PCI: endpoint: Fix double free in __pci_epc_create()
[platform/kernel/linux-starfive.git] / drivers / pci / hotplug / cpqphp_ctrl.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Compaq Hot Plug Controller Driver
4  *
5  * Copyright (C) 1995,2001 Compaq Computer Corporation
6  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7  * Copyright (C) 2001 IBM Corp.
8  *
9  * All rights reserved.
10  *
11  * Send feedback to <greg@kroah.com>
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/pci.h>
24 #include <linux/pci_hotplug.h>
25 #include <linux/kthread.h>
26 #include "cpqphp.h"
27
28 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
29                         u8 behind_bridge, struct resource_lists *resources);
30 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
31                         u8 behind_bridge, struct resource_lists *resources);
32 static void interrupt_event_handler(struct controller *ctrl);
33
34
35 static struct task_struct *cpqhp_event_thread;
36 static struct timer_list *pushbutton_pending;   /* = NULL */
37
38 /* delay is in jiffies to wait for */
39 static void long_delay(int delay)
40 {
41         /*
42          * XXX(hch): if someone is bored please convert all callers
43          * to call msleep_interruptible directly.  They really want
44          * to specify timeouts in natural units and spend a lot of
45          * effort converting them to jiffies..
46          */
47         msleep_interruptible(jiffies_to_msecs(delay));
48 }
49
50
51 /* FIXME: The following line needs to be somewhere else... */
52 #define WRONG_BUS_FREQUENCY 0x07
53 static u8 handle_switch_change(u8 change, struct controller *ctrl)
54 {
55         int hp_slot;
56         u8 rc = 0;
57         u16 temp_word;
58         struct pci_func *func;
59         struct event_info *taskInfo;
60
61         if (!change)
62                 return 0;
63
64         /* Switch Change */
65         dbg("cpqsbd:  Switch interrupt received.\n");
66
67         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
68                 if (change & (0x1L << hp_slot)) {
69                         /*
70                          * this one changed.
71                          */
72                         func = cpqhp_slot_find(ctrl->bus,
73                                 (hp_slot + ctrl->slot_device_offset), 0);
74
75                         /* this is the structure that tells the worker thread
76                          * what to do
77                          */
78                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
79                         ctrl->next_event = (ctrl->next_event + 1) % 10;
80                         taskInfo->hp_slot = hp_slot;
81
82                         rc++;
83
84                         temp_word = ctrl->ctrl_int_comp >> 16;
85                         func->presence_save = (temp_word >> hp_slot) & 0x01;
86                         func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
87
88                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
89                                 /*
90                                  * Switch opened
91                                  */
92
93                                 func->switch_save = 0;
94
95                                 taskInfo->event_type = INT_SWITCH_OPEN;
96                         } else {
97                                 /*
98                                  * Switch closed
99                                  */
100
101                                 func->switch_save = 0x10;
102
103                                 taskInfo->event_type = INT_SWITCH_CLOSE;
104                         }
105                 }
106         }
107
108         return rc;
109 }
110
111 /**
112  * cpqhp_find_slot - find the struct slot of given device
113  * @ctrl: scan lots of this controller
114  * @device: the device id to find
115  */
116 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
117 {
118         struct slot *slot = ctrl->slot;
119
120         while (slot && (slot->device != device))
121                 slot = slot->next;
122
123         return slot;
124 }
125
126
127 static u8 handle_presence_change(u16 change, struct controller *ctrl)
128 {
129         int hp_slot;
130         u8 rc = 0;
131         u8 temp_byte;
132         u16 temp_word;
133         struct pci_func *func;
134         struct event_info *taskInfo;
135         struct slot *p_slot;
136
137         if (!change)
138                 return 0;
139
140         /*
141          * Presence Change
142          */
143         dbg("cpqsbd:  Presence/Notify input change.\n");
144         dbg("         Changed bits are 0x%4.4x\n", change);
145
146         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
147                 if (change & (0x0101 << hp_slot)) {
148                         /*
149                          * this one changed.
150                          */
151                         func = cpqhp_slot_find(ctrl->bus,
152                                 (hp_slot + ctrl->slot_device_offset), 0);
153
154                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
155                         ctrl->next_event = (ctrl->next_event + 1) % 10;
156                         taskInfo->hp_slot = hp_slot;
157
158                         rc++;
159
160                         p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
161                         if (!p_slot)
162                                 return 0;
163
164                         /* If the switch closed, must be a button
165                          * If not in button mode, nevermind
166                          */
167                         if (func->switch_save && (ctrl->push_button == 1)) {
168                                 temp_word = ctrl->ctrl_int_comp >> 16;
169                                 temp_byte = (temp_word >> hp_slot) & 0x01;
170                                 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
171
172                                 if (temp_byte != func->presence_save) {
173                                         /*
174                                          * button Pressed (doesn't do anything)
175                                          */
176                                         dbg("hp_slot %d button pressed\n", hp_slot);
177                                         taskInfo->event_type = INT_BUTTON_PRESS;
178                                 } else {
179                                         /*
180                                          * button Released - TAKE ACTION!!!!
181                                          */
182                                         dbg("hp_slot %d button released\n", hp_slot);
183                                         taskInfo->event_type = INT_BUTTON_RELEASE;
184
185                                         /* Cancel if we are still blinking */
186                                         if ((p_slot->state == BLINKINGON_STATE)
187                                             || (p_slot->state == BLINKINGOFF_STATE)) {
188                                                 taskInfo->event_type = INT_BUTTON_CANCEL;
189                                                 dbg("hp_slot %d button cancel\n", hp_slot);
190                                         } else if ((p_slot->state == POWERON_STATE)
191                                                    || (p_slot->state == POWEROFF_STATE)) {
192                                                 /* info(msg_button_ignore, p_slot->number); */
193                                                 taskInfo->event_type = INT_BUTTON_IGNORE;
194                                                 dbg("hp_slot %d button ignore\n", hp_slot);
195                                         }
196                                 }
197                         } else {
198                                 /* Switch is open, assume a presence change
199                                  * Save the presence state
200                                  */
201                                 temp_word = ctrl->ctrl_int_comp >> 16;
202                                 func->presence_save = (temp_word >> hp_slot) & 0x01;
203                                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
204
205                                 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
206                                     (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
207                                         /* Present */
208                                         taskInfo->event_type = INT_PRESENCE_ON;
209                                 } else {
210                                         /* Not Present */
211                                         taskInfo->event_type = INT_PRESENCE_OFF;
212                                 }
213                         }
214                 }
215         }
216
217         return rc;
218 }
219
220
221 static u8 handle_power_fault(u8 change, struct controller *ctrl)
222 {
223         int hp_slot;
224         u8 rc = 0;
225         struct pci_func *func;
226         struct event_info *taskInfo;
227
228         if (!change)
229                 return 0;
230
231         /*
232          * power fault
233          */
234
235         info("power fault interrupt\n");
236
237         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
238                 if (change & (0x01 << hp_slot)) {
239                         /*
240                          * this one changed.
241                          */
242                         func = cpqhp_slot_find(ctrl->bus,
243                                 (hp_slot + ctrl->slot_device_offset), 0);
244
245                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
246                         ctrl->next_event = (ctrl->next_event + 1) % 10;
247                         taskInfo->hp_slot = hp_slot;
248
249                         rc++;
250
251                         if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
252                                 /*
253                                  * power fault Cleared
254                                  */
255                                 func->status = 0x00;
256
257                                 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
258                         } else {
259                                 /*
260                                  * power fault
261                                  */
262                                 taskInfo->event_type = INT_POWER_FAULT;
263
264                                 if (ctrl->rev < 4) {
265                                         amber_LED_on(ctrl, hp_slot);
266                                         green_LED_off(ctrl, hp_slot);
267                                         set_SOGO(ctrl);
268
269                                         /* this is a fatal condition, we want
270                                          * to crash the machine to protect from
271                                          * data corruption. simulated_NMI
272                                          * shouldn't ever return */
273                                         /* FIXME
274                                         simulated_NMI(hp_slot, ctrl); */
275
276                                         /* The following code causes a software
277                                          * crash just in case simulated_NMI did
278                                          * return */
279                                         /*FIXME
280                                         panic(msg_power_fault); */
281                                 } else {
282                                         /* set power fault status for this board */
283                                         func->status = 0xFF;
284                                         info("power fault bit %x set\n", hp_slot);
285                                 }
286                         }
287                 }
288         }
289
290         return rc;
291 }
292
293
294 /**
295  * sort_by_size - sort nodes on the list by their length, smallest first.
296  * @head: list to sort
297  */
298 static int sort_by_size(struct pci_resource **head)
299 {
300         struct pci_resource *current_res;
301         struct pci_resource *next_res;
302         int out_of_order = 1;
303
304         if (!(*head))
305                 return 1;
306
307         if (!((*head)->next))
308                 return 0;
309
310         while (out_of_order) {
311                 out_of_order = 0;
312
313                 /* Special case for swapping list head */
314                 if (((*head)->next) &&
315                     ((*head)->length > (*head)->next->length)) {
316                         out_of_order++;
317                         current_res = *head;
318                         *head = (*head)->next;
319                         current_res->next = (*head)->next;
320                         (*head)->next = current_res;
321                 }
322
323                 current_res = *head;
324
325                 while (current_res->next && current_res->next->next) {
326                         if (current_res->next->length > current_res->next->next->length) {
327                                 out_of_order++;
328                                 next_res = current_res->next;
329                                 current_res->next = current_res->next->next;
330                                 current_res = current_res->next;
331                                 next_res->next = current_res->next;
332                                 current_res->next = next_res;
333                         } else
334                                 current_res = current_res->next;
335                 }
336         }  /* End of out_of_order loop */
337
338         return 0;
339 }
340
341
342 /**
343  * sort_by_max_size - sort nodes on the list by their length, largest first.
344  * @head: list to sort
345  */
346 static int sort_by_max_size(struct pci_resource **head)
347 {
348         struct pci_resource *current_res;
349         struct pci_resource *next_res;
350         int out_of_order = 1;
351
352         if (!(*head))
353                 return 1;
354
355         if (!((*head)->next))
356                 return 0;
357
358         while (out_of_order) {
359                 out_of_order = 0;
360
361                 /* Special case for swapping list head */
362                 if (((*head)->next) &&
363                     ((*head)->length < (*head)->next->length)) {
364                         out_of_order++;
365                         current_res = *head;
366                         *head = (*head)->next;
367                         current_res->next = (*head)->next;
368                         (*head)->next = current_res;
369                 }
370
371                 current_res = *head;
372
373                 while (current_res->next && current_res->next->next) {
374                         if (current_res->next->length < current_res->next->next->length) {
375                                 out_of_order++;
376                                 next_res = current_res->next;
377                                 current_res->next = current_res->next->next;
378                                 current_res = current_res->next;
379                                 next_res->next = current_res->next;
380                                 current_res->next = next_res;
381                         } else
382                                 current_res = current_res->next;
383                 }
384         }  /* End of out_of_order loop */
385
386         return 0;
387 }
388
389
390 /**
391  * do_pre_bridge_resource_split - find node of resources that are unused
392  * @head: new list head
393  * @orig_head: original list head
394  * @alignment: max node size (?)
