested alignment (order %d)\n",
6537 align_order = PAGE_SHIFT;
6540 align_order = PAGE_SHIFT;
6543 ret = pci_dev_str_match(dev, p, &p);
6546 align = 1ULL << align_order;
6548 } else if (ret < 0) {
6549 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6554 if (*p != ';' && *p != ',') {
6555 /* End of param or invalid format */
6561 spin_unlock(&resource_alignment_lock);
6565 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6566 resource_size_t align, bool resize)
6568 struct resource *r = &dev->resource[bar];
6569 resource_size_t size;
6571 if (!(r->flags & IORESOURCE_MEM))
6574 if (r->flags & IORESOURCE_PCI_FIXED) {
6575 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6576 bar, r, (unsigned long long)align);
6580 size = resource_size(r);
6585 * Increase the alignment of the resource. There are two ways we
6588 * 1) Increase the size of the resource. BARs are aligned on their
6589 * size, so when we reallocate space for this resource, we'll
6590 * allocate it with the larger alignment. This also prevents
6591 * assignment of any other BARs inside the alignment region, so
6592 * if we're requesting page alignment, this means no other BARs
6593 * will share the page.
6595 * The disadvantage is that this makes the resource larger than
6596 * the hardware BAR, which may break drivers that compute things
6597 * based on the resource size, e.g., to find registers at a
6598 * fixed offset before the end of the BAR.
6600 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6601 * set r->start to the desired alignment. By itself this
6602 * doesn't prevent other BARs being put inside the alignment
6603 * region, but if we realign *every* resource of every device in
6604 * the system, none of them will share an alignment region.
6606 * When the user has requested alignment for only some devices via
6607 * the "pci=resource_alignment" argument, "resize" is true and we
6608 * use the first method. Otherwise we assume we're aligning all
6609 * devices and we use the second.
6612 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6613 bar, r, (unsigned long long)align);
6619 r->flags &= ~IORESOURCE_SIZEALIGN;
6620 r->flags |= IORESOURCE_STARTALIGN;
6622 r->end = r->start + size - 1;
6624 r->flags |= IORESOURCE_UNSET;
6628 * This function disables memory decoding and releases memory resources
6629 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6630 * It also rounds up size to specified alignment.
6631 * Later on, the kernel will assign page-aligned memory resource back
6634 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6638 resource_size_t align;
6640 bool resize = false;
6643 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6644 * 3.4.1.11. Their resources are allocated from the space
6645 * described by the VF BARx register in the PF's SR-IOV capability.
6646 * We can't influence their alignment here.
6651 /* check if specified PCI is target device to reassign */
6652 align = pci_specified_resource_alignment(dev, &resize);
6656 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6657 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6658 pci_warn(dev, "Can't reassign resources to host bridge\n");
6662 pci_read_config_word(dev, PCI_COMMAND, &command);
6663 command &= ~PCI_COMMAND_MEMORY;
6664 pci_write_config_word(dev, PCI_COMMAND, command);
6666 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6667 pci_request_resource_alignment(dev, i, align, resize);
6670 * Need to disable bridge's resource window,
6671 * to enable the kernel to reassign new resource
6674 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6675 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6676 r = &dev->resource[i];
6677 if (!(r->flags & IORESOURCE_MEM))
6679 r->flags |= IORESOURCE_UNSET;
6680 r->end = resource_size(r) - 1;
6683 pci_disable_bridge_window(dev);
6687 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6691 spin_lock(&resource_alignment_lock);
6692 if (resource_alignment_param)
6693 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6694 spin_unlock(&resource_alignment_lock);
6699 static ssize_t resource_alignment_store(const struct bus_type *bus,
6700 const char *buf, size_t count)
6702 char *param, *old, *end;
6704 if (count >= (PAGE_SIZE - 1))
6707 param = kstrndup(buf, count, GFP_KERNEL);
6711 end = strchr(param, '\n');
6715 spin_lock(&resource_alignment_lock);
6716 old = resource_alignment_param;
6717 if (strlen(param)) {
6718 resource_alignment_param = param;
6721 resource_alignment_param = NULL;
6723 spin_unlock(&resource_alignment_lock);
6730 static BUS_ATTR_RW(resource_alignment);
6732 static int __init pci_resource_alignment_sysfs_init(void)
6734 return bus_create_file(&pci_bus_type,
6735 &bus_attr_resource_alignment);
6737 late_initcall(pci_resource_alignment_sysfs_init);
6739 static void pci_no_domains(void)
6741 #ifdef CONFIG_PCI_DOMAINS
6742 pci_domains_supported = 0;
6746 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6747 static DEFINE_IDA(pci_domain_nr_static_ida);
6748 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6750 static void of_pci_reserve_static_domain_nr(void)
6752 struct device_node *np;
6755 for_each_node_by_type(np, "pci") {
6756 domain_nr = of_get_pci_domain_nr(np);
6760 * Permanently allocate domain_nr in dynamic_ida
6761 * to prevent it from dynamic allocation.
