1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
37 DEFINE_MUTEX(pci_slot_mutex);
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 EXPORT_SYMBOL_GPL(pci_power_names);
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
50 EXPORT_SYMBOL(pci_pci_problems);
52 unsigned int pci_pm_d3hot_delay;
54 static void pci_pme_list_scan(struct work_struct *work);
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
60 struct pci_pme_device {
61 struct list_head list;
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
69 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
73 /* Use a 20% upper bound, 1ms minimum */
74 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
75 usleep_range(delay_ms * USEC_PER_MSEC,
76 (delay_ms + upper) * USEC_PER_MSEC);
80 bool pci_reset_supported(struct pci_dev *dev)
82 return dev->reset_methods[0] != 0;
85 #ifdef CONFIG_PCI_DOMAINS
86 int pci_domains_supported = 1;
89 #define DEFAULT_CARDBUS_IO_SIZE (256)
90 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
91 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
92 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
93 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
95 #define DEFAULT_HOTPLUG_IO_SIZE (256)
96 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
97 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
98 /* hpiosize=nn can override this */
99 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
101 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
102 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
103 * pci=hpmemsize=nnM overrides both
105 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
106 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
108 #define DEFAULT_HOTPLUG_BUS_SIZE 1
109 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
112 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
113 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
115 #elif defined CONFIG_PCIE_BUS_SAFE
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
117 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
119 #elif defined CONFIG_PCIE_BUS_PEER2PEER
120 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
122 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
126 * The default CLS is used if arch didn't set CLS explicitly and not
127 * all pci devices agree on the same value. Arch can override either
128 * the dfl or actual value as it sees fit. Don't forget this is
129 * measured in 32-bit words, not bytes.
131 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
132 u8 pci_cache_line_size;
135 * If we set up a device for bus mastering, we need to check the latency
136 * timer as certain BIOSes forget to set it properly.
138 unsigned int pcibios_max_latency = 255;
140 /* If set, the PCIe ARI capability will not be used. */
141 static bool pcie_ari_disabled;
143 /* If set, the PCIe ATS capability will not be used. */
144 static bool pcie_ats_disabled;
146 /* If set, the PCI config space of each device is printed during boot. */
149 bool pci_ats_disabled(void)
151 return pcie_ats_disabled;
153 EXPORT_SYMBOL_GPL(pci_ats_disabled);
155 /* Disable bridge_d3 for all PCIe ports */
156 static bool pci_bridge_d3_disable;
157 /* Force bridge_d3 for all PCIe ports */
158 static bool pci_bridge_d3_force;
160 static int __init pcie_port_pm_setup(char *str)
162 if (!strcmp(str, "off"))
163 pci_bridge_d3_disable = true;
164 else if (!strcmp(str, "force"))
165 pci_bridge_d3_force = true;
168 __setup("pcie_port_pm=", pcie_port_pm_setup);
171 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
172 * @bus: pointer to PCI bus structure to search
174 * Given a PCI bus, returns the highest PCI bus number present in the set
175 * including the given PCI bus and its list of child PCI buses.
177 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
180 unsigned char max, n;
182 max = bus->busn_res.end;
183 list_for_each_entry(tmp, &bus->children, node) {
184 n = pci_bus_max_busnr(tmp);
190 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
193 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
194 * @pdev: the PCI device
196 * Returns error bits set in PCI_STATUS and clears them.
198 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
203 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
204 if (ret != PCIBIOS_SUCCESSFUL)
207 status &= PCI_STATUS_ERROR_BITS;
209 pci_write_config_word(pdev, PCI_STATUS, status);
213 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
215 #ifdef CONFIG_HAS_IOMEM
216 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
219 struct resource *res = &pdev->resource[bar];
220 resource_size_t start = res->start;
221 resource_size_t size = resource_size(res);
224 * Make sure the BAR is actually a memory resource, not an IO resource
226 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
227 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
232 return ioremap_wc(start, size);
234 return ioremap(start, size);
237 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
239 return __pci_ioremap_resource(pdev, bar, false);
241 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
243 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
245 return __pci_ioremap_resource(pdev, bar, true);
247 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
251 * pci_dev_str_match_path - test if a path string matches a device
252 * @dev: the PCI device to test
253 * @path: string to match the device against
254 * @endptr: pointer to the string after the match
256 * Test if a string (typically from a kernel parameter) formatted as a
257 * path of device/function addresses matches a PCI device. The string must
260 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
262 * A path for a device can be obtained using 'lspci -t'. Using a path
263 * is more robust against bus renumbering than using only a single bus,
264 * device and function address.
266 * Returns 1 if the string matches the device, 0 if it does not and
267 * a negative error code if it fails to parse the string.
269 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
273 unsigned int seg, bus, slot, func;
277 *endptr = strchrnul(path, ';');
279 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
284 p = strrchr(wpath, '/');
287 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
293 if (dev->devfn != PCI_DEVFN(slot, func)) {
299 * Note: we don't need to get a reference to the upstream
300 * bridge because we hold a reference to the top level
301 * device which should hold a reference to the bridge,
304 dev = pci_upstream_bridge(dev);
313 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
317 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
324 ret = (seg == pci_domain_nr(dev->bus) &&
325 bus == dev->bus->number &&
326 dev->devfn == PCI_DEVFN(slot, func));
334 * pci_dev_str_match - test if a string matches a device
335 * @dev: the PCI device to test
336 * @p: string to match the device against
337 * @endptr: pointer to the string after the match
339 * Test if a string (typically from a kernel parameter) matches a specified
340 * PCI device. The string may be of one of the following formats:
342 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
343 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
345 * The first format specifies a PCI bus/device/function address which
346 * may change if new hardware is inserted, if motherboard firmware changes,
347 * or due to changes caused in kernel parameters. If the domain is
348 * left unspecified, it is taken to be 0. In order to be robust against
349 * bus renumbering issues, a path of PCI device/function numbers may be used
350 * to address the specific device. The path for a device can be determined
351 * through the use of 'lspci -t'.
353 * The second format matches devices using IDs in the configuration
354 * space which may match multiple devices in the system. A value of 0
355 * for any field will match all devices. (Note: this differs from
356 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
357 * legacy reasons and convenience so users don't have to specify
358 * FFFFFFFFs on the command line.)
360 * Returns 1 if the string matches the device, 0 if it does not and
361 * a negative error code if the string cannot be parsed.
363 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
368 unsigned short vendor, device, subsystem_vendor, subsystem_device;
370 if (strncmp(p, "pci:", 4) == 0) {
371 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
373 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
374 &subsystem_vendor, &subsystem_device, &count);
376 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
380 subsystem_vendor = 0;
381 subsystem_device = 0;
386 if ((!vendor || vendor == dev->vendor) &&
387 (!device || device == dev->device) &&
388 (!subsystem_vendor ||
389 subsystem_vendor == dev->subsystem_vendor) &&
390 (!subsystem_device ||
391 subsystem_device == dev->subsystem_device))
395 * PCI Bus, Device, Function IDs are specified
396 * (optionally, may include a path of devfns following it)
398 ret = pci_dev_str_match_path(dev, p, &p);
413 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
414 u8 pos, int cap, int *ttl)
419 pci_bus_read_config_byte(bus, devfn, pos, &pos);
425 pci_bus_read_config_word(bus, devfn, pos, &ent);
437 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
440 int ttl = PCI_FIND_CAP_TTL;
442 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
445 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
447 return __pci_find_next_cap(dev->bus, dev->devfn,
448 pos + PCI_CAP_LIST_NEXT, cap);
450 EXPORT_SYMBOL_GPL(pci_find_next_capability);
452 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
453 unsigned int devfn, u8 hdr_type)
457 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
458 if (!(status & PCI_STATUS_CAP_LIST))
462 case PCI_HEADER_TYPE_NORMAL:
463 case PCI_HEADER_TYPE_BRIDGE:
464 return PCI_CAPABILITY_LIST;
465 case PCI_HEADER_TYPE_CARDBUS:
466 return PCI_CB_CAPABILITY_LIST;
473 * pci_find_capability - query for devices' capabilities
474 * @dev: PCI device to query
475 * @cap: capability code
477 * Tell if a device supports a given PCI capability.
478 * Returns the address of the requested capability structure within the
479 * device's PCI configuration space or 0 in case the device does not
480 * support it. Possible values for @cap include:
482 * %PCI_CAP_ID_PM Power Management
483 * %PCI_CAP_ID_AGP Accelerated Graphics Port
484 * %PCI_CAP_ID_VPD Vital Product Data
485 * %PCI_CAP_ID_SLOTID Slot Identification
486 * %PCI_CAP_ID_MSI Message Signalled Interrupts
487 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
488 * %PCI_CAP_ID_PCIX PCI-X
489 * %PCI_CAP_ID_EXP PCI Express
491 u8 pci_find_capability(struct pci_dev *dev, int cap)
495 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
497 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
501 EXPORT_SYMBOL(pci_find_capability);
504 * pci_bus_find_capability - query for devices' capabilities
505 * @bus: the PCI bus to query
506 * @devfn: PCI device to query
507 * @cap: capability code
509 * Like pci_find_capability() but works for PCI devices that do not have a
510 * pci_dev structure set up yet.
512 * Returns the address of the requested capability structure within the
513 * device's PCI configuration space or 0 in case the device does not
516 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
520 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
522 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
524 pos = __pci_find_next_cap(bus, devfn, pos, cap);
528 EXPORT_SYMBOL(pci_bus_find_capability);
531 * pci_find_next_ext_capability - Find an extended capability
532 * @dev: PCI device to query
533 * @start: address at which to start looking (0 to start at beginning of list)
534 * @cap: capability code
536 * Returns the address of the next matching extended capability structure
537 * within the device's PCI configuration space or 0 if the device does
538 * not support it. Some capabilities can occur several times, e.g., the
539 * vendor-specific capability, and this provides a way to find them all.
541 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
545 u16 pos = PCI_CFG_SPACE_SIZE;
547 /* minimum 8 bytes per capability */
548 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
550 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
556 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
560 * If we have no capabilities, this is indicated by cap ID,
561 * cap version and next pointer all being 0.
567 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
570 pos = PCI_EXT_CAP_NEXT(header);
571 if (pos < PCI_CFG_SPACE_SIZE)
574 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
580 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
583 * pci_find_ext_capability - Find an extended capability
584 * @dev: PCI device to query
585 * @cap: capability code
587 * Returns the address of the requested extended capability structure
588 * within the device's PCI configuration space or 0 if the device does
589 * not support it. Possible values for @cap include:
591 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
592 * %PCI_EXT_CAP_ID_VC Virtual Channel
593 * %PCI_EXT_CAP_ID_DSN Device Serial Number
594 * %PCI_EXT_CAP_ID_PWR Power Budgeting
596 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
598 return pci_find_next_ext_capability(dev, 0, cap);
600 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
603 * pci_get_dsn - Read and return the 8-byte Device Serial Number
604 * @dev: PCI device to query
606 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
609 * Returns the DSN, or zero if the capability does not exist.
611 u64 pci_get_dsn(struct pci_dev *dev)
617 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
622 * The Device Serial Number is two dwords offset 4 bytes from the
623 * capability position. The specification says that the first dword is
624 * the lower half, and the second dword is the upper half.
627 pci_read_config_dword(dev, pos, &dword);
629 pci_read_config_dword(dev, pos + 4, &dword);
630 dsn |= ((u64)dword) << 32;
634 EXPORT_SYMBOL_GPL(pci_get_dsn);
636 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
638 int rc, ttl = PCI_FIND_CAP_TTL;
641 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
642 mask = HT_3BIT_CAP_MASK;
644 mask = HT_5BIT_CAP_MASK;
646 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
647 PCI_CAP_ID_HT, &ttl);
649 rc = pci_read_config_byte(dev, pos + 3, &cap);
650 if (rc != PCIBIOS_SUCCESSFUL)
653 if ((cap & mask) == ht_cap)
656 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
657 pos + PCI_CAP_LIST_NEXT,
658 PCI_CAP_ID_HT, &ttl);
665 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
666 * @dev: PCI device to query
667 * @pos: Position from which to continue searching
668 * @ht_cap: HyperTransport capability code
670 * To be used in conjunction with pci_find_ht_capability() to search for
671 * all capabilities matching @ht_cap. @pos should always be a value returned
672 * from pci_find_ht_capability().
674 * NB. To be 100% safe against broken PCI devices, the caller should take
675 * steps to avoid an infinite loop.
677 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
679 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
681 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
684 * pci_find_ht_capability - query a device's HyperTransport capabilities
685 * @dev: PCI device to query
686 * @ht_cap: HyperTransport capability code
688 * Tell if a device supports a given HyperTransport capability.
689 * Returns an address within the device's PCI configuration space
690 * or 0 in case the device does not support the request capability.
691 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
692 * which has a HyperTransport capability matching @ht_cap.
694 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
698 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
700 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
704 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
707 * pci_find_vsec_capability - Find a vendor-specific extended capability
708 * @dev: PCI device to query
709 * @vendor: Vendor ID for which capability is defined
710 * @cap: Vendor-specific capability ID
712 * If @dev has Vendor ID @vendor, search for a VSEC capability with
713 * VSEC ID @cap. If found, return the capability offset in
714 * config space; otherwise return 0.
716 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
721 if (vendor != dev->vendor)
724 while ((vsec = pci_find_next_ext_capability(dev, vsec,
725 PCI_EXT_CAP_ID_VNDR))) {
726 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
727 &header) == PCIBIOS_SUCCESSFUL &&
728 PCI_VNDR_HEADER_ID(header) == cap)
734 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
737 * pci_find_dvsec_capability - Find DVSEC for vendor
738 * @dev: PCI device to query
739 * @vendor: Vendor ID to match for the DVSEC
740 * @dvsec: Designated Vendor-specific capability ID
742 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
743 * offset in config space; otherwise return 0.
745 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
749 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
756 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
757 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
758 if (vendor == v && dvsec == id)
761 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
766 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
769 * pci_find_parent_resource - return resource region of parent bus of given
771 * @dev: PCI device structure contains resources to be searched
772 * @res: child resource record for which parent is sought
774 * For given resource region of given device, return the resource region of
775 * parent bus the given region is contained in.
777 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
778 struct resource *res)
780 const struct pci_bus *bus = dev->bus;
784 pci_bus_for_each_resource(bus, r, i) {
787 if (resource_contains(r, res)) {
790 * If the window is prefetchable but the BAR is
791 * not, the allocator made a mistake.
793 if (r->flags & IORESOURCE_PREFETCH &&
794 !(res->flags & IORESOURCE_PREFETCH))
798 * If we're below a transparent bridge, there may
799 * be both a positively-decoded aperture and a
800 * subtractively-decoded region that contain the BAR.
801 * We want the positively-decoded one, so this depends
802 * on pci_bus_for_each_resource() giving us those
810 EXPORT_SYMBOL(pci_find_parent_resource);
813 * pci_find_resource - Return matching PCI device resource
814 * @dev: PCI device to query
815 * @res: Resource to look for
817 * Goes over standard PCI resources (BARs) and checks if the given resource
818 * is partially or fully contained in any of them. In that case the
819 * matching resource is returned, %NULL otherwise.
821 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
825 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
826 struct resource *r = &dev->resource[i];
828 if (r->start && resource_contains(r, res))
834 EXPORT_SYMBOL(pci_find_resource);
837 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
838 * @dev: the PCI device to operate on
839 * @pos: config space offset of status word
840 * @mask: mask of bit(s) to care about in status word
842 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
844 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
848 /* Wait for Transaction Pending bit clean */
849 for (i = 0; i < 4; i++) {
852 msleep((1 << (i - 1)) * 100);
854 pci_read_config_word(dev, pos, &status);
855 if (!(status & mask))
862 static int pci_acs_enable;
865 * pci_request_acs - ask for ACS to be enabled if supported
867 void pci_request_acs(void)
872 static const char *disable_acs_redir_param;
875 * pci_disable_acs_redir - disable ACS redirect capabilities
876 * @dev: the PCI device
878 * For only devices specified in the disable_acs_redir parameter.
880 static void pci_disable_acs_redir(struct pci_dev *dev)
887 if (!disable_acs_redir_param)
890 p = disable_acs_redir_param;
892 ret = pci_dev_str_match(dev, p, &p);
894 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
895 disable_acs_redir_param);
898 } else if (ret == 1) {
903 if (*p != ';' && *p != ',') {
904 /* End of param or invalid format */
913 if (!pci_dev_specific_disable_acs_redir(dev))
918 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
922 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
924 /* P2P Request & Completion Redirect */
925 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
927 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
929 pci_info(dev, "disabled ACS redirect\n");
933 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
934 * @dev: the PCI device
936 static void pci_std_enable_acs(struct pci_dev *dev)
946 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
947 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
949 /* Source Validation */
950 ctrl |= (cap & PCI_ACS_SV);
952 /* P2P Request Redirect */
953 ctrl |= (cap & PCI_ACS_RR);
955 /* P2P Completion Redirect */
956 ctrl |= (cap & PCI_ACS_CR);
958 /* Upstream Forwarding */
959 ctrl |= (cap & PCI_ACS_UF);
961 /* Enable Translation Blocking for external devices and noats */
962 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
963 ctrl |= (cap & PCI_ACS_TB);
965 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
969 * pci_enable_acs - enable ACS if hardware support it
970 * @dev: the PCI device
972 static void pci_enable_acs(struct pci_dev *dev)
975 goto disable_acs_redir;
977 if (!pci_dev_specific_enable_acs(dev))
978 goto disable_acs_redir;
980 pci_std_enable_acs(dev);
984 * Note: pci_disable_acs_redir() must be called even if ACS was not
985 * enabled by the kernel because it may have been enabled by
986 * platform firmware. So if we are told to disable it, we should
987 * always disable it after setting the kernel's default
990 pci_disable_acs_redir(dev);
994 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
995 * @dev: PCI device to have its BARs restored
997 * Restore the BAR values for a given device, so as to make it
998 * accessible by its driver.
