Merge git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / pci / pci.c
1 /*
2  *      PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *      Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *      David Mosberger-Tang
6  *
7  *      Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm-generic/pci-bridge.h>
26 #include <asm/setup.h>
27 #include "pci.h"
28
29 const char *pci_power_names[] = {
30         "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31 };
32 EXPORT_SYMBOL_GPL(pci_power_names);
33
34 int isa_dma_bridge_buggy;
35 EXPORT_SYMBOL(isa_dma_bridge_buggy);
36
37 int pci_pci_problems;
38 EXPORT_SYMBOL(pci_pci_problems);
39
40 unsigned int pci_pm_d3_delay;
41
42 static void pci_pme_list_scan(struct work_struct *work);
43
44 static LIST_HEAD(pci_pme_list);
45 static DEFINE_MUTEX(pci_pme_list_mutex);
46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47
48 struct pci_pme_device {
49         struct list_head list;
50         struct pci_dev *dev;
51 };
52
53 #define PME_TIMEOUT 1000 /* How long between PME checks */
54
55 static void pci_dev_d3_sleep(struct pci_dev *dev)
56 {
57         unsigned int delay = dev->d3_delay;
58
59         if (delay < pci_pm_d3_delay)
60                 delay = pci_pm_d3_delay;
61
62         msleep(delay);
63 }
64
65 #ifdef CONFIG_PCI_DOMAINS
66 int pci_domains_supported = 1;
67 #endif
68
69 #define DEFAULT_CARDBUS_IO_SIZE         (256)
70 #define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74
75 #define DEFAULT_HOTPLUG_IO_SIZE         (256)
76 #define DEFAULT_HOTPLUG_MEM_SIZE        (2*1024*1024)
77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
78 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80
81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
82
83 /*
84  * The default CLS is used if arch didn't set CLS explicitly and not
85  * all pci devices agree on the same value.  Arch can override either
86  * the dfl or actual value as it sees fit.  Don't forget this is
87  * measured in 32-bit words, not bytes.
88  */
89 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
90 u8 pci_cache_line_size;
91
92 /*
93  * If we set up a device for bus mastering, we need to check the latency
94  * timer as certain BIOSes forget to set it properly.
95  */
96 unsigned int pcibios_max_latency = 255;
97
98 /* If set, the PCIe ARI capability will not be used. */
99 static bool pcie_ari_disabled;
100
101 /**
102  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103  * @bus: pointer to PCI bus structure to search
104  *
105  * Given a PCI bus, returns the highest PCI bus number present in the set
106  * including the given PCI bus and its list of child PCI buses.
107  */
108 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
109 {
110         struct list_head *tmp;
111         unsigned char max, n;
112
113         max = bus->busn_res.end;
114         list_for_each(tmp, &bus->children) {
115                 n = pci_bus_max_busnr(pci_bus_b(tmp));
116                 if(n > max)
117                         max = n;
118         }
119         return max;
120 }
121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
122
123 #ifdef CONFIG_HAS_IOMEM
124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
125 {
126         /*
127          * Make sure the BAR is actually a memory resource, not an IO resource
128          */
129         if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130                 WARN_ON(1);
131                 return NULL;
132         }
133         return ioremap_nocache(pci_resource_start(pdev, bar),
134                                      pci_resource_len(pdev, bar));
135 }
136 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137 #endif
138
139 #define PCI_FIND_CAP_TTL        48
140
141 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
142                                    u8 pos, int cap, int *ttl)
143 {
144         u8 id;
145
146         while ((*ttl)--) {
147                 pci_bus_read_config_byte(bus, devfn, pos, &pos);
148                 if (pos < 0x40)
149                         break;
150                 pos &= ~3;
151                 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
152                                          &id);
153                 if (id == 0xff)
154                         break;
155                 if (id == cap)
156                         return pos;
157                 pos += PCI_CAP_LIST_NEXT;
158         }
159         return 0;
160 }
161
162 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
163                                u8 pos, int cap)
164 {
165         int ttl = PCI_FIND_CAP_TTL;
166
167         return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
168 }
169
170 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
171 {
172         return __pci_find_next_cap(dev->bus, dev->devfn,
173                                    pos + PCI_CAP_LIST_NEXT, cap);
174 }
175 EXPORT_SYMBOL_GPL(pci_find_next_capability);
176
177 static int __pci_bus_find_cap_start(struct pci_bus *bus,
178                                     unsigned int devfn, u8 hdr_type)
179 {
180         u16 status;
181
182         pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
183         if (!(status & PCI_STATUS_CAP_LIST))
184                 return 0;
185
186         switch (hdr_type) {
187         case PCI_HEADER_TYPE_NORMAL:
188         case PCI_HEADER_TYPE_BRIDGE:
189                 return PCI_CAPABILITY_LIST;
190         case PCI_HEADER_TYPE_CARDBUS:
191                 return PCI_CB_CAPABILITY_LIST;
192         default:
193                 return 0;
194         }
195
196         return 0;
197 }
198
199 /**
200  * pci_find_capability - query for devices' capabilities 
201  * @dev: PCI device to query
202  * @cap: capability code
203  *
204  * Tell if a device supports a given PCI capability.
205  * Returns the address of the requested capability structure within the
206  * device's PCI configuration space or 0 in case the device does not
207  * support it.  Possible values for @cap:
208  *
209  *  %PCI_CAP_ID_PM           Power Management 
210  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port 
211  *  %PCI_CAP_ID_VPD          Vital Product Data 
212  *  %PCI_CAP_ID_SLOTID       Slot Identification 
213  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
214  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap 
215  *  %PCI_CAP_ID_PCIX         PCI-X
216  *  %PCI_CAP_ID_EXP          PCI Express
217  */
218 int pci_find_capability(struct pci_dev *dev, int cap)
219 {
220         int pos;
221
222         pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
223         if (pos)
224                 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
225
226         return pos;
227 }
228
229 /**
230  * pci_bus_find_capability - query for devices' capabilities 
231  * @bus:   the PCI bus to query
232  * @devfn: PCI device to query
233  * @cap:   capability code
234  *
235  * Like pci_find_capability() but works for pci devices that do not have a
236  * pci_dev structure set up yet. 
237  *
238  * Returns the address of the requested capability structure within the
239  * device's PCI configuration space or 0 in case the device does not
240  * support it.
241  */
242 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
243 {
244         int pos;
245         u8 hdr_type;
246
247         pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
248
249         pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
250         if (pos)
251                 pos = __pci_find_next_cap(bus, devfn, pos, cap);
252
253         return pos;
254 }
255
256 /**
257  * pci_find_next_ext_capability - Find an extended capability
258  * @dev: PCI device to query
259  * @start: address at which to start looking (0 to start at beginning of list)
260  * @cap: capability code
261  *
262  * Returns the address of the next matching extended capability structure
263  * within the device's PCI configuration space or 0 if the device does
264  * not support it.  Some capabilities can occur several times, e.g., the
265  * vendor-specific capability, and this provides a way to find them all.
266  */
267 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
268 {
269         u32 header;
270         int ttl;
271         int pos = PCI_CFG_SPACE_SIZE;
272
273         /* minimum 8 bytes per capability */
274         ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
275
276         if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
277                 return 0;
278
279         if (start)
280                 pos = start;
281
282         if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
283                 return 0;
284
285         /*
286          * If we have no capabilities, this is indicated by cap ID,
287          * cap version and next pointer all being 0.
288          */
289         if (header == 0)
290                 return 0;
291
292         while (ttl-- > 0) {
293                 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
294                         return pos;
295
296                 pos = PCI_EXT_CAP_NEXT(header);
297                 if (pos < PCI_CFG_SPACE_SIZE)
298                         break;
299
300                 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
301                         break;
302         }
303
304         return 0;
305 }
306 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
307
308 /**
309  * pci_find_ext_capability - Find an extended capability
310  * @dev: PCI device to query
311  * @cap: capability code
312  *
313  * Returns the address of the requested extended capability structure
314  * within the device's PCI configuration space or 0 if the device does
315  * not support it.  Possible values for @cap:
316  *
317  *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
318  *  %PCI_EXT_CAP_ID_VC          Virtual Channel
319  *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
320  *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
321  */
322 int pci_find_ext_capability(struct pci_dev *dev, int cap)
323 {
324         return pci_find_next_ext_capability(dev, 0, cap);
325 }
326 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
327
328 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
329 {
330         int rc, ttl = PCI_FIND_CAP_TTL;
331         u8 cap, mask;
332
333         if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
334                 mask = HT_3BIT_CAP_MASK;
335         else
336                 mask = HT_5BIT_CAP_MASK;
337
338         pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
339                                       PCI_CAP_ID_HT, &ttl);
340         while (pos) {
341                 rc = pci_read_config_byte(dev, pos + 3, &cap);
342                 if (rc != PCIBIOS_SUCCESSFUL)
343                         return 0;
344
345                 if ((cap & mask) == ht_cap)
346                         return pos;
347
348                 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
349                                               pos + PCI_CAP_LIST_NEXT,
350                                               PCI_CAP_ID_HT, &ttl);
351         }
352
353         return 0;
354 }
355 /**
356  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
357  * @dev: PCI device to query
358  * @pos: Position from which to continue searching
359  * @ht_cap: Hypertransport capability code
360  *
361  * To be used in conjunction with pci_find_ht_capability() to search for
362  * all capabilities matching @ht_cap. @pos should always be a value returned
363  * from pci_find_ht_capability().
364  *
365  * NB. To be 100% safe against broken PCI devices, the caller should take
366  * steps to avoid an infinite loop.
367  */
368 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
369 {
370         return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
371 }
372 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
373
374 /**
375  * pci_find_ht_capability - query a device's Hypertransport capabilities
376  * @dev: PCI device to query
377  * @ht_cap: Hypertransport capability code
378  *
379  * Tell if a device supports a given Hypertransport capability.
380  * Returns an address within the device's PCI configuration space
381  * or 0 in case the device does not support the request capability.
382  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
383  * which has a Hypertransport capability matching @ht_cap.
384  */
385 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
386 {
387         int pos;
388
389         pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
390         if (pos)
391                 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
392
393         return pos;
394 }
395 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
396
397 /**
398  * pci_find_parent_resource - return resource region of parent bus of given region
399  * @dev: PCI device structure contains resources to be searched
400  * @res: child resource record for which parent is sought
401  *
402  *  For given resource region of given device, return the resource
403  *  region of parent bus the given region is contained in or where
404  *  it should be allocated from.
405  */
406 struct resource *
407 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408 {
409         const struct pci_bus *bus = dev->bus;
410         int i;
411         struct resource *best = NULL, *r;
412
413         pci_bus_for_each_resource(bus, r, i) {
414                 if (!r)
415                         continue;
416                 if (res->start && !(res->start >= r->start && res->end <= r->end))
417                         continue;       /* Not contained */
418                 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
419                         continue;       /* Wrong type */
420                 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
421                         return r;       /* Exact match */
422                 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
423                 if (r->flags & IORESOURCE_PREFETCH)
424                         continue;
425                 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
426                 if (!best)
427                         best = r;
428         }
429         return best;
430 }
431
432 /**
433  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
434  * @dev: PCI device to have its BARs restored
435  *
436  * Restore the BAR values for a given device, so as to make it
437  * accessible by its driver.
438  */
439 static void
440 pci_restore_bars(struct pci_dev *dev)
441 {
442         int i;
443
444         for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
445                 pci_update_resource(dev, i);
446 }
447
448 static struct pci_platform_pm_ops *pci_platform_pm;
449
450 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
451 {
452         if (!ops->is_manageable || !ops->set_state || !ops->choose_state
453             || !ops->sleep_wake || !ops->can_wakeup)
454                 return -EINVAL;
455         pci_platform_pm = ops;
456         return 0;
457 }
458
459 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
460 {
461         return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
462 }
463
464 static inline int platform_pci_set_power_state(struct pci_dev *dev,
465                                                 pci_power_t t)
466 {
467         return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
468 }
469
470 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
471 {
472         return pci_platform_pm ?
473                         pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
474 }
475
476 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
477 {
478         return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
479 }
480
481 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
482 {
483         return pci_platform_pm ?
484                         pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
485 }
486
487 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
488 {
489         return pci_platform_pm ?
490                         pci_platform_pm->run_wake(dev, enable) : -ENODEV;
491 }
492
493 /**
494  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
495  *                           given PCI device
496  * @dev: PCI device to handle.
497  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
498  *
499  * RETURN VALUE:
500  * -EINVAL if the requested state is invalid.
501  * -EIO if device does not support PCI PM or its PM capabilities register has a
502  * wrong version, or device doesn't support the requested state.
503  * 0 if device already is in the requested state.
504  * 0 if device's power state has been successfully changed.
505  */
506 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
507 {
508         u16 pmcsr;
509         bool need_restore = false;
510
511         /* Check if we're already there */
512         if (dev->current_state == state)
513                 return 0;
514
515         if (!dev->pm_cap)
516                 return -EIO;
517
518         if (state < PCI_D0 || state > PCI_D3hot)
519                 return -EINVAL;
520
521         /* Validate current state:
522          * Can enter D0 from any state, but if we can only go deeper 
523          * to sleep if we're already in a low power state
524          */
525         if (state != PCI_D0 && dev->current_state <= PCI_D3cold
526             && dev->current_state > state) {
527                 dev_err(&dev->dev, "invalid power transition "
528                         "(from state %d to %d)\n", dev->current_state, state);
529                 return -EINVAL;
530         }
531
532         /* check if this device supports the desired state */
533         if ((state == PCI_D1 && !dev->d1_support)
534            || (state == PCI_D2 && !dev->d2_support))
535                 return -EIO;
536
537         pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
538
539         /* If we're (effectively) in D3, force entire word to 0.
540          * This doesn't affect PME_Status, disables PME_En, and
541          * sets PowerState to 0.
542          */
543         switch (dev->current_state) {
544         case PCI_D0:
545         case PCI_D1:
546         case PCI_D2:
547                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
548                 pmcsr |= state;
549                 break;
550         case PCI_D3hot:
551         case PCI_D3cold:
552         case PCI_UNKNOWN: /* Boot-up */
553                 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
554                  && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
555                         need_restore = true;
556                 /* Fall-through: force to D0 */
557         default:
558                 pmcsr = 0;
559                 break;
560         }
561
562         /* enter specified state */
563         pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
564
565         /* Mandatory power management transition delays */
566         /* see PCI PM 1.1 5.6.1 table 18 */
567         if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
568                 pci_dev_d3_sleep(dev);
569         else if (state == PCI_D2 || dev->current_state == PCI_D2)
570                 udelay(PCI_PM_D2_DELAY);
571
572         pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
573         dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
574         if (dev->current_state != state && printk_ratelimit())
575                 dev_info(&dev->dev, "Refused to change power state, "
576                         "currently in D%d\n", dev->current_state);
577
578         /*
579          * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
580          * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
581          * from D3hot to D0 _may_ perform an internal reset, thereby
582          * going to "D0 Uninitialized" rather than "D0 Initialized".
