bus: mhi: ep: Pass mhi_ep_buf_info struct to read/write APIs
[platform/kernel/linux-starfive.git] / drivers / pci / endpoint / functions / pci-epf-mhi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI EPF driver for MHI Endpoint devices
4  *
5  * Copyright (C) 2023 Linaro Ltd.
6  * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7  */
8
9 #include <linux/dmaengine.h>
10 #include <linux/mhi_ep.h>
11 #include <linux/module.h>
12 #include <linux/of_dma.h>
13 #include <linux/platform_device.h>
14 #include <linux/pci-epc.h>
15 #include <linux/pci-epf.h>
16
17 #define MHI_VERSION_1_0 0x01000000
18
19 #define to_epf_mhi(cntrl) container_of(cntrl, struct pci_epf_mhi, cntrl)
20
21 /* Platform specific flags */
22 #define MHI_EPF_USE_DMA BIT(0)
23
24 struct pci_epf_mhi_ep_info {
25         const struct mhi_ep_cntrl_config *config;
26         struct pci_epf_header *epf_header;
27         enum pci_barno bar_num;
28         u32 epf_flags;
29         u32 msi_count;
30         u32 mru;
31         u32 flags;
32 };
33
34 #define MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, direction)       \
35         {                                                       \
36                 .num = ch_num,                                  \
37                 .name = ch_name,                                \
38                 .dir = direction,                               \
39         }
40
41 #define MHI_EP_CHANNEL_CONFIG_UL(ch_num, ch_name)               \
42         MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_TO_DEVICE)
43
44 #define MHI_EP_CHANNEL_CONFIG_DL(ch_num, ch_name)               \
45         MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_FROM_DEVICE)
46
47 static const struct mhi_ep_channel_config mhi_v1_channels[] = {
48         MHI_EP_CHANNEL_CONFIG_UL(0, "LOOPBACK"),
49         MHI_EP_CHANNEL_CONFIG_DL(1, "LOOPBACK"),
50         MHI_EP_CHANNEL_CONFIG_UL(2, "SAHARA"),
51         MHI_EP_CHANNEL_CONFIG_DL(3, "SAHARA"),
52         MHI_EP_CHANNEL_CONFIG_UL(4, "DIAG"),
53         MHI_EP_CHANNEL_CONFIG_DL(5, "DIAG"),
54         MHI_EP_CHANNEL_CONFIG_UL(6, "SSR"),
55         MHI_EP_CHANNEL_CONFIG_DL(7, "SSR"),
56         MHI_EP_CHANNEL_CONFIG_UL(8, "QDSS"),
57         MHI_EP_CHANNEL_CONFIG_DL(9, "QDSS"),
58         MHI_EP_CHANNEL_CONFIG_UL(10, "EFS"),
59         MHI_EP_CHANNEL_CONFIG_DL(11, "EFS"),
60         MHI_EP_CHANNEL_CONFIG_UL(12, "MBIM"),
61         MHI_EP_CHANNEL_CONFIG_DL(13, "MBIM"),
62         MHI_EP_CHANNEL_CONFIG_UL(14, "QMI"),
63         MHI_EP_CHANNEL_CONFIG_DL(15, "QMI"),
64         MHI_EP_CHANNEL_CONFIG_UL(16, "QMI"),
65         MHI_EP_CHANNEL_CONFIG_DL(17, "QMI"),
66         MHI_EP_CHANNEL_CONFIG_UL(18, "IP-CTRL-1"),
67         MHI_EP_CHANNEL_CONFIG_DL(19, "IP-CTRL-1"),
68         MHI_EP_CHANNEL_CONFIG_UL(20, "IPCR"),
69         MHI_EP_CHANNEL_CONFIG_DL(21, "IPCR"),
70         MHI_EP_CHANNEL_CONFIG_UL(32, "DUN"),
71         MHI_EP_CHANNEL_CONFIG_DL(33, "DUN"),
72         MHI_EP_CHANNEL_CONFIG_UL(46, "IP_SW0"),
73         MHI_EP_CHANNEL_CONFIG_DL(47, "IP_SW0"),
74 };
75
76 static const struct mhi_ep_cntrl_config mhi_v1_config = {
77         .max_channels = 128,
78         .num_channels = ARRAY_SIZE(mhi_v1_channels),
79         .ch_cfg = mhi_v1_channels,
80         .mhi_version = MHI_VERSION_1_0,
81 };
82
83 static struct pci_epf_header sdx55_header = {
84         .vendorid = PCI_VENDOR_ID_QCOM,
85         .deviceid = 0x0306,
86         .baseclass_code = PCI_BASE_CLASS_COMMUNICATION,
87         .subclass_code = PCI_CLASS_COMMUNICATION_MODEM & 0xff,
88         .interrupt_pin  = PCI_INTERRUPT_INTA,
89 };
90
91 static const struct pci_epf_mhi_ep_info sdx55_info = {
92         .config = &mhi_v1_config,
93         .epf_header = &sdx55_header,
94         .bar_num = BAR_0,
95         .epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
96         .msi_count = 32,
97         .mru = 0x8000,
98 };
99
100 static struct pci_epf_header sm8450_header = {
101         .vendorid = PCI_VENDOR_ID_QCOM,
102         .deviceid = 0x0306,
103         .baseclass_code = PCI_CLASS_OTHERS,