1000 static void pci_restore_bars(struct pci_dev *dev)
1004 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1005 pci_update_resource(dev, i);
1008 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1010 if (pci_use_mid_pm())
1013 return acpi_pci_power_manageable(dev);
1016 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1019 if (pci_use_mid_pm())
1020 return mid_pci_set_power_state(dev, t);
1022 return acpi_pci_set_power_state(dev, t);
1025 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1027 if (pci_use_mid_pm())
1028 return mid_pci_get_power_state(dev);
1030 return acpi_pci_get_power_state(dev);
1033 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1035 if (!pci_use_mid_pm())
1036 acpi_pci_refresh_power_state(dev);
1039 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1041 if (pci_use_mid_pm())
1042 return PCI_POWER_ERROR;
1044 return acpi_pci_choose_state(dev);
1047 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1049 if (pci_use_mid_pm())
1050 return PCI_POWER_ERROR;
1052 return acpi_pci_wakeup(dev, enable);
1055 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1057 if (pci_use_mid_pm())
1060 return acpi_pci_need_resume(dev);
1063 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1065 if (pci_use_mid_pm())
1068 return acpi_pci_bridge_d3(dev);
1072 * pci_update_current_state - Read power state of given device and cache it
1073 * @dev: PCI device to handle.
1074 * @state: State to cache in case the device doesn't have the PM capability
1076 * The power state is read from the PMCSR register, which however is
1077 * inaccessible in D3cold. The platform firmware is therefore queried first
1078 * to detect accessibility of the register. In case the platform firmware
1079 * reports an incorrect state or the device isn't power manageable by the
1080 * platform at all, we try to detect D3cold by testing accessibility of the
1081 * vendor ID in config space.
1083 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1085 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1086 dev->current_state = PCI_D3cold;
1087 } else if (dev->pm_cap) {
1090 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1091 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1092 dev->current_state = PCI_D3cold;
1095 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1097 dev->current_state = state;
1102 * pci_refresh_power_state - Refresh the given device's power state data
1103 * @dev: Target PCI device.
1105 * Ask the platform to refresh the devices power state information and invoke
1106 * pci_update_current_state() to update its current PCI power state.
1108 void pci_refresh_power_state(struct pci_dev *dev)
1110 platform_pci_refresh_power_state(dev);
1111 pci_update_current_state(dev, dev->current_state);
1115 * pci_platform_power_transition - Use platform to change device power state
1116 * @dev: PCI device to handle.
1117 * @state: State to put the device into.
1119 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1123 error = platform_pci_set_power_state(dev, state);
1125 pci_update_current_state(dev, state);
1126 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1127 dev->current_state = PCI_D0;
1131 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1133 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1135 pm_request_resume(&pci_dev->dev);
1140 * pci_resume_bus - Walk given bus and runtime resume devices on it
1141 * @bus: Top bus of the subtree to walk.
1143 void pci_resume_bus(struct pci_bus *bus)
1146 pci_walk_bus(bus, pci_resume_one, NULL);
1149 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1155 * After reset, the device should not silently discard config
1156 * requests, but it may still indicate that it needs more time by
1157 * responding to them with CRS completions. The Root Port will
1158 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1159 * the read (except when CRS SV is enabled and the read was for the
1160 * Vendor ID; in that case it synthesizes 0x0001 data).
1162 * Wait for the device to return a non-CRS completion. Read the
1163 * Command register instead of Vendor ID so we don't have to
1164 * contend with the CRS SV value.
1166 pci_read_config_dword(dev, PCI_COMMAND, &id);
1167 while (PCI_POSSIBLE_ERROR(id)) {
1168 if (delay > timeout) {
1169 pci_warn(dev, "not ready %dms after %s; giving up\n",
1170 delay - 1, reset_type);
1174 if (delay > PCI_RESET_WAIT)
1175 pci_info(dev, "not ready %dms after %s; waiting\n",
1176 delay - 1, reset_type);
1180 pci_read_config_dword(dev, PCI_COMMAND, &id);
1183 if (delay > PCI_RESET_WAIT)
1184 pci_info(dev, "ready %dms after %s\n", delay - 1,
1191 * pci_power_up - Put the given device into D0
1192 * @dev: PCI device to power up
1194 * On success, return 0 or 1, depending on whether or not it is necessary to
1195 * restore the device's BARs subsequently (1 is returned in that case).
1197 int pci_power_up(struct pci_dev *dev)
1203 platform_pci_set_power_state(dev, PCI_D0);
1206 state = platform_pci_get_power_state(dev);
1207 if (state == PCI_UNKNOWN)
1208 dev->current_state = PCI_D0;
1210 dev->current_state = state;
1212 if (state == PCI_D0)
1218 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1219 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1220 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1221 pci_power_name(dev->current_state));
1222 dev->current_state = PCI_D3cold;
1226 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1228 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1229 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1231 if (state == PCI_D0)
1235 * Force the entire word to 0. This doesn't affect PME_Status, disables
1236 * PME_En, and sets PowerState to 0.
1238 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1240 /* Mandatory transition delays; see PCI PM 1.2. */
1241 if (state == PCI_D3hot)
1242 pci_dev_d3_sleep(dev);
1243 else if (state == PCI_D2)
1244 udelay(PCI_PM_D2_DELAY);
1247 dev->current_state = PCI_D0;
1255 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1256 * @dev: PCI device to power up
1258 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1259 * to confirm the state change, restore its BARs if they might be lost and
1260 * reconfigure ASPM in acordance with the new power state.
1262 * If pci_restore_state() is going to be called right after a power state change
1263 * to D0, it is more efficient to use pci_power_up() directly instead of this
1266 static int pci_set_full_power_state(struct pci_dev *dev)
1271 ret = pci_power_up(dev);
1275 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1276 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1277 if (dev->current_state != PCI_D0) {
1278 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1279 pci_power_name(dev->current_state));
1280 } else if (ret > 0) {
1282 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1283 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1284 * from D3hot to D0 _may_ perform an internal reset, thereby
1285 * going to "D0 Uninitialized" rather than "D0 Initialized".
1286 * For example, at least some versions of the 3c905B and the
1287 * 3c556B exhibit this behaviour.
1289 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1290 * devices in a D3hot state at boot. Consequently, we need to
1291 * restore at least the BARs so that the device will be
1292 * accessible to its driver.
1294 pci_restore_bars(dev);
1301 * __pci_dev_set_current_state - Set current state of a PCI device
1302 * @dev: Device to handle
1303 * @data: pointer to state to be set
1305 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1307 pci_power_t state = *(pci_power_t *)data;
1309 dev->current_state = state;
1314 * pci_bus_set_current_state - Walk given bus and set current state of devices
1315 * @bus: Top bus of the subtree to walk.
1316 * @state: state to be set
1318 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1321 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1325 * pci_set_low_power_state - Put a PCI device into a low-power state.
1326 * @dev: PCI device to handle.
1327 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1329 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1332 * -EINVAL if the requested state is invalid.
1333 * -EIO if device does not support PCI PM or its PM capabilities register has a
1334 * wrong version, or device doesn't support the requested state.
1335 * 0 if device already is in the requested state.
1336 * 0 if device's power state has been successfully changed.
1338 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1346 * Validate transition: We can enter D0 from any state, but if
1347 * we're already in a low-power state, we can only go deeper. E.g.,
1348 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1349 * we'd have to go from D3 to D0, then to D1.
1351 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1352 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1353 pci_power_name(dev->current_state),
1354 pci_power_name(state));
1358 /* Check if this device supports the desired state */
1359 if ((state == PCI_D1 && !dev->d1_support)
1360 || (state == PCI_D2 && !dev->d2_support))
1363 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1364 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1365 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1366 pci_power_name(dev->current_state),
1367 pci_power_name(state));
1368 dev->current_state = PCI_D3cold;
1372 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1375 /* Enter specified state */
1376 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1378 /* Mandatory power management transition delays; see PCI PM 1.2. */
1379 if (state == PCI_D3hot)
1380 pci_dev_d3_sleep(dev);
1381 else if (state == PCI_D2)
1382 udelay(PCI_PM_D2_DELAY);
1384 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1385 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1386 if (dev->current_state != state)
1387 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1388 pci_power_name(dev->current_state),
1389 pci_power_name(state));
1395 * pci_set_power_state - Set the power state of a PCI device
1396 * @dev: PCI device to handle.
1397 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1399 * Transition a device to a new power state, using the platform firmware and/or
1400 * the device's PCI PM registers.
1403 * -EINVAL if the requested state is invalid.
1404 * -EIO if device does not support PCI PM or its PM capabilities register has a
1405 * wrong version, or device doesn't support the requested state.
1406 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1407 * 0 if device already is in the requested state.
1408 * 0 if the transition is to D3 but D3 is not supported.
1409 * 0 if device's power state has been successfully changed.
1411 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1415 /* Bound the state we're entering */
1416 if (state > PCI_D3cold)
1418 else if (state < PCI_D0)
1420 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1423 * If the device or the parent bridge do not support PCI
1424 * PM, ignore the request if we're doing anything other
1425 * than putting it into D0 (which would only happen on
1430 /* Check if we're already there */
1431 if (dev->current_state == state)
1434 if (state == PCI_D0)
1435 return pci_set_full_power_state(dev);
1438 * This device is quirked not to be put into D3, so don't put it in
1441 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1444 if (state == PCI_D3cold) {
1446 * To put the device in D3cold, put it into D3hot in the native
1447 * way, then put it into D3cold using platform ops.
1449 error = pci_set_low_power_state(dev, PCI_D3hot);
1451 if (pci_platform_power_transition(dev, PCI_D3cold))
1454 /* Powering off a bridge may power off the whole hierarchy */
1455 if (dev->current_state == PCI_D3cold)
1456 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1458 error = pci_set_low_power_state(dev, state);
1460 if (pci_platform_power_transition(dev, state))
1466 EXPORT_SYMBOL(pci_set_power_state);
1468 #define PCI_EXP_SAVE_REGS 7
1470 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1471 u16 cap, bool extended)
1473 struct pci_cap_saved_state *tmp;
1475 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1476 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1482 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1484 return _pci_find_saved_cap(dev, cap, false);
1487 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1489 return _pci_find_saved_cap(dev, cap, true);
1492 static int pci_save_pcie_state(struct pci_dev *dev)
1495 struct pci_cap_saved_state *save_state;
1498 if (!pci_is_pcie(dev))
1501 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1503 pci_err(dev, "buffer not found in %s\n", __func__);
1507 cap = (u16 *)&save_state->cap.data[0];
1508 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1509 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1510 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1511 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1512 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1513 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1514 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1519 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1521 #ifdef CONFIG_PCIEASPM
1522 struct pci_dev *bridge;
1525 bridge = pci_upstream_bridge(dev);
1526 if (bridge && bridge->ltr_path) {
1527 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1528 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1529 pci_dbg(bridge, "re-enabling LTR\n");
1530 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1531 PCI_EXP_DEVCTL2_LTR_EN);
1537 static void pci_restore_pcie_state(struct pci_dev *dev)
1540 struct pci_cap_saved_state *save_state;
1543 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1548 * Downstream ports reset the LTR enable bit when link goes down.
1549 * Check and re-configure the bit here before restoring device.
1550 * PCIe r5.0, sec 7.5.3.16.
1552 pci_bridge_reconfigure_ltr(dev);
1554 cap = (u16 *)&save_state->cap.data[0];
1555 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1556 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1557 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1558 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1559 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1560 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1561 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1564 static int pci_save_pcix_state(struct pci_dev *dev)
1567 struct pci_cap_saved_state *save_state;
1569 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1573 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1575 pci_err(dev, "buffer not found in %s\n", __func__);
1579 pci_read_config_word(dev, pos + PCI_X_CMD,
1580 (u16 *)save_state->cap.data);
1585 static void pci_restore_pcix_state(struct pci_dev *dev)
1588 struct pci_cap_saved_state *save_state;
1591 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1592 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1593 if (!save_state || !pos)
1595 cap = (u16 *)&save_state->cap.data[0];
1597 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1600 static void pci_save_ltr_state(struct pci_dev *dev)
1603 struct pci_cap_saved_state *save_state;
1606 if (!pci_is_pcie(dev))
1609 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1613 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1615 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1619 /* Some broken devices only support dword access to LTR */
1620 cap = &save_state->cap.data[0];
1621 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1624 static void pci_restore_ltr_state(struct pci_dev *dev)
1626 struct pci_cap_saved_state *save_state;
1630 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1631 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1632 if (!save_state || !ltr)
1635 /* Some broken devices only support dword access to LTR */
1636 cap = &save_state->cap.data[0];
1637 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1641 * pci_save_state - save the PCI configuration space of a device before
1643 * @dev: PCI device that we're dealing with
1645 int pci_save_state(struct pci_dev *dev)
1648 /* XXX: 100% dword access ok here? */
1649 for (i = 0; i < 16; i++) {
1650 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1651 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1652 i * 4, dev->saved_config_space[i]);
1654 dev->state_saved = true;
1656 i = pci_save_pcie_state(dev);
1660 i = pci_save_pcix_state(dev);
1664 pci_save_ltr_state(dev);
1665 pci_save_dpc_state(dev);
1666 pci_save_aer_state(dev);
1667 pci_save_ptm_state(dev);
1668 return pci_save_vc_state(dev);
1670 EXPORT_SYMBOL(pci_save_state);
1672 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1673 u32 saved_val, int retry, bool force)
1677 pci_read_config_dword(pdev, offset, &val);
1678 if (!force && val == saved_val)
1682 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1683 offset, val, saved_val);
1684 pci_write_config_dword(pdev, offset, saved_val);
1688 pci_read_config_dword(pdev, offset, &val);
1689 if (val == saved_val)
1696 static void pci_restore_config_space_range(struct pci_dev *pdev,
1697 int start, int end, int retry,
1702 for (index = end; index >= start; index--)
1703 pci_restore_config_dword(pdev, 4 * index,
1704 pdev->saved_config_space[index],
1708 static void pci_restore_config_space(struct pci_dev *pdev)
1710 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1711 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1712 /* Restore BARs before the command register. */
1713 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1714 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1715 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1716 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1719 * Force rewriting of prefetch registers to avoid S3 resume
1720 * issues on Intel PCI bridges that occur when these
1721 * registers are not explicitly written.
1723 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1724 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1726 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1730 static void pci_restore_rebar_state(struct pci_dev *pdev)
1732 unsigned int pos, nbars, i;
1735 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1739 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1740 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1741 PCI_REBAR_CTRL_NBAR_SHIFT;
1743 for (i = 0; i < nbars; i++, pos += 8) {
1744 struct resource *res;
1747 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1748 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1749 res = pdev->resource + bar_idx;
1750 size = pci_rebar_bytes_to_size(resource_size(res));
1751 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1752 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1753 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1758 * pci_restore_state - Restore the saved state of a PCI device
1759 * @dev: PCI device that we're dealing with
1761 void pci_restore_state(struct pci_dev *dev)
1763 if (!dev->state_saved)
1767 * Restore max latencies (in the LTR capability) before enabling
1768 * LTR itself (in the PCIe capability).
1770 pci_restore_ltr_state(dev);
1772 pci_restore_pcie_state(dev);
1773 pci_restore_pasid_state(dev);
1774 pci_restore_pri_state(dev);
1775 pci_restore_ats_state(dev);
1776 pci_restore_vc_state(dev);
1777 pci_restore_rebar_state(dev);
1778 pci_restore_dpc_state(dev);
1779 pci_restore_ptm_state(dev);
1781 pci_aer_clear_status(dev);
1782 pci_restore_aer_state(dev);
1784 pci_restore_config_space(dev);
1786 pci_restore_pcix_state(dev);
1787 pci_restore_msi_state(dev);
1789 /* Restore ACS and IOV configuration state */
1790 pci_enable_acs(dev);
1791 pci_restore_iov_state(dev);
1793 dev->state_saved = false;
1795 EXPORT_SYMBOL(pci_restore_state);
1797 struct pci_saved_state {
1798 u32 config_space[16];
1799 struct pci_cap_saved_data cap[];
1803 * pci_store_saved_state - Allocate and return an opaque struct containing
1804 * the device saved state.
1805 * @dev: PCI device that we're dealing with
1807 * Return NULL if no state or error.
1809 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1811 struct pci_saved_state *state;
1812 struct pci_cap_saved_state *tmp;
1813 struct pci_cap_saved_data *cap;
1816 if (!dev->state_saved)
1819 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1821 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1822 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1824 state = kzalloc(size, GFP_KERNEL);
1828 memcpy(state->config_space, dev->saved_config_space,
1829 sizeof(state->config_space));
1832 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1833 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1834 memcpy(cap, &tmp->cap, len);
1835 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1837 /* Empty cap_save terminates list */
1841 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1844 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1845 * @dev: PCI device that we're dealing with
1846 * @state: Saved state returned from pci_store_saved_state()
1848 int pci_load_saved_state(struct pci_dev *dev,
1849 struct pci_saved_state *state)
1851 struct pci_cap_saved_data *cap;
1853 dev->state_saved = false;
1858 memcpy(dev->saved_config_space, state->config_space,
1859 sizeof(state->config_space));
1863 struct pci_cap_saved_state *tmp;
1865 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1866 if (!tmp || tmp->cap.size != cap->size)
1869 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1870 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1871 sizeof(struct pci_cap_saved_data) + cap->size);
1874 dev->state_saved = true;
1877 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1880 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1881 * and free the memory allocated for it.