583          * For example, at least some versions of the 3c905B and the
584          * 3c556B exhibit this behaviour.
585          *
586          * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
587          * devices in a D3hot state at boot.  Consequently, we need to
588          * restore at least the BARs so that the device will be
589          * accessible to its driver.
590          */
591         if (need_restore)
592                 pci_restore_bars(dev);
593
594         if (dev->bus->self)
595                 pcie_aspm_pm_state_change(dev->bus->self);
596
597         return 0;
598 }
599
600 /**
601  * pci_update_current_state - Read PCI power state of given device from its
602  *                            PCI PM registers and cache it
603  * @dev: PCI device to handle.
604  * @state: State to cache in case the device doesn't have the PM capability
605  */
606 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
607 {
608         if (dev->pm_cap) {
609                 u16 pmcsr;
610
611                 /*
612                  * Configuration space is not accessible for device in
613                  * D3cold, so just keep or set D3cold for safety
614                  */
615                 if (dev->current_state == PCI_D3cold)
616                         return;
617                 if (state == PCI_D3cold) {
618                         dev->current_state = PCI_D3cold;
619                         return;
620                 }
621                 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
622                 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
623         } else {
624                 dev->current_state = state;
625         }
626 }
627
628 /**
629  * pci_power_up - Put the given device into D0 forcibly
630  * @dev: PCI device to power up
631  */
632 void pci_power_up(struct pci_dev *dev)
633 {
634         if (platform_pci_power_manageable(dev))
635                 platform_pci_set_power_state(dev, PCI_D0);
636
637         pci_raw_set_power_state(dev, PCI_D0);
638         pci_update_current_state(dev, PCI_D0);
639 }
640
641 /**
642  * pci_platform_power_transition - Use platform to change device power state
643  * @dev: PCI device to handle.
644  * @state: State to put the device into.
645  */
646 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
647 {
648         int error;
649
650         if (platform_pci_power_manageable(dev)) {
651                 error = platform_pci_set_power_state(dev, state);
652                 if (!error)
653                         pci_update_current_state(dev, state);
654                 /* Fall back to PCI_D0 if native PM is not supported */
655                 if (!dev->pm_cap)
656                         dev->current_state = PCI_D0;
657         } else {
658                 error = -ENODEV;
659                 /* Fall back to PCI_D0 if native PM is not supported */
660                 if (!dev->pm_cap)
661                         dev->current_state = PCI_D0;
662         }
663
664         return error;
665 }
666
667 /**
668  * __pci_start_power_transition - Start power transition of a PCI device
669  * @dev: PCI device to handle.
670  * @state: State to put the device into.
671  */
672 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
673 {
674         if (state == PCI_D0) {
675                 pci_platform_power_transition(dev, PCI_D0);
676                 /*
677                  * Mandatory power management transition delays, see
678                  * PCI Express Base Specification Revision 2.0 Section
679                  * 6.6.1: Conventional Reset.  Do not delay for
680                  * devices powered on/off by corresponding bridge,
681                  * because have already delayed for the bridge.
682                  */
683                 if (dev->runtime_d3cold) {
684                         msleep(dev->d3cold_delay);
685                         /*
686                          * When powering on a bridge from D3cold, the
687                          * whole hierarchy may be powered on into
688                          * D0uninitialized state, resume them to give
689                          * them a chance to suspend again
690                          */
691                         pci_wakeup_bus(dev->subordinate);
692                 }
693         }
694 }
695
696 /**
697  * __pci_dev_set_current_state - Set current state of a PCI device
698  * @dev: Device to handle
699  * @data: pointer to state to be set
700  */
701 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
702 {
703         pci_power_t state = *(pci_power_t *)data;
704
705         dev->current_state = state;
706         return 0;
707 }
708
709 /**
710  * __pci_bus_set_current_state - Walk given bus and set current state of devices
711  * @bus: Top bus of the subtree to walk.
712  * @state: state to be set
713  */
714 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
715 {
716         if (bus)
717                 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
718 }
719
720 /**
721  * __pci_complete_power_transition - Complete power transition of a PCI device
722  * @dev: PCI device to handle.
723  * @state: State to put the device into.
724  *
725  * This function should not be called directly by device drivers.
726  */
727 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
728 {
729         int ret;
730
731         if (state <= PCI_D0)
732                 return -EINVAL;
733         ret = pci_platform_power_transition(dev, state);
734         /* Power off the bridge may power off the whole hierarchy */
735         if (!ret && state == PCI_D3cold)
736                 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
737         return ret;
738 }
739 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
740
741 /**
742  * pci_set_power_state - Set the power state of a PCI device
743  * @dev: PCI device to handle.
744  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
745  *
746  * Transition a device to a new power state, using the platform firmware and/or
747  * the device's PCI PM registers.
748  *
749  * RETURN VALUE:
750  * -EINVAL if the requested state is invalid.
751  * -EIO if device does not support PCI PM or its PM capabilities register has a
752  * wrong version, or device doesn't support the requested state.
753  * 0 if device already is in the requested state.
754  * 0 if device's power state has been successfully changed.
755  */
756 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
757 {
758         int error;
759
760         /* bound the state we're entering */
761         if (state > PCI_D3cold)
762                 state = PCI_D3cold;
763         else if (state < PCI_D0)
764                 state = PCI_D0;
765         else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
766                 /*
767                  * If the device or the parent bridge do not support PCI PM,
768                  * ignore the request if we're doing anything other than putting
769                  * it into D0 (which would only happen on boot).
770                  */
771                 return 0;
772
773         /* Check if we're already there */
774         if (dev->current_state == state)
775                 return 0;
776
777         __pci_start_power_transition(dev, state);
778
779         /* This device is quirked not to be put into D3, so
780            don't put it in D3 */
781         if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
782                 return 0;
783
784         /*
785          * To put device in D3cold, we put device into D3hot in native
786          * way, then put device into D3cold with platform ops
787          */
788         error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
789                                         PCI_D3hot : state);
790
791         if (!__pci_complete_power_transition(dev, state))
792                 error = 0;
793         /*
794          * When aspm_policy is "powersave" this call ensures
795          * that ASPM is configured.
796          */
797         if (!error && dev->bus->self)
798                 pcie_aspm_powersave_config_link(dev->bus->self);
799
800         return error;
801 }
802
803 /**
804  * pci_choose_state - Choose the power state of a PCI device
805  * @dev: PCI device to be suspended
806  * @state: target sleep state for the whole system. This is the value
807  *      that is passed to suspend() function.
808  *
809  * Returns PCI power state suitable for given device and given system
810  * message.
811  */
812
813 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
814 {
815         pci_power_t ret;
816
817         if (!pci_find_capability(dev, PCI_CAP_ID_PM))
818                 return PCI_D0;
819
820         ret = platform_pci_choose_state(dev);
821         if (ret != PCI_POWER_ERROR)
822                 return ret;
823
824         switch (state.event) {
825         case PM_EVENT_ON:
826                 return PCI_D0;
827         case PM_EVENT_FREEZE:
828         case PM_EVENT_PRETHAW:
829                 /* REVISIT both freeze and pre-thaw "should" use D0 */
830         case PM_EVENT_SUSPEND:
831         case PM_EVENT_HIBERNATE:
832                 return PCI_D3hot;
833         default:
834                 dev_info(&dev->dev, "unrecognized suspend event %d\n",
835                          state.event);
836                 BUG();
837         }
838         return PCI_D0;
839 }
840
841 EXPORT_SYMBOL(pci_choose_state);
842
843 #define PCI_EXP_SAVE_REGS       7
844
845
846 static struct pci_cap_saved_state *pci_find_saved_cap(
847         struct pci_dev *pci_dev, char cap)
848 {
849         struct pci_cap_saved_state *tmp;
850         struct hlist_node *pos;
851
852         hlist_for_each_entry(tmp, pos, &pci_dev->saved_cap_space, next) {
853                 if (tmp->cap.cap_nr == cap)
854                         return tmp;
855         }
856         return NULL;
857 }
858
859 static int pci_save_pcie_state(struct pci_dev *dev)
860 {
861         int i = 0;
862         struct pci_cap_saved_state *save_state;
863         u16 *cap;
864
865         if (!pci_is_pcie(dev))
866                 return 0;
867
868         save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
869         if (!save_state) {
870                 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
871                 return -ENOMEM;
872         }
873
874         cap = (u16 *)&save_state->cap.data[0];
875         pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
876         pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
877         pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
878         pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
879         pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
880         pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
881         pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
882
883         return 0;
884 }
885
886 static void pci_restore_pcie_state(struct pci_dev *dev)
887 {
888         int i = 0;
889         struct pci_cap_saved_state *save_state;
890         u16 *cap;
891
892         save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
893         if (!save_state)
894                 return;
895
896         cap = (u16 *)&save_state->cap.data[0];
897         pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
898         pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
899         pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
900         pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
901         pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
902         pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
903         pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
904 }
905
906
907 static int pci_save_pcix_state(struct pci_dev *dev)
908 {
909         int pos;
910         struct pci_cap_saved_state *save_state;
911
912         pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
913         if (pos <= 0)
914                 return 0;
915
916         save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
917         if (!save_state) {
918                 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
919                 return -ENOMEM;
920         }
921
922         pci_read_config_word(dev, pos + PCI_X_CMD,
923                              (u16 *)save_state->cap.data);
924
925         return 0;
926 }
927
928 static void pci_restore_pcix_state(struct pci_dev *dev)
929 {
930         int i = 0, pos;
931         struct pci_cap_saved_state *save_state;
932         u16 *cap;
933
934         save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
935         pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
936         if (!save_state || pos <= 0)
937                 return;
938         cap = (u16 *)&save_state->cap.data[0];
939
940         pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
941 }
942
943
944 /**
945  * pci_save_state - save the PCI configuration space of a device before suspending
946  * @dev: - PCI device that we're dealing with
947  */
948 int
949 pci_save_state(struct pci_dev *dev)
950 {
951         int i;
952         /* XXX: 100% dword access ok here? */
953         for (i = 0; i < 16; i++)
954                 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
955         dev->state_saved = true;
956         if ((i = pci_save_pcie_state(dev)) != 0)
957                 return i;
958         if ((i = pci_save_pcix_state(dev)) != 0)
959                 return i;
960         return 0;
961 }
962
963 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
964                                      u32 saved_val, int retry)
965 {
966         u32 val;
967
968         pci_read_config_dword(pdev, offset, &val);
969         if (val == saved_val)
970                 return;
971
972         for (;;) {
973                 dev_dbg(&pdev->dev, "restoring config space at offset "
974                         "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
975                 pci_write_config_dword(pdev, offset, saved_val);
976                 if (retry-- <= 0)
977                         return;
978
979                 pci_read_config_dword(pdev, offset, &val);
980                 if (val == saved_val)
981                         return;
982
983                 mdelay(1);
984         }
985 }
986
987 static void pci_restore_config_space_range(struct pci_dev *pdev,
988                                            int start, int end, int retry)
989 {
990         int index;
991
992         for (index = end; index >= start; index--)
993                 pci_restore_config_dword(pdev, 4 * index,
994                                          pdev->saved_config_space[index],
995                                          retry);
996 }
997
998 static void pci_restore_config_space(struct pci_dev *pdev)
999 {
1000         if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1001                 pci_restore_config_space_range(pdev, 10, 15, 0);
1002                 /* Restore BARs before the command register. */
1003                 pci_restore_config_space_range(pdev, 4, 9, 10);
1004                 pci_restore_config_space_range(pdev, 0, 3, 0);
1005         } else {
1006                 pci_restore_config_space_range(pdev, 0, 15, 0);
1007         }
1008 }
1009
1010 /** 
1011  * pci_restore_state - Restore the saved state of a PCI device
1012  * @dev: - PCI device that we're dealing with
1013  */
1014 void pci_restore_state(struct pci_dev *dev)
1015 {
1016         if (!dev->state_saved)
1017                 return;
1018
1019         /* PCI Express register must be restored first */
1020         pci_restore_pcie_state(dev);
1021         pci_restore_ats_state(dev);
1022
1023         pci_restore_config_space(dev);
1024
1025         pci_restore_pcix_state(dev);
1026         pci_restore_msi_state(dev);
1027         pci_restore_iov_state(dev);
1028
1029         dev->state_saved = false;
1030 }
1031
1032 struct pci_saved_state {
1033         u32 config_space[16];
1034         struct pci_cap_saved_data cap[0];
1035 };
1036
1037 /**
1038  * pci_store_saved_state - Allocate and return an opaque struct containing
1039  *                         the device saved state.
1040  * @dev: PCI device that we're dealing with
1041  *
1042  * Rerturn NULL if no state or error.
1043  */
1044 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1045 {
1046         struct pci_saved_state *state;
1047         struct pci_cap_saved_state *tmp;
1048         struct pci_cap_saved_data *cap;
1049         struct hlist_node *pos;
1050         size_t size;
1051
1052         if (!dev->state_saved)
1053                 return NULL;
1054
1055         size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1056
1057         hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1058                 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1059
1060         state = kzalloc(size, GFP_KERNEL);
1061         if (!state)
1062                 return NULL;
1063
1064         memcpy(state->config_space, dev->saved_config_space,
1065                sizeof(state->config_space));
1066
1067         cap = state->cap;
1068         hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1069                 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1070                 memcpy(cap, &tmp->cap, len);
1071                 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1072         }
1073         /* Empty cap_save terminates list */
1074
1075         return state;
1076 }
1077 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1078
1079 /**
1080  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1081  * @dev: PCI device that we're dealing with
1082  * @state: Saved state returned from pci_store_saved_state()
1083  */
1084 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1085 {
1086         struct pci_cap_saved_data *cap;
1087
1088         dev->state_saved = false;
1089
1090         if (!state)
1091                 return 0;
1092
1093         memcpy(dev->saved_config_space, state->config_space,
1094                sizeof(state->config_space));
1095
1096         cap = state->cap;
1097         while (cap->size) {
1098                 struct pci_cap_saved_state *tmp;
1099
1100                 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1101                 if (!tmp || tmp->cap.size != cap->size)
1102                         return -EINVAL;
1103
1104                 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1105                 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1106                        sizeof(struct pci_cap_saved_data) + cap->size);
1107         }
1108
1109         dev->state_saved = true;
1110         return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1113
1114 /**
1115  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1116  *                                 and free the memory allocated for it.