104         .interrupt_pin = PCI_INTERRUPT_INTA,
105 };
106
107 static const struct pci_epf_mhi_ep_info sm8450_info = {
108         .config = &mhi_v1_config,
109         .epf_header = &sm8450_header,
110         .bar_num = BAR_0,
111         .epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
112         .msi_count = 32,
113         .mru = 0x8000,
114         .flags = MHI_EPF_USE_DMA,
115 };
116
117 struct pci_epf_mhi {
118         const struct pci_epc_features *epc_features;
119         const struct pci_epf_mhi_ep_info *info;
120         struct mhi_ep_cntrl mhi_cntrl;
121         struct pci_epf *epf;
122         struct mutex lock;
123         void __iomem *mmio;
124         resource_size_t mmio_phys;
125         struct dma_chan *dma_chan_tx;
126         struct dma_chan *dma_chan_rx;
127         u32 mmio_size;
128         int irq;
129 };
130
131 static size_t get_align_offset(struct pci_epf_mhi *epf_mhi, u64 addr)
132 {
133         return addr & (epf_mhi->epc_features->align -1);
134 }
135
136 static int __pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
137                                  phys_addr_t *paddr, void __iomem **vaddr,
138                                  size_t offset, size_t size)
139 {
140         struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
141         struct pci_epf *epf = epf_mhi->epf;
142         struct pci_epc *epc = epf->epc;
143         int ret;
144
145         *vaddr = pci_epc_mem_alloc_addr(epc, paddr, size + offset);
146         if (!*vaddr)
147                 return -ENOMEM;
148
149         ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, *paddr,
150                                pci_addr - offset, size + offset);
151         if (ret) {
152                 pci_epc_mem_free_addr(epc, *paddr, *vaddr, size + offset);
153                 return ret;
154         }
155
156         *paddr = *paddr + offset;
157         *vaddr = *vaddr + offset;
158
159         return 0;
160 }
161
162 static int pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
163                                  phys_addr_t *paddr, void __iomem **vaddr,
164                                  size_t size)
165 {
166         struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
167         size_t offset = get_align_offset(epf_mhi, pci_addr);
168
169         return __pci_epf_mhi_alloc_map(mhi_cntrl, pci_addr, paddr, vaddr,
170                                       offset, size);
171 }
172
173 static void __pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl,
174                                      u64 pci_addr, phys_addr_t paddr,
175                                      void __iomem *vaddr, size_t offset,
176                                      size_t size)
177 {
178         struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
179         struct pci_epf *epf = epf_mhi->epf;
180         struct pci_epc *epc = epf->epc;
181
182         pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, paddr - offset);
183         pci_epc_mem_free_addr(epc, paddr - offset, vaddr - offset,
184                               size + offset);
185 }
186
187 static void pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
188                                    phys_addr_t paddr, void __iomem *vaddr,
189                                    size_t size)
190 {
191         struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
192         size_t offset = get_align_offset(epf_mhi, pci_addr);
193
194         __pci_epf_mhi_unmap_free(mhi_cntrl, pci_addr, paddr, vaddr, offset,
195                                  size);
196 }
197
198 static void pci_epf_mhi_raise_irq(struct mhi_ep_cntrl *mhi_cntrl, u32 vector)
199 {
200         struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
201         struct pci_epf *epf = epf_mhi->epf;
202         struct pci_epc *epc = epf->epc;
203
204         /*
205          * MHI supplies 0 based MSI vectors but the API expects the vector
206          * number to start from 1, so we need to increment the vector by 1.