395  */
396 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
397                                 struct pci_resource **orig_head, u32 alignment)
398 {
399         struct pci_resource *prevnode = NULL;
400         struct pci_resource *node;
401         struct pci_resource *split_node;
402         u32 rc;
403         u32 temp_dword;
404         dbg("do_pre_bridge_resource_split\n");
405
406         if (!(*head) || !(*orig_head))
407                 return NULL;
408
409         rc = cpqhp_resource_sort_and_combine(head);
410
411         if (rc)
412                 return NULL;
413
414         if ((*head)->base != (*orig_head)->base)
415                 return NULL;
416
417         if ((*head)->length == (*orig_head)->length)
418                 return NULL;
419
420
421         /* If we got here, there the bridge requires some of the resource, but
422          * we may be able to split some off of the front
423          */
424
425         node = *head;
426
427         if (node->length & (alignment - 1)) {
428                 /* this one isn't an aligned length, so we'll make a new entry
429                  * and split it up.
430                  */
431                 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
432
433                 if (!split_node)
434                         return NULL;
435
436                 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
437
438                 split_node->base = node->base;
439                 split_node->length = temp_dword;
440
441                 node->length -= temp_dword;
442                 node->base += split_node->length;
443
444                 /* Put it in the list */
445                 *head = split_node;
446                 split_node->next = node;
447         }
448
449         if (node->length < alignment)
450                 return NULL;
451
452         /* Now unlink it */
453         if (*head == node) {
454                 *head = node->next;
455         } else {
456                 prevnode = *head;
457                 while (prevnode->next != node)
458                         prevnode = prevnode->next;
459
460                 prevnode->next = node->next;
461         }
462         node->next = NULL;
463
464         return node;
465 }
466
467
468 /**
469  * do_bridge_resource_split - find one node of resources that aren't in use
470  * @head: list head
471  * @alignment: max node size (?)
472  */
473 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
474 {
475         struct pci_resource *prevnode = NULL;
476         struct pci_resource *node;
477         u32 rc;
478         u32 temp_dword;
479
480         rc = cpqhp_resource_sort_and_combine(head);
481
482         if (rc)
483                 return NULL;
484
485         node = *head;
486
487         while (node->next) {
488                 prevnode = node;
489                 node = node->next;
490                 kfree(prevnode);
491         }
492
493         if (node->length < alignment)
494                 goto error;
495
496         if (node->base & (alignment - 1)) {
497                 /* Short circuit if adjusted size is too small */
498                 temp_dword = (node->base | (alignment-1)) + 1;
499                 if ((node->length - (temp_dword - node->base)) < alignment)
500                         goto error;
501
502                 node->length -= (temp_dword - node->base);
503                 node->base = temp_dword;
504         }
505
506         if (node->length & (alignment - 1))
507                 /* There's stuff in use after this node */
508                 goto error;
509
510         return node;
511 error:
512         kfree(node);
513         return NULL;
514 }
515
516
517 /**
518  * get_io_resource - find first node of given size not in ISA aliasing window.
519  * @head: list to search
520  * @size: size of node to find, must be a power of two.
521  *
522  * Description: This function sorts the resource list by size and then
523  * returns the first node of "size" length that is not in the ISA aliasing
524  * window.  If it finds a node larger than "size" it will split it up.
525  */
526 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
527 {
528         struct pci_resource *prevnode;
529         struct pci_resource *node;
530         struct pci_resource *split_node;
531         u32 temp_dword;
532
533         if (!(*head))
534                 return NULL;
535
536         if (cpqhp_resource_sort_and_combine(head))
537                 return NULL;
538
539         if (sort_by_size(head))
540                 return NULL;
541
542         for (node = *head; node; node = node->next) {
543                 if (node->length < size)
544                         continue;
545
546                 if (node->base & (size - 1)) {
547                         /* this one isn't base aligned properly
548                          * so we'll make a new entry and split it up
549                          */
550                         temp_dword = (node->base | (size-1)) + 1;
551
552                         /* Short circuit if adjusted size is too small */
553                         if ((node->length - (temp_dword - node->base)) < size)
554                                 continue;
555
556                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
557
558                         if (!split_node)
559                                 return NULL;
560
561                         split_node->base = node->base;
562                         split_node->length = temp_dword - node->base;
563                         node->base = temp_dword;
564                         node->length -= split_node->length;
565
566                         /* Put it in the list */
567                         split_node->next = node->next;
568                         node->next = split_node;
569                 } /* End of non-aligned base */
570
571                 /* Don't need to check if too small since we already did */
572                 if (node->length > size) {
573                         /* this one is longer than we need
574                          * so we'll make a new entry and split it up
575                          */
576                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
577
578                         if (!split_node)
579                                 return NULL;
580
581                         split_node->base = node->base + size;
582                         split_node->length = node->length - size;
583                         node->length = size;
584
585                         /* Put it in the list */
586                         split_node->next = node->next;
587                         node->next = split_node;
588                 }  /* End of too big on top end */
589
590                 /* For IO make sure it's not in the ISA aliasing space */
591                 if (node->base & 0x300L)
592                         continue;
593
594                 /* If we got here, then it is the right size
595                  * Now take it out of the list and break
596                  */
597                 if (*head == node) {
598                         *head = node->next;
599                 } else {
600                         prevnode = *head;
601                         while (prevnode->next != node)
602                                 prevnode = prevnode->next;
603
604                         prevnode->next = node->next;
605                 }
606                 node->next = NULL;
607                 break;
608         }
609
610         return node;
611 }
612
613
614 /**
615  * get_max_resource - get largest node which has at least the given size.
616  * @head: the list to search the node in
617  * @size: the minimum size of the node to find
618  *
619  * Description: Gets the largest node that is at least "size" big from the
620  * list pointed to by head.  It aligns the node on top and bottom
621  * to "size" alignment before returning it.
622  */
623 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
624 {
625         struct pci_resource *max;
626         struct pci_resource *temp;
627         struct pci_resource *split_node;
628         u32 temp_dword;
629
630         if (cpqhp_resource_sort_and_combine(head))
631                 return NULL;
632
633         if (sort_by_max_size(head))
634                 return NULL;
635
636         for (max = *head; max; max = max->next) {
637                 /* If not big enough we could probably just bail,
638                  * instead we'll continue to the next.
639                  */
640                 if (max->length < size)
641                         continue;
642
643                 if (max->base & (size - 1)) {
644                         /* this one isn't base aligned properly
645                          * so we'll make a new entry and split it up
646                          */
647                         temp_dword = (max->base | (size-1)) + 1;
648
649                         /* Short circuit if adjusted size is too small */
650                         if ((max->length - (temp_dword - max->base)) < size)
651                                 continue;
652
653                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
654
655                         if (!split_node)
656                                 return NULL;
657
658                         split_node->base = max->base;
659                         split_node->length = temp_dword - max->base;
660                         max->base = temp_dword;
661                         max->length -= split_node->length;
662
663                         split_node->next = max->next;
664                         max->next = split_node;
665                 }
666
667                 if ((max->base + max->length) & (size - 1)) {
668                         /* this one isn't end aligned properly at the top
669                          * so we'll make a new entry and split it up
670                          */
671                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
672
673                         if (!split_node)
674                                 return NULL;
675                         temp_dword = ((max->base + max->length) & ~(size - 1));
676                         split_node->base = temp_dword;
677                         split_node->length = max->length + max->base
678                                              - split_node->base;
679                         max->length -= split_node->length;
680
681                         split_node->next = max->next;
682                         max->next = split_node;
683                 }
684
685                 /* Make sure it didn't shrink too much when we aligned it */
686                 if (max->length < size)
687                         continue;
688
689                 /* Now take it out of the list */
690                 temp = *head;
691                 if (temp == max) {
692                         *head = max->next;
693                 } else {
694                         while (temp && temp->next != max)
695                                 temp = temp->next;
696
697                         if (temp)
698                                 temp->next = max->next;
699                 }
700
701                 max->next = NULL;
702                 break;
703         }
704
705         return max;
706 }
707
708
709 /**
710  * get_resource - find resource of given size and split up larger ones.
711  * @head: the list to search for resources
712  * @size: the size limit to use
713  *
714  * Description: This function sorts the resource list by size and then
715  * returns the first node of "size" length.  If it finds a node
716  * larger than "size" it will split it up.
717  *
718  * size must be a power of two.
719  */
720 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
721 {
722         struct pci_resource *prevnode;
723         struct pci_resource *node;
724         struct pci_resource *split_node;
725         u32 temp_dword;
726
727         if (cpqhp_resource_sort_and_combine(head))
728                 return NULL;
729
730         if (sort_by_size(head))
731                 return NULL;
732
733         for (node = *head; node; node = node->next) {
734                 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
735                     __func__, size, node, node->base, node->length);
736                 if (node->length < size)
737                         continue;
738
739                 if (node->base & (size - 1)) {
740                         dbg("%s: not aligned\n", __func__);
741                         /* this one isn't base aligned properly
742                          * so we'll make a new entry and split it up
743                          */
744                         temp_dword = (node->base | (size-1)) + 1;
745
746                         /* Short circuit if adjusted size is too small */
747                         if ((node->length - (temp_dword - node->base)) < size)
748                                 continue;
749
750                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
751
752                         if (!split_node)
753                                 return NULL;
754
755                         split_node->base = node->base;
756                         split_node->length = temp_dword - node->base;
757                         node->base = temp_dword;
758                         node->length -= split_node->length;
759
760                         split_node->next = node->next;
761                         node->next = split_node;
762                 } /* End of non-aligned base */
763
764                 /* Don't need to check if too small since we already did */
765                 if (node->length > size) {
766                         dbg("%s: too big\n", __func__);
767                         /* this one is longer than we need
768                          * so we'll make a new entry and split it up
769                          */
770                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
771
772                         if (!split_node)
773                                 return NULL;
774
775                         split_node->base = node->base + size;
776                         split_node->length = node->length - size;
777                         node->length = size;
778
779                         /* Put it in the list */
780                         split_node->next = node->next;
781                         node->next = split_node;
782                 }  /* End of too big on top end */
783
784                 dbg("%s: got one!!!\n", __func__);
785                 /* If we got here, then it is the right size
786                  * Now take it out of the list */
787                 if (*head == node) {
788                         *head = node->next;
789                 } else {
790                         prevnode = *head;
791                         while (prevnode->next != node)
792                                 prevnode = prevnode->next;
793
794                         prevnode->next = node->next;
795                 }
796                 node->next = NULL;
797                 break;
798         }
799         return node;
800 }
801
802
803 /**
804  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
805  * @head: the list to sort and clean up
806  *
807  * Description: Sorts all of the nodes in the list in ascending order by
808  * their base addresses.  Also does garbage collection by
809  * combining adjacent nodes.
810  *
811  * Returns %0 if success.