1117  * @dev: PCI device that we're dealing with
1118  * @state: Pointer to saved state returned from pci_store_saved_state()
1119  */
1120 int pci_load_and_free_saved_state(struct pci_dev *dev,
1121                                   struct pci_saved_state **state)
1122 {
1123         int ret = pci_load_saved_state(dev, *state);
1124         kfree(*state);
1125         *state = NULL;
1126         return ret;
1127 }
1128 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1129
1130 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1131 {
1132         int err;
1133
1134         err = pci_set_power_state(dev, PCI_D0);
1135         if (err < 0 && err != -EIO)
1136                 return err;
1137         err = pcibios_enable_device(dev, bars);
1138         if (err < 0)
1139                 return err;
1140         pci_fixup_device(pci_fixup_enable, dev);
1141
1142         return 0;
1143 }
1144
1145 /**
1146  * pci_reenable_device - Resume abandoned device
1147  * @dev: PCI device to be resumed
1148  *
1149  *  Note this function is a backend of pci_default_resume and is not supposed
1150  *  to be called by normal code, write proper resume handler and use it instead.
1151  */
1152 int pci_reenable_device(struct pci_dev *dev)
1153 {
1154         if (pci_is_enabled(dev))
1155                 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1156         return 0;
1157 }
1158
1159 static int __pci_enable_device_flags(struct pci_dev *dev,
1160                                      resource_size_t flags)
1161 {
1162         int err;
1163         int i, bars = 0;
1164
1165         /*
1166          * Power state could be unknown at this point, either due to a fresh
1167          * boot or a device removal call.  So get the current power state
1168          * so that things like MSI message writing will behave as expected
1169          * (e.g. if the device really is in D0 at enable time).
1170          */
1171         if (dev->pm_cap) {
1172                 u16 pmcsr;
1173                 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1174                 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1175         }
1176
1177         if (atomic_add_return(1, &dev->enable_cnt) > 1)
1178                 return 0;               /* already enabled */
1179
1180         /* only skip sriov related */
1181         for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1182                 if (dev->resource[i].flags & flags)
1183                         bars |= (1 << i);
1184         for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1185                 if (dev->resource[i].flags & flags)
1186                         bars |= (1 << i);
1187
1188         err = do_pci_enable_device(dev, bars);
1189         if (err < 0)
1190                 atomic_dec(&dev->enable_cnt);
1191         return err;
1192 }
1193
1194 /**
1195  * pci_enable_device_io - Initialize a device for use with IO space
1196  * @dev: PCI device to be initialized
1197  *
1198  *  Initialize device before it's used by a driver. Ask low-level code
1199  *  to enable I/O resources. Wake up the device if it was suspended.
1200  *  Beware, this function can fail.
1201  */
1202 int pci_enable_device_io(struct pci_dev *dev)
1203 {
1204         return __pci_enable_device_flags(dev, IORESOURCE_IO);
1205 }
1206
1207 /**
1208  * pci_enable_device_mem - Initialize a device for use with Memory space
1209  * @dev: PCI device to be initialized
1210  *
1211  *  Initialize device before it's used by a driver. Ask low-level code
1212  *  to enable Memory resources. Wake up the device if it was suspended.
1213  *  Beware, this function can fail.
1214  */
1215 int pci_enable_device_mem(struct pci_dev *dev)
1216 {
1217         return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1218 }
1219
1220 /**
1221  * pci_enable_device - Initialize device before it's used by a driver.
1222  * @dev: PCI device to be initialized
1223  *
1224  *  Initialize device before it's used by a driver. Ask low-level code
1225  *  to enable I/O and memory. Wake up the device if it was suspended.
1226  *  Beware, this function can fail.
1227  *
1228  *  Note we don't actually enable the device many times if we call
1229  *  this function repeatedly (we just increment the count).
1230  */
1231 int pci_enable_device(struct pci_dev *dev)
1232 {
1233         return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1234 }
1235
1236 /*
1237  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1238  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1239  * there's no need to track it separately.  pci_devres is initialized
1240  * when a device is enabled using managed PCI device enable interface.
1241  */
1242 struct pci_devres {
1243         unsigned int enabled:1;
1244         unsigned int pinned:1;
1245         unsigned int orig_intx:1;
1246         unsigned int restore_intx:1;
1247         u32 region_mask;
1248 };
1249
1250 static void pcim_release(struct device *gendev, void *res)
1251 {
1252         struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1253         struct pci_devres *this = res;
1254         int i;
1255
1256         if (dev->msi_enabled)
1257                 pci_disable_msi(dev);
1258         if (dev->msix_enabled)
1259                 pci_disable_msix(dev);
1260
1261         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1262                 if (this->region_mask & (1 << i))
1263                         pci_release_region(dev, i);
1264
1265         if (this->restore_intx)
1266                 pci_intx(dev, this->orig_intx);
1267
1268         if (this->enabled && !this->pinned)
1269                 pci_disable_device(dev);
1270 }
1271
1272 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1273 {
1274         struct pci_devres *dr, *new_dr;
1275
1276         dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1277         if (dr)
1278                 return dr;
1279
1280         new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1281         if (!new_dr)
1282                 return NULL;
1283         return devres_get(&pdev->dev, new_dr, NULL, NULL);
1284 }
1285
1286 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1287 {
1288         if (pci_is_managed(pdev))
1289                 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1290         return NULL;
1291 }
1292
1293 /**
1294  * pcim_enable_device - Managed pci_enable_device()
1295  * @pdev: PCI device to be initialized
1296  *
1297  * Managed pci_enable_device().
1298  */
1299 int pcim_enable_device(struct pci_dev *pdev)
1300 {
1301         struct pci_devres *dr;
1302         int rc;
1303
1304         dr = get_pci_dr(pdev);
1305         if (unlikely(!dr))
1306                 return -ENOMEM;
1307         if (dr->enabled)
1308                 return 0;
1309
1310         rc = pci_enable_device(pdev);
1311         if (!rc) {
1312                 pdev->is_managed = 1;
1313                 dr->enabled = 1;
1314         }
1315         return rc;
1316 }
1317
1318 /**
1319  * pcim_pin_device - Pin managed PCI device
1320  * @pdev: PCI device to pin
1321  *
1322  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1323  * driver detach.  @pdev must have been enabled with
1324  * pcim_enable_device().
1325  */
1326 void pcim_pin_device(struct pci_dev *pdev)
1327 {
1328         struct pci_devres *dr;
1329
1330         dr = find_pci_dr(pdev);
1331         WARN_ON(!dr || !dr->enabled);
1332         if (dr)
1333                 dr->pinned = 1;
1334 }
1335
1336 /*
1337  * pcibios_add_device - provide arch specific hooks when adding device dev
1338  * @dev: the PCI device being added
1339  *
1340  * Permits the platform to provide architecture specific functionality when
1341  * devices are added. This is the default implementation. Architecture
1342  * implementations can override this.
1343  */
1344 int __weak pcibios_add_device (struct pci_dev *dev)
1345 {
1346         return 0;
1347 }
1348
1349 /**
1350  * pcibios_disable_device - disable arch specific PCI resources for device dev
1351  * @dev: the PCI device to disable
1352  *
1353  * Disables architecture specific PCI resources for the device. This
1354  * is the default implementation. Architecture implementations can
1355  * override this.
1356  */
1357 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1358
1359 static void do_pci_disable_device(struct pci_dev *dev)
1360 {
1361         u16 pci_command;
1362
1363         pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1364         if (pci_command & PCI_COMMAND_MASTER) {
1365                 pci_command &= ~PCI_COMMAND_MASTER;
1366                 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1367         }
1368
1369         pcibios_disable_device(dev);
1370 }
1371
1372 /**
1373  * pci_disable_enabled_device - Disable device without updating enable_cnt
1374  * @dev: PCI device to disable
1375  *
1376  * NOTE: This function is a backend of PCI power management routines and is
1377  * not supposed to be called drivers.
1378  */
1379 void pci_disable_enabled_device(struct pci_dev *dev)
1380 {
1381         if (pci_is_enabled(dev))
1382                 do_pci_disable_device(dev);
1383 }
1384
1385 /**
1386  * pci_disable_device - Disable PCI device after use
1387  * @dev: PCI device to be disabled
1388  *
1389  * Signal to the system that the PCI device is not in use by the system
1390  * anymore.  This only involves disabling PCI bus-mastering, if active.
1391  *
1392  * Note we don't actually disable the device until all callers of
1393  * pci_enable_device() have called pci_disable_device().
1394  */
1395 void
1396 pci_disable_device(struct pci_dev *dev)
1397 {
1398         struct pci_devres *dr;
1399
1400         dr = find_pci_dr(dev);
1401         if (dr)
1402                 dr->enabled = 0;
1403
1404         if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1405                 return;
1406
1407         do_pci_disable_device(dev);
1408
1409         dev->is_busmaster = 0;
1410 }
1411
1412 /**
1413  * pcibios_set_pcie_reset_state - set reset state for device dev
1414  * @dev: the PCIe device reset
1415  * @state: Reset state to enter into
1416  *
1417  *
1418  * Sets the PCIe reset state for the device. This is the default
1419  * implementation. Architecture implementations can override this.
1420  */
1421 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1422                                         enum pcie_reset_state state)
1423 {
1424         return -EINVAL;
1425 }
1426
1427 /**
1428  * pci_set_pcie_reset_state - set reset state for device dev
1429  * @dev: the PCIe device reset
1430  * @state: Reset state to enter into
1431  *
1432  *
1433  * Sets the PCI reset state for the device.
1434  */
1435 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1436 {
1437         return pcibios_set_pcie_reset_state(dev, state);
1438 }
1439
1440 /**
1441  * pci_check_pme_status - Check if given device has generated PME.
1442  * @dev: Device to check.
1443  *
1444  * Check the PME status of the device and if set, clear it and clear PME enable
1445  * (if set).  Return 'true' if PME status and PME enable were both set or
1446  * 'false' otherwise.
1447  */
1448 bool pci_check_pme_status(struct pci_dev *dev)
1449 {
1450         int pmcsr_pos;
1451         u16 pmcsr;
1452         bool ret = false;
1453
1454         if (!dev->pm_cap)
1455                 return false;
1456
1457         pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1458         pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1459         if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1460                 return false;
1461
1462         /* Clear PME status. */
1463         pmcsr |= PCI_PM_CTRL_PME_STATUS;
1464         if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1465                 /* Disable PME to avoid interrupt flood. */
1466                 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1467                 ret = true;
1468         }
1469
1470         pci_write_config_word(dev, pmcsr_pos, pmcsr);
1471
1472         return ret;
1473 }
1474
1475 /**
1476  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1477  * @dev: Device to handle.
1478  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1479  *
1480  * Check if @dev has generated PME and queue a resume request for it in that
1481  * case.
1482  */
1483 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1484 {
1485         if (pme_poll_reset && dev->pme_poll)
1486                 dev->pme_poll = false;
1487
1488         if (pci_check_pme_status(dev)) {
1489                 pci_wakeup_event(dev);
1490                 pm_request_resume(&dev->dev);
1491         }
1492         return 0;
1493 }
1494
1495 /**
1496  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1497  * @bus: Top bus of the subtree to walk.
1498  */
1499 void pci_pme_wakeup_bus(struct pci_bus *bus)
1500 {
1501         if (bus)
1502                 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1503 }
1504
1505 /**
1506  * pci_wakeup - Wake up a PCI device
1507  * @pci_dev: Device to handle.
1508  * @ign: ignored parameter
1509  */
1510 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1511 {
1512         pci_wakeup_event(pci_dev);
1513         pm_request_resume(&pci_dev->dev);
1514         return 0;
1515 }
1516
1517 /**
1518  * pci_wakeup_bus - Walk given bus and wake up devices on it
1519  * @bus: Top bus of the subtree to walk.
1520  */
1521 void pci_wakeup_bus(struct pci_bus *bus)
1522 {
1523         if (bus)
1524                 pci_walk_bus(bus, pci_wakeup, NULL);
1525 }
1526
1527 /**
1528  * pci_pme_capable - check the capability of PCI device to generate PME#
1529  * @dev: PCI device to handle.
1530  * @state: PCI state from which device will issue PME#.
1531  */
1532 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1533 {
1534         if (!dev->pm_cap)
1535                 return false;
1536
1537         return !!(dev->pme_support & (1 << state));
1538 }
1539
1540 static void pci_pme_list_scan(struct work_struct *work)
1541 {
1542         struct pci_pme_device *pme_dev, *n;
1543
1544         mutex_lock(&pci_pme_list_mutex);
1545         if (!list_empty(&pci_pme_list)) {
1546                 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1547                         if (pme_dev->dev->pme_poll) {
1548                                 struct pci_dev *bridge;
1549
1550                                 bridge = pme_dev->dev->bus->self;
1551                                 /*
1552                                  * If bridge is in low power state, the
1553                                  * configuration space of subordinate devices
1554                                  * may be not accessible
1555                                  */
1556                                 if (bridge && bridge->current_state != PCI_D0)
1557                                         continue;
1558                                 pci_pme_wakeup(pme_dev->dev, NULL);
1559                         } else {
1560                                 list_del(&pme_dev->list);
1561                                 kfree(pme_dev);
1562                         }
1563                 }
1564                 if (!list_empty(&pci_pme_list))
1565                         schedule_delayed_work(&pci_pme_work,
1566                                               msecs_to_jiffies(PME_TIMEOUT));
1567         }
1568         mutex_unlock(&pci_pme_list_mutex);
1569 }
1570
1571 /**
1572  * pci_pme_active - enable or disable PCI device's PME# function
1573  * @dev: PCI device to handle.
1574  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1575  *
1576  * The caller must verify that the device is capable of generating PME# before
1577  * calling this function with @enable equal to 'true'.
1578  */
1579 void pci_pme_active(struct pci_dev *dev, bool enable)
1580 {
1581         u16 pmcsr;
1582
1583         if (!dev->pm_cap)
1584                 return;
1585
1586         pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1587         /* Clear PME_Status by writing 1 to it and enable PME# */
1588         pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1589         if (!enable)
1590                 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1591
1592         pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1593
1594         /*
1595          * PCI (as opposed to PCIe) PME requires that the device have
1596          * its PME# line hooked up correctly. Not all hardware vendors
1597          * do this, so the PME never gets delivered and the device
1598          * remains asleep. The easiest way around this is to
1599          * periodically walk the list of suspended devices and check
1600          * whether any have their PME flag set. The assumption is that
1601          * we'll wake up often enough anyway that this won't be a huge
1602          * hit, and the power savings from the devices will still be a
1603          * win.