207          */
208         pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, PCI_EPC_IRQ_MSI,
209                           vector + 1);
210 }
211
212 static int pci_epf_mhi_iatu_read(struct mhi_ep_cntrl *mhi_cntrl,
213                                  struct mhi_ep_buf_info *buf_info)
214 {
215         struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
216         size_t offset = get_align_offset(epf_mhi, buf_info->host_addr);
217         void __iomem *tre_buf;
218         phys_addr_t tre_phys;
219         int ret;
220
221         mutex_lock(&epf_mhi->lock);
222
223         ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys,
224                                       &tre_buf, offset, buf_info->size);
225         if (ret) {
226                 mutex_unlock(&epf_mhi->lock);
227                 return ret;
228         }
229
230         memcpy_fromio(buf_info->dev_addr, tre_buf, buf_info->size);
231
232         __pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys,
233                                  tre_buf, offset, buf_info->size);
234
235         mutex_unlock(&epf_mhi->lock);
236
237         return 0;
238 }
239
240 static int pci_epf_mhi_iatu_write(struct mhi_ep_cntrl *mhi_cntrl,
241                                   struct mhi_ep_buf_info *buf_info)
242 {
243         struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
244         size_t offset = get_align_offset(epf_mhi, buf_info->host_addr);
245         void __iomem *tre_buf;
246         phys_addr_t tre_phys;
247         int ret;
248
249         mutex_lock(&epf_mhi->lock);
250
251         ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys,
252                                       &tre_buf, offset, buf_info->size);
253         if (ret) {
254                 mutex_unlock(&epf_mhi->lock);
255                 return ret;
256         }
257
258         memcpy_toio(tre_buf, buf_info->dev_addr, buf_info->size);
259
260         __pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys,
261                                  tre_buf, offset, buf_info->size);
262
263         mutex_unlock(&epf_mhi->lock);
264
265         return 0;
266 }
267
268 static void pci_epf_mhi_dma_callback(void *param)
269 {
270         complete(param);
271 }
272
273 static int pci_epf_mhi_edma_read(struct mhi_ep_cntrl *mhi_cntrl,
274                                  struct mhi_ep_buf_info *buf_info)
275 {
276         struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
277         struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
278         struct dma_chan *chan = epf_mhi->dma_chan_rx;
279         struct device *dev = &epf_mhi->epf->dev;
280         DECLARE_COMPLETION_ONSTACK(complete);
281         struct dma_async_tx_descriptor *desc;
282         struct dma_slave_config config = {};
283         dma_cookie_t cookie;
284         dma_addr_t dst_addr;
285         int ret;
286
287         if (buf_info->size < SZ_4K)
288                 return pci_epf_mhi_iatu_read(mhi_cntrl, buf_info);
289
290         mutex_lock(&epf_mhi->lock);
291
292         config.direction = DMA_DEV_TO_MEM;
293         config.src_addr = buf_info->host_addr;
294
295         ret = dmaengine_slave_config(chan, &config);
296         if (ret) {
297                 dev_err(dev, "Failed to configure DMA channel\n");
298                 goto err_unlock;
299         }
300
301         dst_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
302                                   DMA_FROM_DEVICE);
303         ret = dma_mapping_error(dma_dev, dst_addr);
304         if (ret) {
305                 dev_err(dev, "Failed to map remote memory\n");
306                 goto err_unlock;
307         }
308
309         desc = dmaengine_prep_slave_single(chan, dst_addr, buf_info->size,
310                                            DMA_DEV_TO_MEM,
311                                            DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
312         if (!desc) {
313                 dev_err(dev, "Failed to prepare DMA\n");
314                 ret = -EIO;
315                 goto err_unmap;
316         }
317
318         desc->callback = pci_epf_mhi_dma_callback;
319         desc->callback_param = &complete;
320
321         cookie = dmaengine_submit(desc);
322         ret = dma_submit_error(cookie);
323         if (ret) {
324                 dev_err(dev, "Failed to do DMA submit\n");
325                 goto err_unmap;
326         }
327
328         dma_async_issue_pending(chan);
329         ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
330         if (!ret) {
331                 dev_err(dev, "DMA transfer timeout\n");
332                 dmaengine_terminate_sync(chan);
333                 ret = -ETIMEDOUT;