1882 * @dev: PCI device that we're dealing with
1883 * @state: Pointer to saved state returned from pci_store_saved_state()
1885 int pci_load_and_free_saved_state(struct pci_dev *dev,
1886 struct pci_saved_state **state)
1888 int ret = pci_load_saved_state(dev, *state);
1893 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1895 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1897 return pci_enable_resources(dev, bars);
1900 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1903 struct pci_dev *bridge;
1907 err = pci_set_power_state(dev, PCI_D0);
1908 if (err < 0 && err != -EIO)
1911 bridge = pci_upstream_bridge(dev);
1913 pcie_aspm_powersave_config_link(bridge);
1915 err = pcibios_enable_device(dev, bars);
1918 pci_fixup_device(pci_fixup_enable, dev);
1920 if (dev->msi_enabled || dev->msix_enabled)
1923 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1925 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1926 if (cmd & PCI_COMMAND_INTX_DISABLE)
1927 pci_write_config_word(dev, PCI_COMMAND,
1928 cmd & ~PCI_COMMAND_INTX_DISABLE);
1935 * pci_reenable_device - Resume abandoned device
1936 * @dev: PCI device to be resumed
1938 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1939 * to be called by normal code, write proper resume handler and use it instead.
1941 int pci_reenable_device(struct pci_dev *dev)
1943 if (pci_is_enabled(dev))
1944 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1947 EXPORT_SYMBOL(pci_reenable_device);
1949 static void pci_enable_bridge(struct pci_dev *dev)
1951 struct pci_dev *bridge;
1954 bridge = pci_upstream_bridge(dev);
1956 pci_enable_bridge(bridge);
1958 if (pci_is_enabled(dev)) {
1959 if (!dev->is_busmaster)
1960 pci_set_master(dev);
1964 retval = pci_enable_device(dev);
1966 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1968 pci_set_master(dev);
1971 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1973 struct pci_dev *bridge;
1978 * Power state could be unknown at this point, either due to a fresh
1979 * boot or a device removal call. So get the current power state
1980 * so that things like MSI message writing will behave as expected
1981 * (e.g. if the device really is in D0 at enable time).
1983 pci_update_current_state(dev, dev->current_state);
1985 if (atomic_inc_return(&dev->enable_cnt) > 1)
1986 return 0; /* already enabled */
1988 bridge = pci_upstream_bridge(dev);
1990 pci_enable_bridge(bridge);
1992 /* only skip sriov related */
1993 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1994 if (dev->resource[i].flags & flags)
1996 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1997 if (dev->resource[i].flags & flags)
2000 err = do_pci_enable_device(dev, bars);
2002 atomic_dec(&dev->enable_cnt);
2007 * pci_enable_device_io - Initialize a device for use with IO space
2008 * @dev: PCI device to be initialized
2010 * Initialize device before it's used by a driver. Ask low-level code
2011 * to enable I/O resources. Wake up the device if it was suspended.
2012 * Beware, this function can fail.
2014 int pci_enable_device_io(struct pci_dev *dev)
2016 return pci_enable_device_flags(dev, IORESOURCE_IO);
2018 EXPORT_SYMBOL(pci_enable_device_io);
2021 * pci_enable_device_mem - Initialize a device for use with Memory space
2022 * @dev: PCI device to be initialized
2024 * Initialize device before it's used by a driver. Ask low-level code
2025 * to enable Memory resources. Wake up the device if it was suspended.
2026 * Beware, this function can fail.
2028 int pci_enable_device_mem(struct pci_dev *dev)
2030 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2032 EXPORT_SYMBOL(pci_enable_device_mem);
2035 * pci_enable_device - Initialize device before it's used by a driver.
2036 * @dev: PCI device to be initialized
2038 * Initialize device before it's used by a driver. Ask low-level code
2039 * to enable I/O and memory. Wake up the device if it was suspended.
2040 * Beware, this function can fail.
2042 * Note we don't actually enable the device many times if we call
2043 * this function repeatedly (we just increment the count).
2045 int pci_enable_device(struct pci_dev *dev)
2047 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2049 EXPORT_SYMBOL(pci_enable_device);
2052 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2053 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2054 * there's no need to track it separately. pci_devres is initialized
2055 * when a device is enabled using managed PCI device enable interface.
2058 unsigned int enabled:1;
2059 unsigned int pinned:1;
2060 unsigned int orig_intx:1;
2061 unsigned int restore_intx:1;
2066 static void pcim_release(struct device *gendev, void *res)
2068 struct pci_dev *dev = to_pci_dev(gendev);
2069 struct pci_devres *this = res;
2072 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2073 if (this->region_mask & (1 << i))
2074 pci_release_region(dev, i);
2079 if (this->restore_intx)
2080 pci_intx(dev, this->orig_intx);
2082 if (this->enabled && !this->pinned)
2083 pci_disable_device(dev);
2086 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2088 struct pci_devres *dr, *new_dr;
2090 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2094 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2097 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2100 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2102 if (pci_is_managed(pdev))
2103 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2108 * pcim_enable_device - Managed pci_enable_device()
2109 * @pdev: PCI device to be initialized
2111 * Managed pci_enable_device().
2113 int pcim_enable_device(struct pci_dev *pdev)
2115 struct pci_devres *dr;
2118 dr = get_pci_dr(pdev);
2124 rc = pci_enable_device(pdev);
2126 pdev->is_managed = 1;
2131 EXPORT_SYMBOL(pcim_enable_device);
2134 * pcim_pin_device - Pin managed PCI device
2135 * @pdev: PCI device to pin
2137 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2138 * driver detach. @pdev must have been enabled with
2139 * pcim_enable_device().
2141 void pcim_pin_device(struct pci_dev *pdev)
2143 struct pci_devres *dr;
2145 dr = find_pci_dr(pdev);
2146 WARN_ON(!dr || !dr->enabled);
2150 EXPORT_SYMBOL(pcim_pin_device);
2153 * pcibios_device_add - provide arch specific hooks when adding device dev
2154 * @dev: the PCI device being added
2156 * Permits the platform to provide architecture specific functionality when
2157 * devices are added. This is the default implementation. Architecture
2158 * implementations can override this.
2160 int __weak pcibios_device_add(struct pci_dev *dev)
2166 * pcibios_release_device - provide arch specific hooks when releasing
2168 * @dev: the PCI device being released
2170 * Permits the platform to provide architecture specific functionality when
2171 * devices are released. This is the default implementation. Architecture
2172 * implementations can override this.
2174 void __weak pcibios_release_device(struct pci_dev *dev) {}
2177 * pcibios_disable_device - disable arch specific PCI resources for device dev
2178 * @dev: the PCI device to disable
2180 * Disables architecture specific PCI resources for the device. This
2181 * is the default implementation. Architecture implementations can
2184 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2187 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2188 * @irq: ISA IRQ to penalize
2189 * @active: IRQ active or not
2191 * Permits the platform to provide architecture-specific functionality when
2192 * penalizing ISA IRQs. This is the default implementation. Architecture
2193 * implementations can override this.
2195 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2197 static void do_pci_disable_device(struct pci_dev *dev)
2201 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2202 if (pci_command & PCI_COMMAND_MASTER) {
2203 pci_command &= ~PCI_COMMAND_MASTER;
2204 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2207 pcibios_disable_device(dev);
2211 * pci_disable_enabled_device - Disable device without updating enable_cnt
2212 * @dev: PCI device to disable
2214 * NOTE: This function is a backend of PCI power management routines and is
2215 * not supposed to be called drivers.
2217 void pci_disable_enabled_device(struct pci_dev *dev)
2219 if (pci_is_enabled(dev))
2220 do_pci_disable_device(dev);
2224 * pci_disable_device - Disable PCI device after use
2225 * @dev: PCI device to be disabled
2227 * Signal to the system that the PCI device is not in use by the system
2228 * anymore. This only involves disabling PCI bus-mastering, if active.
2230 * Note we don't actually disable the device until all callers of
2231 * pci_enable_device() have called pci_disable_device().
2233 void pci_disable_device(struct pci_dev *dev)
2235 struct pci_devres *dr;
2237 dr = find_pci_dr(dev);
2241 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2242 "disabling already-disabled device");
2244 if (atomic_dec_return(&dev->enable_cnt) != 0)
2247 do_pci_disable_device(dev);
2249 dev->is_busmaster = 0;
2251 EXPORT_SYMBOL(pci_disable_device);
2254 * pcibios_set_pcie_reset_state - set reset state for device dev
2255 * @dev: the PCIe device reset
2256 * @state: Reset state to enter into
2258 * Set the PCIe reset state for the device. This is the default
2259 * implementation. Architecture implementations can override this.
2261 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2262 enum pcie_reset_state state)
2268 * pci_set_pcie_reset_state - set reset state for device dev
2269 * @dev: the PCIe device reset
2270 * @state: Reset state to enter into
2272 * Sets the PCI reset state for the device.
2274 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2276 return pcibios_set_pcie_reset_state(dev, state);
2278 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2280 #ifdef CONFIG_PCIEAER
2281 void pcie_clear_device_status(struct pci_dev *dev)
2285 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2286 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2291 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2292 * @dev: PCIe root port or event collector.
2294 void pcie_clear_root_pme_status(struct pci_dev *dev)
2296 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2300 * pci_check_pme_status - Check if given device has generated PME.
2301 * @dev: Device to check.
2303 * Check the PME status of the device and if set, clear it and clear PME enable
2304 * (if set). Return 'true' if PME status and PME enable were both set or
2305 * 'false' otherwise.
2307 bool pci_check_pme_status(struct pci_dev *dev)
2316 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2317 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2318 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2321 /* Clear PME status. */
2322 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2323 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2324 /* Disable PME to avoid interrupt flood. */
2325 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2329 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2335 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2336 * @dev: Device to handle.
2337 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2339 * Check if @dev has generated PME and queue a resume request for it in that
2342 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2344 if (pme_poll_reset && dev->pme_poll)
2345 dev->pme_poll = false;
2347 if (pci_check_pme_status(dev)) {
2348 pci_wakeup_event(dev);
2349 pm_request_resume(&dev->dev);
2355 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2356 * @bus: Top bus of the subtree to walk.
2358 void pci_pme_wakeup_bus(struct pci_bus *bus)
2361 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2366 * pci_pme_capable - check the capability of PCI device to generate PME#
2367 * @dev: PCI device to handle.
2368 * @state: PCI state from which device will issue PME#.
2370 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2375 return !!(dev->pme_support & (1 << state));
2377 EXPORT_SYMBOL(pci_pme_capable);
2379 static void pci_pme_list_scan(struct work_struct *work)
2381 struct pci_pme_device *pme_dev, *n;
2383 mutex_lock(&pci_pme_list_mutex);
2384 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2385 if (pme_dev->dev->pme_poll) {
2386 struct pci_dev *bridge;
2388 bridge = pme_dev->dev->bus->self;
2390 * If bridge is in low power state, the
2391 * configuration space of subordinate devices
2392 * may be not accessible
2394 if (bridge && bridge->current_state != PCI_D0)
2397 * If the device is in D3cold it should not be
2400 if (pme_dev->dev->current_state == PCI_D3cold)
2403 pci_pme_wakeup(pme_dev->dev, NULL);
2405 list_del(&pme_dev->list);
2409 if (!list_empty(&pci_pme_list))
2410 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2411 msecs_to_jiffies(PME_TIMEOUT));
2412 mutex_unlock(&pci_pme_list_mutex);
2415 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2419 if (!dev->pme_support)
2422 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2423 /* Clear PME_Status by writing 1 to it and enable PME# */
2424 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2426 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2428 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2432 * pci_pme_restore - Restore PME configuration after config space restore.
2433 * @dev: PCI device to update.
2435 void pci_pme_restore(struct pci_dev *dev)
2439 if (!dev->pme_support)
2442 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2443 if (dev->wakeup_prepared) {
2444 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2445 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2447 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2448 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2450 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2454 * pci_pme_active - enable or disable PCI device's PME# function
2455 * @dev: PCI device to handle.
2456 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2458 * The caller must verify that the device is capable of generating PME# before
2459 * calling this function with @enable equal to 'true'.
2461 void pci_pme_active(struct pci_dev *dev, bool enable)
2463 __pci_pme_active(dev, enable);
2466 * PCI (as opposed to PCIe) PME requires that the device have
2467 * its PME# line hooked up correctly. Not all hardware vendors
2468 * do this, so the PME never gets delivered and the device
2469 * remains asleep. The easiest way around this is to
2470 * periodically walk the list of suspended devices and check
2471 * whether any have their PME flag set. The assumption is that
2472 * we'll wake up often enough anyway that this won't be a huge
2473 * hit, and the power savings from the devices will still be a
2476 * Although PCIe uses in-band PME message instead of PME# line
2477 * to report PME, PME does not work for some PCIe devices in
2478 * reality. For example, there are devices that set their PME
2479 * status bits, but don't really bother to send a PME message;
2480 * there are PCI Express Root Ports that don't bother to
2481 * trigger interrupts when they receive PME messages from the
2482 * devices below. So PME poll is used for PCIe devices too.
2485 if (dev->pme_poll) {
2486 struct pci_pme_device *pme_dev;
2488 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2491 pci_warn(dev, "can't enable PME#\n");
2495 mutex_lock(&pci_pme_list_mutex);
2496 list_add(&pme_dev->list, &pci_pme_list);
2497 if (list_is_singular(&pci_pme_list))
2498 queue_delayed_work(system_freezable_wq,
2500 msecs_to_jiffies(PME_TIMEOUT));
2501 mutex_unlock(&pci_pme_list_mutex);
2503 mutex_lock(&pci_pme_list_mutex);
2504 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2505 if (pme_dev->dev == dev) {
2506 list_del(&pme_dev->list);
2511 mutex_unlock(&pci_pme_list_mutex);
2515 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2517 EXPORT_SYMBOL(pci_pme_active);
2520 * __pci_enable_wake - enable PCI device as wakeup event source
2521 * @dev: PCI device affected
2522 * @state: PCI state from which device will issue wakeup events
2523 * @enable: True to enable event generation; false to disable
2525 * This enables the device as a wakeup event source, or disables it.
2526 * When such events involves platform-specific hooks, those hooks are
2527 * called automatically by this routine.
2529 * Devices with legacy power management (no standard PCI PM capabilities)
2530 * always require such platform hooks.
2533 * 0 is returned on success
2534 * -EINVAL is returned if device is not supposed to wake up the system
2535 * Error code depending on the platform is returned if both the platform and
2536 * the native mechanism fail to enable the generation of wake-up events
2538 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2543 * Bridges that are not power-manageable directly only signal
2544 * wakeup on behalf of subordinate devices which is set up
2545 * elsewhere, so skip them. However, bridges that are
2546 * power-manageable may signal wakeup for themselves (for example,
2547 * on a hotplug event) and they need to be covered here.
2549 if (!pci_power_manageable(dev))
2552 /* Don't do the same thing twice in a row for one device. */
2553 if (!!enable == !!dev->wakeup_prepared)
2557 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2558 * Anderson we should be doing PME# wake enable followed by ACPI wake
2559 * enable. To disable wake-up we call the platform first, for symmetry.
2566 * Enable PME signaling if the device can signal PME from
2567 * D3cold regardless of whether or not it can signal PME from
2568 * the current target state, because that will allow it to
2569 * signal PME when the hierarchy above it goes into D3cold and
2570 * the device itself ends up in D3cold as a result of that.
2572 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2573 pci_pme_active(dev, true);
2576 error = platform_pci_set_wakeup(dev, true);
2580 dev->wakeup_prepared = true;
2582 platform_pci_set_wakeup(dev, false);
2583 pci_pme_active(dev, false);
2584 dev->wakeup_prepared = false;
2591 * pci_enable_wake - change wakeup settings for a PCI device
2592 * @pci_dev: Target device
2593 * @state: PCI state from which device will issue wakeup events
2594 * @enable: Whether or not to enable event generation
2596 * If @enable is set, check device_may_wakeup() for the device before calling
2597 * __pci_enable_wake() for it.
2599 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2601 if (enable && !device_may_wakeup(&pci_dev->dev))
2604 return __pci_enable_wake(pci_dev, state, enable);
2606 EXPORT_SYMBOL(pci_enable_wake);
2609 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2610 * @dev: PCI device to prepare
2611 * @enable: True to enable wake-up event generation; false to disable
2613 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2614 * and this function allows them to set that up cleanly - pci_enable_wake()
2615 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2616 * ordering constraints.
2618 * This function only returns error code if the device is not allowed to wake
2619 * up the system from sleep or it is not capable of generating PME# from both
2620 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2622 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2624 return pci_pme_capable(dev, PCI_D3cold) ?
2625 pci_enable_wake(dev, PCI_D3cold, enable) :
2626 pci_enable_wake(dev, PCI_D3hot, enable);
2628 EXPORT_SYMBOL(pci_wake_from_d3);
2631 * pci_target_state - find an appropriate low power state for a given PCI dev
2633 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2635 * Use underlying platform code to find a supported low power state for @dev.
2636 * If the platform can't manage @dev, return the deepest state from which it
2637 * can generate wake events, based on any available PME info.
2639 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2641 if (platform_pci_power_manageable(dev)) {
2643 * Call the platform to find the target state for the device.
2645 pci_power_t state = platform_pci_choose_state(dev);
2648 case PCI_POWER_ERROR:
2654 if (pci_no_d1d2(dev))
2662 * If the device is in D3cold even though it's not power-manageable by
2663 * the platform, it may have been powered down by non-standard means.
2664 * Best to let it slumber.
2666 if (dev->current_state == PCI_D3cold)
2668 else if (!dev->pm_cap)
2671 if (wakeup && dev->pme_support) {
2672 pci_power_t state = PCI_D3hot;
2675 * Find the deepest state from which the device can generate
2678 while (state && !(dev->pme_support & (1 << state)))
2683 else if (dev->pme_support & 1)
2691 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2692 * into a sleep state
2693 * @dev: Device to handle.