1604          *
1605          * Although PCIe uses in-band PME message instead of PME# line
1606          * to report PME, PME does not work for some PCIe devices in
1607          * reality.  For example, there are devices that set their PME
1608          * status bits, but don't really bother to send a PME message;
1609          * there are PCI Express Root Ports that don't bother to
1610          * trigger interrupts when they receive PME messages from the
1611          * devices below.  So PME poll is used for PCIe devices too.
1612          */
1613
1614         if (dev->pme_poll) {
1615                 struct pci_pme_device *pme_dev;
1616                 if (enable) {
1617                         pme_dev = kmalloc(sizeof(struct pci_pme_device),
1618                                           GFP_KERNEL);
1619                         if (!pme_dev)
1620                                 goto out;
1621                         pme_dev->dev = dev;
1622                         mutex_lock(&pci_pme_list_mutex);
1623                         list_add(&pme_dev->list, &pci_pme_list);
1624                         if (list_is_singular(&pci_pme_list))
1625                                 schedule_delayed_work(&pci_pme_work,
1626                                                       msecs_to_jiffies(PME_TIMEOUT));
1627                         mutex_unlock(&pci_pme_list_mutex);
1628                 } else {
1629                         mutex_lock(&pci_pme_list_mutex);
1630                         list_for_each_entry(pme_dev, &pci_pme_list, list) {
1631                                 if (pme_dev->dev == dev) {
1632                                         list_del(&pme_dev->list);
1633                                         kfree(pme_dev);
1634                                         break;
1635                                 }
1636                         }
1637                         mutex_unlock(&pci_pme_list_mutex);
1638                 }
1639         }
1640
1641 out:
1642         dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1643 }
1644
1645 /**
1646  * __pci_enable_wake - enable PCI device as wakeup event source
1647  * @dev: PCI device affected
1648  * @state: PCI state from which device will issue wakeup events
1649  * @runtime: True if the events are to be generated at run time
1650  * @enable: True to enable event generation; false to disable
1651  *
1652  * This enables the device as a wakeup event source, or disables it.
1653  * When such events involves platform-specific hooks, those hooks are
1654  * called automatically by this routine.
1655  *
1656  * Devices with legacy power management (no standard PCI PM capabilities)
1657  * always require such platform hooks.
1658  *
1659  * RETURN VALUE:
1660  * 0 is returned on success
1661  * -EINVAL is returned if device is not supposed to wake up the system
1662  * Error code depending on the platform is returned if both the platform and
1663  * the native mechanism fail to enable the generation of wake-up events
1664  */
1665 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1666                       bool runtime, bool enable)
1667 {
1668         int ret = 0;
1669
1670         if (enable && !runtime && !device_may_wakeup(&dev->dev))
1671                 return -EINVAL;
1672
1673         /* Don't do the same thing twice in a row for one device. */
1674         if (!!enable == !!dev->wakeup_prepared)
1675                 return 0;
1676
1677         /*
1678          * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1679          * Anderson we should be doing PME# wake enable followed by ACPI wake
1680          * enable.  To disable wake-up we call the platform first, for symmetry.
1681          */
1682
1683         if (enable) {
1684                 int error;
1685
1686                 if (pci_pme_capable(dev, state))
1687                         pci_pme_active(dev, true);
1688                 else
1689                         ret = 1;
1690                 error = runtime ? platform_pci_run_wake(dev, true) :
1691                                         platform_pci_sleep_wake(dev, true);
1692                 if (ret)
1693                         ret = error;
1694                 if (!ret)
1695                         dev->wakeup_prepared = true;
1696         } else {
1697                 if (runtime)
1698                         platform_pci_run_wake(dev, false);
1699                 else
1700                         platform_pci_sleep_wake(dev, false);
1701                 pci_pme_active(dev, false);
1702                 dev->wakeup_prepared = false;
1703         }
1704
1705         return ret;
1706 }
1707 EXPORT_SYMBOL(__pci_enable_wake);
1708
1709 /**
1710  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1711  * @dev: PCI device to prepare
1712  * @enable: True to enable wake-up event generation; false to disable
1713  *
1714  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1715  * and this function allows them to set that up cleanly - pci_enable_wake()
1716  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1717  * ordering constraints.
1718  *
1719  * This function only returns error code if the device is not capable of
1720  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1721  * enable wake-up power for it.
1722  */
1723 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1724 {
1725         return pci_pme_capable(dev, PCI_D3cold) ?
1726                         pci_enable_wake(dev, PCI_D3cold, enable) :
1727                         pci_enable_wake(dev, PCI_D3hot, enable);
1728 }
1729
1730 /**
1731  * pci_target_state - find an appropriate low power state for a given PCI dev
1732  * @dev: PCI device
1733  *
1734  * Use underlying platform code to find a supported low power state for @dev.
1735  * If the platform can't manage @dev, return the deepest state from which it
1736  * can generate wake events, based on any available PME info.
1737  */
1738 pci_power_t pci_target_state(struct pci_dev *dev)
1739 {
1740         pci_power_t target_state = PCI_D3hot;
1741
1742         if (platform_pci_power_manageable(dev)) {
1743                 /*
1744                  * Call the platform to choose the target state of the device
1745                  * and enable wake-up from this state if supported.
1746                  */
1747                 pci_power_t state = platform_pci_choose_state(dev);
1748
1749                 switch (state) {
1750                 case PCI_POWER_ERROR:
1751                 case PCI_UNKNOWN:
1752                         break;
1753                 case PCI_D1:
1754                 case PCI_D2:
1755                         if (pci_no_d1d2(dev))
1756                                 break;
1757                 default:
1758                         target_state = state;
1759                 }
1760         } else if (!dev->pm_cap) {
1761                 target_state = PCI_D0;
1762         } else if (device_may_wakeup(&dev->dev)) {
1763                 /*
1764                  * Find the deepest state from which the device can generate
1765                  * wake-up events, make it the target state and enable device
1766                  * to generate PME#.
1767                  */
1768                 if (dev->pme_support) {
1769                         while (target_state
1770                               && !(dev->pme_support & (1 << target_state)))
1771                                 target_state--;
1772                 }
1773         }
1774
1775         return target_state;
1776 }
1777
1778 /**
1779  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1780  * @dev: Device to handle.
1781  *
1782  * Choose the power state appropriate for the device depending on whether
1783  * it can wake up the system and/or is power manageable by the platform
1784  * (PCI_D3hot is the default) and put the device into that state.
1785  */
1786 int pci_prepare_to_sleep(struct pci_dev *dev)
1787 {
1788         pci_power_t target_state = pci_target_state(dev);
1789         int error;
1790
1791         if (target_state == PCI_POWER_ERROR)
1792                 return -EIO;
1793
1794         /* D3cold during system suspend/hibernate is not supported */
1795         if (target_state > PCI_D3hot)
1796                 target_state = PCI_D3hot;
1797
1798         pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1799
1800         error = pci_set_power_state(dev, target_state);
1801
1802         if (error)
1803                 pci_enable_wake(dev, target_state, false);
1804
1805         return error;
1806 }
1807
1808 /**
1809  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1810  * @dev: Device to handle.
1811  *
1812  * Disable device's system wake-up capability and put it into D0.
1813  */
1814 int pci_back_from_sleep(struct pci_dev *dev)
1815 {
1816         pci_enable_wake(dev, PCI_D0, false);
1817         return pci_set_power_state(dev, PCI_D0);
1818 }
1819
1820 /**
1821  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1822  * @dev: PCI device being suspended.
1823  *
1824  * Prepare @dev to generate wake-up events at run time and put it into a low
1825  * power state.
1826  */
1827 int pci_finish_runtime_suspend(struct pci_dev *dev)
1828 {
1829         pci_power_t target_state = pci_target_state(dev);
1830         int error;
1831
1832         if (target_state == PCI_POWER_ERROR)
1833                 return -EIO;
1834
1835         dev->runtime_d3cold = target_state == PCI_D3cold;
1836
1837         __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1838
1839         error = pci_set_power_state(dev, target_state);
1840
1841         if (error) {
1842                 __pci_enable_wake(dev, target_state, true, false);
1843                 dev->runtime_d3cold = false;
1844         }
1845
1846         return error;
1847 }
1848
1849 /**
1850  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1851  * @dev: Device to check.
1852  *
1853  * Return true if the device itself is cabable of generating wake-up events
1854  * (through the platform or using the native PCIe PME) or if the device supports
1855  * PME and one of its upstream bridges can generate wake-up events.
1856  */
1857 bool pci_dev_run_wake(struct pci_dev *dev)
1858 {
1859         struct pci_bus *bus = dev->bus;
1860
1861         if (device_run_wake(&dev->dev))
1862                 return true;
1863
1864         if (!dev->pme_support)
1865                 return false;
1866
1867         while (bus->parent) {
1868                 struct pci_dev *bridge = bus->self;
1869
1870                 if (device_run_wake(&bridge->dev))
1871                         return true;
1872
1873                 bus = bus->parent;
1874         }
1875
1876         /* We have reached the root bus. */
1877         if (bus->bridge)
1878                 return device_run_wake(bus->bridge);
1879
1880         return false;
1881 }
1882 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1883
1884 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1885 {
1886         struct device *dev = &pdev->dev;
1887         struct device *parent = dev->parent;
1888
1889         if (parent)
1890                 pm_runtime_get_sync(parent);
1891         pm_runtime_get_noresume(dev);
1892         /*
1893          * pdev->current_state is set to PCI_D3cold during suspending,
1894          * so wait until suspending completes
1895          */
1896         pm_runtime_barrier(dev);
1897         /*
1898          * Only need to resume devices in D3cold, because config
1899          * registers are still accessible for devices suspended but
1900          * not in D3cold.
1901          */
1902         if (pdev->current_state == PCI_D3cold)
1903                 pm_runtime_resume(dev);
1904 }
1905
1906 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1907 {
1908         struct device *dev = &pdev->dev;
1909         struct device *parent = dev->parent;
1910
1911         pm_runtime_put(dev);
1912         if (parent)
1913                 pm_runtime_put_sync(parent);
1914 }
1915
1916 /**
1917  * pci_pm_init - Initialize PM functions of given PCI device
1918  * @dev: PCI device to handle.
1919  */
1920 void pci_pm_init(struct pci_dev *dev)
1921 {
1922         int pm;
1923         u16 pmc;
1924
1925         pm_runtime_forbid(&dev->dev);
1926         pm_runtime_set_active(&dev->dev);
1927         pm_runtime_enable(&dev->dev);
1928         device_enable_async_suspend(&dev->dev);
1929         dev->wakeup_prepared = false;
1930
1931         dev->pm_cap = 0;
1932
1933         /* find PCI PM capability in list */
1934         pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1935         if (!pm)
1936                 return;
1937         /* Check device's ability to generate PME# */
1938         pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1939
1940         if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1941                 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1942                         pmc & PCI_PM_CAP_VER_MASK);
1943                 return;
1944         }
1945
1946         dev->pm_cap = pm;
1947         dev->d3_delay = PCI_PM_D3_WAIT;
1948         dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1949         dev->d3cold_allowed = true;
1950
1951         dev->d1_support = false;
1952         dev->d2_support = false;
1953         if (!pci_no_d1d2(dev)) {
1954                 if (pmc & PCI_PM_CAP_D1)
1955                         dev->d1_support = true;
1956                 if (pmc & PCI_PM_CAP_D2)
1957                         dev->d2_support = true;
1958
1959                 if (dev->d1_support || dev->d2_support)
1960                         dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1961                                    dev->d1_support ? " D1" : "",
1962                                    dev->d2_support ? " D2" : "");
1963         }
1964
1965         pmc &= PCI_PM_CAP_PME_MASK;
1966         if (pmc) {
1967                 dev_printk(KERN_DEBUG, &dev->dev,
1968                          "PME# supported from%s%s%s%s%s\n",
1969                          (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1970                          (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1971                          (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1972                          (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1973                          (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1974                 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1975                 dev->pme_poll = true;
1976                 /*
1977                  * Make device's PM flags reflect the wake-up capability, but
1978                  * let the user space enable it to wake up the system as needed.
1979                  */
1980                 device_set_wakeup_capable(&dev->dev, true);
1981                 /* Disable the PME# generation functionality */
1982                 pci_pme_active(dev, false);
1983         } else {
1984                 dev->pme_support = 0;
1985         }
1986 }
1987
1988 /**
1989  * platform_pci_wakeup_init - init platform wakeup if present
1990  * @dev: PCI device
1991  *
1992  * Some devices don't have PCI PM caps but can still generate wakeup
1993  * events through platform methods (like ACPI events).  If @dev supports
1994  * platform wakeup events, set the device flag to indicate as much.  This
1995  * may be redundant if the device also supports PCI PM caps, but double
1996  * initialization should be safe in that case.
1997  */
1998 void platform_pci_wakeup_init(struct pci_dev *dev)
1999 {
2000         if (!platform_pci_can_wakeup(dev))
2001                 return;
2002
2003         device_set_wakeup_capable(&dev->dev, true);
2004         platform_pci_sleep_wake(dev, false);
2005 }
2006
2007 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2008         struct pci_cap_saved_state *new_cap)
2009 {
2010         hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2011 }
2012
2013 /**
2014  * pci_add_save_buffer - allocate buffer for saving given capability registers
2015  * @dev: the PCI device
2016  * @cap: the capability to allocate the buffer for
2017  * @size: requested size of the buffer
2018  */
2019 static int pci_add_cap_save_buffer(
2020         struct pci_dev *dev, char cap, unsigned int size)
2021 {
2022         int pos;
2023         struct pci_cap_saved_state *save_state;
2024
2025         pos = pci_find_capability(dev, cap);
2026         if (pos <= 0)
2027                 return 0;
2028
2029         save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2030         if (!save_state)
2031                 return -ENOMEM;
2032
2033         save_state->cap.cap_nr = cap;
2034         save_state->cap.size = size;
2035         pci_add_saved_cap(dev, save_state);
2036
2037         return 0;
2038 }
2039
2040 /**
2041  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2042  * @dev: the PCI device
2043  */
2044 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2045 {
2046         int error;
2047
2048         error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2049                                         PCI_EXP_SAVE_REGS * sizeof(u16));
2050         if (error)
2051                 dev_err(&dev->dev,
2052                         "unable to preallocate PCI Express save buffer\n");
2053
2054         error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2055         if (error)
2056                 dev_err(&dev->dev,
2057                         "unable to preallocate PCI-X save buffer\n");
2058 }
2059
2060 void pci_free_cap_save_buffers(struct pci_dev *dev)
2061 {
2062         struct pci_cap_saved_state *tmp;
2063         struct hlist_node *pos, *n;
2064
2065         hlist_for_each_entry_safe(tmp, pos, n, &dev->saved_cap_space, next)
2066                 kfree(tmp);
2067 }
2068
2069 /**
2070  * pci_enable_ari - enable ARI forwarding if hardware support it
2071  * @dev: the PCI device
2072  */
2073 void pci_enable_ari(struct pci_dev *dev)
2074 {
2075         u32 cap;
2076         struct pci_dev *bridge;
2077
2078         if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2079                 return;
2080
2081         if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI))
2082                 return;
2083
2084         bridge = dev->bus->self;
2085         if (!bridge)
2086                 return;
2087
2088         pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2089         if (!(cap & PCI_EXP_DEVCAP2_ARI))
2090                 return;
2091
2092         pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, PCI_EXP_DEVCTL2_ARI);
2093         bridge->ari_enabled = 1;
2094 }
2095
2096 /**
2097  * pci_enable_ido - enable ID-based Ordering on a device
2098  * @dev: the PCI device
2099  * @type: which types of IDO to enable
2100  *
2101  * Enable ID-based ordering on @dev.  @type can contain the bits
2102  * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2103  * which types of transactions are allowed to be re-ordered.