334         }
335
336 err_unmap:
337         dma_unmap_single(dma_dev, dst_addr, buf_info->size, DMA_FROM_DEVICE);
338 err_unlock:
339         mutex_unlock(&epf_mhi->lock);
340
341         return ret;
342 }
343
344 static int pci_epf_mhi_edma_write(struct mhi_ep_cntrl *mhi_cntrl,
345                                   struct mhi_ep_buf_info *buf_info)
346 {
347         struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
348         struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
349         struct dma_chan *chan = epf_mhi->dma_chan_tx;
350         struct device *dev = &epf_mhi->epf->dev;
351         DECLARE_COMPLETION_ONSTACK(complete);
352         struct dma_async_tx_descriptor *desc;
353         struct dma_slave_config config = {};
354         dma_cookie_t cookie;
355         dma_addr_t src_addr;
356         int ret;
357
358         if (buf_info->size < SZ_4K)
359                 return pci_epf_mhi_iatu_write(mhi_cntrl, buf_info);
360
361         mutex_lock(&epf_mhi->lock);
362
363         config.direction = DMA_MEM_TO_DEV;
364         config.dst_addr = buf_info->host_addr;
365
366         ret = dmaengine_slave_config(chan, &config);
367         if (ret) {
368                 dev_err(dev, "Failed to configure DMA channel\n");
369                 goto err_unlock;
370         }
371
372         src_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
373                                   DMA_TO_DEVICE);
374         ret = dma_mapping_error(dma_dev, src_addr);
375         if (ret) {
376                 dev_err(dev, "Failed to map remote memory\n");
377                 goto err_unlock;
378         }
379
380         desc = dmaengine_prep_slave_single(chan, src_addr, buf_info->size,
381                                            DMA_MEM_TO_DEV,
382                                            DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
383         if (!desc) {
384                 dev_err(dev, "Failed to prepare DMA\n");
385                 ret = -EIO;
386                 goto err_unmap;
387         }
388
389         desc->callback = pci_epf_mhi_dma_callback;
390         desc->callback_param = &complete;
391
392         cookie = dmaengine_submit(desc);
393         ret = dma_submit_error(cookie);
394         if (ret) {
395                 dev_err(dev, "Failed to do DMA submit\n");
396                 goto err_unmap;
397         }
398
399         dma_async_issue_pending(chan);
400         ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
401         if (!ret) {
402                 dev_err(dev, "DMA transfer timeout\n");
403                 dmaengine_terminate_sync(chan);
404                 ret = -ETIMEDOUT;
405         }
406
407 err_unmap:
408         dma_unmap_single(dma_dev, src_addr, buf_info->size, DMA_FROM_DEVICE);
409 err_unlock:
410         mutex_unlock(&epf_mhi->lock);
411
412         return ret;
413 }
414
415 struct epf_dma_filter {
416         struct device *dev;
417         u32 dma_mask;
418 };
419
420 static bool pci_epf_mhi_filter(struct dma_chan *chan, void *node)
421 {
422         struct epf_dma_filter *filter = node;
423         struct dma_slave_caps caps;
424
425         memset(&caps, 0, sizeof(caps));
426         dma_get_slave_caps(chan, &caps);
427
428         return chan->device->dev == filter->dev && filter->dma_mask &
429                                         caps.directions;
430 }
431
432 static int pci_epf_mhi_dma_init(struct pci_epf_mhi *epf_mhi)
433 {
434         struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
435         struct device *dev = &epf_mhi->epf->dev;
436         struct epf_dma_filter filter;
437         dma_cap_mask_t mask;
438
439         dma_cap_zero(mask);
440         dma_cap_set(DMA_SLAVE, mask);
441
442         filter.dev = dma_dev;
443         filter.dma_mask = BIT(DMA_MEM_TO_DEV);
444         epf_mhi->dma_chan_tx = dma_request_channel(mask, pci_epf_mhi_filter,
445                                                    &filter);
446         if (IS_ERR_OR_NULL(epf_mhi->dma_chan_tx)) {
447                 dev_err(dev, "Failed to request tx channel\n");
448                 return -ENODEV;
449         }
450
451         filter.dma_mask = BIT(DMA_DEV_TO_MEM);
452         epf_mhi->dma_chan_rx = dma_request_channel(mask, pci_epf_mhi_filter,
453                                                    &filter);
454         if (IS_ERR_OR_NULL(epf_mhi->dma_chan_rx)) {
455                 dev_err(dev, "Failed to request rx channel\n");
456                 dma_release_channel(epf_mhi->dma_chan_tx);
457                 epf_mhi->dma_chan_tx = NULL;
458                 return -ENODEV;
459         }
460
461         return 0;
462 }
463
464 static void pci_epf_mhi_dma_deinit(struct pci_epf_mhi *epf_mhi)