2695 * Choose the power state appropriate for the device depending on whether
2696 * it can wake up the system and/or is power manageable by the platform
2697 * (PCI_D3hot is the default) and put the device into that state.
2699 int pci_prepare_to_sleep(struct pci_dev *dev)
2701 bool wakeup = device_may_wakeup(&dev->dev);
2702 pci_power_t target_state = pci_target_state(dev, wakeup);
2705 if (target_state == PCI_POWER_ERROR)
2708 pci_enable_wake(dev, target_state, wakeup);
2710 error = pci_set_power_state(dev, target_state);
2713 pci_enable_wake(dev, target_state, false);
2717 EXPORT_SYMBOL(pci_prepare_to_sleep);
2720 * pci_back_from_sleep - turn PCI device on during system-wide transition
2721 * into working state
2722 * @dev: Device to handle.
2724 * Disable device's system wake-up capability and put it into D0.
2726 int pci_back_from_sleep(struct pci_dev *dev)
2728 int ret = pci_set_power_state(dev, PCI_D0);
2733 pci_enable_wake(dev, PCI_D0, false);
2736 EXPORT_SYMBOL(pci_back_from_sleep);
2739 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2740 * @dev: PCI device being suspended.
2742 * Prepare @dev to generate wake-up events at run time and put it into a low
2745 int pci_finish_runtime_suspend(struct pci_dev *dev)
2747 pci_power_t target_state;
2750 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2751 if (target_state == PCI_POWER_ERROR)
2754 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2756 error = pci_set_power_state(dev, target_state);
2759 pci_enable_wake(dev, target_state, false);
2765 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2766 * @dev: Device to check.
2768 * Return true if the device itself is capable of generating wake-up events
2769 * (through the platform or using the native PCIe PME) or if the device supports
2770 * PME and one of its upstream bridges can generate wake-up events.
2772 bool pci_dev_run_wake(struct pci_dev *dev)
2774 struct pci_bus *bus = dev->bus;
2776 if (!dev->pme_support)
2779 /* PME-capable in principle, but not from the target power state */
2780 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2783 if (device_can_wakeup(&dev->dev))
2786 while (bus->parent) {
2787 struct pci_dev *bridge = bus->self;
2789 if (device_can_wakeup(&bridge->dev))
2795 /* We have reached the root bus. */
2797 return device_can_wakeup(bus->bridge);
2801 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2804 * pci_dev_need_resume - Check if it is necessary to resume the device.
2805 * @pci_dev: Device to check.
2807 * Return 'true' if the device is not runtime-suspended or it has to be
2808 * reconfigured due to wakeup settings difference between system and runtime
2809 * suspend, or the current power state of it is not suitable for the upcoming
2810 * (system-wide) transition.
2812 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2814 struct device *dev = &pci_dev->dev;
2815 pci_power_t target_state;
2817 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2820 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2823 * If the earlier platform check has not triggered, D3cold is just power
2824 * removal on top of D3hot, so no need to resume the device in that
2827 return target_state != pci_dev->current_state &&
2828 target_state != PCI_D3cold &&
2829 pci_dev->current_state != PCI_D3hot;
2833 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2834 * @pci_dev: Device to check.
2836 * If the device is suspended and it is not configured for system wakeup,
2837 * disable PME for it to prevent it from waking up the system unnecessarily.
2839 * Note that if the device's power state is D3cold and the platform check in
2840 * pci_dev_need_resume() has not triggered, the device's configuration need not
2843 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2845 struct device *dev = &pci_dev->dev;
2847 spin_lock_irq(&dev->power.lock);
2849 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2850 pci_dev->current_state < PCI_D3cold)
2851 __pci_pme_active(pci_dev, false);
2853 spin_unlock_irq(&dev->power.lock);
2857 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2858 * @pci_dev: Device to handle.
2860 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2861 * it might have been disabled during the prepare phase of system suspend if
2862 * the device was not configured for system wakeup.
2864 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2866 struct device *dev = &pci_dev->dev;
2868 if (!pci_dev_run_wake(pci_dev))
2871 spin_lock_irq(&dev->power.lock);
2873 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2874 __pci_pme_active(pci_dev, true);
2876 spin_unlock_irq(&dev->power.lock);
2880 * pci_choose_state - Choose the power state of a PCI device.
2881 * @dev: Target PCI device.
2882 * @state: Target state for the whole system.
2884 * Returns PCI power state suitable for @dev and @state.
2886 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2888 if (state.event == PM_EVENT_ON)
2891 return pci_target_state(dev, false);
2893 EXPORT_SYMBOL(pci_choose_state);
2895 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2897 struct device *dev = &pdev->dev;
2898 struct device *parent = dev->parent;
2901 pm_runtime_get_sync(parent);
2902 pm_runtime_get_noresume(dev);
2904 * pdev->current_state is set to PCI_D3cold during suspending,
2905 * so wait until suspending completes
2907 pm_runtime_barrier(dev);
2909 * Only need to resume devices in D3cold, because config
2910 * registers are still accessible for devices suspended but
2913 if (pdev->current_state == PCI_D3cold)
2914 pm_runtime_resume(dev);
2917 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2919 struct device *dev = &pdev->dev;
2920 struct device *parent = dev->parent;
2922 pm_runtime_put(dev);
2924 pm_runtime_put_sync(parent);
2927 static const struct dmi_system_id bridge_d3_blacklist[] = {
2931 * Gigabyte X299 root port is not marked as hotplug capable
2932 * which allows Linux to power manage it. However, this
2933 * confuses the BIOS SMI handler so don't power manage root
2934 * ports on that system.
2936 .ident = "X299 DESIGNARE EX-CF",
2938 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2939 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2944 * Downstream device is not accessible after putting a root port
2945 * into D3cold and back into D0 on Elo i2.
2949 DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2950 DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2951 DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2959 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2960 * @bridge: Bridge to check
2962 * This function checks if it is possible to move the bridge to D3.
2963 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2965 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2967 if (!pci_is_pcie(bridge))
2970 switch (pci_pcie_type(bridge)) {
2971 case PCI_EXP_TYPE_ROOT_PORT:
2972 case PCI_EXP_TYPE_UPSTREAM:
2973 case PCI_EXP_TYPE_DOWNSTREAM:
2974 if (pci_bridge_d3_disable)
2978 * Hotplug ports handled by firmware in System Management Mode
2979 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2981 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2984 if (pci_bridge_d3_force)
2987 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2988 if (bridge->is_thunderbolt)
2991 /* Platform might know better if the bridge supports D3 */
2992 if (platform_pci_bridge_d3(bridge))
2996 * Hotplug ports handled natively by the OS were not validated
2997 * by vendors for runtime D3 at least until 2018 because there
2998 * was no OS support.
3000 if (bridge->is_hotplug_bridge)
3003 if (dmi_check_system(bridge_d3_blacklist))
3007 * It should be safe to put PCIe ports from 2015 or newer
3010 if (dmi_get_bios_year() >= 2015)
3018 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3020 bool *d3cold_ok = data;
3022 if (/* The device needs to be allowed to go D3cold ... */
3023 dev->no_d3cold || !dev->d3cold_allowed ||
3025 /* ... and if it is wakeup capable to do so from D3cold. */
3026 (device_may_wakeup(&dev->dev) &&
3027 !pci_pme_capable(dev, PCI_D3cold)) ||
3029 /* If it is a bridge it must be allowed to go to D3. */
3030 !pci_power_manageable(dev))
3038 * pci_bridge_d3_update - Update bridge D3 capabilities
3039 * @dev: PCI device which is changed
3041 * Update upstream bridge PM capabilities accordingly depending on if the
3042 * device PM configuration was changed or the device is being removed. The
3043 * change is also propagated upstream.
3045 void pci_bridge_d3_update(struct pci_dev *dev)
3047 bool remove = !device_is_registered(&dev->dev);
3048 struct pci_dev *bridge;
3049 bool d3cold_ok = true;
3051 bridge = pci_upstream_bridge(dev);
3052 if (!bridge || !pci_bridge_d3_possible(bridge))
3056 * If D3 is currently allowed for the bridge, removing one of its
3057 * children won't change that.
3059 if (remove && bridge->bridge_d3)
3063 * If D3 is currently allowed for the bridge and a child is added or
3064 * changed, disallowance of D3 can only be caused by that child, so
3065 * we only need to check that single device, not any of its siblings.
3067 * If D3 is currently not allowed for the bridge, checking the device
3068 * first may allow us to skip checking its siblings.
3071 pci_dev_check_d3cold(dev, &d3cold_ok);
3074 * If D3 is currently not allowed for the bridge, this may be caused
3075 * either by the device being changed/removed or any of its siblings,
3076 * so we need to go through all children to find out if one of them
3077 * continues to block D3.
3079 if (d3cold_ok && !bridge->bridge_d3)
3080 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3083 if (bridge->bridge_d3 != d3cold_ok) {
3084 bridge->bridge_d3 = d3cold_ok;
3085 /* Propagate change to upstream bridges */
3086 pci_bridge_d3_update(bridge);
3091 * pci_d3cold_enable - Enable D3cold for device
3092 * @dev: PCI device to handle
3094 * This function can be used in drivers to enable D3cold from the device
3095 * they handle. It also updates upstream PCI bridge PM capabilities
3098 void pci_d3cold_enable(struct pci_dev *dev)
3100 if (dev->no_d3cold) {
3101 dev->no_d3cold = false;
3102 pci_bridge_d3_update(dev);
3105 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3108 * pci_d3cold_disable - Disable D3cold for device
3109 * @dev: PCI device to handle
3111 * This function can be used in drivers to disable D3cold from the device
3112 * they handle. It also updates upstream PCI bridge PM capabilities
3115 void pci_d3cold_disable(struct pci_dev *dev)
3117 if (!dev->no_d3cold) {
3118 dev->no_d3cold = true;
3119 pci_bridge_d3_update(dev);
3122 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3125 * pci_pm_init - Initialize PM functions of given PCI device
3126 * @dev: PCI device to handle.
3128 void pci_pm_init(struct pci_dev *dev)
3134 pm_runtime_forbid(&dev->dev);
3135 pm_runtime_set_active(&dev->dev);
3136 pm_runtime_enable(&dev->dev);
3137 device_enable_async_suspend(&dev->dev);
3138 dev->wakeup_prepared = false;
3141 dev->pme_support = 0;
3143 /* find PCI PM capability in list */
3144 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3147 /* Check device's ability to generate PME# */
3148 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3150 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3151 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3152 pmc & PCI_PM_CAP_VER_MASK);
3157 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3158 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3159 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3160 dev->d3cold_allowed = true;
3162 dev->d1_support = false;
3163 dev->d2_support = false;
3164 if (!pci_no_d1d2(dev)) {
3165 if (pmc & PCI_PM_CAP_D1)
3166 dev->d1_support = true;
3167 if (pmc & PCI_PM_CAP_D2)
3168 dev->d2_support = true;
3170 if (dev->d1_support || dev->d2_support)
3171 pci_info(dev, "supports%s%s\n",
3172 dev->d1_support ? " D1" : "",
3173 dev->d2_support ? " D2" : "");
3176 pmc &= PCI_PM_CAP_PME_MASK;
3178 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3179 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3180 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3181 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3182 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3183 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3184 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3185 dev->pme_poll = true;
3187 * Make device's PM flags reflect the wake-up capability, but
3188 * let the user space enable it to wake up the system as needed.
3190 device_set_wakeup_capable(&dev->dev, true);
3191 /* Disable the PME# generation functionality */
3192 pci_pme_active(dev, false);
3195 pci_read_config_word(dev, PCI_STATUS, &status);
3196 if (status & PCI_STATUS_IMM_READY)
3200 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3202 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3206 case PCI_EA_P_VF_MEM:
3207 flags |= IORESOURCE_MEM;
3209 case PCI_EA_P_MEM_PREFETCH:
3210 case PCI_EA_P_VF_MEM_PREFETCH:
3211 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3214 flags |= IORESOURCE_IO;
3223 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3226 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3227 return &dev->resource[bei];
3228 #ifdef CONFIG_PCI_IOV
3229 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3230 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3231 return &dev->resource[PCI_IOV_RESOURCES +
3232 bei - PCI_EA_BEI_VF_BAR0];
3234 else if (bei == PCI_EA_BEI_ROM)
3235 return &dev->resource[PCI_ROM_RESOURCE];
3240 /* Read an Enhanced Allocation (EA) entry */
3241 static int pci_ea_read(struct pci_dev *dev, int offset)
3243 struct resource *res;
3244 int ent_size, ent_offset = offset;
3245 resource_size_t start, end;
3246 unsigned long flags;
3247 u32 dw0, bei, base, max_offset;
3249 bool support_64 = (sizeof(resource_size_t) >= 8);
3251 pci_read_config_dword(dev, ent_offset, &dw0);
3254 /* Entry size field indicates DWORDs after 1st */
3255 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3257 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3260 bei = (dw0 & PCI_EA_BEI) >> 4;
3261 prop = (dw0 & PCI_EA_PP) >> 8;
3264 * If the Property is in the reserved range, try the Secondary
3267 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3268 prop = (dw0 & PCI_EA_SP) >> 16;
3269 if (prop > PCI_EA_P_BRIDGE_IO)
3272 res = pci_ea_get_resource(dev, bei, prop);
3274 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3278 flags = pci_ea_flags(dev, prop);
3280 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3285 pci_read_config_dword(dev, ent_offset, &base);
3286 start = (base & PCI_EA_FIELD_MASK);
3289 /* Read MaxOffset */
3290 pci_read_config_dword(dev, ent_offset, &max_offset);
3293 /* Read Base MSBs (if 64-bit entry) */
3294 if (base & PCI_EA_IS_64) {
3297 pci_read_config_dword(dev, ent_offset, &base_upper);
3300 flags |= IORESOURCE_MEM_64;
3302 /* entry starts above 32-bit boundary, can't use */
3303 if (!support_64 && base_upper)
3307 start |= ((u64)base_upper << 32);
3310 end = start + (max_offset | 0x03);
3312 /* Read MaxOffset MSBs (if 64-bit entry) */
3313 if (max_offset & PCI_EA_IS_64) {
3314 u32 max_offset_upper;
3316 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3319 flags |= IORESOURCE_MEM_64;
3321 /* entry too big, can't use */
3322 if (!support_64 && max_offset_upper)
3326 end += ((u64)max_offset_upper << 32);
3330 pci_err(dev, "EA Entry crosses address boundary\n");
3334 if (ent_size != ent_offset - offset) {
3335 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3336 ent_size, ent_offset - offset);
3340 res->name = pci_name(dev);
3345 if (bei <= PCI_EA_BEI_BAR5)
3346 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3348 else if (bei == PCI_EA_BEI_ROM)
3349 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3351 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3352 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3353 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3355 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3359 return offset + ent_size;
3362 /* Enhanced Allocation Initialization */
3363 void pci_ea_init(struct pci_dev *dev)
3370 /* find PCI EA capability in list */
3371 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3375 /* determine the number of entries */
3376 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3378 num_ent &= PCI_EA_NUM_ENT_MASK;
3380 offset = ea + PCI_EA_FIRST_ENT;
3382 /* Skip DWORD 2 for type 1 functions */
3383 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3386 /* parse each EA entry */
3387 for (i = 0; i < num_ent; ++i)
3388 offset = pci_ea_read(dev, offset);
3391 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3392 struct pci_cap_saved_state *new_cap)
3394 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3398 * _pci_add_cap_save_buffer - allocate buffer for saving given
3399 * capability registers
3400 * @dev: the PCI device
3401 * @cap: the capability to allocate the buffer for
3402 * @extended: Standard or Extended capability ID
3403 * @size: requested size of the buffer
3405 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3406 bool extended, unsigned int size)
3409 struct pci_cap_saved_state *save_state;
3412 pos = pci_find_ext_capability(dev, cap);
3414 pos = pci_find_capability(dev, cap);
3419 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3423 save_state->cap.cap_nr = cap;
3424 save_state->cap.cap_extended = extended;
3425 save_state->cap.size = size;
3426 pci_add_saved_cap(dev, save_state);
3431 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3433 return _pci_add_cap_save_buffer(dev, cap, false, size);
3436 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3438 return _pci_add_cap_save_buffer(dev, cap, true, size);
3442 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3443 * @dev: the PCI device
3445 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3449 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3450 PCI_EXP_SAVE_REGS * sizeof(u16));
3452 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3454 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3456 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3458 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3461 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3463 pci_allocate_vc_save_buffers(dev);
3466 void pci_free_cap_save_buffers(struct pci_dev *dev)
3468 struct pci_cap_saved_state *tmp;
3469 struct hlist_node *n;
3471 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3476 * pci_configure_ari - enable or disable ARI forwarding
3477 * @dev: the PCI device
3479 * If @dev and its upstream bridge both support ARI, enable ARI in the
3480 * bridge. Otherwise, disable ARI in the bridge.
3482 void pci_configure_ari(struct pci_dev *dev)
3485 struct pci_dev *bridge;
3487 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3490 bridge = dev->bus->self;
3494 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3495 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3498 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3499 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3500 PCI_EXP_DEVCTL2_ARI);
3501 bridge->ari_enabled = 1;
3503 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3504 PCI_EXP_DEVCTL2_ARI);
3505 bridge->ari_enabled = 0;
3509 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3514 pos = pdev->acs_cap;
3519 * Except for egress control, capabilities are either required
3520 * or only required if controllable. Features missing from the
3521 * capability field can therefore be assumed as hard-wired enabled.