2104  */
2105 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2106 {
2107         u16 ctrl = 0;
2108
2109         if (type & PCI_EXP_IDO_REQUEST)
2110                 ctrl |= PCI_EXP_IDO_REQ_EN;
2111         if (type & PCI_EXP_IDO_COMPLETION)
2112                 ctrl |= PCI_EXP_IDO_CMP_EN;
2113         if (ctrl)
2114                 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2115 }
2116 EXPORT_SYMBOL(pci_enable_ido);
2117
2118 /**
2119  * pci_disable_ido - disable ID-based ordering on a device
2120  * @dev: the PCI device
2121  * @type: which types of IDO to disable
2122  */
2123 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2124 {
2125         u16 ctrl = 0;
2126
2127         if (type & PCI_EXP_IDO_REQUEST)
2128                 ctrl |= PCI_EXP_IDO_REQ_EN;
2129         if (type & PCI_EXP_IDO_COMPLETION)
2130                 ctrl |= PCI_EXP_IDO_CMP_EN;
2131         if (ctrl)
2132                 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2133 }
2134 EXPORT_SYMBOL(pci_disable_ido);
2135
2136 /**
2137  * pci_enable_obff - enable optimized buffer flush/fill
2138  * @dev: PCI device
2139  * @type: type of signaling to use
2140  *
2141  * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2142  * signaling if possible, falling back to message signaling only if
2143  * WAKE# isn't supported.  @type should indicate whether the PCIe link
2144  * be brought out of L0s or L1 to send the message.  It should be either
2145  * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2146  *
2147  * If your device can benefit from receiving all messages, even at the
2148  * power cost of bringing the link back up from a low power state, use
2149  * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2150  * preferred type).
2151  *
2152  * RETURNS:
2153  * Zero on success, appropriate error number on failure.
2154  */
2155 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2156 {
2157         u32 cap;
2158         u16 ctrl;
2159         int ret;
2160
2161         pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2162         if (!(cap & PCI_EXP_OBFF_MASK))
2163                 return -ENOTSUPP; /* no OBFF support at all */
2164
2165         /* Make sure the topology supports OBFF as well */
2166         if (dev->bus->self) {
2167                 ret = pci_enable_obff(dev->bus->self, type);
2168                 if (ret)
2169                         return ret;
2170         }
2171
2172         pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2173         if (cap & PCI_EXP_OBFF_WAKE)
2174                 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2175         else {
2176                 switch (type) {
2177                 case PCI_EXP_OBFF_SIGNAL_L0:
2178                         if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2179                                 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2180                         break;
2181                 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2182                         ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2183                         ctrl |= PCI_EXP_OBFF_MSGB_EN;
2184                         break;
2185                 default:
2186                         WARN(1, "bad OBFF signal type\n");
2187                         return -ENOTSUPP;
2188                 }
2189         }
2190         pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2191
2192         return 0;
2193 }
2194 EXPORT_SYMBOL(pci_enable_obff);
2195
2196 /**
2197  * pci_disable_obff - disable optimized buffer flush/fill
2198  * @dev: PCI device
2199  *
2200  * Disable OBFF on @dev.
2201  */
2202 void pci_disable_obff(struct pci_dev *dev)
2203 {
2204         pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_OBFF_WAKE_EN);
2205 }
2206 EXPORT_SYMBOL(pci_disable_obff);
2207
2208 /**
2209  * pci_ltr_supported - check whether a device supports LTR
2210  * @dev: PCI device
2211  *
2212  * RETURNS:
2213  * True if @dev supports latency tolerance reporting, false otherwise.
2214  */
2215 static bool pci_ltr_supported(struct pci_dev *dev)
2216 {
2217         u32 cap;
2218
2219         pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2220
2221         return cap & PCI_EXP_DEVCAP2_LTR;
2222 }
2223
2224 /**
2225  * pci_enable_ltr - enable latency tolerance reporting
2226  * @dev: PCI device
2227  *
2228  * Enable LTR on @dev if possible, which means enabling it first on
2229  * upstream ports.
2230  *
2231  * RETURNS:
2232  * Zero on success, errno on failure.
2233  */
2234 int pci_enable_ltr(struct pci_dev *dev)
2235 {
2236         int ret;
2237
2238         /* Only primary function can enable/disable LTR */
2239         if (PCI_FUNC(dev->devfn) != 0)
2240                 return -EINVAL;
2241
2242         if (!pci_ltr_supported(dev))
2243                 return -ENOTSUPP;
2244
2245         /* Enable upstream ports first */
2246         if (dev->bus->self) {
2247                 ret = pci_enable_ltr(dev->bus->self);
2248                 if (ret)
2249                         return ret;
2250         }
2251
2252         return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2253 }
2254 EXPORT_SYMBOL(pci_enable_ltr);
2255
2256 /**
2257  * pci_disable_ltr - disable latency tolerance reporting
2258  * @dev: PCI device
2259  */
2260 void pci_disable_ltr(struct pci_dev *dev)
2261 {
2262         /* Only primary function can enable/disable LTR */
2263         if (PCI_FUNC(dev->devfn) != 0)
2264                 return;
2265
2266         if (!pci_ltr_supported(dev))
2267                 return;
2268
2269         pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2270 }
2271 EXPORT_SYMBOL(pci_disable_ltr);
2272
2273 static int __pci_ltr_scale(int *val)
2274 {
2275         int scale = 0;
2276
2277         while (*val > 1023) {
2278                 *val = (*val + 31) / 32;
2279                 scale++;
2280         }
2281         return scale;
2282 }
2283
2284 /**
2285  * pci_set_ltr - set LTR latency values
2286  * @dev: PCI device
2287  * @snoop_lat_ns: snoop latency in nanoseconds
2288  * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2289  *
2290  * Figure out the scale and set the LTR values accordingly.
2291  */
2292 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2293 {
2294         int pos, ret, snoop_scale, nosnoop_scale;
2295         u16 val;
2296
2297         if (!pci_ltr_supported(dev))
2298                 return -ENOTSUPP;
2299
2300         snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2301         nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2302
2303         if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2304             nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2305                 return -EINVAL;
2306
2307         if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2308             (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2309                 return -EINVAL;
2310
2311         pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2312         if (!pos)
2313                 return -ENOTSUPP;
2314
2315         val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2316         ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2317         if (ret != 4)
2318                 return -EIO;
2319
2320         val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2321         ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2322         if (ret != 4)
2323                 return -EIO;
2324
2325         return 0;
2326 }
2327 EXPORT_SYMBOL(pci_set_ltr);
2328
2329 static int pci_acs_enable;
2330
2331 /**
2332  * pci_request_acs - ask for ACS to be enabled if supported
2333  */
2334 void pci_request_acs(void)
2335 {
2336         pci_acs_enable = 1;
2337 }
2338
2339 /**
2340  * pci_enable_acs - enable ACS if hardware support it
2341  * @dev: the PCI device
2342  */
2343 void pci_enable_acs(struct pci_dev *dev)
2344 {
2345         int pos;
2346         u16 cap;
2347         u16 ctrl;
2348
2349         if (!pci_acs_enable)
2350                 return;
2351
2352         pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2353         if (!pos)
2354                 return;
2355
2356         pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2357         pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2358
2359         /* Source Validation */
2360         ctrl |= (cap & PCI_ACS_SV);
2361
2362         /* P2P Request Redirect */
2363         ctrl |= (cap & PCI_ACS_RR);
2364
2365         /* P2P Completion Redirect */
2366         ctrl |= (cap & PCI_ACS_CR);
2367
2368         /* Upstream Forwarding */
2369         ctrl |= (cap & PCI_ACS_UF);
2370
2371         pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2372 }
2373
2374 /**
2375  * pci_acs_enabled - test ACS against required flags for a given device
2376  * @pdev: device to test
2377  * @acs_flags: required PCI ACS flags
2378  *
2379  * Return true if the device supports the provided flags.  Automatically
2380  * filters out flags that are not implemented on multifunction devices.
2381  */
2382 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2383 {
2384         int pos, ret;
2385         u16 ctrl;
2386
2387         ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2388         if (ret >= 0)
2389                 return ret > 0;
2390
2391         if (!pci_is_pcie(pdev))
2392                 return false;
2393
2394         /* Filter out flags not applicable to multifunction */
2395         if (pdev->multifunction)
2396                 acs_flags &= (PCI_ACS_RR | PCI_ACS_CR |
2397                               PCI_ACS_EC | PCI_ACS_DT);
2398
2399         if (pci_pcie_type(pdev) == PCI_EXP_TYPE_DOWNSTREAM ||
2400             pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT ||
2401             pdev->multifunction) {
2402                 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2403                 if (!pos)
2404                         return false;
2405
2406                 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2407                 if ((ctrl & acs_flags) != acs_flags)
2408                         return false;
2409         }
2410
2411         return true;
2412 }
2413
2414 /**
2415  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2416  * @start: starting downstream device
2417  * @end: ending upstream device or NULL to search to the root bus
2418  * @acs_flags: required flags
2419  *
2420  * Walk up a device tree from start to end testing PCI ACS support.  If
2421  * any step along the way does not support the required flags, return false.
2422  */
2423 bool pci_acs_path_enabled(struct pci_dev *start,
2424                           struct pci_dev *end, u16 acs_flags)
2425 {
2426         struct pci_dev *pdev, *parent = start;
2427
2428         do {
2429                 pdev = parent;
2430
2431                 if (!pci_acs_enabled(pdev, acs_flags))
2432                         return false;
2433
2434                 if (pci_is_root_bus(pdev->bus))
2435                         return (end == NULL);
2436
2437                 parent = pdev->bus->self;
2438         } while (pdev != end);
2439
2440         return true;
2441 }
2442
2443 /**
2444  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2445  * @dev: the PCI device
2446  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2447  *
2448  * Perform INTx swizzling for a device behind one level of bridge.  This is
2449  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2450  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2451  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2452  * the PCI Express Base Specification, Revision 2.1)
2453  */
2454 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2455 {
2456         int slot;
2457
2458         if (pci_ari_enabled(dev->bus))
2459                 slot = 0;
2460         else
2461                 slot = PCI_SLOT(dev->devfn);
2462
2463         return (((pin - 1) + slot) % 4) + 1;
2464 }
2465
2466 int
2467 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2468 {
2469         u8 pin;
2470
2471         pin = dev->pin;
2472         if (!pin)
2473                 return -1;
2474
2475         while (!pci_is_root_bus(dev->bus)) {
2476                 pin = pci_swizzle_interrupt_pin(dev, pin);
2477                 dev = dev->bus->self;
2478         }
2479         *bridge = dev;
2480         return pin;
2481 }
2482
2483 /**
2484  * pci_common_swizzle - swizzle INTx all the way to root bridge
2485  * @dev: the PCI device
2486  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2487  *
2488  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2489  * bridges all the way up to a PCI root bus.
2490  */
2491 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2492 {
2493         u8 pin = *pinp;
2494
2495         while (!pci_is_root_bus(dev->bus)) {
2496                 pin = pci_swizzle_interrupt_pin(dev, pin);
2497                 dev = dev->bus->self;
2498         }
2499         *pinp = pin;
2500         return PCI_SLOT(dev->devfn);
2501 }
2502
2503 /**
2504  *      pci_release_region - Release a PCI bar
2505  *      @pdev: PCI device whose resources were previously reserved by pci_request_region
2506  *      @bar: BAR to release
2507  *
2508  *      Releases the PCI I/O and memory resources previously reserved by a
2509  *      successful call to pci_request_region.  Call this function only
2510  *      after all use of the PCI regions has ceased.
2511  */
2512 void pci_release_region(struct pci_dev *pdev, int bar)
2513 {
2514         struct pci_devres *dr;
2515
2516         if (pci_resource_len(pdev, bar) == 0)
2517                 return;
2518         if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2519                 release_region(pci_resource_start(pdev, bar),
2520                                 pci_resource_len(pdev, bar));
2521         else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2522                 release_mem_region(pci_resource_start(pdev, bar),
2523                                 pci_resource_len(pdev, bar));
2524
2525         dr = find_pci_dr(pdev);
2526         if (dr)
2527                 dr->region_mask &= ~(1 << bar);
2528 }
2529
2530 /**
2531  *      __pci_request_region - Reserved PCI I/O and memory resource
2532  *      @pdev: PCI device whose resources are to be reserved
2533  *      @bar: BAR to be reserved
2534  *      @res_name: Name to be associated with resource.
2535  *      @exclusive: whether the region access is exclusive or not
2536  *
2537  *      Mark the PCI region associated with PCI device @pdev BR @bar as
2538  *      being reserved by owner @res_name.  Do not access any
2539  *      address inside the PCI regions unless this call returns
2540  *      successfully.
2541  *
2542  *      If @exclusive is set, then the region is marked so that userspace
2543  *      is explicitly not allowed to map the resource via /dev/mem or
2544  *      sysfs MMIO access.
2545  *
2546  *      Returns 0 on success, or %EBUSY on error.  A warning
2547  *      message is also printed on failure.