812  */
813 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
814 {
815         struct pci_resource *node1;
816         struct pci_resource *node2;
817         int out_of_order = 1;
818
819         dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
820
821         if (!(*head))
822                 return 1;
823
824         dbg("*head->next = %p\n", (*head)->next);
825
826         if (!(*head)->next)
827                 return 0;       /* only one item on the list, already sorted! */
828
829         dbg("*head->base = 0x%x\n", (*head)->base);
830         dbg("*head->next->base = 0x%x\n", (*head)->next->base);
831         while (out_of_order) {
832                 out_of_order = 0;
833
834                 /* Special case for swapping list head */
835                 if (((*head)->next) &&
836                     ((*head)->base > (*head)->next->base)) {
837                         node1 = *head;
838                         (*head) = (*head)->next;
839                         node1->next = (*head)->next;
840                         (*head)->next = node1;
841                         out_of_order++;
842                 }
843
844                 node1 = (*head);
845
846                 while (node1->next && node1->next->next) {
847                         if (node1->next->base > node1->next->next->base) {
848                                 out_of_order++;
849                                 node2 = node1->next;
850                                 node1->next = node1->next->next;
851                                 node1 = node1->next;
852                                 node2->next = node1->next;
853                                 node1->next = node2;
854                         } else
855                                 node1 = node1->next;
856                 }
857         }  /* End of out_of_order loop */
858
859         node1 = *head;
860
861         while (node1 && node1->next) {
862                 if ((node1->base + node1->length) == node1->next->base) {
863                         /* Combine */
864                         dbg("8..\n");
865                         node1->length += node1->next->length;
866                         node2 = node1->next;
867                         node1->next = node1->next->next;
868                         kfree(node2);
869                 } else
870                         node1 = node1->next;
871         }
872
873         return 0;
874 }
875
876
877 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
878 {
879         struct controller *ctrl = data;
880         u8 schedule_flag = 0;
881         u8 reset;
882         u16 misc;
883         u32 Diff;
884
885
886         misc = readw(ctrl->hpc_reg + MISC);
887         /*
888          * Check to see if it was our interrupt
889          */
890         if (!(misc & 0x000C))
891                 return IRQ_NONE;
892
893         if (misc & 0x0004) {
894                 /*
895                  * Serial Output interrupt Pending
896                  */
897
898                 /* Clear the interrupt */
899                 misc |= 0x0004;
900                 writew(misc, ctrl->hpc_reg + MISC);
901
902                 /* Read to clear posted writes */
903                 misc = readw(ctrl->hpc_reg + MISC);
904
905                 dbg("%s - waking up\n", __func__);
906                 wake_up_interruptible(&ctrl->queue);
907         }
908
909         if (misc & 0x0008) {
910                 /* General-interrupt-input interrupt Pending */
911                 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
912
913                 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
914
915                 /* Clear the interrupt */
916                 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
917
918                 /* Read it back to clear any posted writes */
919                 readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
920
921                 if (!Diff)
922                         /* Clear all interrupts */
923                         writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
924
925                 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
926                 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
927                 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
928         }
929
930         reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
931         if (reset & 0x40) {
932                 /* Bus reset has completed */
933                 reset &= 0xCF;
934                 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
935                 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
936                 wake_up_interruptible(&ctrl->queue);
937         }
938
939         if (schedule_flag) {
940                 wake_up_process(cpqhp_event_thread);
941                 dbg("Waking even thread");
942         }
943         return IRQ_HANDLED;
944 }
945
946
947 /**
948  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
949  * @busnumber: bus where new node is to be located
950  *
951  * Returns pointer to the new node or %NULL if unsuccessful.
952  */
953 struct pci_func *cpqhp_slot_create(u8 busnumber)
954 {
955         struct pci_func *new_slot;
956         struct pci_func *next;
957
958         new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
959         if (new_slot == NULL)
960                 return new_slot;
961
962         new_slot->next = NULL;
963         new_slot->configured = 1;
964
965         if (cpqhp_slot_list[busnumber] == NULL) {
966                 cpqhp_slot_list[busnumber] = new_slot;
967         } else {
968                 next = cpqhp_slot_list[busnumber];
969                 while (next->next != NULL)
970                         next = next->next;
971                 next->next = new_slot;
972         }
973         return new_slot;
974 }
975
976
977 /**
978  * slot_remove - Removes a node from the linked list of slots.
979  * @old_slot: slot to remove
980  *
981  * Returns %0 if successful, !0 otherwise.
982  */
983 static int slot_remove(struct pci_func *old_slot)
984 {
985         struct pci_func *next;
986
987         if (old_slot == NULL)
988                 return 1;
989
990         next = cpqhp_slot_list[old_slot->bus];
991         if (next == NULL)
992                 return 1;
993
994         if (next == old_slot) {
995                 cpqhp_slot_list[old_slot->bus] = old_slot->next;
996                 cpqhp_destroy_board_resources(old_slot);
997                 kfree(old_slot);
998                 return 0;
999         }
1000
1001         while ((next->next != old_slot) && (next->next != NULL))
1002                 next = next->next;
1003
1004         if (next->next == old_slot) {
1005                 next->next = old_slot->next;
1006                 cpqhp_destroy_board_resources(old_slot);
1007                 kfree(old_slot);
1008                 return 0;
1009         } else
1010                 return 2;
1011 }
1012
1013
1014 /**
1015  * bridge_slot_remove - Removes a node from the linked list of slots.
1016  * @bridge: bridge to remove
1017  *
1018  * Returns %0 if successful, !0 otherwise.
1019  */
1020 static int bridge_slot_remove(struct pci_func *bridge)
1021 {
1022         u8 subordinateBus, secondaryBus;
1023         u8 tempBus;
1024         struct pci_func *next;
1025
1026         secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1027         subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1028
1029         for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1030                 next = cpqhp_slot_list[tempBus];
1031
1032                 while (!slot_remove(next))
1033                         next = cpqhp_slot_list[tempBus];
1034         }
1035
1036         next = cpqhp_slot_list[bridge->bus];
1037
1038         if (next == NULL)
1039                 return 1;
1040
1041         if (next == bridge) {
1042                 cpqhp_slot_list[bridge->bus] = bridge->next;
1043                 goto out;
1044         }
1045
1046         while ((next->next != bridge) && (next->next != NULL))
1047                 next = next->next;
1048
1049         if (next->next != bridge)
1050                 return 2;
1051         next->next = bridge->next;
1052 out:
1053         kfree(bridge);
1054         return 0;
1055 }
1056
1057
1058 /**
1059  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1060  * @bus: bus to find
1061  * @device: device to find
1062  * @index: is %0 for first function found, %1 for the second...
1063  *
1064  * Returns pointer to the node if successful, %NULL otherwise.
1065  */
1066 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1067 {
1068         int found = -1;
1069         struct pci_func *func;
1070
1071         func = cpqhp_slot_list[bus];
1072
1073         if ((func == NULL) || ((func->device == device) && (index == 0)))
1074                 return func;
1075
1076         if (func->device == device)
1077                 found++;
1078
1079         while (func->next != NULL) {
1080                 func = func->next;
1081
1082                 if (func->device == device)
1083                         found++;
1084
1085                 if (found == index)
1086                         return func;
1087         }
1088
1089         return NULL;
1090 }
1091
1092
1093 /* DJZ: I don't think is_bridge will work as is.
1094  * FIXME */
1095 static int is_bridge(struct pci_func *func)
1096 {
1097         /* Check the header type */
1098         if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1099                 return 1;
1100         else
1101                 return 0;
1102 }
1103
1104
1105 /**
1106  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1107  * @ctrl: controller to change frequency/mode for.
1108  * @adapter_speed: the speed of the adapter we want to match.
1109  * @hp_slot: the slot number where the adapter is installed.
1110  *
1111  * Returns %0 if we successfully change frequency and/or mode to match the
1112  * adapter speed.
1113  */
1114 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1115 {
1116         struct slot *slot;
1117         struct pci_bus *bus = ctrl->pci_bus;
1118         u8 reg;
1119         u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1120         u16 reg16;
1121         u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1122
1123         if (bus->cur_bus_speed == adapter_speed)
1124                 return 0;
1125
1126         /* We don't allow freq/mode changes if we find another adapter running
1127          * in another slot on this controller
1128          */
1129         for (slot = ctrl->slot; slot; slot = slot->next) {
1130                 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1131                         continue;
1132                 if (get_presence_status(ctrl, slot) == 0)
1133                         continue;
1134                 /* If another adapter is running on the same segment but at a
1135                  * lower speed/mode, we allow the new adapter to function at
1136                  * this rate if supported
1137                  */
1138                 if (bus->cur_bus_speed < adapter_speed)
1139                         return 0;
1140
1141                 return 1;
1142         }
1143
1144         /* If the controller doesn't support freq/mode changes and the
1145          * controller is running at a higher mode, we bail
1146          */
1147         if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1148                 return 1;
1149
1150         /* But we allow the adapter to run at a lower rate if possible */
1151         if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1152                 return 0;
1153
1154         /* We try to set the max speed supported by both the adapter and
1155          * controller
1156          */
1157         if (bus->max_bus_speed < adapter_speed) {
1158                 if (bus->cur_bus_speed == bus->max_bus_speed)
1159                         return 0;
1160                 adapter_speed = bus->max_bus_speed;
1161         }
1162
1163         writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1164         writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1165
1166         set_SOGO(ctrl);
1167         wait_for_ctrl_irq(ctrl);
1168
1169         if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1170                 reg = 0xF5;
1171         else
1172                 reg = 0xF4;
1173         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1174
1175         reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1176         reg16 &= ~0x000F;
1177         switch (adapter_speed) {
1178                 case(PCI_SPEED_133MHz_PCIX):
1179                         reg = 0x75;
1180                         reg16 |= 0xB;
1181                         break;
1182                 case(PCI_SPEED_100MHz_PCIX):
1183                         reg = 0x74;
1184                         reg16 |= 0xA;
1185                         break;
1186                 case(PCI_SPEED_66MHz_PCIX):
1187                         reg = 0x73;
1188                         reg16 |= 0x9;
1189                         break;
1190                 case(PCI_SPEED_66MHz):
1191                         reg = 0x73;
1192                         reg16 |= 0x1;
1193                         break;
1194                 default: /* 33MHz PCI 2.2 */
1195                         reg = 0x71;
1196                         break;
1197
1198         }
1199         reg16 |= 0xB << 12;
1200         writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1201
1202         mdelay(5);
1203
1204         /* Re-enable interrupts */
1205         writel(0, ctrl->hpc_reg + INT_MASK);
1206
1207         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1208
1209         /* Restart state machine */
1210         reg = ~0xF;
1211         pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1212         pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1213
1214         /* Only if mode change...*/
1215         if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1216                 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1217                         set_SOGO(ctrl);
1218
1219         wait_for_ctrl_irq(ctrl);
1220         mdelay(1100);
1221
1222         /* Restore LED/Slot state */
1223         writel(leds, ctrl->hpc_reg + LED_CONTROL);
1224         writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1225
1226         set_SOGO(ctrl);
1227         wait_for_ctrl_irq(ctrl);
1228
1229         bus->cur_bus_speed = adapter_speed;
1230         slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1231
1232         info("Successfully changed frequency/mode for adapter in slot %d\n",
1233                         slot->number);
1234         return 0;
1235 }
1236
1237 /* the following routines constitute the bulk of the
1238  * hotplug controller logic
1239  */
1240
1241
1242 /**
1243  * board_replaced - Called after a board has been replaced in the system.