3523 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3524 acs_flags &= (cap | PCI_ACS_EC);
3526 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3527 return (ctrl & acs_flags) == acs_flags;
3531 * pci_acs_enabled - test ACS against required flags for a given device
3532 * @pdev: device to test
3533 * @acs_flags: required PCI ACS flags
3535 * Return true if the device supports the provided flags. Automatically
3536 * filters out flags that are not implemented on multifunction devices.
3538 * Note that this interface checks the effective ACS capabilities of the
3539 * device rather than the actual capabilities. For instance, most single
3540 * function endpoints are not required to support ACS because they have no
3541 * opportunity for peer-to-peer access. We therefore return 'true'
3542 * regardless of whether the device exposes an ACS capability. This makes
3543 * it much easier for callers of this function to ignore the actual type
3544 * or topology of the device when testing ACS support.
3546 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3550 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3555 * Conventional PCI and PCI-X devices never support ACS, either
3556 * effectively or actually. The shared bus topology implies that
3557 * any device on the bus can receive or snoop DMA.
3559 if (!pci_is_pcie(pdev))
3562 switch (pci_pcie_type(pdev)) {
3564 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3565 * but since their primary interface is PCI/X, we conservatively
3566 * handle them as we would a non-PCIe device.
3568 case PCI_EXP_TYPE_PCIE_BRIDGE:
3570 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3571 * applicable... must never implement an ACS Extended Capability...".
3572 * This seems arbitrary, but we take a conservative interpretation
3573 * of this statement.
3575 case PCI_EXP_TYPE_PCI_BRIDGE:
3576 case PCI_EXP_TYPE_RC_EC:
3579 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3580 * implement ACS in order to indicate their peer-to-peer capabilities,
3581 * regardless of whether they are single- or multi-function devices.
3583 case PCI_EXP_TYPE_DOWNSTREAM:
3584 case PCI_EXP_TYPE_ROOT_PORT:
3585 return pci_acs_flags_enabled(pdev, acs_flags);
3587 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3588 * implemented by the remaining PCIe types to indicate peer-to-peer
3589 * capabilities, but only when they are part of a multifunction
3590 * device. The footnote for section 6.12 indicates the specific
3591 * PCIe types included here.
3593 case PCI_EXP_TYPE_ENDPOINT:
3594 case PCI_EXP_TYPE_UPSTREAM:
3595 case PCI_EXP_TYPE_LEG_END:
3596 case PCI_EXP_TYPE_RC_END:
3597 if (!pdev->multifunction)
3600 return pci_acs_flags_enabled(pdev, acs_flags);
3604 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3605 * to single function devices with the exception of downstream ports.
3611 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3612 * @start: starting downstream device
3613 * @end: ending upstream device or NULL to search to the root bus
3614 * @acs_flags: required flags
3616 * Walk up a device tree from start to end testing PCI ACS support. If
3617 * any step along the way does not support the required flags, return false.
3619 bool pci_acs_path_enabled(struct pci_dev *start,
3620 struct pci_dev *end, u16 acs_flags)
3622 struct pci_dev *pdev, *parent = start;
3627 if (!pci_acs_enabled(pdev, acs_flags))
3630 if (pci_is_root_bus(pdev->bus))
3631 return (end == NULL);
3633 parent = pdev->bus->self;
3634 } while (pdev != end);
3640 * pci_acs_init - Initialize ACS if hardware supports it
3641 * @dev: the PCI device
3643 void pci_acs_init(struct pci_dev *dev)
3645 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3648 * Attempt to enable ACS regardless of capability because some Root
3649 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3650 * the standard ACS capability but still support ACS via those
3653 pci_enable_acs(dev);
3657 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3661 * Helper to find the position of the ctrl register for a BAR.
3662 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3663 * Returns -ENOENT if no ctrl register for the BAR could be found.
3665 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3667 unsigned int pos, nbars, i;
3670 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3674 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3675 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3676 PCI_REBAR_CTRL_NBAR_SHIFT;
3678 for (i = 0; i < nbars; i++, pos += 8) {
3681 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3682 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3691 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3693 * @bar: BAR to query
3695 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3696 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3698 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3703 pos = pci_rebar_find_pos(pdev, bar);
3707 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3708 cap &= PCI_REBAR_CAP_SIZES;
3710 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3711 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3712 bar == 0 && cap == 0x7000)
3717 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3720 * pci_rebar_get_current_size - get the current size of a BAR
3722 * @bar: BAR to set size to
3724 * Read the size of a BAR from the resizable BAR config.
3725 * Returns size if found or negative error code.
3727 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3732 pos = pci_rebar_find_pos(pdev, bar);
3736 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3737 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3741 * pci_rebar_set_size - set a new size for a BAR
3743 * @bar: BAR to set size to
3744 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3746 * Set the new size of a BAR as defined in the spec.
3747 * Returns zero if resizing was successful, error code otherwise.
3749 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3754 pos = pci_rebar_find_pos(pdev, bar);
3758 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3759 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3760 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3761 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3766 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3767 * @dev: the PCI device
3768 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3769 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3770 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3771 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3773 * Return 0 if all upstream bridges support AtomicOp routing, egress
3774 * blocking is disabled on all upstream ports, and the root port supports
3775 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3776 * AtomicOp completion), or negative otherwise.
3778 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3780 struct pci_bus *bus = dev->bus;
3781 struct pci_dev *bridge;
3785 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3786 * in Device Control 2 is reserved in VFs and the PF value applies
3787 * to all associated VFs.
3792 if (!pci_is_pcie(dev))
3796 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3797 * AtomicOp requesters. For now, we only support endpoints as
3798 * requesters and root ports as completers. No endpoints as
3799 * completers, and no peer-to-peer.
3802 switch (pci_pcie_type(dev)) {
3803 case PCI_EXP_TYPE_ENDPOINT:
3804 case PCI_EXP_TYPE_LEG_END:
3805 case PCI_EXP_TYPE_RC_END:
3811 while (bus->parent) {
3814 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3816 switch (pci_pcie_type(bridge)) {
3817 /* Ensure switch ports support AtomicOp routing */
3818 case PCI_EXP_TYPE_UPSTREAM:
3819 case PCI_EXP_TYPE_DOWNSTREAM:
3820 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3824 /* Ensure root port supports all the sizes we care about */
3825 case PCI_EXP_TYPE_ROOT_PORT:
3826 if ((cap & cap_mask) != cap_mask)
3831 /* Ensure upstream ports don't block AtomicOps on egress */
3832 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3833 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3835 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3842 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3843 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3846 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3849 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3850 * @dev: the PCI device
3851 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3853 * Perform INTx swizzling for a device behind one level of bridge. This is
3854 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3855 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3856 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3857 * the PCI Express Base Specification, Revision 2.1)
3859 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3863 if (pci_ari_enabled(dev->bus))
3866 slot = PCI_SLOT(dev->devfn);
3868 return (((pin - 1) + slot) % 4) + 1;
3871 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3879 while (!pci_is_root_bus(dev->bus)) {
3880 pin = pci_swizzle_interrupt_pin(dev, pin);
3881 dev = dev->bus->self;
3888 * pci_common_swizzle - swizzle INTx all the way to root bridge
3889 * @dev: the PCI device
3890 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3892 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3893 * bridges all the way up to a PCI root bus.
3895 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3899 while (!pci_is_root_bus(dev->bus)) {
3900 pin = pci_swizzle_interrupt_pin(dev, pin);
3901 dev = dev->bus->self;
3904 return PCI_SLOT(dev->devfn);
3906 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3909 * pci_release_region - Release a PCI bar
3910 * @pdev: PCI device whose resources were previously reserved by
3911 * pci_request_region()
3912 * @bar: BAR to release
3914 * Releases the PCI I/O and memory resources previously reserved by a
3915 * successful call to pci_request_region(). Call this function only
3916 * after all use of the PCI regions has ceased.
3918 void pci_release_region(struct pci_dev *pdev, int bar)
3920 struct pci_devres *dr;
3922 if (pci_resource_len(pdev, bar) == 0)
3924 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3925 release_region(pci_resource_start(pdev, bar),
3926 pci_resource_len(pdev, bar));
3927 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3928 release_mem_region(pci_resource_start(pdev, bar),
3929 pci_resource_len(pdev, bar));
3931 dr = find_pci_dr(pdev);
3933 dr->region_mask &= ~(1 << bar);
3935 EXPORT_SYMBOL(pci_release_region);
3938 * __pci_request_region - Reserved PCI I/O and memory resource
3939 * @pdev: PCI device whose resources are to be reserved
3940 * @bar: BAR to be reserved
3941 * @res_name: Name to be associated with resource.
3942 * @exclusive: whether the region access is exclusive or not
3944 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3945 * being reserved by owner @res_name. Do not access any
3946 * address inside the PCI regions unless this call returns
3949 * If @exclusive is set, then the region is marked so that userspace
3950 * is explicitly not allowed to map the resource via /dev/mem or
3951 * sysfs MMIO access.
3953 * Returns 0 on success, or %EBUSY on error. A warning
3954 * message is also printed on failure.
3956 static int __pci_request_region(struct pci_dev *pdev, int bar,
3957 const char *res_name, int exclusive)
3959 struct pci_devres *dr;
3961 if (pci_resource_len(pdev, bar) == 0)
3964 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3965 if (!request_region(pci_resource_start(pdev, bar),
3966 pci_resource_len(pdev, bar), res_name))
3968 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3969 if (!__request_mem_region(pci_resource_start(pdev, bar),
3970 pci_resource_len(pdev, bar), res_name,
3975 dr = find_pci_dr(pdev);
3977 dr->region_mask |= 1 << bar;
3982 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3983 &pdev->resource[bar]);
3988 * pci_request_region - Reserve PCI I/O and memory resource
3989 * @pdev: PCI device whose resources are to be reserved
3990 * @bar: BAR to be reserved
3991 * @res_name: Name to be associated with resource
3993 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3994 * being reserved by owner @res_name. Do not access any
3995 * address inside the PCI regions unless this call returns
3998 * Returns 0 on success, or %EBUSY on error. A warning
3999 * message is also printed on failure.
4001 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4003 return __pci_request_region(pdev, bar, res_name, 0);
4005 EXPORT_SYMBOL(pci_request_region);
4008 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4009 * @pdev: PCI device whose resources were previously reserved
4010 * @bars: Bitmask of BARs to be released
4012 * Release selected PCI I/O and memory resources previously reserved.
4013 * Call this function only after all use of the PCI regions has ceased.
4015 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4019 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4020 if (bars & (1 << i))
4021 pci_release_region(pdev, i);
4023 EXPORT_SYMBOL(pci_release_selected_regions);
4025 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4026 const char *res_name, int excl)
4030 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4031 if (bars & (1 << i))
4032 if (__pci_request_region(pdev, i, res_name, excl))
4038 if (bars & (1 << i))
4039 pci_release_region(pdev, i);
4046 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4047 * @pdev: PCI device whose resources are to be reserved
4048 * @bars: Bitmask of BARs to be requested
4049 * @res_name: Name to be associated with resource
4051 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4052 const char *res_name)
4054 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4056 EXPORT_SYMBOL(pci_request_selected_regions);
4058 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4059 const char *res_name)
4061 return __pci_request_selected_regions(pdev, bars, res_name,
4062 IORESOURCE_EXCLUSIVE);
4064 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4067 * pci_release_regions - Release reserved PCI I/O and memory resources
4068 * @pdev: PCI device whose resources were previously reserved by
4069 * pci_request_regions()
4071 * Releases all PCI I/O and memory resources previously reserved by a
4072 * successful call to pci_request_regions(). Call this function only
4073 * after all use of the PCI regions has ceased.
4076 void pci_release_regions(struct pci_dev *pdev)
4078 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4080 EXPORT_SYMBOL(pci_release_regions);
4083 * pci_request_regions - Reserve PCI I/O and memory resources
4084 * @pdev: PCI device whose resources are to be reserved
4085 * @res_name: Name to be associated with resource.
4087 * Mark all PCI regions associated with PCI device @pdev as
4088 * being reserved by owner @res_name. Do not access any
4089 * address inside the PCI regions unless this call returns
4092 * Returns 0 on success, or %EBUSY on error. A warning
4093 * message is also printed on failure.
4095 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4097 return pci_request_selected_regions(pdev,
4098 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4100 EXPORT_SYMBOL(pci_request_regions);
4103 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4104 * @pdev: PCI device whose resources are to be reserved
4105 * @res_name: Name to be associated with resource.
4107 * Mark all PCI regions associated with PCI device @pdev as being reserved
4108 * by owner @res_name. Do not access any address inside the PCI regions
4109 * unless this call returns successfully.
4111 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4112 * and the sysfs MMIO access will not be allowed.
4114 * Returns 0 on success, or %EBUSY on error. A warning message is also
4115 * printed on failure.
4117 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4119 return pci_request_selected_regions_exclusive(pdev,
4120 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4122 EXPORT_SYMBOL(pci_request_regions_exclusive);
4125 * Record the PCI IO range (expressed as CPU physical address + size).
4126 * Return a negative value if an error has occurred, zero otherwise
4128 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4129 resource_size_t size)
4133 struct logic_pio_hwaddr *range;
4135 if (!size || addr + size < addr)
4138 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4142 range->fwnode = fwnode;
4144 range->hw_start = addr;
4145 range->flags = LOGIC_PIO_CPU_MMIO;
4147 ret = logic_pio_register_range(range);
4151 /* Ignore duplicates due to deferred probing */
4159 phys_addr_t pci_pio_to_address(unsigned long pio)
4161 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4164 if (pio >= MMIO_UPPER_LIMIT)
4167 address = logic_pio_to_hwaddr(pio);
4172 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4174 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4177 return logic_pio_trans_cpuaddr(address);
4179 if (address > IO_SPACE_LIMIT)
4180 return (unsigned long)-1;
4182 return (unsigned long) address;
4187 * pci_remap_iospace - Remap the memory mapped I/O space
4188 * @res: Resource describing the I/O space
4189 * @phys_addr: physical address of range to be mapped
4191 * Remap the memory mapped I/O space described by the @res and the CPU
4192 * physical address @phys_addr into virtual address space. Only
4193 * architectures that have memory mapped IO functions defined (and the
4194 * PCI_IOBASE value defined) should call this function.
4196 #ifndef pci_remap_iospace
4197 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4199 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4200 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4202 if (!(res->flags & IORESOURCE_IO))
4205 if (res->end > IO_SPACE_LIMIT)
4208 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4209 pgprot_device(PAGE_KERNEL));
4212 * This architecture does not have memory mapped I/O space,
4213 * so this function should never be called
4215 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4219 EXPORT_SYMBOL(pci_remap_iospace);
4223 * pci_unmap_iospace - Unmap the memory mapped I/O space
4224 * @res: resource to be unmapped
4226 * Unmap the CPU virtual address @res from virtual address space. Only
4227 * architectures that have memory mapped IO functions defined (and the
4228 * PCI_IOBASE value defined) should call this function.
4230 void pci_unmap_iospace(struct resource *res)
4232 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4233 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4235 vunmap_range(vaddr, vaddr + resource_size(res));
4238 EXPORT_SYMBOL(pci_unmap_iospace);
4240 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4242 struct resource **res = ptr;
4244 pci_unmap_iospace(*res);
4248 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4249 * @dev: Generic device to remap IO address for
4250 * @res: Resource describing the I/O space
4251 * @phys_addr: physical address of range to be mapped
4253 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4256 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4257 phys_addr_t phys_addr)
4259 const struct resource **ptr;
4262 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4266 error = pci_remap_iospace(res, phys_addr);
4271 devres_add(dev, ptr);
4276 EXPORT_SYMBOL(devm_pci_remap_iospace);
4279 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4280 * @dev: Generic device to remap IO address for
4281 * @offset: Resource address to map
4282 * @size: Size of map
4284 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4287 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4288 resource_size_t offset,
4289 resource_size_t size)
4291 void __iomem **ptr, *addr;
4293 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4297 addr = pci_remap_cfgspace(offset, size);
4300 devres_add(dev, ptr);
4306 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4309 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4310 * @dev: generic device to handle the resource for
4311 * @res: configuration space resource to be handled
4313 * Checks that a resource is a valid memory region, requests the memory
4314 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4315 * proper PCI configuration space memory attributes are guaranteed.
4317 * All operations are managed and will be undone on driver detach.
4319 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4320 * on failure. Usage example::
4322 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4323 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4325 * return PTR_ERR(base);
4327 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4328 struct resource *res)
4330 resource_size_t size;
4332 void __iomem *dest_ptr;
4336 if (!res || resource_type(res) != IORESOURCE_MEM) {
4337 dev_err(dev, "invalid resource\n");
4338 return IOMEM_ERR_PTR(-EINVAL);
4341 size = resource_size(res);
4344 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4347 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4349 return IOMEM_ERR_PTR(-ENOMEM);
4351 if (!devm_request_mem_region(dev, res->start, size, name)) {
4352 dev_err(dev, "can't request region for resource %pR\n", res);
4353 return IOMEM_ERR_PTR(-EBUSY);
4356 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4358 dev_err(dev, "ioremap failed for resource %pR\n", res);
4359 devm_release_mem_region(dev, res->start, size);
4360 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4365 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4367 static void __pci_set_master(struct pci_dev *dev, bool enable)
4371 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4373 cmd = old_cmd | PCI_COMMAND_MASTER;
4375 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4376 if (cmd != old_cmd) {
4377 pci_dbg(dev, "%s bus mastering\n",
4378 enable ? "enabling" : "disabling");
4379 pci_write_config_word(dev, PCI_COMMAND, cmd);
4381 dev->is_busmaster = enable;
4385 * pcibios_setup - process "pci=" kernel boot arguments
4386 * @str: string used to pass in "pci=" kernel boot arguments
4388 * Process kernel boot arguments. This is the default implementation.