6763 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6764 domain_nr, domain_nr, GFP_KERNEL);
6768 static int of_pci_bus_find_domain_nr(struct device *parent)
6770 static bool static_domains_reserved = false;
6773 /* On the first call scan device tree for static allocations. */
6774 if (!static_domains_reserved) {
6775 of_pci_reserve_static_domain_nr();
6776 static_domains_reserved = true;
6781 * If domain is in DT, allocate it in static IDA. This
6782 * prevents duplicate static allocations in case of errors
6785 domain_nr = of_get_pci_domain_nr(parent->of_node);
6787 return ida_alloc_range(&pci_domain_nr_static_ida,
6788 domain_nr, domain_nr,
6793 * If domain was not specified in DT, choose a free ID from dynamic
6794 * allocations. All domain numbers from DT are permanently in
6795 * dynamic allocations to prevent assigning them to other DT nodes
6796 * without static domain.
6798 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6801 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6803 if (bus->domain_nr < 0)
6806 /* Release domain from IDA where it was allocated. */
6807 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6808 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6810 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6813 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6815 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6816 acpi_pci_bus_find_domain_nr(bus);
6819 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6823 of_pci_bus_release_domain_nr(bus, parent);
6828 * pci_ext_cfg_avail - can we access extended PCI config space?
6830 * Returns 1 if we can access PCI extended config space (offsets
6831 * greater than 0xff). This is the default implementation. Architecture
6832 * implementations can override this.
6834 int __weak pci_ext_cfg_avail(void)
6839 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6842 EXPORT_SYMBOL(pci_fixup_cardbus);
6844 static int __init pci_setup(char *str)
6847 char *k = strchr(str, ',');
6850 if (*str && (str = pcibios_setup(str)) && *str) {
6851 if (!strcmp(str, "nomsi")) {
6853 } else if (!strncmp(str, "noats", 5)) {
6854 pr_info("PCIe: ATS is disabled\n");
6855 pcie_ats_disabled = true;
6856 } else if (!strcmp(str, "noaer")) {
6858 } else if (!strcmp(str, "earlydump")) {
6859 pci_early_dump = true;
6860 } else if (!strncmp(str, "realloc=", 8)) {
6861 pci_realloc_get_opt(str + 8);
6862 } else if (!strncmp(str, "realloc", 7)) {
6863 pci_realloc_get_opt("on");
6864 } else if (!strcmp(str, "nodomains")) {
6866 } else if (!strncmp(str, "noari", 5)) {
6867 pcie_ari_disabled = true;
6868 } else if (!strncmp(str, "cbiosize=", 9)) {
6869 pci_cardbus_io_size = memparse(str + 9, &str);
6870 } else if (!strncmp(str, "cbmemsize=", 10)) {
6871 pci_cardbus_mem_size = memparse(str + 10, &str);
6872 } else if (!strncmp(str, "resource_alignment=", 19)) {
6873 resource_alignment_param = str + 19;
6874 } else if (!strncmp(str, "ecrc=", 5)) {
6875 pcie_ecrc_get_policy(str + 5);
6876 } else if (!strncmp(str, "hpiosize=", 9)) {
6877 pci_hotplug_io_size = memparse(str + 9, &str);
6878 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6879 pci_hotplug_mmio_size = memparse(str + 11, &str);
6880 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6881 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6882 } else if (!strncmp(str, "hpmemsize=", 10)) {
6883 pci_hotplug_mmio_size = memparse(str + 10, &str);
6884 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6885 } else if (!strncmp(str, "hpbussize=", 10)) {
6886 pci_hotplug_bus_size =
6887 simple_strtoul(str + 10, &str, 0);
6888 if (pci_hotplug_bus_size > 0xff)
6889 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6890 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6891 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6892 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6893 pcie_bus_config = PCIE_BUS_SAFE;
6894 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6895 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6896 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6897 pcie_bus_config = PCIE_BUS_PEER2PEER;
6898 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6899 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6900 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6901 disable_acs_redir_param = str + 18;
6903 pr_err("PCI: Unknown option `%s'\n", str);
6910 early_param("pci", pci_setup);
6913 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6914 * in pci_setup(), above, to point to data in the __initdata section which
6915 * will be freed after the init sequence is complete. We can't allocate memory
6916 * in pci_setup() because some architectures do not have any memory allocation
6917 * service available during an early_param() call. So we allocate memory and
6918 * copy the variable here before the init section is freed.
6921 static int __init pci_realloc_setup_params(void)
6923 resource_alignment_param = kstrdup(resource_alignment_param,
6925 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6929 pure_initcall(pci_realloc_setup_params);