1244  * @func: PCI device/function information
1245  * @ctrl: hotplug controller
1246  *
1247  * This is only used if we don't have resources for hot add.
1248  * Turns power on for the board.
1249  * Checks to see if board is the same.
1250  * If board is same, reconfigures it.
1251  * If board isn't same, turns it back off.
1252  */
1253 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1254 {
1255         struct pci_bus *bus = ctrl->pci_bus;
1256         u8 hp_slot;
1257         u8 temp_byte;
1258         u8 adapter_speed;
1259         u32 rc = 0;
1260
1261         hp_slot = func->device - ctrl->slot_device_offset;
1262
1263         /*
1264          * The switch is open.
1265          */
1266         if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1267                 rc = INTERLOCK_OPEN;
1268         /*
1269          * The board is already on
1270          */
1271         else if (is_slot_enabled(ctrl, hp_slot))
1272                 rc = CARD_FUNCTIONING;
1273         else {
1274                 mutex_lock(&ctrl->crit_sect);
1275
1276                 /* turn on board without attaching to the bus */
1277                 enable_slot_power(ctrl, hp_slot);
1278
1279                 set_SOGO(ctrl);
1280
1281                 /* Wait for SOBS to be unset */
1282                 wait_for_ctrl_irq(ctrl);
1283
1284                 /* Change bits in slot power register to force another shift out
1285                  * NOTE: this is to work around the timer bug */
1286                 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1287                 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1288                 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1289
1290                 set_SOGO(ctrl);
1291
1292                 /* Wait for SOBS to be unset */
1293                 wait_for_ctrl_irq(ctrl);
1294
1295                 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1296                 if (bus->cur_bus_speed != adapter_speed)
1297                         if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1298                                 rc = WRONG_BUS_FREQUENCY;
1299
1300                 /* turn off board without attaching to the bus */
1301                 disable_slot_power(ctrl, hp_slot);
1302
1303                 set_SOGO(ctrl);
1304
1305                 /* Wait for SOBS to be unset */
1306                 wait_for_ctrl_irq(ctrl);
1307
1308                 mutex_unlock(&ctrl->crit_sect);
1309
1310                 if (rc)
1311                         return rc;
1312
1313                 mutex_lock(&ctrl->crit_sect);
1314
1315                 slot_enable(ctrl, hp_slot);
1316                 green_LED_blink(ctrl, hp_slot);
1317
1318                 amber_LED_off(ctrl, hp_slot);
1319
1320                 set_SOGO(ctrl);
1321
1322                 /* Wait for SOBS to be unset */
1323                 wait_for_ctrl_irq(ctrl);
1324
1325                 mutex_unlock(&ctrl->crit_sect);
1326
1327                 /* Wait for ~1 second because of hot plug spec */
1328                 long_delay(1*HZ);
1329
1330                 /* Check for a power fault */
1331                 if (func->status == 0xFF) {
1332                         /* power fault occurred, but it was benign */
1333                         rc = POWER_FAILURE;
1334                         func->status = 0;
1335                 } else
1336                         rc = cpqhp_valid_replace(ctrl, func);
1337
1338                 if (!rc) {
1339                         /* It must be the same board */
1340
1341                         rc = cpqhp_configure_board(ctrl, func);
1342
1343                         /* If configuration fails, turn it off
1344                          * Get slot won't work for devices behind
1345                          * bridges, but in this case it will always be
1346                          * called for the "base" bus/dev/func of an
1347                          * adapter.
1348                          */
1349
1350                         mutex_lock(&ctrl->crit_sect);
1351
1352                         amber_LED_on(ctrl, hp_slot);
1353                         green_LED_off(ctrl, hp_slot);
1354                         slot_disable(ctrl, hp_slot);
1355
1356                         set_SOGO(ctrl);
1357
1358                         /* Wait for SOBS to be unset */
1359                         wait_for_ctrl_irq(ctrl);
1360
1361                         mutex_unlock(&ctrl->crit_sect);
1362
1363                         if (rc)
1364                                 return rc;
1365                         else
1366                                 return 1;
1367
1368                 } else {
1369                         /* Something is wrong
1370
1371                          * Get slot won't work for devices behind bridges, but
1372                          * in this case it will always be called for the "base"
1373                          * bus/dev/func of an adapter.
1374                          */
1375
1376                         mutex_lock(&ctrl->crit_sect);
1377
1378                         amber_LED_on(ctrl, hp_slot);
1379                         green_LED_off(ctrl, hp_slot);
1380                         slot_disable(ctrl, hp_slot);
1381
1382                         set_SOGO(ctrl);
1383
1384                         /* Wait for SOBS to be unset */
1385                         wait_for_ctrl_irq(ctrl);
1386
1387                         mutex_unlock(&ctrl->crit_sect);
1388                 }
1389
1390         }
1391         return rc;
1392
1393 }
1394
1395
1396 /**
1397  * board_added - Called after a board has been added to the system.
1398  * @func: PCI device/function info
1399  * @ctrl: hotplug controller
1400  *
1401  * Turns power on for the board.
1402  * Configures board.
1403  */
1404 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1405 {
1406         u8 hp_slot;
1407         u8 temp_byte;
1408         u8 adapter_speed;
1409         int index;
1410         u32 temp_register = 0xFFFFFFFF;
1411         u32 rc = 0;
1412         struct pci_func *new_slot = NULL;
1413         struct pci_bus *bus = ctrl->pci_bus;
1414         struct resource_lists res_lists;
1415
1416         hp_slot = func->device - ctrl->slot_device_offset;
1417         dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1418             __func__, func->device, ctrl->slot_device_offset, hp_slot);
1419
1420         mutex_lock(&ctrl->crit_sect);
1421
1422         /* turn on board without attaching to the bus */
1423         enable_slot_power(ctrl, hp_slot);
1424
1425         set_SOGO(ctrl);
1426
1427         /* Wait for SOBS to be unset */
1428         wait_for_ctrl_irq(ctrl);
1429
1430         /* Change bits in slot power register to force another shift out
1431          * NOTE: this is to work around the timer bug
1432          */
1433         temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1434         writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1435         writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1436
1437         set_SOGO(ctrl);
1438
1439         /* Wait for SOBS to be unset */
1440         wait_for_ctrl_irq(ctrl);
1441
1442         adapter_speed = get_adapter_speed(ctrl, hp_slot);
1443         if (bus->cur_bus_speed != adapter_speed)
1444                 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1445                         rc = WRONG_BUS_FREQUENCY;
1446
1447         /* turn off board without attaching to the bus */
1448         disable_slot_power(ctrl, hp_slot);
1449
1450         set_SOGO(ctrl);
1451
1452         /* Wait for SOBS to be unset */
1453         wait_for_ctrl_irq(ctrl);
1454
1455         mutex_unlock(&ctrl->crit_sect);
1456
1457         if (rc)
1458                 return rc;
1459
1460         cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1461
1462         /* turn on board and blink green LED */
1463
1464         dbg("%s: before down\n", __func__);
1465         mutex_lock(&ctrl->crit_sect);
1466         dbg("%s: after down\n", __func__);
1467
1468         dbg("%s: before slot_enable\n", __func__);
1469         slot_enable(ctrl, hp_slot);
1470
1471         dbg("%s: before green_LED_blink\n", __func__);
1472         green_LED_blink(ctrl, hp_slot);
1473
1474         dbg("%s: before amber_LED_blink\n", __func__);
1475         amber_LED_off(ctrl, hp_slot);
1476
1477         dbg("%s: before set_SOGO\n", __func__);
1478         set_SOGO(ctrl);
1479
1480         /* Wait for SOBS to be unset */
1481         dbg("%s: before wait_for_ctrl_irq\n", __func__);
1482         wait_for_ctrl_irq(ctrl);
1483         dbg("%s: after wait_for_ctrl_irq\n", __func__);
1484
1485         dbg("%s: before up\n", __func__);
1486         mutex_unlock(&ctrl->crit_sect);
1487         dbg("%s: after up\n", __func__);
1488
1489         /* Wait for ~1 second because of hot plug spec */
1490         dbg("%s: before long_delay\n", __func__);
1491         long_delay(1*HZ);
1492         dbg("%s: after long_delay\n", __func__);
1493
1494         dbg("%s: func status = %x\n", __func__, func->status);
1495         /* Check for a power fault */
1496         if (func->status == 0xFF) {
1497                 /* power fault occurred, but it was benign */
1498                 temp_register = 0xFFFFFFFF;
1499                 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1500                 rc = POWER_FAILURE;
1501                 func->status = 0;
1502         } else {
1503                 /* Get vendor/device ID u32 */
1504                 ctrl->pci_bus->number = func->bus;
1505                 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1506                 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1507                 dbg("%s: temp_register is %x\n", __func__, temp_register);
1508
1509                 if (rc != 0) {
1510                         /* Something's wrong here */
1511                         temp_register = 0xFFFFFFFF;
1512                         dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1513                 }
1514                 /* Preset return code.  It will be changed later if things go okay. */
1515                 rc = NO_ADAPTER_PRESENT;
1516         }
1517
1518         /* All F's is an empty slot or an invalid board */
1519         if (temp_register != 0xFFFFFFFF) {
1520                 res_lists.io_head = ctrl->io_head;
1521                 res_lists.mem_head = ctrl->mem_head;
1522                 res_lists.p_mem_head = ctrl->p_mem_head;
1523                 res_lists.bus_head = ctrl->bus_head;
1524                 res_lists.irqs = NULL;
1525
1526                 rc = configure_new_device(ctrl, func, 0, &res_lists);
1527
1528                 dbg("%s: back from configure_new_device\n", __func__);
1529                 ctrl->io_head = res_lists.io_head;
1530                 ctrl->mem_head = res_lists.mem_head;
1531                 ctrl->p_mem_head = res_lists.p_mem_head;
1532                 ctrl->bus_head = res_lists.bus_head;
1533
1534                 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1535                 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1536                 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1537                 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1538
1539                 if (rc) {
1540                         mutex_lock(&ctrl->crit_sect);
1541
1542                         amber_LED_on(ctrl, hp_slot);
1543                         green_LED_off(ctrl, hp_slot);
1544                         slot_disable(ctrl, hp_slot);
1545
1546                         set_SOGO(ctrl);
1547
1548                         /* Wait for SOBS to be unset */
1549                         wait_for_ctrl_irq(ctrl);
1550
1551                         mutex_unlock(&ctrl->crit_sect);
1552                         return rc;
1553                 } else {
1554                         cpqhp_save_slot_config(ctrl, func);
1555                 }
1556
1557
1558                 func->status = 0;
1559                 func->switch_save = 0x10;
1560                 func->is_a_board = 0x01;
1561
1562                 /* next, we will instantiate the linux pci_dev structures (with
1563                  * appropriate driver notification, if already present) */
1564                 dbg("%s: configure linux pci_dev structure\n", __func__);
1565                 index = 0;
1566                 do {
1567                         new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1568                         if (new_slot && !new_slot->pci_dev)
1569                                 cpqhp_configure_device(ctrl, new_slot);
1570                 } while (new_slot);
1571
1572                 mutex_lock(&ctrl->crit_sect);
1573
1574                 green_LED_on(ctrl, hp_slot);
1575
1576                 set_SOGO(ctrl);
1577
1578                 /* Wait for SOBS to be unset */
1579                 wait_for_ctrl_irq(ctrl);
1580
1581                 mutex_unlock(&ctrl->crit_sect);
1582         } else {
1583                 mutex_lock(&ctrl->crit_sect);
1584
1585                 amber_LED_on(ctrl, hp_slot);
1586                 green_LED_off(ctrl, hp_slot);
1587                 slot_disable(ctrl, hp_slot);
1588
1589                 set_SOGO(ctrl);
1590
1591                 /* Wait for SOBS to be unset */
1592                 wait_for_ctrl_irq(ctrl);
1593
1594                 mutex_unlock(&ctrl->crit_sect);
1595
1596                 return rc;
1597         }
1598         return 0;
1599 }
1600
1601
1602 /**
1603  * remove_board - Turns off slot and LEDs
1604  * @func: PCI device/function info
1605  * @replace_flag: whether replacing or adding a new device
1606  * @ctrl: target controller
1607  */
1608 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1609 {
1610         int index;
1611         u8 skip = 0;
1612         u8 device;
1613         u8 hp_slot;
1614         u8 temp_byte;
1615         struct resource_lists res_lists;
1616         struct pci_func *temp_func;
1617
1618         if (cpqhp_unconfigure_device(func))
1619                 return 1;
1620
1621         device = func->device;
1622
1623         hp_slot = func->device - ctrl->slot_device_offset;
1624         dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1625
1626         /* When we get here, it is safe to change base address registers.