4389 * Architecture specific implementations can override this as necessary.
4391 char * __weak __init pcibios_setup(char *str)
4397 * pcibios_set_master - enable PCI bus-mastering for device dev
4398 * @dev: the PCI device to enable
4400 * Enables PCI bus-mastering for the device. This is the default
4401 * implementation. Architecture specific implementations can override
4402 * this if necessary.
4404 void __weak pcibios_set_master(struct pci_dev *dev)
4408 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4409 if (pci_is_pcie(dev))
4412 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4414 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4415 else if (lat > pcibios_max_latency)
4416 lat = pcibios_max_latency;
4420 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4424 * pci_set_master - enables bus-mastering for device dev
4425 * @dev: the PCI device to enable
4427 * Enables bus-mastering on the device and calls pcibios_set_master()
4428 * to do the needed arch specific settings.
4430 void pci_set_master(struct pci_dev *dev)
4432 __pci_set_master(dev, true);
4433 pcibios_set_master(dev);
4435 EXPORT_SYMBOL(pci_set_master);
4438 * pci_clear_master - disables bus-mastering for device dev
4439 * @dev: the PCI device to disable
4441 void pci_clear_master(struct pci_dev *dev)
4443 __pci_set_master(dev, false);
4445 EXPORT_SYMBOL(pci_clear_master);
4448 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4449 * @dev: the PCI device for which MWI is to be enabled
4451 * Helper function for pci_set_mwi.
4452 * Originally copied from drivers/net/acenic.c.
4453 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4455 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4457 int pci_set_cacheline_size(struct pci_dev *dev)
4461 if (!pci_cache_line_size)
4464 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4465 equal to or multiple of the right value. */
4466 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4467 if (cacheline_size >= pci_cache_line_size &&
4468 (cacheline_size % pci_cache_line_size) == 0)
4471 /* Write the correct value. */
4472 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4474 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4475 if (cacheline_size == pci_cache_line_size)
4478 pci_dbg(dev, "cache line size of %d is not supported\n",
4479 pci_cache_line_size << 2);
4483 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4486 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4487 * @dev: the PCI device for which MWI is enabled
4489 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4491 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4493 int pci_set_mwi(struct pci_dev *dev)
4495 #ifdef PCI_DISABLE_MWI
4501 rc = pci_set_cacheline_size(dev);
4505 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4506 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4507 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4508 cmd |= PCI_COMMAND_INVALIDATE;
4509 pci_write_config_word(dev, PCI_COMMAND, cmd);
4514 EXPORT_SYMBOL(pci_set_mwi);
4517 * pcim_set_mwi - a device-managed pci_set_mwi()
4518 * @dev: the PCI device for which MWI is enabled
4520 * Managed pci_set_mwi().
4522 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4524 int pcim_set_mwi(struct pci_dev *dev)
4526 struct pci_devres *dr;
4528 dr = find_pci_dr(dev);
4533 return pci_set_mwi(dev);
4535 EXPORT_SYMBOL(pcim_set_mwi);
4538 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4539 * @dev: the PCI device for which MWI is enabled
4541 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4542 * Callers are not required to check the return value.
4544 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4546 int pci_try_set_mwi(struct pci_dev *dev)
4548 #ifdef PCI_DISABLE_MWI
4551 return pci_set_mwi(dev);
4554 EXPORT_SYMBOL(pci_try_set_mwi);
4557 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4558 * @dev: the PCI device to disable
4560 * Disables PCI Memory-Write-Invalidate transaction on the device
4562 void pci_clear_mwi(struct pci_dev *dev)
4564 #ifndef PCI_DISABLE_MWI
4567 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4568 if (cmd & PCI_COMMAND_INVALIDATE) {
4569 cmd &= ~PCI_COMMAND_INVALIDATE;
4570 pci_write_config_word(dev, PCI_COMMAND, cmd);
4574 EXPORT_SYMBOL(pci_clear_mwi);
4577 * pci_disable_parity - disable parity checking for device
4578 * @dev: the PCI device to operate on
4580 * Disable parity checking for device @dev
4582 void pci_disable_parity(struct pci_dev *dev)
4586 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4587 if (cmd & PCI_COMMAND_PARITY) {
4588 cmd &= ~PCI_COMMAND_PARITY;
4589 pci_write_config_word(dev, PCI_COMMAND, cmd);
4594 * pci_intx - enables/disables PCI INTx for device dev
4595 * @pdev: the PCI device to operate on
4596 * @enable: boolean: whether to enable or disable PCI INTx
4598 * Enables/disables PCI INTx for device @pdev
4600 void pci_intx(struct pci_dev *pdev, int enable)
4602 u16 pci_command, new;
4604 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4607 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4609 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4611 if (new != pci_command) {
4612 struct pci_devres *dr;
4614 pci_write_config_word(pdev, PCI_COMMAND, new);
4616 dr = find_pci_dr(pdev);
4617 if (dr && !dr->restore_intx) {
4618 dr->restore_intx = 1;
4619 dr->orig_intx = !enable;
4623 EXPORT_SYMBOL_GPL(pci_intx);
4625 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4627 struct pci_bus *bus = dev->bus;
4628 bool mask_updated = true;
4629 u32 cmd_status_dword;
4630 u16 origcmd, newcmd;
4631 unsigned long flags;
4635 * We do a single dword read to retrieve both command and status.
4636 * Document assumptions that make this possible.
4638 BUILD_BUG_ON(PCI_COMMAND % 4);
4639 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4641 raw_spin_lock_irqsave(&pci_lock, flags);
4643 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4645 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4648 * Check interrupt status register to see whether our device
4649 * triggered the interrupt (when masking) or the next IRQ is
4650 * already pending (when unmasking).
4652 if (mask != irq_pending) {
4653 mask_updated = false;
4657 origcmd = cmd_status_dword;
4658 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4660 newcmd |= PCI_COMMAND_INTX_DISABLE;
4661 if (newcmd != origcmd)
4662 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4665 raw_spin_unlock_irqrestore(&pci_lock, flags);
4667 return mask_updated;
4671 * pci_check_and_mask_intx - mask INTx on pending interrupt
4672 * @dev: the PCI device to operate on
4674 * Check if the device dev has its INTx line asserted, mask it and return
4675 * true in that case. False is returned if no interrupt was pending.
4677 bool pci_check_and_mask_intx(struct pci_dev *dev)
4679 return pci_check_and_set_intx_mask(dev, true);
4681 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4684 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4685 * @dev: the PCI device to operate on
4687 * Check if the device dev has its INTx line asserted, unmask it if not and
4688 * return true. False is returned and the mask remains active if there was
4689 * still an interrupt pending.
4691 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4693 return pci_check_and_set_intx_mask(dev, false);
4695 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4698 * pci_wait_for_pending_transaction - wait for pending transaction
4699 * @dev: the PCI device to operate on
4701 * Return 0 if transaction is pending 1 otherwise.
4703 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4705 if (!pci_is_pcie(dev))
4708 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4709 PCI_EXP_DEVSTA_TRPND);
4711 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4714 * pcie_flr - initiate a PCIe function level reset
4715 * @dev: device to reset
4717 * Initiate a function level reset unconditionally on @dev without
4718 * checking any flags and DEVCAP
4720 int pcie_flr(struct pci_dev *dev)
4722 if (!pci_wait_for_pending_transaction(dev))
4723 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4725 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4731 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4732 * 100ms, but may silently discard requests while the FLR is in
4733 * progress. Wait 100ms before trying to access the device.
4737 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4739 EXPORT_SYMBOL_GPL(pcie_flr);
4742 * pcie_reset_flr - initiate a PCIe function level reset
4743 * @dev: device to reset
4744 * @probe: if true, return 0 if device can be reset this way
4746 * Initiate a function level reset on @dev.
4748 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4750 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4753 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4759 return pcie_flr(dev);
4761 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4763 static int pci_af_flr(struct pci_dev *dev, bool probe)
4768 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4772 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4775 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4776 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4783 * Wait for Transaction Pending bit to clear. A word-aligned test
4784 * is used, so we use the control offset rather than status and shift
4785 * the test bit to match.
4787 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4788 PCI_AF_STATUS_TP << 8))
4789 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4791 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4797 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4798 * updated 27 July 2006; a device must complete an FLR within
4799 * 100ms, but may silently discard requests while the FLR is in
4800 * progress. Wait 100ms before trying to access the device.
4804 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4808 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4809 * @dev: Device to reset.
4810 * @probe: if true, return 0 if the device can be reset this way.
4812 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4813 * unset, it will be reinitialized internally when going from PCI_D3hot to
4814 * PCI_D0. If that's the case and the device is not in a low-power state
4815 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4817 * NOTE: This causes the caller to sleep for twice the device power transition
4818 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4819 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4820 * Moreover, only devices in D0 can be reset by this function.
4822 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4826 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4829 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4830 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4836 if (dev->current_state != PCI_D0)
4839 csr &= ~PCI_PM_CTRL_STATE_MASK;
4841 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4842 pci_dev_d3_sleep(dev);
4844 csr &= ~PCI_PM_CTRL_STATE_MASK;
4846 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4847 pci_dev_d3_sleep(dev);
4849 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4853 * pcie_wait_for_link_delay - Wait until link is active or inactive
4854 * @pdev: Bridge device
4855 * @active: waiting for active or inactive?
4856 * @delay: Delay to wait after link has become active (in ms)
4858 * Use this to wait till link becomes active or inactive.
4860 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4868 * Some controllers might not implement link active reporting. In this
4869 * case, we wait for 1000 ms + any delay requested by the caller.
4871 if (!pdev->link_active_reporting) {
4872 msleep(timeout + delay);
4877 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4878 * after which we should expect an link active if the reset was
4879 * successful. If so, software must wait a minimum 100ms before sending
4880 * configuration requests to devices downstream this port.
4882 * If the link fails to activate, either the device was physically
4883 * removed or the link is permanently failed.
4888 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4889 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4900 return ret == active;
4904 * pcie_wait_for_link - Wait until link is active or inactive
4905 * @pdev: Bridge device
4906 * @active: waiting for active or inactive?
4908 * Use this to wait till link becomes active or inactive.
4910 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4912 return pcie_wait_for_link_delay(pdev, active, 100);
4916 * Find maximum D3cold delay required by all the devices on the bus. The
4917 * spec says 100 ms, but firmware can lower it and we allow drivers to
4918 * increase it as well.
4920 * Called with @pci_bus_sem locked for reading.
4922 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4924 const struct pci_dev *pdev;
4925 int min_delay = 100;
4928 list_for_each_entry(pdev, &bus->devices, bus_list) {
4929 if (pdev->d3cold_delay < min_delay)
4930 min_delay = pdev->d3cold_delay;
4931 if (pdev->d3cold_delay > max_delay)
4932 max_delay = pdev->d3cold_delay;
4935 return max(min_delay, max_delay);
4939 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4941 * @reset_type: reset type in human-readable form
4942 * @timeout: maximum time to wait for devices on secondary bus (milliseconds)
4944 * Handle necessary delays before access to the devices on the secondary
4945 * side of the bridge are permitted after D3cold to D0 transition
4946 * or Conventional Reset.
4948 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4949 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4952 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4953 * failed to become accessible.
4955 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type,
4958 struct pci_dev *child;
4961 if (pci_dev_is_disconnected(dev))
4964 if (!pci_is_bridge(dev))
4967 down_read(&pci_bus_sem);
4970 * We only deal with devices that are present currently on the bus.
4971 * For any hot-added devices the access delay is handled in pciehp
4972 * board_added(). In case of ACPI hotplug the firmware is expected
4973 * to configure the devices before OS is notified.
4975 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4976 up_read(&pci_bus_sem);
4980 /* Take d3cold_delay requirements into account */
4981 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4983 up_read(&pci_bus_sem);
4987 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4989 up_read(&pci_bus_sem);
4992 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4993 * accessing the device after reset (that is 1000 ms + 100 ms).
4995 if (!pci_is_pcie(dev)) {
4996 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4997 msleep(1000 + delay);
5002 * For PCIe downstream and root ports that do not support speeds
5003 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5004 * speeds (gen3) we need to wait first for the data link layer to
5007 * However, 100 ms is the minimum and the PCIe spec says the
5008 * software must allow at least 1s before it can determine that the
5009 * device that did not respond is a broken device. There is
5010 * evidence that 100 ms is not always enough, for example certain
5011 * Titan Ridge xHCI controller does not always respond to
5012 * configuration requests if we only wait for 100 ms (see
5013 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5015 * Therefore we wait for 100 ms and check for the device presence
5016 * until the timeout expires.
5018 if (!pcie_downstream_port(dev))
5021 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5022 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5025 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5027 if (!pcie_wait_for_link_delay(dev, true, delay)) {
5028 /* Did not train, no need to wait any further */
5029 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5034 return pci_dev_wait(child, reset_type, timeout - delay);
5037 void pci_reset_secondary_bus(struct pci_dev *dev)
5041 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5042 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5043 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5046 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5047 * this to 2ms to ensure that we meet the minimum requirement.
5051 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5052 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5055 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5057 pci_reset_secondary_bus(dev);
5061 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5062 * @dev: Bridge device
5064 * Use the bridge control register to assert reset on the secondary bus.
5065 * Devices on the secondary bus are left in power-on state.
5067 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5069 pcibios_reset_secondary_bus(dev);
5071 return pci_bridge_wait_for_secondary_bus(dev, "bus reset",
5072 PCIE_RESET_READY_POLL_MS);
5074 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5076 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5078 struct pci_dev *pdev;
5080 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5081 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5084 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5091 return pci_bridge_secondary_bus_reset(dev->bus->self);
5094 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5098 if (!hotplug || !try_module_get(hotplug->owner))
5101 if (hotplug->ops->reset_slot)
5102 rc = hotplug->ops->reset_slot(hotplug, probe);
5104 module_put(hotplug->owner);
5109 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5111 if (dev->multifunction || dev->subordinate || !dev->slot ||
5112 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5115 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5118 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5122 rc = pci_dev_reset_slot_function(dev, probe);
5125 return pci_parent_bus_reset(dev, probe);
5128 void pci_dev_lock(struct pci_dev *dev)
5130 /* block PM suspend, driver probe, etc. */
5131 device_lock(&dev->dev);
5132 pci_cfg_access_lock(dev);
5134 EXPORT_SYMBOL_GPL(pci_dev_lock);
5136 /* Return 1 on successful lock, 0 on contention */
5137 int pci_dev_trylock(struct pci_dev *dev)
5139 if (device_trylock(&dev->dev)) {
5140 if (pci_cfg_access_trylock(dev))
5142 device_unlock(&dev->dev);
5147 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5149 void pci_dev_unlock(struct pci_dev *dev)
5151 pci_cfg_access_unlock(dev);
5152 device_unlock(&dev->dev);
5154 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5156 static void pci_dev_save_and_disable(struct pci_dev *dev)
5158 const struct pci_error_handlers *err_handler =
5159 dev->driver ? dev->driver->err_handler : NULL;
5162 * dev->driver->err_handler->reset_prepare() is protected against
5163 * races with ->remove() by the device lock, which must be held by
5166 if (err_handler && err_handler->reset_prepare)
5167 err_handler->reset_prepare(dev);
5170 * Wake-up device prior to save. PM registers default to D0 after
5171 * reset and a simple register restore doesn't reliably return
5172 * to a non-D0 state anyway.
5174 pci_set_power_state(dev, PCI_D0);
5176 pci_save_state(dev);
5178 * Disable the device by clearing the Command register, except for
5179 * INTx-disable which is set. This not only disables MMIO and I/O port
5180 * BARs, but also prevents the device from being Bus Master, preventing
5181 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5182 * compliant devices, INTx-disable prevents legacy interrupts.
5184 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5187 static void pci_dev_restore(struct pci_dev *dev)
5189 const struct pci_error_handlers *err_handler =
5190 dev->driver ? dev->driver->err_handler : NULL;
5192 pci_restore_state(dev);
5195 * dev->driver->err_handler->reset_done() is protected against
5196 * races with ->remove() by the device lock, which must be held by
5199 if (err_handler && err_handler->reset_done)
5200 err_handler->reset_done(dev);
5203 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5204 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5206 { pci_dev_specific_reset, .name = "device_specific" },
5207 { pci_dev_acpi_reset, .name = "acpi" },
5208 { pcie_reset_flr, .name = "flr" },
5209 { pci_af_flr, .name = "af_flr" },
5210 { pci_pm_reset, .name = "pm" },
5211 { pci_reset_bus_function, .name = "bus" },
5214 static ssize_t reset_method_show(struct device *dev,
5215 struct device_attribute *attr, char *buf)
5217 struct pci_dev *pdev = to_pci_dev(dev);
5221 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5222 m = pdev->reset_methods[i];
5226 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5227 pci_reset_fn_methods[m].name);
5231 len += sysfs_emit_at(buf, len, "\n");
5236 static int reset_method_lookup(const char *name)
5240 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5241 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5245 return 0; /* not found */
5248 static ssize_t reset_method_store(struct device *dev,
5249 struct device_attribute *attr,
5250 const char *buf, size_t count)
5252 struct pci_dev *pdev = to_pci_dev(dev);
5253 char *options, *name;
5255 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5257 if (sysfs_streq(buf, "")) {
5258 pdev->reset_methods[0] = 0;
5259 pci_warn(pdev, "All device reset methods disabled by user");
5263 if (sysfs_streq(buf, "default")) {
5264 pci_init_reset_methods(pdev);
5268 options = kstrndup(buf, count, GFP_KERNEL);
5273 while ((name = strsep(&options, " ")) != NULL) {
5274 if (sysfs_streq(name, ""))
5279 m = reset_method_lookup(name);
5281 pci_err(pdev, "Invalid reset method '%s'", name);
5285 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5286 pci_err(pdev, "Unsupported reset method '%s'", name);
5290 if (n == PCI_NUM_RESET_METHODS - 1) {
5291 pci_err(pdev, "Too many reset methods\n");
5295 reset_methods[n++] = m;
5298 reset_methods[n] = 0;
5300 /* Warn if dev-specific supported but not highest priority */
5301 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5302 reset_methods[0] != 1)
5303 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5304 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5309 /* Leave previous methods unchanged */
5313 static DEVICE_ATTR_RW(reset_method);
5315 static struct attribute *pci_dev_reset_method_attrs[] = {
5316 &dev_attr_reset_method.attr,
5320 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5321 struct attribute *a, int n)
5323 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5325 if (!pci_reset_supported(pdev))
5331 const struct attribute_group pci_dev_reset_method_attr_group = {
5332 .attrs = pci_dev_reset_method_attrs,
5333 .is_visible = pci_dev_reset_method_attr_is_visible,
5337 * __pci_reset_function_locked - reset a PCI device function while holding
5338 * the @dev mutex lock.