465 {
466         dma_release_channel(epf_mhi->dma_chan_tx);
467         dma_release_channel(epf_mhi->dma_chan_rx);
468         epf_mhi->dma_chan_tx = NULL;
469         epf_mhi->dma_chan_rx = NULL;
470 }
471
472 static int pci_epf_mhi_core_init(struct pci_epf *epf)
473 {
474         struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
475         const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
476         struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
477         struct pci_epc *epc = epf->epc;
478         struct device *dev = &epf->dev;
479         int ret;
480
481         epf_bar->phys_addr = epf_mhi->mmio_phys;
482         epf_bar->size = epf_mhi->mmio_size;
483         epf_bar->barno = info->bar_num;
484         epf_bar->flags = info->epf_flags;
485         ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
486         if (ret) {
487                 dev_err(dev, "Failed to set BAR: %d\n", ret);
488                 return ret;
489         }
490
491         ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
492                               order_base_2(info->msi_count));
493         if (ret) {
494                 dev_err(dev, "Failed to set MSI configuration: %d\n", ret);
495                 return ret;
496         }
497
498         ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no,
499                                    epf->header);
500         if (ret) {
501                 dev_err(dev, "Failed to set Configuration header: %d\n", ret);
502                 return ret;
503         }
504
505         epf_mhi->epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
506         if (!epf_mhi->epc_features)
507                 return -ENODATA;
508
509         return 0;
510 }
511
512 static int pci_epf_mhi_link_up(struct pci_epf *epf)
513 {
514         struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
515         const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
516         struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
517         struct pci_epc *epc = epf->epc;
518         struct device *dev = &epf->dev;
519         int ret;
520
521         if (info->flags & MHI_EPF_USE_DMA) {
522                 ret = pci_epf_mhi_dma_init(epf_mhi);
523                 if (ret) {
524                         dev_err(dev, "Failed to initialize DMA: %d\n", ret);
525                         return ret;
526                 }
527         }
528
529         mhi_cntrl->mmio = epf_mhi->mmio;
530         mhi_cntrl->irq = epf_mhi->irq;
531         mhi_cntrl->mru = info->mru;
532
533         /* Assign the struct dev of PCI EP as MHI controller device */
534         mhi_cntrl->cntrl_dev = epc->dev.parent;
535         mhi_cntrl->raise_irq = pci_epf_mhi_raise_irq;
536         mhi_cntrl->alloc_map = pci_epf_mhi_alloc_map;
537         mhi_cntrl->unmap_free = pci_epf_mhi_unmap_free;
538         if (info->flags & MHI_EPF_USE_DMA) {
539                 mhi_cntrl->read_from_host = pci_epf_mhi_edma_read;
540                 mhi_cntrl->write_to_host = pci_epf_mhi_edma_write;
541         } else {
542                 mhi_cntrl->read_from_host = pci_epf_mhi_iatu_read;
543                 mhi_cntrl->write_to_host = pci_epf_mhi_iatu_write;
544         }
545
546         /* Register the MHI EP controller */
547         ret = mhi_ep_register_controller(mhi_cntrl, info->config);
548         if (ret) {
549                 dev_err(dev, "Failed to register MHI EP controller: %d\n", ret);
550                 if (info->flags & MHI_EPF_USE_DMA)
551                         pci_epf_mhi_dma_deinit(epf_mhi);
552                 return ret;
553         }
554
555         return 0;
556 }
557
558 static int pci_epf_mhi_link_down(struct pci_epf *epf)
559 {
560         struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
561         const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
562         struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
563
564         if (mhi_cntrl->mhi_dev) {
565                 mhi_ep_power_down(mhi_cntrl);
566                 if (info->flags & MHI_EPF_USE_DMA)
567                         pci_epf_mhi_dma_deinit(epf_mhi);
568                 mhi_ep_unregister_controller(mhi_cntrl);
569         }
570
571         return 0;
572 }
573
574 static int pci_epf_mhi_bme(struct pci_epf *epf)
575 {
576         struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
577         const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
578         struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
579         struct device *dev = &epf->dev;
580         int ret;
581
582         /*
583          * Power up the MHI EP stack if link is up and stack is in power down
584          * state.