1627          * We will attempt to save the base address register lengths */
1628         if (replace_flag || !ctrl->add_support)
1629                 cpqhp_save_base_addr_length(ctrl, func);
1630         else if (!func->bus_head && !func->mem_head &&
1631                  !func->p_mem_head && !func->io_head) {
1632                 /* Here we check to see if we've saved any of the board's
1633                  * resources already.  If so, we'll skip the attempt to
1634                  * determine what's being used. */
1635                 index = 0;
1636                 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1637                 while (temp_func) {
1638                         if (temp_func->bus_head || temp_func->mem_head
1639                             || temp_func->p_mem_head || temp_func->io_head) {
1640                                 skip = 1;
1641                                 break;
1642                         }
1643                         temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1644                 }
1645
1646                 if (!skip)
1647                         cpqhp_save_used_resources(ctrl, func);
1648         }
1649         /* Change status to shutdown */
1650         if (func->is_a_board)
1651                 func->status = 0x01;
1652         func->configured = 0;
1653
1654         mutex_lock(&ctrl->crit_sect);
1655
1656         green_LED_off(ctrl, hp_slot);
1657         slot_disable(ctrl, hp_slot);
1658
1659         set_SOGO(ctrl);
1660
1661         /* turn off SERR for slot */
1662         temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1663         temp_byte &= ~(0x01 << hp_slot);
1664         writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1665
1666         /* Wait for SOBS to be unset */
1667         wait_for_ctrl_irq(ctrl);
1668
1669         mutex_unlock(&ctrl->crit_sect);
1670
1671         if (!replace_flag && ctrl->add_support) {
1672                 while (func) {
1673                         res_lists.io_head = ctrl->io_head;
1674                         res_lists.mem_head = ctrl->mem_head;
1675                         res_lists.p_mem_head = ctrl->p_mem_head;
1676                         res_lists.bus_head = ctrl->bus_head;
1677
1678                         cpqhp_return_board_resources(func, &res_lists);
1679
1680                         ctrl->io_head = res_lists.io_head;
1681                         ctrl->mem_head = res_lists.mem_head;
1682                         ctrl->p_mem_head = res_lists.p_mem_head;
1683                         ctrl->bus_head = res_lists.bus_head;
1684
1685                         cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1686                         cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1687                         cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1688                         cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1689
1690                         if (is_bridge(func)) {
1691                                 bridge_slot_remove(func);
1692                         } else
1693                                 slot_remove(func);
1694
1695                         func = cpqhp_slot_find(ctrl->bus, device, 0);
1696                 }
1697
1698                 /* Setup slot structure with entry for empty slot */
1699                 func = cpqhp_slot_create(ctrl->bus);
1700
1701                 if (func == NULL)
1702                         return 1;
1703
1704                 func->bus = ctrl->bus;
1705                 func->device = device;
1706                 func->function = 0;
1707                 func->configured = 0;
1708                 func->switch_save = 0x10;
1709                 func->is_a_board = 0;
1710                 func->p_task_event = NULL;
1711         }
1712
1713         return 0;
1714 }
1715
1716 static void pushbutton_helper_thread(struct timer_list *t)
1717 {
1718         pushbutton_pending = t;
1719
1720         wake_up_process(cpqhp_event_thread);
1721 }
1722
1723
1724 /* this is the main worker thread */
1725 static int event_thread(void *data)
1726 {
1727         struct controller *ctrl;
1728
1729         while (1) {
1730                 dbg("!!!!event_thread sleeping\n");
1731                 set_current_state(TASK_INTERRUPTIBLE);
1732                 schedule();
1733
1734                 if (kthread_should_stop())
1735                         break;
1736                 /* Do stuff here */
1737                 if (pushbutton_pending)
1738                         cpqhp_pushbutton_thread(pushbutton_pending);
1739                 else
1740                         for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1741                                 interrupt_event_handler(ctrl);
1742         }
1743         dbg("event_thread signals exit\n");
1744         return 0;
1745 }
1746
1747 int cpqhp_event_start_thread(void)
1748 {
1749         cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1750         if (IS_ERR(cpqhp_event_thread)) {
1751                 err("Can't start up our event thread\n");
1752                 return PTR_ERR(cpqhp_event_thread);
1753         }
1754
1755         return 0;
1756 }
1757
1758
1759 void cpqhp_event_stop_thread(void)
1760 {
1761         kthread_stop(cpqhp_event_thread);
1762 }
1763
1764
1765 static void interrupt_event_handler(struct controller *ctrl)
1766 {
1767         int loop;
1768         int change = 1;
1769         struct pci_func *func;
1770         u8 hp_slot;
1771         struct slot *p_slot;
1772
1773         while (change) {
1774                 change = 0;
1775
1776                 for (loop = 0; loop < 10; loop++) {
1777                         /* dbg("loop %d\n", loop); */
1778                         if (ctrl->event_queue[loop].event_type != 0) {
1779                                 hp_slot = ctrl->event_queue[loop].hp_slot;
1780
1781                                 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1782                                 if (!func)
1783                                         return;
1784
1785                                 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1786                                 if (!p_slot)
1787                                         return;
1788
1789                                 dbg("hp_slot %d, func %p, p_slot %p\n",
1790                                     hp_slot, func, p_slot);
1791
1792                                 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1793                                         dbg("button pressed\n");
1794                                 } else if (ctrl->event_queue[loop].event_type ==
1795                                            INT_BUTTON_CANCEL) {
1796                                         dbg("button cancel\n");
1797                                         del_timer(&p_slot->task_event);
1798
1799                                         mutex_lock(&ctrl->crit_sect);
1800
1801                                         if (p_slot->state == BLINKINGOFF_STATE) {
1802                                                 /* slot is on */
1803                                                 dbg("turn on green LED\n");
1804                                                 green_LED_on(ctrl, hp_slot);
1805                                         } else if (p_slot->state == BLINKINGON_STATE) {
1806                                                 /* slot is off */
1807                                                 dbg("turn off green LED\n");
1808                                                 green_LED_off(ctrl, hp_slot);
1809                                         }
1810
1811                                         info(msg_button_cancel, p_slot->number);
1812
1813                                         p_slot->state = STATIC_STATE;
1814
1815                                         amber_LED_off(ctrl, hp_slot);
1816
1817                                         set_SOGO(ctrl);
1818
1819                                         /* Wait for SOBS to be unset */
1820                                         wait_for_ctrl_irq(ctrl);
1821
1822                                         mutex_unlock(&ctrl->crit_sect);
1823                                 }
1824                                 /*** button Released (No action on press...) */
1825                                 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1826                                         dbg("button release\n");
1827
1828                                         if (is_slot_enabled(ctrl, hp_slot)) {
1829                                                 dbg("slot is on\n");
1830                                                 p_slot->state = BLINKINGOFF_STATE;
1831                                                 info(msg_button_off, p_slot->number);
1832                                         } else {
1833                                                 dbg("slot is off\n");
1834                                                 p_slot->state = BLINKINGON_STATE;
1835                                                 info(msg_button_on, p_slot->number);
1836                                         }
1837                                         mutex_lock(&ctrl->crit_sect);
1838
1839                                         dbg("blink green LED and turn off amber\n");
1840
1841                                         amber_LED_off(ctrl, hp_slot);
1842                                         green_LED_blink(ctrl, hp_slot);
1843
1844                                         set_SOGO(ctrl);
1845
1846                                         /* Wait for SOBS to be unset */
1847                                         wait_for_ctrl_irq(ctrl);
1848
1849                                         mutex_unlock(&ctrl->crit_sect);
1850                                         timer_setup(&p_slot->task_event,
1851                                                     pushbutton_helper_thread,
1852                                                     0);
1853                                         p_slot->hp_slot = hp_slot;
1854                                         p_slot->ctrl = ctrl;
1855 /*                                      p_slot->physical_slot = physical_slot; */
1856                                         p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1857
1858                                         dbg("add_timer p_slot = %p\n", p_slot);
1859                                         add_timer(&p_slot->task_event);
1860                                 }
1861                                 /***********POWER FAULT */
1862                                 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1863                                         dbg("power fault\n");
1864                                 }
1865
1866                                 ctrl->event_queue[loop].event_type = 0;
1867
1868                                 change = 1;
1869                         }
1870                 }               /* End of FOR loop */
1871         }
1872 }
1873
1874
1875 /**
1876  * cpqhp_pushbutton_thread - handle pushbutton events
1877  * @t: pointer to struct timer_list which holds all timer-related callbacks
1878  *
1879  * Scheduled procedure to handle blocking stuff for the pushbuttons.
1880  * Handles all pending events and exits.