5339 * @dev: PCI device to reset
5341 * Some devices allow an individual function to be reset without affecting
5342 * other functions in the same device. The PCI device must be responsive
5343 * to PCI config space in order to use this function.
5345 * The device function is presumed to be unused and the caller is holding
5346 * the device mutex lock when this function is called.
5348 * Resetting the device will make the contents of PCI configuration space
5349 * random, so any caller of this must be prepared to reinitialise the
5350 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5353 * Returns 0 if the device function was successfully reset or negative if the
5354 * device doesn't support resetting a single function.
5356 int __pci_reset_function_locked(struct pci_dev *dev)
5363 * A reset method returns -ENOTTY if it doesn't support this device and
5364 * we should try the next method.
5366 * If it returns 0 (success), we're finished. If it returns any other
5367 * error, we're also finished: this indicates that further reset
5368 * mechanisms might be broken on the device.
5370 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5371 m = dev->reset_methods[i];
5375 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5384 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5387 * pci_init_reset_methods - check whether device can be safely reset
5388 * and store supported reset mechanisms.
5389 * @dev: PCI device to check for reset mechanisms
5391 * Some devices allow an individual function to be reset without affecting
5392 * other functions in the same device. The PCI device must be in D0-D3hot
5395 * Stores reset mechanisms supported by device in reset_methods byte array
5396 * which is a member of struct pci_dev.
5398 void pci_init_reset_methods(struct pci_dev *dev)
5402 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5407 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5408 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5410 dev->reset_methods[i++] = m;
5411 else if (rc != -ENOTTY)
5415 dev->reset_methods[i] = 0;
5419 * pci_reset_function - quiesce and reset a PCI device function
5420 * @dev: PCI device to reset
5422 * Some devices allow an individual function to be reset without affecting
5423 * other functions in the same device. The PCI device must be responsive
5424 * to PCI config space in order to use this function.
5426 * This function does not just reset the PCI portion of a device, but
5427 * clears all the state associated with the device. This function differs
5428 * from __pci_reset_function_locked() in that it saves and restores device state
5429 * over the reset and takes the PCI device lock.
5431 * Returns 0 if the device function was successfully reset or negative if the
5432 * device doesn't support resetting a single function.
5434 int pci_reset_function(struct pci_dev *dev)
5438 if (!pci_reset_supported(dev))
5442 pci_dev_save_and_disable(dev);
5444 rc = __pci_reset_function_locked(dev);
5446 pci_dev_restore(dev);
5447 pci_dev_unlock(dev);
5451 EXPORT_SYMBOL_GPL(pci_reset_function);
5454 * pci_reset_function_locked - quiesce and reset a PCI device function
5455 * @dev: PCI device to reset
5457 * Some devices allow an individual function to be reset without affecting
5458 * other functions in the same device. The PCI device must be responsive
5459 * to PCI config space in order to use this function.
5461 * This function does not just reset the PCI portion of a device, but
5462 * clears all the state associated with the device. This function differs
5463 * from __pci_reset_function_locked() in that it saves and restores device state
5464 * over the reset. It also differs from pci_reset_function() in that it
5465 * requires the PCI device lock to be held.
5467 * Returns 0 if the device function was successfully reset or negative if the
5468 * device doesn't support resetting a single function.
5470 int pci_reset_function_locked(struct pci_dev *dev)
5474 if (!pci_reset_supported(dev))
5477 pci_dev_save_and_disable(dev);
5479 rc = __pci_reset_function_locked(dev);
5481 pci_dev_restore(dev);
5485 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5488 * pci_try_reset_function - quiesce and reset a PCI device function
5489 * @dev: PCI device to reset
5491 * Same as above, except return -EAGAIN if unable to lock device.
5493 int pci_try_reset_function(struct pci_dev *dev)
5497 if (!pci_reset_supported(dev))
5500 if (!pci_dev_trylock(dev))
5503 pci_dev_save_and_disable(dev);
5504 rc = __pci_reset_function_locked(dev);
5505 pci_dev_restore(dev);
5506 pci_dev_unlock(dev);
5510 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5512 /* Do any devices on or below this bus prevent a bus reset? */
5513 static bool pci_bus_resetable(struct pci_bus *bus)
5515 struct pci_dev *dev;
5518 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5521 list_for_each_entry(dev, &bus->devices, bus_list) {
5522 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5523 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5530 /* Lock devices from the top of the tree down */
5531 static void pci_bus_lock(struct pci_bus *bus)
5533 struct pci_dev *dev;
5535 list_for_each_entry(dev, &bus->devices, bus_list) {
5537 if (dev->subordinate)
5538 pci_bus_lock(dev->subordinate);
5542 /* Unlock devices from the bottom of the tree up */
5543 static void pci_bus_unlock(struct pci_bus *bus)
5545 struct pci_dev *dev;
5547 list_for_each_entry(dev, &bus->devices, bus_list) {
5548 if (dev->subordinate)
5549 pci_bus_unlock(dev->subordinate);
5550 pci_dev_unlock(dev);
5554 /* Return 1 on successful lock, 0 on contention */
5555 static int pci_bus_trylock(struct pci_bus *bus)
5557 struct pci_dev *dev;
5559 list_for_each_entry(dev, &bus->devices, bus_list) {
5560 if (!pci_dev_trylock(dev))
5562 if (dev->subordinate) {
5563 if (!pci_bus_trylock(dev->subordinate)) {
5564 pci_dev_unlock(dev);
5572 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5573 if (dev->subordinate)
5574 pci_bus_unlock(dev->subordinate);
5575 pci_dev_unlock(dev);
5580 /* Do any devices on or below this slot prevent a bus reset? */
5581 static bool pci_slot_resetable(struct pci_slot *slot)
5583 struct pci_dev *dev;
5585 if (slot->bus->self &&
5586 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5589 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5590 if (!dev->slot || dev->slot != slot)
5592 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5593 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5600 /* Lock devices from the top of the tree down */
5601 static void pci_slot_lock(struct pci_slot *slot)
5603 struct pci_dev *dev;
5605 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5606 if (!dev->slot || dev->slot != slot)
5609 if (dev->subordinate)
5610 pci_bus_lock(dev->subordinate);
5614 /* Unlock devices from the bottom of the tree up */
5615 static void pci_slot_unlock(struct pci_slot *slot)
5617 struct pci_dev *dev;
5619 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5620 if (!dev->slot || dev->slot != slot)
5622 if (dev->subordinate)
5623 pci_bus_unlock(dev->subordinate);
5624 pci_dev_unlock(dev);
5628 /* Return 1 on successful lock, 0 on contention */
5629 static int pci_slot_trylock(struct pci_slot *slot)
5631 struct pci_dev *dev;
5633 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5634 if (!dev->slot || dev->slot != slot)
5636 if (!pci_dev_trylock(dev))
5638 if (dev->subordinate) {
5639 if (!pci_bus_trylock(dev->subordinate)) {
5640 pci_dev_unlock(dev);
5648 list_for_each_entry_continue_reverse(dev,
5649 &slot->bus->devices, bus_list) {
5650 if (!dev->slot || dev->slot != slot)
5652 if (dev->subordinate)
5653 pci_bus_unlock(dev->subordinate);
5654 pci_dev_unlock(dev);
5660 * Save and disable devices from the top of the tree down while holding
5661 * the @dev mutex lock for the entire tree.
5663 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5665 struct pci_dev *dev;
5667 list_for_each_entry(dev, &bus->devices, bus_list) {
5668 pci_dev_save_and_disable(dev);
5669 if (dev->subordinate)
5670 pci_bus_save_and_disable_locked(dev->subordinate);
5675 * Restore devices from top of the tree down while holding @dev mutex lock
5676 * for the entire tree. Parent bridges need to be restored before we can
5677 * get to subordinate devices.
5679 static void pci_bus_restore_locked(struct pci_bus *bus)
5681 struct pci_dev *dev;
5683 list_for_each_entry(dev, &bus->devices, bus_list) {
5684 pci_dev_restore(dev);
5685 if (dev->subordinate)
5686 pci_bus_restore_locked(dev->subordinate);
5691 * Save and disable devices from the top of the tree down while holding
5692 * the @dev mutex lock for the entire tree.
5694 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5696 struct pci_dev *dev;
5698 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5699 if (!dev->slot || dev->slot != slot)
5701 pci_dev_save_and_disable(dev);
5702 if (dev->subordinate)
5703 pci_bus_save_and_disable_locked(dev->subordinate);
5708 * Restore devices from top of the tree down while holding @dev mutex lock
5709 * for the entire tree. Parent bridges need to be restored before we can
5710 * get to subordinate devices.
5712 static void pci_slot_restore_locked(struct pci_slot *slot)
5714 struct pci_dev *dev;
5716 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5717 if (!dev->slot || dev->slot != slot)
5719 pci_dev_restore(dev);
5720 if (dev->subordinate)
5721 pci_bus_restore_locked(dev->subordinate);
5725 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5729 if (!slot || !pci_slot_resetable(slot))
5733 pci_slot_lock(slot);
5737 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5740 pci_slot_unlock(slot);
5746 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5747 * @slot: PCI slot to probe
5749 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5751 int pci_probe_reset_slot(struct pci_slot *slot)
5753 return pci_slot_reset(slot, PCI_RESET_PROBE);
5755 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5758 * __pci_reset_slot - Try to reset a PCI slot
5759 * @slot: PCI slot to reset
5761 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5762 * independent of other slots. For instance, some slots may support slot power
5763 * control. In the case of a 1:1 bus to slot architecture, this function may
5764 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5765 * Generally a slot reset should be attempted before a bus reset. All of the
5766 * function of the slot and any subordinate buses behind the slot are reset
5767 * through this function. PCI config space of all devices in the slot and
5768 * behind the slot is saved before and restored after reset.
5770 * Same as above except return -EAGAIN if the slot cannot be locked
5772 static int __pci_reset_slot(struct pci_slot *slot)
5776 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5780 if (pci_slot_trylock(slot)) {
5781 pci_slot_save_and_disable_locked(slot);
5783 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5784 pci_slot_restore_locked(slot);
5785 pci_slot_unlock(slot);
5792 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5796 if (!bus->self || !pci_bus_resetable(bus))
5806 ret = pci_bridge_secondary_bus_reset(bus->self);
5808 pci_bus_unlock(bus);
5814 * pci_bus_error_reset - reset the bridge's subordinate bus
5815 * @bridge: The parent device that connects to the bus to reset
5817 * This function will first try to reset the slots on this bus if the method is
5818 * available. If slot reset fails or is not available, this will fall back to a
5819 * secondary bus reset.
5821 int pci_bus_error_reset(struct pci_dev *bridge)
5823 struct pci_bus *bus = bridge->subordinate;
5824 struct pci_slot *slot;
5829 mutex_lock(&pci_slot_mutex);
5830 if (list_empty(&bus->slots))
5833 list_for_each_entry(slot, &bus->slots, list)
5834 if (pci_probe_reset_slot(slot))
5837 list_for_each_entry(slot, &bus->slots, list)
5838 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5841 mutex_unlock(&pci_slot_mutex);
5844 mutex_unlock(&pci_slot_mutex);
5845 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5849 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5850 * @bus: PCI bus to probe
5852 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5854 int pci_probe_reset_bus(struct pci_bus *bus)
5856 return pci_bus_reset(bus, PCI_RESET_PROBE);
5858 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5861 * __pci_reset_bus - Try to reset a PCI bus
5862 * @bus: top level PCI bus to reset
5864 * Same as above except return -EAGAIN if the bus cannot be locked
5866 static int __pci_reset_bus(struct pci_bus *bus)
5870 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5874 if (pci_bus_trylock(bus)) {
5875 pci_bus_save_and_disable_locked(bus);
5877 rc = pci_bridge_secondary_bus_reset(bus->self);
5878 pci_bus_restore_locked(bus);
5879 pci_bus_unlock(bus);
5887 * pci_reset_bus - Try to reset a PCI bus
5888 * @pdev: top level PCI device to reset via slot/bus
5890 * Same as above except return -EAGAIN if the bus cannot be locked
5892 int pci_reset_bus(struct pci_dev *pdev)
5894 return (!pci_probe_reset_slot(pdev->slot)) ?
5895 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5897 EXPORT_SYMBOL_GPL(pci_reset_bus);
5900 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5901 * @dev: PCI device to query
5903 * Returns mmrbc: maximum designed memory read count in bytes or
5904 * appropriate error value.
5906 int pcix_get_max_mmrbc(struct pci_dev *dev)
5911 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5915 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5918 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5920 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5923 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5924 * @dev: PCI device to query
5926 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5929 int pcix_get_mmrbc(struct pci_dev *dev)
5934 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5938 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5941 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5943 EXPORT_SYMBOL(pcix_get_mmrbc);
5946 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5947 * @dev: PCI device to query
5948 * @mmrbc: maximum memory read count in bytes
5949 * valid values are 512, 1024, 2048, 4096
5951 * If possible sets maximum memory read byte count, some bridges have errata
5952 * that prevent this.
5954 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5960 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5963 v = ffs(mmrbc) - 10;
5965 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5969 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5972 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5975 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5978 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5980 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5983 cmd &= ~PCI_X_CMD_MAX_READ;
5985 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5990 EXPORT_SYMBOL(pcix_set_mmrbc);
5993 * pcie_get_readrq - get PCI Express read request size
5994 * @dev: PCI device to query
5996 * Returns maximum memory read request in bytes or appropriate error value.
5998 int pcie_get_readrq(struct pci_dev *dev)
6002 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6004 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6006 EXPORT_SYMBOL(pcie_get_readrq);
6009 * pcie_set_readrq - set PCI Express maximum memory read request
6010 * @dev: PCI device to query
6011 * @rq: maximum memory read count in bytes
6012 * valid values are 128, 256, 512, 1024, 2048, 4096
6014 * If possible sets maximum memory read request in bytes
6016 int pcie_set_readrq(struct pci_dev *dev, int rq)
6020 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6022 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6026 * If using the "performance" PCIe config, we clamp the read rq
6027 * size to the max packet size to keep the host bridge from
6028 * generating requests larger than we can cope with.
6030 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6031 int mps = pcie_get_mps(dev);
6037 v = (ffs(rq) - 8) << 12;
6039 if (bridge->no_inc_mrrs) {
6040 int max_mrrs = pcie_get_readrq(dev);
6042 if (rq > max_mrrs) {
6043 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6048 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6049 PCI_EXP_DEVCTL_READRQ, v);
6051 return pcibios_err_to_errno(ret);
6053 EXPORT_SYMBOL(pcie_set_readrq);
6056 * pcie_get_mps - get PCI Express maximum payload size
6057 * @dev: PCI device to query
6059 * Returns maximum payload size in bytes
6061 int pcie_get_mps(struct pci_dev *dev)
6065 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6067 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6069 EXPORT_SYMBOL(pcie_get_mps);
6072 * pcie_set_mps - set PCI Express maximum payload size
6073 * @dev: PCI device to query
6074 * @mps: maximum payload size in bytes
6075 * valid values are 128, 256, 512, 1024, 2048, 4096
6077 * If possible sets maximum payload size
6079 int pcie_set_mps(struct pci_dev *dev, int mps)
6084 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6088 if (v > dev->pcie_mpss)
6092 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6093 PCI_EXP_DEVCTL_PAYLOAD, v);
6095 return pcibios_err_to_errno(ret);
6097 EXPORT_SYMBOL(pcie_set_mps);
6100 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6101 * device and its bandwidth limitation
6102 * @dev: PCI device to query
6103 * @limiting_dev: storage for device causing the bandwidth limitation
6104 * @speed: storage for speed of limiting device
6105 * @width: storage for width of limiting device
6107 * Walk up the PCI device chain and find the point where the minimum
6108 * bandwidth is available. Return the bandwidth available there and (if
6109 * limiting_dev, speed, and width pointers are supplied) information about
6110 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6113 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6114 enum pci_bus_speed *speed,
6115 enum pcie_link_width *width)
6118 enum pci_bus_speed next_speed;
6119 enum pcie_link_width next_width;
6123 *speed = PCI_SPEED_UNKNOWN;
6125 *width = PCIE_LNK_WIDTH_UNKNOWN;
6130 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6132 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6133 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6134 PCI_EXP_LNKSTA_NLW_SHIFT;
6136 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6138 /* Check if current device limits the total bandwidth */
6139 if (!bw || next_bw <= bw) {
6143 *limiting_dev = dev;
6145 *speed = next_speed;
6147 *width = next_width;
6150 dev = pci_upstream_bridge(dev);
6155 EXPORT_SYMBOL(pcie_bandwidth_available);
6158 * pcie_get_speed_cap - query for the PCI device's link speed capability
6159 * @dev: PCI device to query
6161 * Query the PCI device speed capability. Return the maximum link speed
6162 * supported by the device.