585          */
586         if (!mhi_cntrl->enabled && mhi_cntrl->mhi_dev) {
587                 ret = mhi_ep_power_up(mhi_cntrl);
588                 if (ret) {
589                         dev_err(dev, "Failed to power up MHI EP: %d\n", ret);
590                         if (info->flags & MHI_EPF_USE_DMA)
591                                 pci_epf_mhi_dma_deinit(epf_mhi);
592                         mhi_ep_unregister_controller(mhi_cntrl);
593                 }
594         }
595
596         return 0;
597 }
598
599 static int pci_epf_mhi_bind(struct pci_epf *epf)
600 {
601         struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
602         struct pci_epc *epc = epf->epc;
603         struct platform_device *pdev = to_platform_device(epc->dev.parent);
604         struct resource *res;
605         int ret;
606
607         /* Get MMIO base address from Endpoint controller */
608         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mmio");
609         epf_mhi->mmio_phys = res->start;
610         epf_mhi->mmio_size = resource_size(res);
611
612         epf_mhi->mmio = ioremap(epf_mhi->mmio_phys, epf_mhi->mmio_size);
613         if (!epf_mhi->mmio)
614                 return -ENOMEM;
615
616         ret = platform_get_irq_byname(pdev, "doorbell");
617         if (ret < 0) {
618                 iounmap(epf_mhi->mmio);
619                 return ret;
620         }
621
622         epf_mhi->irq = ret;
623
624         return 0;
625 }
626
627 static void pci_epf_mhi_unbind(struct pci_epf *epf)
628 {
629         struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
630         const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
631         struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
632         struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
633         struct pci_epc *epc = epf->epc;
634
635         /*
636          * Forcefully power down the MHI EP stack. Only way to bring the MHI EP
637          * stack back to working state after successive bind is by getting BME
638          * from host.
639          */
640         if (mhi_cntrl->mhi_dev) {
641                 mhi_ep_power_down(mhi_cntrl);
642                 if (info->flags & MHI_EPF_USE_DMA)
643                         pci_epf_mhi_dma_deinit(epf_mhi);
644                 mhi_ep_unregister_controller(mhi_cntrl);
645         }
646
647         iounmap(epf_mhi->mmio);
648         pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
649 }
650
651 static struct pci_epc_event_ops pci_epf_mhi_event_ops = {
652         .core_init = pci_epf_mhi_core_init,
653         .link_up = pci_epf_mhi_link_up,
654         .link_down = pci_epf_mhi_link_down,
655         .bme = pci_epf_mhi_bme,
656 };
657
658 static int pci_epf_mhi_probe(struct pci_epf *epf,
659                              const struct pci_epf_device_id *id)
660 {
661         struct pci_epf_mhi_ep_info *info =
662                         (struct pci_epf_mhi_ep_info *)id->driver_data;
663         struct pci_epf_mhi *epf_mhi;
664         struct device *dev = &epf->dev;
665
666         epf_mhi = devm_kzalloc(dev, sizeof(*epf_mhi), GFP_KERNEL);
667         if (!epf_mhi)
668                 return -ENOMEM;
669
670         epf->header = info->epf_header;
671         epf_mhi->info = info;
672         epf_mhi->epf = epf;
673
674         epf->event_ops = &pci_epf_mhi_event_ops;
675
676         mutex_init(&epf_mhi->lock);
677
678         epf_set_drvdata(epf, epf_mhi);
679
680         return 0;
681 }
682
683 static const struct pci_epf_device_id pci_epf_mhi_ids[] = {
684         { .name = "sdx55", .driver_data = (kernel_ulong_t)&sdx55_info },
685         { .name = "sm8450", .driver_data = (kernel_ulong_t)&sm8450_info },
686         {},
687 };
688
689 static struct pci_epf_ops pci_epf_mhi_ops = {
690         .unbind = pci_epf_mhi_unbind,
691         .bind   = pci_epf_mhi_bind,
692 };
693
694 static struct pci_epf_driver pci_epf_mhi_driver = {
695         .driver.name    = "pci_epf_mhi",
696         .probe          = pci_epf_mhi_probe,
697         .id_table       = pci_epf_mhi_ids,
698         .ops            = &pci_epf_mhi_ops,
699         .owner          = THIS_MODULE,
700 };
701
702 static int __init pci_epf_mhi_init(void)
703 {
704         return pci_epf_register_driver(&pci_epf_mhi_driver);
705 }
706 module_init(pci_epf_mhi_init);
707
708 static void __exit pci_epf_mhi_exit(void)
709 {
710         pci_epf_unregister_driver(&pci_epf_mhi_driver);
711 }
712 module_exit(pci_epf_mhi_exit);
713
714 MODULE_DESCRIPTION("PCI EPF driver for MHI Endpoint devices");
715 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
716 MODULE_LICENSE("GPL");