1881  */
1882 void cpqhp_pushbutton_thread(struct timer_list *t)
1883 {
1884         u8 hp_slot;
1885         struct pci_func *func;
1886         struct slot *p_slot = from_timer(p_slot, t, task_event);
1887         struct controller *ctrl = (struct controller *) p_slot->ctrl;
1888
1889         pushbutton_pending = NULL;
1890         hp_slot = p_slot->hp_slot;
1891
1892         if (is_slot_enabled(ctrl, hp_slot)) {
1893                 p_slot->state = POWEROFF_STATE;
1894                 /* power Down board */
1895                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1896                 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1897                 if (!func) {
1898                         dbg("Error! func NULL in %s\n", __func__);
1899                         return;
1900                 }
1901
1902                 if (cpqhp_process_SS(ctrl, func) != 0) {
1903                         amber_LED_on(ctrl, hp_slot);
1904                         green_LED_on(ctrl, hp_slot);
1905
1906                         set_SOGO(ctrl);
1907
1908                         /* Wait for SOBS to be unset */
1909                         wait_for_ctrl_irq(ctrl);
1910                 }
1911
1912                 p_slot->state = STATIC_STATE;
1913         } else {
1914                 p_slot->state = POWERON_STATE;
1915                 /* slot is off */
1916
1917                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1918                 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1919                 if (!func) {
1920                         dbg("Error! func NULL in %s\n", __func__);
1921                         return;
1922                 }
1923
1924                 if (ctrl != NULL) {
1925                         if (cpqhp_process_SI(ctrl, func) != 0) {
1926                                 amber_LED_on(ctrl, hp_slot);
1927                                 green_LED_off(ctrl, hp_slot);
1928
1929                                 set_SOGO(ctrl);
1930
1931                                 /* Wait for SOBS to be unset */
1932                                 wait_for_ctrl_irq(ctrl);
1933                         }
1934                 }
1935
1936                 p_slot->state = STATIC_STATE;
1937         }
1938 }
1939
1940
1941 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1942 {
1943         u8 device, hp_slot;
1944         u16 temp_word;
1945         u32 tempdword;
1946         int rc;
1947         struct slot *p_slot;
1948
1949         tempdword = 0;
1950
1951         device = func->device;
1952         hp_slot = device - ctrl->slot_device_offset;
1953         p_slot = cpqhp_find_slot(ctrl, device);
1954
1955         /* Check to see if the interlock is closed */
1956         tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1957
1958         if (tempdword & (0x01 << hp_slot))
1959                 return 1;
1960
1961         if (func->is_a_board) {
1962                 rc = board_replaced(func, ctrl);
1963         } else {
1964                 /* add board */
1965                 slot_remove(func);
1966
1967                 func = cpqhp_slot_create(ctrl->bus);
1968                 if (func == NULL)
1969                         return 1;
1970
1971                 func->bus = ctrl->bus;
1972                 func->device = device;
1973                 func->function = 0;
1974                 func->configured = 0;
1975                 func->is_a_board = 1;
1976
1977                 /* We have to save the presence info for these slots */
1978                 temp_word = ctrl->ctrl_int_comp >> 16;
1979                 func->presence_save = (temp_word >> hp_slot) & 0x01;
1980                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
1981
1982                 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
1983                         func->switch_save = 0;
1984                 } else {
1985                         func->switch_save = 0x10;
1986                 }
1987
1988                 rc = board_added(func, ctrl);
1989                 if (rc) {
1990                         if (is_bridge(func)) {
1991                                 bridge_slot_remove(func);
1992                         } else
1993                                 slot_remove(func);
1994
1995                         /* Setup slot structure with entry for empty slot */
1996                         func = cpqhp_slot_create(ctrl->bus);
1997
1998                         if (func == NULL)
1999                                 return 1;
2000
2001                         func->bus = ctrl->bus;
2002                         func->device = device;
2003                         func->function = 0;
2004                         func->configured = 0;
2005                         func->is_a_board = 0;
2006
2007                         /* We have to save the presence info for these slots */
2008                         temp_word = ctrl->ctrl_int_comp >> 16;
2009                         func->presence_save = (temp_word >> hp_slot) & 0x01;
2010                         func->presence_save |=
2011                         (temp_word >> (hp_slot + 7)) & 0x02;
2012
2013                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2014                                 func->switch_save = 0;
2015                         } else {
2016                                 func->switch_save = 0x10;
2017                         }
2018                 }
2019         }
2020
2021         if (rc)
2022                 dbg("%s: rc = %d\n", __func__, rc);
2023
2024         return rc;
2025 }
2026
2027
2028 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2029 {
2030         u8 device, class_code, header_type, BCR;
2031         u8 index = 0;
2032         u8 replace_flag;
2033         u32 rc = 0;
2034         unsigned int devfn;
2035         struct slot *p_slot;
2036         struct pci_bus *pci_bus = ctrl->pci_bus;
2037
2038         device = func->device;
2039         func = cpqhp_slot_find(ctrl->bus, device, index++);
2040         p_slot = cpqhp_find_slot(ctrl, device);
2041
2042         /* Make sure there are no video controllers here */
2043         while (func && !rc) {
2044                 pci_bus->number = func->bus;
2045                 devfn = PCI_DEVFN(func->device, func->function);
2046
2047                 /* Check the Class Code */
2048                 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2049                 if (rc)
2050                         return rc;
2051
2052                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2053                         /* Display/Video adapter (not supported) */
2054                         rc = REMOVE_NOT_SUPPORTED;
2055                 } else {
2056                         /* See if it's a bridge */
2057                         rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2058                         if (rc)
2059                                 return rc;
2060
2061                         /* If it's a bridge, check the VGA Enable bit */
2062                         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2063                                 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2064                                 if (rc)
2065                                         return rc;
2066
2067                                 /* If the VGA Enable bit is set, remove isn't
2068                                  * supported */
2069                                 if (BCR & PCI_BRIDGE_CTL_VGA)
2070                                         rc = REMOVE_NOT_SUPPORTED;
2071                         }
2072                 }
2073
2074                 func = cpqhp_slot_find(ctrl->bus, device, index++);
2075         }
2076
2077         func = cpqhp_slot_find(ctrl->bus, device, 0);
2078         if ((func != NULL) && !rc) {
2079                 /* FIXME: Replace flag should be passed into process_SS */
2080                 replace_flag = !(ctrl->add_support);
2081                 rc = remove_board(func, replace_flag, ctrl);
2082         } else if (!rc) {
2083                 rc = 1;
2084         }
2085
2086         return rc;
2087 }
2088
2089 /**
2090  * switch_leds - switch the leds, go from one site to the other.
2091  * @ctrl: controller to use
2092  * @num_of_slots: number of slots to use
2093  * @work_LED: LED control value
2094  * @direction: 1 to start from the left side, 0 to start right.
2095  */
2096 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2097                         u32 *work_LED, const int direction)
2098 {
2099         int loop;
2100
2101         for (loop = 0; loop < num_of_slots; loop++) {
2102                 if (direction)
2103                         *work_LED = *work_LED >> 1;
2104                 else
2105                         *work_LED = *work_LED << 1;
2106                 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2107
2108                 set_SOGO(ctrl);
2109
2110                 /* Wait for SOGO interrupt */
2111                 wait_for_ctrl_irq(ctrl);
2112
2113                 /* Get ready for next iteration */
2114                 long_delay((2*HZ)/10);
2115         }
2116 }
2117
2118 /**
2119  * cpqhp_hardware_test - runs hardware tests
2120  * @ctrl: target controller
2121  * @test_num: the number written to the "test" file in sysfs.
2122  *
2123  * For hot plug ctrl folks to play with.
2124  */
2125 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2126 {
2127         u32 save_LED;
2128         u32 work_LED;
2129         int loop;
2130         int num_of_slots;
2131
2132         num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2133
2134         switch (test_num) {
2135         case 1:
2136                 /* Do stuff here! */
2137
2138                 /* Do that funky LED thing */
2139                 /* so we can restore them later */
2140                 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2141                 work_LED = 0x01010101;
2142                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2143                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2144                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2145                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2146
2147                 work_LED = 0x01010000;
2148                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2149                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2150                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2151                 work_LED = 0x00000101;
2152                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2153                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2154                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2155
2156                 work_LED = 0x01010000;
2157                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2158                 for (loop = 0; loop < num_of_slots; loop++) {
2159                         set_SOGO(ctrl);
2160
2161                         /* Wait for SOGO interrupt */
2162                         wait_for_ctrl_irq(ctrl);
2163
2164                         /* Get ready for next iteration */
2165                         long_delay((3*HZ)/10);
2166                         work_LED = work_LED >> 16;
2167                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2168
2169                         set_SOGO(ctrl);
2170
2171                         /* Wait for SOGO interrupt */
2172                         wait_for_ctrl_irq(ctrl);
2173
2174                         /* Get ready for next iteration */
2175                         long_delay((3*HZ)/10);
2176                         work_LED = work_LED << 16;
2177                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2178                         work_LED = work_LED << 1;
2179                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2180                 }
2181
2182                 /* put it back the way it was */
2183                 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2184
2185                 set_SOGO(ctrl);
2186
2187                 /* Wait for SOBS to be unset */
2188                 wait_for_ctrl_irq(ctrl);
2189                 break;
2190         case 2:
2191                 /* Do other stuff here! */
2192                 break;
2193         case 3:
2194                 /* and more... */
2195                 break;
2196         }
2197         return 0;
2198 }
2199
2200
2201 /**
2202  * configure_new_device - Configures the PCI header information of one board.
2203  * @ctrl: pointer to controller structure
2204  * @func: pointer to function structure
2205  * @behind_bridge: 1 if this is a recursive call, 0 if not
2206  * @resources: pointer to set of resource lists
2207  *
2208  * Returns 0 if success.
2209  */
2210 static u32 configure_new_device(struct controller  *ctrl, struct pci_func  *func,
2211                                  u8 behind_bridge, struct resource_lists  *resources)
2212 {
2213         u8 temp_byte, function, max_functions, stop_it;
2214         int rc;
2215         u32 ID;
2216         struct pci_func *new_slot;
2217         int index;
2218
2219         new_slot = func;
2220
2221         dbg("%s\n", __func__);
2222         /* Check for Multi-function device */
2223         ctrl->pci_bus->number = func->bus;
2224         rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2225         if (rc) {
2226                 dbg("%s: rc = %d\n", __func__, rc);
2227                 return rc;
2228         }
2229
2230         if (temp_byte & 0x80)   /* Multi-function device */
2231                 max_functions = 8;
2232         else
2233                 max_functions = 1;
2234
2235         function = 0;
2236
2237         do {
2238                 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2239
2240                 if (rc) {
2241                         dbg("configure_new_function failed %d\n", rc);
2242                         index = 0;
2243
2244                         while (new_slot) {
2245                                 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2246
2247                                 if (new_slot)
2248                                         cpqhp_return_board_resources(new_slot, resources);
2249                         }
2250
2251                         return rc;
2252                 }
2253
2254                 function++;
2255
2256                 stop_it = 0;
2257
2258                 /* The following loop skips to the next present function
2259                  * and creates a board structure */
2260
2261                 while ((function < max_functions) && (!stop_it)) {
2262                         pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2263
2264                         if (PCI_POSSIBLE_ERROR(ID)) {
2265                                 function++;
2266                         } else {
2267                                 /* Setup slot structure. */
2268                                 new_slot = cpqhp_slot_create(func->bus);
2269
2270                                 if (new_slot == NULL)
2271                                         return 1;
2272
2273                                 new_slot->bus = func->bus;
2274                                 new_slot->device = func->device;
2275                                 new_slot->function = function;
2276                                 new_slot->is_a_board = 1;
2277                                 new_slot->status = 0;
2278
2279                                 stop_it++;
2280                         }
2281                 }
2282
2283         } while (function < max_functions);
2284         dbg("returning from configure_new_device\n");
2285
2286         return 0;
2287 }
2288
2289
2290 /*
2291  * Configuration logic that involves the hotplug data structures and
2292  * their bookkeeping
2293  */
2294
2295
2296 /**
2297  * configure_new_function - Configures the PCI header information of one device
2298  * @ctrl: pointer to controller structure
2299  * @func: pointer to function structure
2300  * @behind_bridge: 1 if this is a recursive call, 0 if not
2301  * @resources: pointer to set of resource lists
2302  *
2303  * Calls itself recursively for bridged devices.