6164 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6166 u32 lnkcap2, lnkcap;
6169 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6170 * implementation note there recommends using the Supported Link
6171 * Speeds Vector in Link Capabilities 2 when supported.
6173 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6174 * should use the Supported Link Speeds field in Link Capabilities,
6175 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6177 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6179 /* PCIe r3.0-compliant */
6181 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6183 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6184 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6185 return PCIE_SPEED_5_0GT;
6186 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6187 return PCIE_SPEED_2_5GT;
6189 return PCI_SPEED_UNKNOWN;
6191 EXPORT_SYMBOL(pcie_get_speed_cap);
6194 * pcie_get_width_cap - query for the PCI device's link width capability
6195 * @dev: PCI device to query
6197 * Query the PCI device width capability. Return the maximum link width
6198 * supported by the device.
6200 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6204 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6206 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6208 return PCIE_LNK_WIDTH_UNKNOWN;
6210 EXPORT_SYMBOL(pcie_get_width_cap);
6213 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6215 * @speed: storage for link speed
6216 * @width: storage for link width
6218 * Calculate a PCI device's link bandwidth by querying for its link speed
6219 * and width, multiplying them, and applying encoding overhead. The result
6220 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6222 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6223 enum pcie_link_width *width)
6225 *speed = pcie_get_speed_cap(dev);
6226 *width = pcie_get_width_cap(dev);
6228 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6231 return *width * PCIE_SPEED2MBS_ENC(*speed);
6235 * __pcie_print_link_status - Report the PCI device's link speed and width
6236 * @dev: PCI device to query
6237 * @verbose: Print info even when enough bandwidth is available
6239 * If the available bandwidth at the device is less than the device is
6240 * capable of, report the device's maximum possible bandwidth and the
6241 * upstream link that limits its performance. If @verbose, always print
6242 * the available bandwidth, even if the device isn't constrained.
6244 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6246 enum pcie_link_width width, width_cap;
6247 enum pci_bus_speed speed, speed_cap;
6248 struct pci_dev *limiting_dev = NULL;
6249 u32 bw_avail, bw_cap;
6251 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6252 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6254 if (bw_avail >= bw_cap && verbose)
6255 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6256 bw_cap / 1000, bw_cap % 1000,
6257 pci_speed_string(speed_cap), width_cap);
6258 else if (bw_avail < bw_cap)
6259 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6260 bw_avail / 1000, bw_avail % 1000,
6261 pci_speed_string(speed), width,
6262 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6263 bw_cap / 1000, bw_cap % 1000,
6264 pci_speed_string(speed_cap), width_cap);
6268 * pcie_print_link_status - Report the PCI device's link speed and width
6269 * @dev: PCI device to query
6271 * Report the available bandwidth at the device.
6273 void pcie_print_link_status(struct pci_dev *dev)
6275 __pcie_print_link_status(dev, true);
6277 EXPORT_SYMBOL(pcie_print_link_status);
6280 * pci_select_bars - Make BAR mask from the type of resource
6281 * @dev: the PCI device for which BAR mask is made
6282 * @flags: resource type mask to be selected
6284 * This helper routine makes bar mask from the type of resource.
6286 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6289 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6290 if (pci_resource_flags(dev, i) & flags)
6294 EXPORT_SYMBOL(pci_select_bars);
6296 /* Some architectures require additional programming to enable VGA */
6297 static arch_set_vga_state_t arch_set_vga_state;
6299 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6301 arch_set_vga_state = func; /* NULL disables */
6304 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6305 unsigned int command_bits, u32 flags)
6307 if (arch_set_vga_state)
6308 return arch_set_vga_state(dev, decode, command_bits,
6314 * pci_set_vga_state - set VGA decode state on device and parents if requested
6315 * @dev: the PCI device
6316 * @decode: true = enable decoding, false = disable decoding
6317 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6318 * @flags: traverse ancestors and change bridges
6319 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6321 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6322 unsigned int command_bits, u32 flags)
6324 struct pci_bus *bus;
6325 struct pci_dev *bridge;
6329 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6331 /* ARCH specific VGA enables */
6332 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6336 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6337 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6339 cmd |= command_bits;
6341 cmd &= ~command_bits;
6342 pci_write_config_word(dev, PCI_COMMAND, cmd);
6345 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6352 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6355 cmd |= PCI_BRIDGE_CTL_VGA;
6357 cmd &= ~PCI_BRIDGE_CTL_VGA;
6358 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6367 bool pci_pr3_present(struct pci_dev *pdev)
6369 struct acpi_device *adev;
6374 adev = ACPI_COMPANION(&pdev->dev);
6378 return adev->power.flags.power_resources &&
6379 acpi_has_method(adev->handle, "_PR3");
6381 EXPORT_SYMBOL_GPL(pci_pr3_present);
6385 * pci_add_dma_alias - Add a DMA devfn alias for a device
6386 * @dev: the PCI device for which alias is added
6387 * @devfn_from: alias slot and function
6388 * @nr_devfns: number of subsequent devfns to alias
6390 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6391 * which is used to program permissible bus-devfn source addresses for DMA
6392 * requests in an IOMMU. These aliases factor into IOMMU group creation
6393 * and are useful for devices generating DMA requests beyond or different
6394 * from their logical bus-devfn. Examples include device quirks where the
6395 * device simply uses the wrong devfn, as well as non-transparent bridges
6396 * where the alias may be a proxy for devices in another domain.
6398 * IOMMU group creation is performed during device discovery or addition,
6399 * prior to any potential DMA mapping and therefore prior to driver probing
6400 * (especially for userspace assigned devices where IOMMU group definition
6401 * cannot be left as a userspace activity). DMA aliases should therefore
6402 * be configured via quirks, such as the PCI fixup header quirk.
6404 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6405 unsigned int nr_devfns)
6409 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6410 devfn_to = devfn_from + nr_devfns - 1;
6412 if (!dev->dma_alias_mask)
6413 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6414 if (!dev->dma_alias_mask) {
6415 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6419 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6422 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6423 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6424 else if (nr_devfns > 1)
6425 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6426 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6427 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6430 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6432 return (dev1->dma_alias_mask &&
6433 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6434 (dev2->dma_alias_mask &&
6435 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6436 pci_real_dma_dev(dev1) == dev2 ||
6437 pci_real_dma_dev(dev2) == dev1;
6440 bool pci_device_is_present(struct pci_dev *pdev)
6444 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6445 pdev = pci_physfn(pdev);
6446 if (pci_dev_is_disconnected(pdev))
6448 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6450 EXPORT_SYMBOL_GPL(pci_device_is_present);
6452 void pci_ignore_hotplug(struct pci_dev *dev)
6454 struct pci_dev *bridge = dev->bus->self;
6456 dev->ignore_hotplug = 1;
6457 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6459 bridge->ignore_hotplug = 1;
6461 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6464 * pci_real_dma_dev - Get PCI DMA device for PCI device
6465 * @dev: the PCI device that may have a PCI DMA alias
6467 * Permits the platform to provide architecture-specific functionality to
6468 * devices needing to alias DMA to another PCI device on another PCI bus. If
6469 * the PCI device is on the same bus, it is recommended to use
6470 * pci_add_dma_alias(). This is the default implementation. Architecture
6471 * implementations can override this.
6473 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6478 resource_size_t __weak pcibios_default_alignment(void)
6484 * Arches that don't want to expose struct resource to userland as-is in
6485 * sysfs and /proc can implement their own pci_resource_to_user().
6487 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6488 const struct resource *rsrc,
6489 resource_size_t *start, resource_size_t *end)
6491 *start = rsrc->start;
6495 static char *resource_alignment_param;
6496 static DEFINE_SPINLOCK(resource_alignment_lock);
6499 * pci_specified_resource_alignment - get resource alignment specified by user.
6500 * @dev: the PCI device to get
6501 * @resize: whether or not to change resources' size when reassigning alignment
6503 * RETURNS: Resource alignment if it is specified.
6504 * Zero if it is not specified.
6506 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6509 int align_order, count;
6510 resource_size_t align = pcibios_default_alignment();
6514 spin_lock(&resource_alignment_lock);
6515 p = resource_alignment_param;
6518 if (pci_has_flag(PCI_PROBE_ONLY)) {
6520 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6526 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6529 if (align_order > 63) {
6530 pr_err("PCI: Invalid requested alignment (order %d)\n",
6532 align_order = PAGE_SHIFT;
6535 align_order = PAGE_SHIFT;
6538 ret = pci_dev_str_match(dev, p, &p);
6541 align = 1ULL << align_order;
6543 } else if (ret < 0) {
6544 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6549 if (*p != ';' && *p != ',') {
6550 /* End of param or invalid format */
6556 spin_unlock(&resource_alignment_lock);
6560 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6561 resource_size_t align, bool resize)
6563 struct resource *r = &dev->resource[bar];
6564 resource_size_t size;
6566 if (!(r->flags & IORESOURCE_MEM))
6569 if (r->flags & IORESOURCE_PCI_FIXED) {
6570 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6571 bar, r, (unsigned long long)align);
6575 size = resource_size(r);
6580 * Increase the alignment of the resource. There are two ways we
6583 * 1) Increase the size of the resource. BARs are aligned on their
6584 * size, so when we reallocate space for this resource, we'll
6585 * allocate it with the larger alignment. This also prevents
6586 * assignment of any other BARs inside the alignment region, so
6587 * if we're requesting page alignment, this means no other BARs
6588 * will share the page.
6590 * The disadvantage is that this makes the resource larger than
6591 * the hardware BAR, which may break drivers that compute things
6592 * based on the resource size, e.g., to find registers at a
6593 * fixed offset before the end of the BAR.
6595 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6596 * set r->start to the desired alignment. By itself this
6597 * doesn't prevent other BARs being put inside the alignment
6598 * region, but if we realign *every* resource of every device in
6599 * the system, none of them will share an alignment region.
6601 * When the user has requested alignment for only some devices via
6602 * the "pci=resource_alignment" argument, "resize" is true and we
6603 * use the first method. Otherwise we assume we're aligning all
6604 * devices and we use the second.
6607 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6608 bar, r, (unsigned long long)align);
6614 r->flags &= ~IORESOURCE_SIZEALIGN;
6615 r->flags |= IORESOURCE_STARTALIGN;
6617 r->end = r->start + size - 1;
6619 r->flags |= IORESOURCE_UNSET;
6623 * This function disables memory decoding and releases memory resources
6624 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6625 * It also rounds up size to specified alignment.
6626 * Later on, the kernel will assign page-aligned memory resource back
6629 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6633 resource_size_t align;
6635 bool resize = false;
6638 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6639 * 3.4.1.11. Their resources are allocated from the space
6640 * described by the VF BARx register in the PF's SR-IOV capability.
6641 * We can't influence their alignment here.
6646 /* check if specified PCI is target device to reassign */
6647 align = pci_specified_resource_alignment(dev, &resize);
6651 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6652 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6653 pci_warn(dev, "Can't reassign resources to host bridge\n");
6657 pci_read_config_word(dev, PCI_COMMAND, &command);
6658 command &= ~PCI_COMMAND_MEMORY;
6659 pci_write_config_word(dev, PCI_COMMAND, command);
6661 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6662 pci_request_resource_alignment(dev, i, align, resize);
6665 * Need to disable bridge's resource window,
6666 * to enable the kernel to reassign new resource
6669 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6670 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6671 r = &dev->resource[i];
6672 if (!(r->flags & IORESOURCE_MEM))
6674 r->flags |= IORESOURCE_UNSET;
6675 r->end = resource_size(r) - 1;
6678 pci_disable_bridge_window(dev);
6682 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6686 spin_lock(&resource_alignment_lock);
6687 if (resource_alignment_param)
6688 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6689 spin_unlock(&resource_alignment_lock);
6694 static ssize_t resource_alignment_store(const struct bus_type *bus,
6695 const char *buf, size_t count)
6697 char *param, *old, *end;
6699 if (count >= (PAGE_SIZE - 1))
6702 param = kstrndup(buf, count, GFP_KERNEL);
6706 end = strchr(param, '\n');
6710 spin_lock(&resource_alignment_lock);
6711 old = resource_alignment_param;
6712 if (strlen(param)) {
6713 resource_alignment_param = param;
6716 resource_alignment_param = NULL;
6718 spin_unlock(&resource_alignment_lock);
6725 static BUS_ATTR_RW(resource_alignment);
6727 static int __init pci_resource_alignment_sysfs_init(void)
6729 return bus_create_file(&pci_bus_type,
6730 &bus_attr_resource_alignment);
6732 late_initcall(pci_resource_alignment_sysfs_init);
6734 static void pci_no_domains(void)
6736 #ifdef CONFIG_PCI_DOMAINS
6737 pci_domains_supported = 0;
6741 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6742 static DEFINE_IDA(pci_domain_nr_static_ida);
6743 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6745 static void of_pci_reserve_static_domain_nr(void)
6747 struct device_node *np;
6750 for_each_node_by_type(np, "pci") {
6751 domain_nr = of_get_pci_domain_nr(np);
6755 * Permanently allocate domain_nr in dynamic_ida
6756 * to prevent it from dynamic allocation.
6758 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6759 domain_nr, domain_nr, GFP_KERNEL);
6763 static int of_pci_bus_find_domain_nr(struct device *parent)
6765 static bool static_domains_reserved = false;
6768 /* On the first call scan device tree for static allocations. */
6769 if (!static_domains_reserved) {
6770 of_pci_reserve_static_domain_nr();
6771 static_domains_reserved = true;
6776 * If domain is in DT, allocate it in static IDA. This
6777 * prevents duplicate static allocations in case of errors
6780 domain_nr = of_get_pci_domain_nr(parent->of_node);
6782 return ida_alloc_range(&pci_domain_nr_static_ida,
6783 domain_nr, domain_nr,
6788 * If domain was not specified in DT, choose a free ID from dynamic
6789 * allocations. All domain numbers from DT are permanently in
6790 * dynamic allocations to prevent assigning them to other DT nodes
6791 * without static domain.
6793 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6796 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6798 if (bus->domain_nr < 0)
6801 /* Release domain from IDA where it was allocated. */
6802 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6803 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6805 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6808 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6810 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6811 acpi_pci_bus_find_domain_nr(bus);
6814 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6818 of_pci_bus_release_domain_nr(bus, parent);
6823 * pci_ext_cfg_avail - can we access extended PCI config space?
6825 * Returns 1 if we can access PCI extended config space (offsets
6826 * greater than 0xff). This is the default implementation. Architecture
6827 * implementations can override this.
6829 int __weak pci_ext_cfg_avail(void)
6834 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6837 EXPORT_SYMBOL(pci_fixup_cardbus);
6839 static int __init pci_setup(char *str)
6842 char *k = strchr(str, ',');
6845 if (*str && (str = pcibios_setup(str)) && *str) {
6846 if (!strcmp(str, "nomsi")) {
6848 } else if (!strncmp(str, "noats", 5)) {
6849 pr_info("PCIe: ATS is disabled\n");
6850 pcie_ats_disabled = true;
6851 } else if (!strcmp(str, "noaer")) {
6853 } else if (!strcmp(str, "earlydump")) {
6854 pci_early_dump = true;
6855 } else if (!strncmp(str, "realloc=", 8)) {
6856 pci_realloc_get_opt(str + 8);
6857 } else if (!strncmp(str, "realloc", 7)) {
6858 pci_realloc_get_opt("on");
6859 } else if (!strcmp(str, "nodomains")) {
6861 } else if (!strncmp(str, "noari", 5)) {
6862 pcie_ari_disabled = true;
6863 } else if (!strncmp(str, "cbiosize=", 9)) {
6864 pci_cardbus_io_size = memparse(str + 9, &str);
6865 } else if (!strncmp(str, "cbmemsize=", 10)) {
6866 pci_cardbus_mem_size = memparse(str + 10, &str);
6867 } else if (!strncmp(str, "resource_alignment=", 19)) {
6868 resource_alignment_param = str + 19;
6869 } else if (!strncmp(str, "ecrc=", 5)) {
6870 pcie_ecrc_get_policy(str + 5);
6871 } else if (!strncmp(str, "hpiosize=", 9)) {
6872 pci_hotplug_io_size = memparse(str + 9, &str);
6873 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6874 pci_hotplug_mmio_size = memparse(str + 11, &str);
6875 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6876 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6877 } else if (!strncmp(str, "hpmemsize=", 10)) {
6878 pci_hotplug_mmio_size = memparse(str + 10, &str);
6879 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6880 } else if (!strncmp(str, "hpbussize=", 10)) {
6881 pci_hotplug_bus_size =
6882 simple_strtoul(str + 10, &str, 0);
6883 if (pci_hotplug_bus_size > 0xff)
6884 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6885 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6886 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6887 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6888 pcie_bus_config = PCIE_BUS_SAFE;
6889 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6890 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6891 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6892 pcie_bus_config = PCIE_BUS_PEER2PEER;
6893 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6894 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6895 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6896 disable_acs_redir_param = str + 18;
6898 pr_err("PCI: Unknown option `%s'\n", str);
6905 early_param("pci", pci_setup);
6908 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6909 * in pci_setup(), above, to point to data in the __initdata section which
6910 * will be freed after the init sequence is complete. We can't allocate memory
6911 * in pci_setup() because some architectures do not have any memory allocation
6912 * service available during an early_param() call. So we allocate memory and
6913 * copy the variable here before the init section is freed.
6916 static int __init pci_realloc_setup_params(void)
6918 resource_alignment_param = kstrdup(resource_alignment_param,
6920 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6924 pure_initcall(pci_realloc_setup_params);