2548  */
2549 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2550                                                                         int exclusive)
2551 {
2552         struct pci_devres *dr;
2553
2554         if (pci_resource_len(pdev, bar) == 0)
2555                 return 0;
2556                 
2557         if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2558                 if (!request_region(pci_resource_start(pdev, bar),
2559                             pci_resource_len(pdev, bar), res_name))
2560                         goto err_out;
2561         }
2562         else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2563                 if (!__request_mem_region(pci_resource_start(pdev, bar),
2564                                         pci_resource_len(pdev, bar), res_name,
2565                                         exclusive))
2566                         goto err_out;
2567         }
2568
2569         dr = find_pci_dr(pdev);
2570         if (dr)
2571                 dr->region_mask |= 1 << bar;
2572
2573         return 0;
2574
2575 err_out:
2576         dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2577                  &pdev->resource[bar]);
2578         return -EBUSY;
2579 }
2580
2581 /**
2582  *      pci_request_region - Reserve PCI I/O and memory resource
2583  *      @pdev: PCI device whose resources are to be reserved
2584  *      @bar: BAR to be reserved
2585  *      @res_name: Name to be associated with resource
2586  *
2587  *      Mark the PCI region associated with PCI device @pdev BAR @bar as
2588  *      being reserved by owner @res_name.  Do not access any
2589  *      address inside the PCI regions unless this call returns
2590  *      successfully.
2591  *
2592  *      Returns 0 on success, or %EBUSY on error.  A warning
2593  *      message is also printed on failure.
2594  */
2595 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2596 {
2597         return __pci_request_region(pdev, bar, res_name, 0);
2598 }
2599
2600 /**
2601  *      pci_request_region_exclusive - Reserved PCI I/O and memory resource
2602  *      @pdev: PCI device whose resources are to be reserved
2603  *      @bar: BAR to be reserved
2604  *      @res_name: Name to be associated with resource.
2605  *
2606  *      Mark the PCI region associated with PCI device @pdev BR @bar as
2607  *      being reserved by owner @res_name.  Do not access any
2608  *      address inside the PCI regions unless this call returns
2609  *      successfully.
2610  *
2611  *      Returns 0 on success, or %EBUSY on error.  A warning
2612  *      message is also printed on failure.
2613  *
2614  *      The key difference that _exclusive makes it that userspace is
2615  *      explicitly not allowed to map the resource via /dev/mem or
2616  *      sysfs.
2617  */
2618 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2619 {
2620         return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2621 }
2622 /**
2623  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2624  * @pdev: PCI device whose resources were previously reserved
2625  * @bars: Bitmask of BARs to be released
2626  *
2627  * Release selected PCI I/O and memory resources previously reserved.
2628  * Call this function only after all use of the PCI regions has ceased.
2629  */
2630 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2631 {
2632         int i;
2633
2634         for (i = 0; i < 6; i++)
2635                 if (bars & (1 << i))
2636                         pci_release_region(pdev, i);
2637 }
2638
2639 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2640                                  const char *res_name, int excl)
2641 {
2642         int i;
2643
2644         for (i = 0; i < 6; i++)
2645                 if (bars & (1 << i))
2646                         if (__pci_request_region(pdev, i, res_name, excl))
2647                                 goto err_out;
2648         return 0;
2649
2650 err_out:
2651         while(--i >= 0)
2652                 if (bars & (1 << i))
2653                         pci_release_region(pdev, i);
2654
2655         return -EBUSY;
2656 }
2657
2658
2659 /**
2660  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2661  * @pdev: PCI device whose resources are to be reserved
2662  * @bars: Bitmask of BARs to be requested
2663  * @res_name: Name to be associated with resource
2664  */
2665 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2666                                  const char *res_name)
2667 {
2668         return __pci_request_selected_regions(pdev, bars, res_name, 0);
2669 }
2670
2671 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2672                                  int bars, const char *res_name)
2673 {
2674         return __pci_request_selected_regions(pdev, bars, res_name,
2675                         IORESOURCE_EXCLUSIVE);
2676 }
2677
2678 /**
2679  *      pci_release_regions - Release reserved PCI I/O and memory resources
2680  *      @pdev: PCI device whose resources were previously reserved by pci_request_regions
2681  *
2682  *      Releases all PCI I/O and memory resources previously reserved by a
2683  *      successful call to pci_request_regions.  Call this function only
2684  *      after all use of the PCI regions has ceased.
2685  */
2686
2687 void pci_release_regions(struct pci_dev *pdev)
2688 {
2689         pci_release_selected_regions(pdev, (1 << 6) - 1);
2690 }
2691
2692 /**
2693  *      pci_request_regions - Reserved PCI I/O and memory resources
2694  *      @pdev: PCI device whose resources are to be reserved
2695  *      @res_name: Name to be associated with resource.
2696  *
2697  *      Mark all PCI regions associated with PCI device @pdev as
2698  *      being reserved by owner @res_name.  Do not access any
2699  *      address inside the PCI regions unless this call returns
2700  *      successfully.
2701  *
2702  *      Returns 0 on success, or %EBUSY on error.  A warning
2703  *      message is also printed on failure.
2704  */
2705 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2706 {
2707         return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2708 }
2709
2710 /**
2711  *      pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2712  *      @pdev: PCI device whose resources are to be reserved
2713  *      @res_name: Name to be associated with resource.
2714  *
2715  *      Mark all PCI regions associated with PCI device @pdev as
2716  *      being reserved by owner @res_name.  Do not access any
2717  *      address inside the PCI regions unless this call returns
2718  *      successfully.
2719  *
2720  *      pci_request_regions_exclusive() will mark the region so that
2721  *      /dev/mem and the sysfs MMIO access will not be allowed.
2722  *
2723  *      Returns 0 on success, or %EBUSY on error.  A warning
2724  *      message is also printed on failure.
2725  */
2726 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2727 {
2728         return pci_request_selected_regions_exclusive(pdev,
2729                                         ((1 << 6) - 1), res_name);
2730 }
2731
2732 static void __pci_set_master(struct pci_dev *dev, bool enable)
2733 {
2734         u16 old_cmd, cmd;
2735
2736         pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2737         if (enable)
2738                 cmd = old_cmd | PCI_COMMAND_MASTER;
2739         else
2740                 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2741         if (cmd != old_cmd) {
2742                 dev_dbg(&dev->dev, "%s bus mastering\n",
2743                         enable ? "enabling" : "disabling");
2744                 pci_write_config_word(dev, PCI_COMMAND, cmd);
2745         }
2746         dev->is_busmaster = enable;
2747 }
2748
2749 /**
2750  * pcibios_setup - process "pci=" kernel boot arguments
2751  * @str: string used to pass in "pci=" kernel boot arguments
2752  *
2753  * Process kernel boot arguments.  This is the default implementation.
2754  * Architecture specific implementations can override this as necessary.
2755  */
2756 char * __weak __init pcibios_setup(char *str)
2757 {
2758         return str;
2759 }
2760
2761 /**
2762  * pcibios_set_master - enable PCI bus-mastering for device dev
2763  * @dev: the PCI device to enable
2764  *
2765  * Enables PCI bus-mastering for the device.  This is the default
2766  * implementation.  Architecture specific implementations can override
2767  * this if necessary.
2768  */
2769 void __weak pcibios_set_master(struct pci_dev *dev)
2770 {
2771         u8 lat;
2772
2773         /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2774         if (pci_is_pcie(dev))
2775                 return;
2776
2777         pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2778         if (lat < 16)
2779                 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2780         else if (lat > pcibios_max_latency)
2781                 lat = pcibios_max_latency;
2782         else
2783                 return;
2784         dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2785         pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2786 }
2787
2788 /**
2789  * pci_set_master - enables bus-mastering for device dev
2790  * @dev: the PCI device to enable
2791  *
2792  * Enables bus-mastering on the device and calls pcibios_set_master()
2793  * to do the needed arch specific settings.
2794  */
2795 void pci_set_master(struct pci_dev *dev)
2796 {
2797         __pci_set_master(dev, true);
2798         pcibios_set_master(dev);
2799 }
2800
2801 /**
2802  * pci_clear_master - disables bus-mastering for device dev
2803  * @dev: the PCI device to disable
2804  */
2805 void pci_clear_master(struct pci_dev *dev)
2806 {
2807         __pci_set_master(dev, false);
2808 }
2809
2810 /**
2811  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2812  * @dev: the PCI device for which MWI is to be enabled
2813  *
2814  * Helper function for pci_set_mwi.
2815  * Originally copied from drivers/net/acenic.c.
2816  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2817  *
2818  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2819  */
2820 int pci_set_cacheline_size(struct pci_dev *dev)
2821 {
2822         u8 cacheline_size;
2823
2824         if (!pci_cache_line_size)
2825                 return -EINVAL;
2826
2827         /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2828            equal to or multiple of the right value. */
2829         pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2830         if (cacheline_size >= pci_cache_line_size &&
2831             (cacheline_size % pci_cache_line_size) == 0)
2832                 return 0;
2833
2834         /* Write the correct value. */
2835         pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2836         /* Read it back. */
2837         pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2838         if (cacheline_size == pci_cache_line_size)
2839                 return 0;
2840
2841         dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2842                    "supported\n", pci_cache_line_size << 2);
2843
2844         return -EINVAL;
2845 }
2846 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2847
2848 #ifdef PCI_DISABLE_MWI
2849 int pci_set_mwi(struct pci_dev *dev)
2850 {
2851         return 0;
2852 }
2853
2854 int pci_try_set_mwi(struct pci_dev *dev)
2855 {
2856         return 0;
2857 }
2858
2859 void pci_clear_mwi(struct pci_dev *dev)
2860 {
2861 }
2862
2863 #else
2864
2865 /**
2866  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2867  * @dev: the PCI device for which MWI is enabled
2868  *
2869  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2870  *
2871  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2872  */
2873 int
2874 pci_set_mwi(struct pci_dev *dev)
2875 {
2876         int rc;
2877         u16 cmd;
2878
2879         rc = pci_set_cacheline_size(dev);
2880         if (rc)
2881                 return rc;
2882
2883         pci_read_config_word(dev, PCI_COMMAND, &cmd);
2884         if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2885                 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2886                 cmd |= PCI_COMMAND_INVALIDATE;
2887                 pci_write_config_word(dev, PCI_COMMAND, cmd);
2888         }
2889         
2890         return 0;
2891 }
2892
2893 /**
2894  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2895  * @dev: the PCI device for which MWI is enabled
2896  *
2897  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2898  * Callers are not required to check the return value.
2899  *
2900  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2901  */
2902 int pci_try_set_mwi(struct pci_dev *dev)
2903 {
2904         int rc = pci_set_mwi(dev);
2905         return rc;
2906 }
2907
2908 /**
2909  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2910  * @dev: the PCI device to disable
2911  *
2912  * Disables PCI Memory-Write-Invalidate transaction on the device
2913  */
2914 void
2915 pci_clear_mwi(struct pci_dev *dev)
2916 {
2917         u16 cmd;
2918
2919         pci_read_config_word(dev, PCI_COMMAND, &cmd);
2920         if (cmd & PCI_COMMAND_INVALIDATE) {
2921                 cmd &= ~PCI_COMMAND_INVALIDATE;
2922                 pci_write_config_word(dev, PCI_COMMAND, cmd);
2923         }
2924 }
2925 #endif /* ! PCI_DISABLE_MWI */
2926
2927 /**
2928  * pci_intx - enables/disables PCI INTx for device dev
2929  * @pdev: the PCI device to operate on
2930  * @enable: boolean: whether to enable or disable PCI INTx
2931  *
2932  * Enables/disables PCI INTx for device dev
2933  */
2934 void
2935 pci_intx(struct pci_dev *pdev, int enable)
2936 {
2937         u16 pci_command, new;
2938
2939         pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2940
2941         if (enable) {
2942                 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2943         } else {
2944                 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2945         }
2946
2947         if (new != pci_command) {
2948                 struct pci_devres *dr;
2949
2950                 pci_write_config_word(pdev, PCI_COMMAND, new);
2951
2952                 dr = find_pci_dr(pdev);
2953                 if (dr && !dr->restore_intx) {
2954                         dr->restore_intx = 1;
2955                         dr->orig_intx = !enable;
2956                 }
2957         }
2958 }
2959
2960 /**
2961  * pci_intx_mask_supported - probe for INTx masking support
2962  * @dev: the PCI device to operate on
2963  *
2964  * Check if the device dev support INTx masking via the config space
2965  * command word.
2966  */
2967 bool pci_intx_mask_supported(struct pci_dev *dev)
2968 {
2969         bool mask_supported = false;
2970         u16 orig, new;
2971
2972         if (dev->broken_intx_masking)
2973                 return false;
2974
2975         pci_cfg_access_lock(dev);
2976
2977         pci_read_config_word(dev, PCI_COMMAND, &orig);
2978         pci_write_config_word(dev, PCI_COMMAND,
2979                               orig ^ PCI_COMMAND_INTX_DISABLE);
2980         pci_read_config_word(dev, PCI_COMMAND, &new);
2981
2982         /*
2983          * There's no way to protect against hardware bugs or detect them
2984          * reliably, but as long as we know what the value should be, let's
2985          * go ahead and check it.
2986          */
2987         if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2988                 dev_err(&dev->dev, "Command register changed from "
2989                         "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2990         } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2991                 mask_supported = true;
2992                 pci_write_config_word(dev, PCI_COMMAND, orig);
2993         }
2994
2995         pci_cfg_access_unlock(dev);
2996         return mask_supported;
2997 }
2998 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2999
3000 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3001 {
3002         struct pci_bus *bus = dev->bus;
3003         bool mask_updated = true;
3004         u32 cmd_status_dword;
3005         u16 origcmd, newcmd;
3006         unsigned long flags;
3007         bool irq_pending;
3008
3009         /*
3010          * We do a single dword read to retrieve both command and status.
3011          * Document assumptions that make this possible.
3012          */
3013         BUILD_BUG_ON(PCI_COMMAND % 4);
3014         BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3015
3016         raw_spin_lock_irqsave(&pci_lock, flags);
3017
3018         bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3019
3020         irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3021
3022         /*
3023          * Check interrupt status register to see whether our device
3024          * triggered the interrupt (when masking) or the next IRQ is
3025          * already pending (when unmasking).
3026          */
3027         if (mask != irq_pending) {
3028                 mask_updated = false;
3029                 goto done;
3030         }
3031
3032         origcmd = cmd_status_dword;
3033         newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3034         if (mask)
3035                 newcmd |= PCI_COMMAND_INTX_DISABLE;
3036         if (newcmd != origcmd)
3037                 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3038
3039 done:
3040         raw_spin_unlock_irqrestore(&pci_lock, flags);
3041
3042         return mask_updated;
3043 }
3044
3045 /**
3046  * pci_check_and_mask_intx - mask INTx on pending interrupt
3047  * @dev: the PCI device to operate on
3048  *
3049  * Check if the device dev has its INTx line asserted, mask it and
3050  * return true in that case. False is returned if not interrupt was
3051  * pending.