2304  * Returns 0 if success.
2305  */
2306 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2307                                    u8 behind_bridge,
2308                                    struct resource_lists *resources)
2309 {
2310         int cloop;
2311         u8 IRQ = 0;
2312         u8 temp_byte;
2313         u8 device;
2314         u8 class_code;
2315         u16 command;
2316         u16 temp_word;
2317         u32 temp_dword;
2318         u32 rc;
2319         u32 temp_register;
2320         u32 base;
2321         u32 ID;
2322         unsigned int devfn;
2323         struct pci_resource *mem_node;
2324         struct pci_resource *p_mem_node;
2325         struct pci_resource *io_node;
2326         struct pci_resource *bus_node;
2327         struct pci_resource *hold_mem_node;
2328         struct pci_resource *hold_p_mem_node;
2329         struct pci_resource *hold_IO_node;
2330         struct pci_resource *hold_bus_node;
2331         struct irq_mapping irqs;
2332         struct pci_func *new_slot;
2333         struct pci_bus *pci_bus;
2334         struct resource_lists temp_resources;
2335
2336         pci_bus = ctrl->pci_bus;
2337         pci_bus->number = func->bus;
2338         devfn = PCI_DEVFN(func->device, func->function);
2339
2340         /* Check for Bridge */
2341         rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2342         if (rc)
2343                 return rc;
2344
2345         if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2346                 /* set Primary bus */
2347                 dbg("set Primary bus = %d\n", func->bus);
2348                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2349                 if (rc)
2350                         return rc;
2351
2352                 /* find range of buses to use */
2353                 dbg("find ranges of buses to use\n");
2354                 bus_node = get_max_resource(&(resources->bus_head), 1);
2355
2356                 /* If we don't have any buses to allocate, we can't continue */
2357                 if (!bus_node)
2358                         return -ENOMEM;
2359
2360                 /* set Secondary bus */
2361                 temp_byte = bus_node->base;
2362                 dbg("set Secondary bus = %d\n", bus_node->base);
2363                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2364                 if (rc)
2365                         return rc;
2366
2367                 /* set subordinate bus */
2368                 temp_byte = bus_node->base + bus_node->length - 1;
2369                 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2370                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2371                 if (rc)
2372                         return rc;
2373
2374                 /* set subordinate Latency Timer and base Latency Timer */
2375                 temp_byte = 0x40;
2376                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2377                 if (rc)
2378                         return rc;
2379                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2380                 if (rc)
2381                         return rc;
2382
2383                 /* set Cache Line size */
2384                 temp_byte = 0x08;
2385                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2386                 if (rc)
2387                         return rc;
2388
2389                 /* Setup the IO, memory, and prefetchable windows */
2390                 io_node = get_max_resource(&(resources->io_head), 0x1000);
2391                 if (!io_node)
2392                         return -ENOMEM;
2393                 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2394                 if (!mem_node)
2395                         return -ENOMEM;
2396                 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2397                 if (!p_mem_node)
2398                         return -ENOMEM;
2399                 dbg("Setup the IO, memory, and prefetchable windows\n");
2400                 dbg("io_node\n");
2401                 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2402                                         io_node->length, io_node->next);
2403                 dbg("mem_node\n");
2404                 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2405                                         mem_node->length, mem_node->next);
2406                 dbg("p_mem_node\n");
2407                 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2408                                         p_mem_node->length, p_mem_node->next);
2409
2410                 /* set up the IRQ info */
2411                 if (!resources->irqs) {
2412                         irqs.barber_pole = 0;
2413                         irqs.interrupt[0] = 0;
2414                         irqs.interrupt[1] = 0;
2415                         irqs.interrupt[2] = 0;
2416                         irqs.interrupt[3] = 0;
2417                         irqs.valid_INT = 0;
2418                 } else {
2419                         irqs.barber_pole = resources->irqs->barber_pole;
2420                         irqs.interrupt[0] = resources->irqs->interrupt[0];
2421                         irqs.interrupt[1] = resources->irqs->interrupt[1];
2422                         irqs.interrupt[2] = resources->irqs->interrupt[2];
2423                         irqs.interrupt[3] = resources->irqs->interrupt[3];
2424                         irqs.valid_INT = resources->irqs->valid_INT;
2425                 }
2426
2427                 /* set up resource lists that are now aligned on top and bottom
2428                  * for anything behind the bridge. */
2429                 temp_resources.bus_head = bus_node;
2430                 temp_resources.io_head = io_node;
2431                 temp_resources.mem_head = mem_node;
2432                 temp_resources.p_mem_head = p_mem_node;
2433                 temp_resources.irqs = &irqs;
2434
2435                 /* Make copies of the nodes we are going to pass down so that
2436                  * if there is a problem,we can just use these to free resources
2437                  */
2438                 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2439                 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2440                 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2441                 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2442
2443                 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2444                         kfree(hold_bus_node);
2445                         kfree(hold_IO_node);
2446                         kfree(hold_mem_node);
2447                         kfree(hold_p_mem_node);
2448
2449                         return 1;
2450                 }
2451
2452                 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2453
2454                 bus_node->base += 1;
2455                 bus_node->length -= 1;
2456                 bus_node->next = NULL;
2457
2458                 /* If we have IO resources copy them and fill in the bridge's
2459                  * IO range registers */
2460                 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2461                 io_node->next = NULL;
2462
2463                 /* set IO base and Limit registers */
2464                 temp_byte = io_node->base >> 8;
2465                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2466
2467                 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2468                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2469
2470                 /* Copy the memory resources and fill in the bridge's memory
2471                  * range registers.
2472                  */
2473                 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2474                 mem_node->next = NULL;
2475
2476                 /* set Mem base and Limit registers */
2477                 temp_word = mem_node->base >> 16;
2478                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2479
2480                 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2481                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2482
2483                 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2484                 p_mem_node->next = NULL;
2485
2486                 /* set Pre Mem base and Limit registers */
2487                 temp_word = p_mem_node->base >> 16;
2488                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2489
2490                 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2491                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2492
2493                 /* Adjust this to compensate for extra adjustment in first loop
2494                  */
2495                 irqs.barber_pole--;
2496
2497                 rc = 0;
2498
2499                 /* Here we actually find the devices and configure them */
2500                 for (device = 0; (device <= 0x1F) && !rc; device++) {
2501                         irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2502
2503                         ID = 0xFFFFFFFF;
2504                         pci_bus->number = hold_bus_node->base;
2505                         pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2506                         pci_bus->number = func->bus;
2507
2508                         if (!PCI_POSSIBLE_ERROR(ID)) {    /*  device present */
2509                                 /* Setup slot structure. */
2510                                 new_slot = cpqhp_slot_create(hold_bus_node->base);
2511
2512                                 if (new_slot == NULL) {
2513                                         rc = -ENOMEM;
2514                                         continue;
2515                                 }
2516
2517                                 new_slot->bus = hold_bus_node->base;
2518                                 new_slot->device = device;
2519                                 new_slot->function = 0;
2520                                 new_slot->is_a_board = 1;
2521                                 new_slot->status = 0;
2522
2523                                 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2524                                 dbg("configure_new_device rc=0x%x\n", rc);
2525                         }       /* End of IF (device in slot?) */
2526                 }               /* End of FOR loop */
2527
2528                 if (rc)
2529                         goto free_and_out;
2530                 /* save the interrupt routing information */
2531                 if (resources->irqs) {
2532                         resources->irqs->interrupt[0] = irqs.interrupt[0];
2533                         resources->irqs->interrupt[1] = irqs.interrupt[1];
2534                         resources->irqs->interrupt[2] = irqs.interrupt[2];
2535                         resources->irqs->interrupt[3] = irqs.interrupt[3];
2536                         resources->irqs->valid_INT = irqs.valid_INT;
2537                 } else if (!behind_bridge) {
2538                         /* We need to hook up the interrupts here */
2539                         for (cloop = 0; cloop < 4; cloop++) {
2540                                 if (irqs.valid_INT & (0x01 << cloop)) {
2541                                         rc = cpqhp_set_irq(func->bus, func->device,
2542                                                            cloop + 1, irqs.interrupt[cloop]);
2543                                         if (rc)
2544                                                 goto free_and_out;
2545                                 }
2546                         }       /* end of for loop */
2547                 }
2548                 /* Return unused bus resources
2549                  * First use the temporary node to store information for
2550                  * the board */
2551                 if (bus_node && temp_resources.bus_head) {
2552                         hold_bus_node->length = bus_node->base - hold_bus_node->base;
2553
2554                         hold_bus_node->next = func->bus_head;
2555                         func->bus_head = hold_bus_node;
2556
2557                         temp_byte = temp_resources.bus_head->base - 1;
2558
2559                         /* set subordinate bus */
2560                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2561
2562                         if (temp_resources.bus_head->length == 0) {
2563                                 kfree(temp_resources.bus_head);
2564                                 temp_resources.bus_head = NULL;
2565                         } else {
2566                                 return_resource(&(resources->bus_head), temp_resources.bus_head);
2567                         }
2568                 }
2569
2570                 /* If we have IO space available and there is some left,
2571                  * return the unused portion */
2572                 if (hold_IO_node && temp_resources.io_head) {
2573                         io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2574                                                                &hold_IO_node, 0x1000);
2575
2576                         /* Check if we were able to split something off */
2577                         if (io_node) {
2578                                 hold_IO_node->base = io_node->base + io_node->length;
2579
2580                                 temp_byte = (hold_IO_node->base) >> 8;
2581                                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2582
2583                                 return_resource(&(resources->io_head), io_node);
2584                         }
2585
2586                         io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2587
2588                         /* Check if we were able to split something off */
2589                         if (io_node) {
2590                                 /* First use the temporary node to store
2591                                  * information for the board */
2592                                 hold_IO_node->length = io_node->base - hold_IO_node->base;
2593
2594                                 /* If we used any, add it to the board's list */
2595                                 if (hold_IO_node->length) {
2596                                         hold_IO_node->next = func->io_head;
2597                                         func->io_head = hold_IO_node;
2598
2599                                         temp_byte = (io_node->base - 1) >> 8;
2600                                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2601
2602                                         return_resource(&(resources->io_head), io_node);
2603                                 } else {
2604                                         /* it doesn't need any IO */
2605                                         temp_word = 0x0000;
2606                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2607
2608                                         return_resource(&(resources->io_head), io_node);
2609                                         kfree(hold_IO_node);
2610                                 }
2611                         } else {
2612                                 /* it used most of the range */
2613                                 hold_IO_node->next = func->io_head;
2614                                 func->io_head = hold_IO_node;
2615                         }
2616                 } else if (hold_IO_node) {
2617                         /* it used the whole range */
2618                         hold_IO_node->next = func->io_head;
2619                         func->io_head = hold_IO_node;
2620                 }
2621                 /* If we have memory space available and there is some left,
2622                  * return the unused portion */
2623                 if (hold_mem_node && temp_resources.mem_head) {
2624                         mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2625                                                                 &hold_mem_node, 0x100000);
2626
2627                         /* Check if we were able to split something off */
2628                         if (mem_node) {
2629                                 hold_mem_node->base = mem_node->base + mem_node->length;
2630
2631                                 temp_word = (hold_mem_node->base) >> 16;
2632                                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2633
2634                                 return_resource(&(resources->mem_head), mem_node);
2635                         }
2636
2637                         mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2638
2639                         /* Check if we were able to split something off */
2640                         if (mem_node) {
2641                                 /* First use the temporary node to store
2642                                  * information for the board */
2643                                 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2644
2645                                 if (hold_mem_node->length) {
2646                                         hold_mem_node->next = func->mem_head;
2647                                         func->mem_head = hold_mem_node;
2648
2649                                         /* configure end address */
2650                                         temp_word = (mem_node->base - 1) >> 16;
2651                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2652
2653                                         /* Return unused resources to the pool */
2654                                         return_resource(&(resources->mem_head), mem_node);
2655                                 } else {
2656                                         /* it doesn't need any Mem */
2657                                         temp_word = 0x0000;
2658                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2659
2660                                         return_resource(&(resources->mem_head), mem_node);
2661                                         kfree(hold_mem_node);
2662                                 }
2663                         } else {
2664                                 /* it used most of the range */
2665                                 hold_mem_node->next = func->mem_head;
2666                                 func->mem_head = hold_mem_node;
2667                         }
2668                 } else if (hold_mem_node) {
2669                         /* it used the whole range */
2670                         hold_mem_node->next = func->mem_head;
2671                         func->mem_head = hold_mem_node;
2672                 }
2673                 /* If we have prefetchable memory space available and there
2674                  * is some left at the end, return the unused portion */
2675                 if (temp_resources.p_mem_head) {
2676                         p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2677                                                                   &hold_p_mem_node, 0x100000);
2678
2679                         /* Check if we were able to split something off */
2680                         if (p_mem_node) {
2681                                 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2682
2683                                 temp_word = (hold_p_mem_node->base) >> 16;
2684                                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2685
2686                                 return_resource(&(resources->p_mem_head), p_mem_node);
2687                         }
2688
2689                         p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2690
2691                         /* Check if we were able to split something off */
2692                         if (p_mem_node) {
2693                                 /* First use the temporary node to store
2694                                  * information for the board */
2695                                 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2696
2697                                 /* If we used any, add it to the board's list */
2698                                 if (hold_p_mem_node->length) {
2699                                         hold_p_mem_node->next = func->p_mem_head;
2700                                         func->p_mem_head = hold_p_mem_node;
2701
2702                                         temp_word = (p_mem_node->base - 1) >> 16;
2703                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2704
2705                                         return_resource(&(resources->p_mem_head), p_mem_node);
2706                                 } else {
2707                                         /* it doesn't need any PMem */
2708                                         temp_word = 0x0000;
2709                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2710
2711                                         return_resource(&(resources->p_mem_head), p_mem_node);
2712                                         kfree(hold_p_mem_node);
2713                                 }
2714                         } else {
2715                                 /* it used the most of the range */
2716                                 hold_p_mem_node->next = func->p_mem_head;
2717                                 func->p_mem_head = hold_p_mem_node;
2718                         }
2719                 } else if (hold_p_mem_node) {
2720                         /* it used the whole range */
2721                         hold_p_mem_node->next = func->p_mem_head;
2722                         func->p_mem_head = hold_p_mem_node;
2723                 }
2724                 /* We should be configuring an IRQ and the bridge's base address
2725                  * registers if it needs them.  Although we have never seen such
2726                  * a device */
2727
2728                 /* enable card */
2729                 command = 0x0157;       /* = PCI_COMMAND_IO |
2730                                          *   PCI_COMMAND_MEMORY |
2731                                          *   PCI_COMMAND_MASTER |
2732                                          *   PCI_COMMAND_INVALIDATE |
2733                                          *   PCI_COMMAND_PARITY |
2734                                          *   PCI_COMMAND_SERR */
2735                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2736
2737                 /* set Bridge Control Register */
2738                 command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
2739                                          *   PCI_BRIDGE_CTL_SERR |
2740                                          *   PCI_BRIDGE_CTL_NO_ISA */
2741                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2742         } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2743                 /* Standard device */
2744                 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2745
2746                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2747                         /* Display (video) adapter (not supported) */
2748                         return DEVICE_TYPE_NOT_SUPPORTED;
2749                 }
2750                 /* Figure out IO and memory needs */
2751                 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2752                         temp_register = 0xFFFFFFFF;
2753
2754                         dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2755                         rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2756
2757                         rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2758                         dbg("CND: base = 0x%x\n", temp_register);
2759
2760                         if (temp_register) {      /* If this register is implemented */
2761                                 if ((temp_register & 0x03L) == 0x01) {
2762                                         /* Map IO */
2763
2764                                         /* set base = amount of IO space */
2765                                         base = temp_register & 0xFFFFFFFC;
2766                                         base = ~base + 1;
2767
2768                                         dbg("CND:      length = 0x%x\n", base);
2769                                         io_node = get_io_resource(&(resources->io_head), base);
2770                                         if (!io_node)
2771                                                 return -ENOMEM;
2772                                         dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2773                                             io_node->base, io_node->length, io_node->next);
2774                                         dbg("func (%p) io_head (%p)\n", func, func->io_head);
2775
2776                                         /* allocate the resource to the board */
2777                                         base = io_node->base;
2778                                         io_node->next = func->io_head;
2779                                         func->io_head = io_node;
2780                                 } else if ((temp_register & 0x0BL) == 0x08) {
2781                                         /* Map prefetchable memory */
2782                                         base = temp_register & 0xFFFFFFF0;
2783                                         base = ~base + 1;
2784
2785                                         dbg("CND:      length = 0x%x\n", base);
2786                                         p_mem_node = get_resource(&(resources->p_mem_head), base);
2787
2788                                         /* allocate the resource to the board */
2789                                         if (p_mem_node) {
2790                                                 base = p_mem_node->base;
2791
2792                                                 p_mem_node->next = func->p_mem_head;
2793                                                 func->p_mem_head = p_mem_node;
2794                                         } else
2795                                                 return -ENOMEM;
2796                                 } else if ((temp_register & 0x0BL) == 0x00) {
2797                                         /* Map memory */
2798                                         base = temp_register & 0xFFFFFFF0;
2799                                         base = ~base + 1;
2800
2801                                         dbg("CND:      length = 0x%x\n", base);
2802                                         mem_node = get_resource(&(resources->mem_head), base);
2803
2804                                         /* allocate the resource to the board */
2805                                         if (mem_node) {
2806                                                 base = mem_node->base;
2807
2808                                                 mem_node->next = func->mem_head;
2809                                                 func->mem_head = mem_node;
2810                                         } else
2811                                                 return -ENOMEM;
2812                                 } else {
2813                                         /* Reserved bits or requesting space below 1M */
2814                                         return NOT_ENOUGH_RESOURCES;
2815                                 }
2816
2817                                 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2818
2819                                 /* Check for 64-bit base */
2820                                 if ((temp_register & 0x07L) == 0x04) {
2821                                         cloop += 4;
2822
2823                                         /* Upper 32 bits of address always zero
2824                                          * on today's systems */
2825                                         /* FIXME this is probably not true on
2826                                          * Alpha and ia64??? */
2827                                         base = 0;
2828                                         rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2829                                 }
2830                         }
2831                 }               /* End of base register loop */
2832                 if (cpqhp_legacy_mode) {
2833                         /* Figure out which interrupt pin this function uses */
2834                         rc = pci_bus_read_config_byte(pci_bus, devfn,
2835                                 PCI_INTERRUPT_PIN, &temp_byte);
2836
2837                         /* If this function needs an interrupt and we are behind
2838                          * a bridge and the pin is tied to something that's
2839                          * already mapped, set this one the same */
2840                         if (temp_byte && resources->irqs &&
2841                             (resources->irqs->valid_INT &
2842                              (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2843                                 /* We have to share with something already set up */
2844                                 IRQ = resources->irqs->interrupt[(temp_byte +
2845                                         resources->irqs->barber_pole - 1) & 0x03];
2846                         } else {
2847                                 /* Program IRQ based on card type */
2848                                 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2849
2850                                 if (class_code == PCI_BASE_CLASS_STORAGE)
2851                                         IRQ = cpqhp_disk_irq;
2852                                 else
2853                                         IRQ = cpqhp_nic_irq;
2854                         }
2855
2856                         /* IRQ Line */
2857                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2858                 }
2859
2860                 if (!behind_bridge) {
2861                         rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2862                         if (rc)
2863                                 return 1;
2864                 } else {
2865                         /* TBD - this code may also belong in the other clause
2866                          * of this If statement */
2867                         resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2868                         resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2869                 }
2870
2871                 /* Latency Timer */
2872                 temp_byte = 0x40;
2873                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2874                                         PCI_LATENCY_TIMER, temp_byte);
2875
2876                 /* Cache Line size */
2877                 temp_byte = 0x08;
2878                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2879                                         PCI_CACHE_LINE_SIZE, temp_byte);
2880
2881                 /* disable ROM base Address */
2882                 temp_dword = 0x00L;
2883                 rc = pci_bus_write_config_word(pci_bus, devfn,
2884                                         PCI_ROM_ADDRESS, temp_dword);
2885
2886                 /* enable card */
2887                 temp_word = 0x0157;     /* = PCI_COMMAND_IO |
2888                                          *   PCI_COMMAND_MEMORY |
2889                                          *   PCI_COMMAND_MASTER |
2890                                          *   PCI_COMMAND_INVALIDATE |
2891                                          *   PCI_COMMAND_PARITY |
2892                                          *   PCI_COMMAND_SERR */
2893                 rc = pci_bus_write_config_word(pci_bus, devfn,
2894                                         PCI_COMMAND, temp_word);
2895         } else {                /* End of Not-A-Bridge else */
2896                 /* It's some strange type of PCI adapter (Cardbus?) */
2897                 return DEVICE_TYPE_NOT_SUPPORTED;
2898         }
2899
2900         func->configured = 1;
2901
2902         return 0;
2903 free_and_out:
2904         cpqhp_destroy_resource_list(&temp_resources);
2905
2906         return_resource(&(resources->bus_head), hold_bus_node);
2907         return_resource(&(resources->io_head), hold_IO_node);
2908         return_resource(&(resources->mem_head), hold_mem_node);
2909         return_resource(&(resources->p_mem_head), hold_p_mem_node);
2910         return rc;
2911 }