3052  */
3053 bool pci_check_and_mask_intx(struct pci_dev *dev)
3054 {
3055         return pci_check_and_set_intx_mask(dev, true);
3056 }
3057 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3058
3059 /**
3060  * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3061  * @dev: the PCI device to operate on
3062  *
3063  * Check if the device dev has its INTx line asserted, unmask it if not
3064  * and return true. False is returned and the mask remains active if
3065  * there was still an interrupt pending.
3066  */
3067 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3068 {
3069         return pci_check_and_set_intx_mask(dev, false);
3070 }
3071 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3072
3073 /**
3074  * pci_msi_off - disables any msi or msix capabilities
3075  * @dev: the PCI device to operate on
3076  *
3077  * If you want to use msi see pci_enable_msi and friends.
3078  * This is a lower level primitive that allows us to disable
3079  * msi operation at the device level.
3080  */
3081 void pci_msi_off(struct pci_dev *dev)
3082 {
3083         int pos;
3084         u16 control;
3085
3086         pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3087         if (pos) {
3088                 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3089                 control &= ~PCI_MSI_FLAGS_ENABLE;
3090                 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3091         }
3092         pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3093         if (pos) {
3094                 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3095                 control &= ~PCI_MSIX_FLAGS_ENABLE;
3096                 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3097         }
3098 }
3099 EXPORT_SYMBOL_GPL(pci_msi_off);
3100
3101 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3102 {
3103         return dma_set_max_seg_size(&dev->dev, size);
3104 }
3105 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3106
3107 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3108 {
3109         return dma_set_seg_boundary(&dev->dev, mask);
3110 }
3111 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3112
3113 static int pcie_flr(struct pci_dev *dev, int probe)
3114 {
3115         int i;
3116         u32 cap;
3117         u16 status;
3118
3119         pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3120         if (!(cap & PCI_EXP_DEVCAP_FLR))
3121                 return -ENOTTY;
3122
3123         if (probe)
3124                 return 0;
3125
3126         /* Wait for Transaction Pending bit clean */
3127         for (i = 0; i < 4; i++) {
3128                 if (i)
3129                         msleep((1 << (i - 1)) * 100);
3130
3131                 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3132                 if (!(status & PCI_EXP_DEVSTA_TRPND))
3133                         goto clear;
3134         }
3135
3136         dev_err(&dev->dev, "transaction is not cleared; "
3137                         "proceeding with reset anyway\n");
3138
3139 clear:
3140         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3141
3142         msleep(100);
3143
3144         return 0;
3145 }
3146
3147 static int pci_af_flr(struct pci_dev *dev, int probe)
3148 {
3149         int i;
3150         int pos;
3151         u8 cap;
3152         u8 status;
3153
3154         pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3155         if (!pos)
3156                 return -ENOTTY;
3157
3158         pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3159         if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3160                 return -ENOTTY;
3161
3162         if (probe)
3163                 return 0;
3164
3165         /* Wait for Transaction Pending bit clean */
3166         for (i = 0; i < 4; i++) {
3167                 if (i)
3168                         msleep((1 << (i - 1)) * 100);
3169
3170                 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3171                 if (!(status & PCI_AF_STATUS_TP))
3172                         goto clear;
3173         }
3174
3175         dev_err(&dev->dev, "transaction is not cleared; "
3176                         "proceeding with reset anyway\n");
3177
3178 clear:
3179         pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3180         msleep(100);
3181
3182         return 0;
3183 }
3184
3185 /**
3186  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3187  * @dev: Device to reset.
3188  * @probe: If set, only check if the device can be reset this way.
3189  *
3190  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3191  * unset, it will be reinitialized internally when going from PCI_D3hot to
3192  * PCI_D0.  If that's the case and the device is not in a low-power state
3193  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3194  *
3195  * NOTE: This causes the caller to sleep for twice the device power transition
3196  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3197  * by devault (i.e. unless the @dev's d3_delay field has a different value).
3198  * Moreover, only devices in D0 can be reset by this function.
3199  */
3200 static int pci_pm_reset(struct pci_dev *dev, int probe)
3201 {
3202         u16 csr;
3203
3204         if (!dev->pm_cap)
3205                 return -ENOTTY;
3206
3207         pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3208         if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3209                 return -ENOTTY;
3210
3211         if (probe)
3212                 return 0;
3213
3214         if (dev->current_state != PCI_D0)
3215                 return -EINVAL;
3216
3217         csr &= ~PCI_PM_CTRL_STATE_MASK;
3218         csr |= PCI_D3hot;
3219         pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3220         pci_dev_d3_sleep(dev);
3221
3222         csr &= ~PCI_PM_CTRL_STATE_MASK;
3223         csr |= PCI_D0;
3224         pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3225         pci_dev_d3_sleep(dev);
3226
3227         return 0;
3228 }
3229
3230 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3231 {
3232         u16 ctrl;
3233         struct pci_dev *pdev;
3234
3235         if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3236                 return -ENOTTY;
3237
3238         list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3239                 if (pdev != dev)
3240                         return -ENOTTY;
3241
3242         if (probe)
3243                 return 0;
3244
3245         pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3246         ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3247         pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3248         msleep(100);
3249
3250         ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3251         pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3252         msleep(100);
3253
3254         return 0;
3255 }
3256
3257 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3258 {
3259         int rc;
3260
3261         might_sleep();
3262
3263         rc = pci_dev_specific_reset(dev, probe);
3264         if (rc != -ENOTTY)
3265                 goto done;
3266
3267         rc = pcie_flr(dev, probe);
3268         if (rc != -ENOTTY)
3269                 goto done;
3270
3271         rc = pci_af_flr(dev, probe);
3272         if (rc != -ENOTTY)
3273                 goto done;
3274
3275         rc = pci_pm_reset(dev, probe);
3276         if (rc != -ENOTTY)
3277                 goto done;
3278
3279         rc = pci_parent_bus_reset(dev, probe);
3280 done:
3281         return rc;
3282 }
3283
3284 static int pci_dev_reset(struct pci_dev *dev, int probe)
3285 {
3286         int rc;
3287
3288         if (!probe) {
3289                 pci_cfg_access_lock(dev);
3290                 /* block PM suspend, driver probe, etc. */
3291                 device_lock(&dev->dev);
3292         }
3293
3294         rc = __pci_dev_reset(dev, probe);
3295
3296         if (!probe) {
3297                 device_unlock(&dev->dev);
3298                 pci_cfg_access_unlock(dev);
3299         }
3300         return rc;
3301 }
3302 /**
3303  * __pci_reset_function - reset a PCI device function
3304  * @dev: PCI device to reset
3305  *
3306  * Some devices allow an individual function to be reset without affecting
3307  * other functions in the same device.  The PCI device must be responsive
3308  * to PCI config space in order to use this function.
3309  *
3310  * The device function is presumed to be unused when this function is called.
3311  * Resetting the device will make the contents of PCI configuration space
3312  * random, so any caller of this must be prepared to reinitialise the
3313  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3314  * etc.
3315  *
3316  * Returns 0 if the device function was successfully reset or negative if the
3317  * device doesn't support resetting a single function.
3318  */
3319 int __pci_reset_function(struct pci_dev *dev)
3320 {
3321         return pci_dev_reset(dev, 0);
3322 }
3323 EXPORT_SYMBOL_GPL(__pci_reset_function);
3324
3325 /**
3326  * __pci_reset_function_locked - reset a PCI device function while holding
3327  * the @dev mutex lock.
3328  * @dev: PCI device to reset
3329  *
3330  * Some devices allow an individual function to be reset without affecting
3331  * other functions in the same device.  The PCI device must be responsive
3332  * to PCI config space in order to use this function.
3333  *
3334  * The device function is presumed to be unused and the caller is holding
3335  * the device mutex lock when this function is called.
3336  * Resetting the device will make the contents of PCI configuration space
3337  * random, so any caller of this must be prepared to reinitialise the
3338  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3339  * etc.
3340  *
3341  * Returns 0 if the device function was successfully reset or negative if the
3342  * device doesn't support resetting a single function.
3343  */
3344 int __pci_reset_function_locked(struct pci_dev *dev)
3345 {
3346         return __pci_dev_reset(dev, 0);
3347 }
3348 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3349
3350 /**
3351  * pci_probe_reset_function - check whether the device can be safely reset
3352  * @dev: PCI device to reset
3353  *
3354  * Some devices allow an individual function to be reset without affecting
3355  * other functions in the same device.  The PCI device must be responsive
3356  * to PCI config space in order to use this function.
3357  *
3358  * Returns 0 if the device function can be reset or negative if the
3359  * device doesn't support resetting a single function.
3360  */
3361 int pci_probe_reset_function(struct pci_dev *dev)
3362 {
3363         return pci_dev_reset(dev, 1);
3364 }
3365
3366 /**
3367  * pci_reset_function - quiesce and reset a PCI device function
3368  * @dev: PCI device to reset
3369  *
3370  * Some devices allow an individual function to be reset without affecting
3371  * other functions in the same device.  The PCI device must be responsive
3372  * to PCI config space in order to use this function.
3373  *
3374  * This function does not just reset the PCI portion of a device, but
3375  * clears all the state associated with the device.  This function differs
3376  * from __pci_reset_function in that it saves and restores device state
3377  * over the reset.
3378  *
3379  * Returns 0 if the device function was successfully reset or negative if the
3380  * device doesn't support resetting a single function.
3381  */
3382 int pci_reset_function(struct pci_dev *dev)
3383 {
3384         int rc;
3385
3386         rc = pci_dev_reset(dev, 1);
3387         if (rc)
3388                 return rc;
3389
3390         pci_save_state(dev);
3391
3392         /*
3393          * both INTx and MSI are disabled after the Interrupt Disable bit
3394          * is set and the Bus Master bit is cleared.
3395          */
3396         pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3397
3398         rc = pci_dev_reset(dev, 0);
3399
3400         pci_restore_state(dev);
3401
3402         return rc;
3403 }
3404 EXPORT_SYMBOL_GPL(pci_reset_function);
3405
3406 /**
3407  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3408  * @dev: PCI device to query
3409  *
3410  * Returns mmrbc: maximum designed memory read count in bytes
3411  *    or appropriate error value.
3412  */
3413 int pcix_get_max_mmrbc(struct pci_dev *dev)
3414 {
3415         int cap;
3416         u32 stat;
3417
3418         cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3419         if (!cap)
3420                 return -EINVAL;
3421
3422         if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3423                 return -EINVAL;
3424
3425         return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3426 }
3427 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3428
3429 /**
3430  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3431  * @dev: PCI device to query
3432  *
3433  * Returns mmrbc: maximum memory read count in bytes
3434  *    or appropriate error value.
3435  */
3436 int pcix_get_mmrbc(struct pci_dev *dev)
3437 {
3438         int cap;
3439         u16 cmd;
3440
3441         cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3442         if (!cap)
3443                 return -EINVAL;
3444
3445         if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3446                 return -EINVAL;
3447
3448         return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3449 }
3450 EXPORT_SYMBOL(pcix_get_mmrbc);
3451
3452 /**
3453  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3454  * @dev: PCI device to query
3455  * @mmrbc: maximum memory read count in bytes
3456  *    valid values are 512, 1024, 2048, 4096
3457  *
3458  * If possible sets maximum memory read byte count, some bridges have erratas
3459  * that prevent this.
3460  */
3461 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3462 {
3463         int cap;
3464         u32 stat, v, o;
3465         u16 cmd;
3466
3467         if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3468                 return -EINVAL;
3469
3470         v = ffs(mmrbc) - 10;
3471
3472         cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3473         if (!cap)
3474                 return -EINVAL;
3475
3476         if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3477                 return -EINVAL;
3478
3479         if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3480                 return -E2BIG;
3481
3482         if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3483                 return -EINVAL;
3484
3485         o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3486         if (o != v) {
3487                 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3488                         return -EIO;
3489
3490                 cmd &= ~PCI_X_CMD_MAX_READ;
3491                 cmd |= v << 2;
3492                 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3493                         return -EIO;
3494         }
3495         return 0;
3496 }
3497 EXPORT_SYMBOL(pcix_set_mmrbc);
3498
3499 /**
3500  * pcie_get_readrq - get PCI Express read request size
3501  * @dev: PCI device to query
3502  *
3503  * Returns maximum memory read request in bytes
3504  *    or appropriate error value.
3505  */
3506 int pcie_get_readrq(struct pci_dev *dev)
3507 {
3508         u16 ctl;
3509
3510         pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3511
3512         return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3513 }
3514 EXPORT_SYMBOL(pcie_get_readrq);
3515
3516 /**
3517  * pcie_set_readrq - set PCI Express maximum memory read request
3518  * @dev: PCI device to query
3519  * @rq: maximum memory read count in bytes
3520  *    valid values are 128, 256, 512, 1024, 2048, 4096
3521  *
3522  * If possible sets maximum memory read request in bytes
3523  */
3524 int pcie_set_readrq(struct pci_dev *dev, int rq)
3525 {
3526         u16 v;
3527
3528         if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3529                 return -EINVAL;
3530
3531         /*
3532          * If using the "performance" PCIe config, we clamp the
3533          * read rq size to the max packet size to prevent the
3534          * host bridge generating requests larger than we can
3535          * cope with
3536          */
3537         if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3538                 int mps = pcie_get_mps(dev);
3539
3540                 if (mps < 0)
3541                         return mps;
3542                 if (mps < rq)
3543                         rq = mps;
3544         }
3545
3546         v = (ffs(rq) - 8) << 12;
3547
3548         return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3549                                                   PCI_EXP_DEVCTL_READRQ, v);
3550 }
3551 EXPORT_SYMBOL(pcie_set_readrq);
3552
3553 /**
3554  * pcie_get_mps - get PCI Express maximum payload size
3555  * @dev: PCI device to query
3556  *
3557  * Returns maximum payload size in bytes
3558  *    or appropriate error value.
3559  */
3560 int pcie_get_mps(struct pci_dev *dev)
3561 {
3562         u16 ctl;
3563
3564         pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3565
3566         return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3567 }
3568
3569 /**
3570  * pcie_set_mps - set PCI Express maximum payload size
3571  * @dev: PCI device to query
3572  * @mps: maximum payload size in bytes
3573  *    valid values are 128, 256, 512, 1024, 2048, 4096
3574  *
3575  * If possible sets maximum payload size
3576  */
3577 int pcie_set_mps(struct pci_dev *dev, int mps)
3578 {
3579         u16 v;
3580
3581         if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3582                 return -EINVAL;
3583
3584         v = ffs(mps) - 8;
3585         if (v > dev->pcie_mpss) 
3586                 return -EINVAL;
3587         v <<= 5;
3588
3589         return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3590                                                   PCI_EXP_DEVCTL_PAYLOAD, v);
3591 }
3592
3593 /**
3594  * pci_select_bars - Make BAR mask from the type of resource
3595  * @dev: the PCI device for which BAR mask is made
3596  * @flags: resource type mask to be selected
3597  *
3598  * This helper routine makes bar mask from the type of resource.
3599  */
3600 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3601 {
3602         int i, bars = 0;
3603         for (i = 0; i < PCI_NUM_RESOURCES; i++)
3604                 if (pci_resource_flags(dev, i) & flags)
3605                         bars |= (1 << i);
3606         return bars;
3607 }
3608
3609 /**
3610  * pci_resource_bar - get position of the BAR associated with a resource
3611  * @dev: the PCI device
3612  * @resno: the resource number
3613  * @type: the BAR type to be filled in
3614  *
3615  * Returns BAR position in config space, or 0 if the BAR is invalid.
3616  */
3617 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3618 {
3619         int reg;
3620
3621         if (resno < PCI_ROM_RESOURCE) {
3622                 *type = pci_bar_unknown;
3623                 return PCI_BASE_ADDRESS_0 + 4 * resno;
3624         } else if (resno == PCI_ROM_RESOURCE) {
3625                 *type = pci_bar_mem32;
3626                 return dev->rom_base_reg;
3627         } else if (resno < PCI_BRIDGE_RESOURCES) {
3628                 /* device specific resource */
3629                 reg = pci_iov_resource_bar(dev, resno, type);
3630                 if (reg)
3631                         return reg;
3632         }
3633
3634         dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3635         return 0;
3636 }
3637
3638 /* Some architectures require additional programming to enable VGA */
3639 static arch_set_vga_state_t arch_set_vga_state;
3640
3641 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3642 {
3643         arch_set_vga_state = func;      /* NULL disables */
3644 }
3645
3646 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3647                       unsigned int command_bits, u32 flags)
3648 {
3649         if (arch_set_vga_state)
3650                 return arch_set_vga_state(dev, decode, command_bits,
3651                                                 flags);
3652         return 0;
3653 }
3654
3655 /**
3656  * pci_set_vga_state - set VGA decode state on device and parents if requested
3657  * @dev: the PCI device
3658  * @decode: true = enable decoding, false = disable decoding
3659  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3660  * @flags: traverse ancestors and change bridges
3661  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3662  */
3663 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3664                       unsigned int command_bits, u32 flags)
3665 {
3666         struct pci_bus *bus;
3667         struct pci_dev *bridge;
3668         u16 cmd;
3669         int rc;
3670
3671         WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3672
3673         /* ARCH specific VGA enables */
3674         rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3675         if (rc)
3676                 return rc;
3677
3678         if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3679                 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3680                 if (decode == true)
3681                         cmd |= command_bits;
3682                 else
3683                         cmd &= ~command_bits;
3684                 pci_write_config_word(dev, PCI_COMMAND, cmd);
3685         }
3686
3687         if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3688                 return 0;
3689
3690         bus = dev->bus;
3691         while (bus) {
3692                 bridge = bus->self;
3693                 if (bridge) {
3694                         pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3695                                              &cmd);
3696                         if (decode == true)
3697                                 cmd |= PCI_BRIDGE_CTL_VGA;
3698                         else
3699                                 cmd &= ~PCI_BRIDGE_CTL_VGA;
3700                         pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3701                                               cmd);
3702                 }
3703                 bus = bus->parent;
3704         }
3705         return 0;
3706 }
3707
3708 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3709 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3710 static DEFINE_SPINLOCK(resource_alignment_lock);
3711
3712 /**
3713  * pci_specified_resource_alignment - get resource alignment specified by user.
3714  * @dev: the PCI device to get
3715  *
3716  * RETURNS: Resource alignment if it is specified.
3717  *          Zero if it is not specified.
3718  */
3719 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3720 {
3721         int seg, bus, slot, func, align_order, count;
3722         resource_size_t align = 0;
3723         char *p;
3724
3725         spin_lock(&resource_alignment_lock);
3726         p = resource_alignment_param;
3727         while (*p) {
3728                 count = 0;
3729                 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3730                                                         p[count] == '@') {
3731                         p += count + 1;
3732                 } else {
3733                         align_order = -1;
3734                 }
3735                 if (sscanf(p, "%x:%x:%x.%x%n",
3736                         &seg, &bus, &slot, &func, &count) != 4) {
3737                         seg = 0;
3738                         if (sscanf(p, "%x:%x.%x%n",
3739                                         &bus, &slot, &func, &count) != 3) {
3740                                 /* Invalid format */
3741                                 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3742                                         p);
3743                                 break;
3744                         }
3745                 }
3746                 p += count;
3747                 if (seg == pci_domain_nr(dev->bus) &&
3748                         bus == dev->bus->number &&
3749                         slot == PCI_SLOT(dev->devfn) &&
3750                         func == PCI_FUNC(dev->devfn)) {
3751                         if (align_order == -1) {
3752                                 align = PAGE_SIZE;
3753                         } else {
3754                                 align = 1 << align_order;
3755                         }
3756                         /* Found */
3757                         break;
3758                 }
3759                 if (*p != ';' && *p != ',') {
3760                         /* End of param or invalid format */
3761                         break;
3762                 }
3763                 p++;
3764         }
3765         spin_unlock(&resource_alignment_lock);
3766         return align;
3767 }
3768
3769 /**
3770  * pci_is_reassigndev - check if specified PCI is target device to reassign
3771  * @dev: the PCI device to check
3772  *
3773  * RETURNS: non-zero for PCI device is a target device to reassign,
3774  *          or zero is not.
3775  */
3776 int pci_is_reassigndev(struct pci_dev *dev)
3777 {
3778         return (pci_specified_resource_alignment(dev) != 0);
3779 }
3780
3781 /*
3782  * This function disables memory decoding and releases memory resources
3783  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3784  * It also rounds up size to specified alignment.
3785  * Later on, the kernel will assign page-aligned memory resource back
3786  * to the device.
3787  */
3788 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3789 {
3790         int i;
3791         struct resource *r;
3792         resource_size_t align, size;
3793         u16 command;
3794
3795         if (!pci_is_reassigndev(dev))
3796                 return;
3797
3798         if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3799             (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3800                 dev_warn(&dev->dev,
3801                         "Can't reassign resources to host bridge.\n");
3802                 return;
3803         }
3804
3805         dev_info(&dev->dev,
3806                 "Disabling memory decoding and releasing memory resources.\n");
3807         pci_read_config_word(dev, PCI_COMMAND, &command);
3808         command &= ~PCI_COMMAND_MEMORY;
3809         pci_write_config_word(dev, PCI_COMMAND, command);
3810
3811         align = pci_specified_resource_alignment(dev);
3812         for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3813                 r = &dev->resource[i];
3814                 if (!(r->flags & IORESOURCE_MEM))
3815                         continue;
3816                 size = resource_size(r);
3817                 if (size < align) {
3818                         size = align;
3819                         dev_info(&dev->dev,
3820                                 "Rounding up size of resource #%d to %#llx.\n",
3821                                 i, (unsigned long long)size);
3822                 }
3823                 r->end = size - 1;
3824                 r->start = 0;
3825         }
3826         /* Need to disable bridge's resource window,
3827          * to enable the kernel to reassign new resource
3828          * window later on.
3829          */
3830         if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3831             (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3832                 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3833                         r = &dev->resource[i];
3834                         if (!(r->flags & IORESOURCE_MEM))
3835                                 continue;
3836                         r->end = resource_size(r) - 1;
3837                         r->start = 0;
3838                 }
3839                 pci_disable_bridge_window(dev);
3840         }
3841 }
3842
3843 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3844 {
3845         if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3846                 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3847         spin_lock(&resource_alignment_lock);
3848         strncpy(resource_alignment_param, buf, count);
3849         resource_alignment_param[count] = '\0';
3850         spin_unlock(&resource_alignment_lock);
3851         return count;
3852 }
3853
3854 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3855 {
3856         size_t count;
3857         spin_lock(&resource_alignment_lock);
3858         count = snprintf(buf, size, "%s", resource_alignment_param);
3859         spin_unlock(&resource_alignment_lock);
3860         return count;
3861 }
3862
3863 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3864 {
3865         return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3866 }
3867
3868 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3869                                         const char *buf, size_t count)
3870 {
3871         return pci_set_resource_alignment_param(buf, count);
3872 }
3873
3874 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3875                                         pci_resource_alignment_store);
3876
3877 static int __init pci_resource_alignment_sysfs_init(void)
3878 {
3879         return bus_create_file(&pci_bus_type,
3880                                         &bus_attr_resource_alignment);
3881 }
3882
3883 late_initcall(pci_resource_alignment_sysfs_init);
3884
3885 static void pci_no_domains(void)
3886 {
3887 #ifdef CONFIG_PCI_DOMAINS
3888         pci_domains_supported = 0;
3889 #endif
3890 }
3891
3892 /**
3893  * pci_ext_cfg_avail - can we access extended PCI config space?
3894  *
3895  * Returns 1 if we can access PCI extended config space (offsets
3896  * greater than 0xff). This is the default implementation. Architecture
3897  * implementations can override this.
3898  */
3899 int __weak pci_ext_cfg_avail(void)
3900 {
3901         return 1;
3902 }
3903
3904 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3905 {
3906 }
3907 EXPORT_SYMBOL(pci_fixup_cardbus);
3908
3909 static int __init pci_setup(char *str)
3910 {
3911         while (str) {
3912                 char *k = strchr(str, ',');
3913                 if (k)
3914                         *k++ = 0;
3915                 if (*str && (str = pcibios_setup(str)) && *str) {
3916                         if (!strcmp(str, "nomsi")) {
3917                                 pci_no_msi();
3918                         } else if (!strcmp(str, "noaer")) {
3919                                 pci_no_aer();
3920                         } else if (!strncmp(str, "realloc=", 8)) {
3921                                 pci_realloc_get_opt(str + 8);
3922                         } else if (!strncmp(str, "realloc", 7)) {
3923                                 pci_realloc_get_opt("on");
3924                         } else if (!strcmp(str, "nodomains")) {
3925                                 pci_no_domains();
3926                         } else if (!strncmp(str, "noari", 5)) {
3927                                 pcie_ari_disabled = true;
3928                         } else if (!strncmp(str, "cbiosize=", 9)) {
3929                                 pci_cardbus_io_size = memparse(str + 9, &str);
3930                         } else if (!strncmp(str, "cbmemsize=", 10)) {
3931                                 pci_cardbus_mem_size = memparse(str + 10, &str);
3932                         } else if (!strncmp(str, "resource_alignment=", 19)) {
3933                                 pci_set_resource_alignment_param(str + 19,
3934                                                         strlen(str + 19));
3935                         } else if (!strncmp(str, "ecrc=", 5)) {
3936                                 pcie_ecrc_get_policy(str + 5);
3937                         } else if (!strncmp(str, "hpiosize=", 9)) {
3938                                 pci_hotplug_io_size = memparse(str + 9, &str);
3939                         } else if (!strncmp(str, "hpmemsize=", 10)) {
3940                                 pci_hotplug_mem_size = memparse(str + 10, &str);
3941                         } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3942                                 pcie_bus_config = PCIE_BUS_TUNE_OFF;
3943                         } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3944                                 pcie_bus_config = PCIE_BUS_SAFE;
3945                         } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3946                                 pcie_bus_config = PCIE_BUS_PERFORMANCE;
3947                         } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3948                                 pcie_bus_config = PCIE_BUS_PEER2PEER;
3949                         } else if (!strncmp(str, "pcie_scan_all", 13)) {
3950                                 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3951                         } else {
3952                                 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3953                                                 str);
3954                         }
3955                 }
3956                 str = k;
3957         }
3958         return 0;
3959 }
3960 early_param("pci", pci_setup);
3961
3962 EXPORT_SYMBOL(pci_reenable_device);
3963 EXPORT_SYMBOL(pci_enable_device_io);
3964 EXPORT_SYMBOL(pci_enable_device_mem);
3965 EXPORT_SYMBOL(pci_enable_device);
3966 EXPORT_SYMBOL(pcim_enable_device);
3967 EXPORT_SYMBOL(pcim_pin_device);
3968 EXPORT_SYMBOL(pci_disable_device);
3969 EXPORT_SYMBOL(pci_find_capability);
3970 EXPORT_SYMBOL(pci_bus_find_capability);
3971 EXPORT_SYMBOL(pci_release_regions);
3972 EXPORT_SYMBOL(pci_request_regions);
3973 EXPORT_SYMBOL(pci_request_regions_exclusive);
3974 EXPORT_SYMBOL(pci_release_region);
3975 EXPORT_SYMBOL(pci_request_region);
3976 EXPORT_SYMBOL(pci_request_region_exclusive);
3977 EXPORT_SYMBOL(pci_release_selected_regions);
3978 EXPORT_SYMBOL(pci_request_selected_regions);
3979 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3980 EXPORT_SYMBOL(pci_set_master);
3981 EXPORT_SYMBOL(pci_clear_master);
3982 EXPORT_SYMBOL(pci_set_mwi);
3983 EXPORT_SYMBOL(pci_try_set_mwi);
3984 EXPORT_SYMBOL(pci_clear_mwi);
3985 EXPORT_SYMBOL_GPL(pci_intx);
3986 EXPORT_SYMBOL(pci_assign_resource);
3987 EXPORT_SYMBOL(pci_find_parent_resource);
3988 EXPORT_SYMBOL(pci_select_bars);
3989
3990 EXPORT_SYMBOL(pci_set_power_state);
3991 EXPORT_SYMBOL(pci_save_state);
3992 EXPORT_SYMBOL(pci_restore_state);
3993 EXPORT_SYMBOL(pci_pme_capable);
3994 EXPORT_SYMBOL(pci_pme_active);
3995 EXPORT_SYMBOL(pci_wake_from_d3);
3996 EXPORT_SYMBOL(pci_target_state);
3997 EXPORT_SYMBOL(pci_prepare_to_sleep);
3998 EXPORT_SYMBOL(pci_back_from_sleep);
3999 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);