Merge tag 'rust-fixes-6.6' of https://github.com/Rust-for-Linux/linux
[platform/kernel/linux-starfive.git] / drivers / pci / controller / vmd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-acpi.h>
15 #include <linux/pci-ecam.h>
16 #include <linux/srcu.h>
17 #include <linux/rculist.h>
18 #include <linux/rcupdate.h>
19
20 #include <asm/irqdomain.h>
21
22 #define VMD_CFGBAR      0
23 #define VMD_MEMBAR1     2
24 #define VMD_MEMBAR2     4
25
26 #define PCI_REG_VMCAP           0x40
27 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
28 #define PCI_REG_VMCONFIG        0x44
29 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
30 #define VMCONFIG_MSI_REMAP      0x2
31 #define PCI_REG_VMLOCK          0x70
32 #define MB2_SHADOW_EN(vmlock)   (vmlock & 0x2)
33
34 #define MB2_SHADOW_OFFSET       0x2000
35 #define MB2_SHADOW_SIZE         16
36
37 enum vmd_features {
38         /*
39          * Device may contain registers which hint the physical location of the
40          * membars, in order to allow proper address translation during
41          * resource assignment to enable guest virtualization
42          */
43         VMD_FEAT_HAS_MEMBAR_SHADOW              = (1 << 0),
44
45         /*
46          * Device may provide root port configuration information which limits
47          * bus numbering
48          */
49         VMD_FEAT_HAS_BUS_RESTRICTIONS           = (1 << 1),
50
51         /*
52          * Device contains physical location shadow registers in
53          * vendor-specific capability space
54          */
55         VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP        = (1 << 2),
56
57         /*
58          * Device may use MSI-X vector 0 for software triggering and will not
59          * be used for MSI remapping
60          */
61         VMD_FEAT_OFFSET_FIRST_VECTOR            = (1 << 3),
62
63         /*
64          * Device can bypass remapping MSI-X transactions into its MSI-X table,
65          * avoiding the requirement of a VMD MSI domain for child device
66          * interrupt handling.
67          */
68         VMD_FEAT_CAN_BYPASS_MSI_REMAP           = (1 << 4),
69
70         /*
71          * Enable ASPM on the PCIE root ports and set the default LTR of the
72          * storage devices on platforms where these values are not configured by
73          * BIOS. This is needed for laptops, which require these settings for
74          * proper power management of the SoC.
75          */
76         VMD_FEAT_BIOS_PM_QUIRK          = (1 << 5),
77 };
78
79 #define VMD_BIOS_PM_QUIRK_LTR   0x1003  /* 3145728 ns */
80
81 #define VMD_FEATS_CLIENT        (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |     \
82                                  VMD_FEAT_HAS_BUS_RESTRICTIONS |        \
83                                  VMD_FEAT_OFFSET_FIRST_VECTOR |         \
84                                  VMD_FEAT_BIOS_PM_QUIRK)
85
86 static DEFINE_IDA(vmd_instance_ida);
87
88 /*
89  * Lock for manipulating VMD IRQ lists.
90  */
91 static DEFINE_RAW_SPINLOCK(list_lock);
92
93 /**
94  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
95  * @node:       list item for parent traversal.
96  * @irq:        back pointer to parent.
97  * @enabled:    true if driver enabled IRQ
98  * @virq:       the virtual IRQ value provided to the requesting driver.
99  *
100  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
101  * a VMD IRQ using this structure.
102  */
103 struct vmd_irq {
104         struct list_head        node;
105         struct vmd_irq_list     *irq;
106         bool                    enabled;
107         unsigned int            virq;
108 };
109
110 /**
111  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
112  * @irq_list:   the list of irq's the VMD one demuxes to.
113  * @srcu:       SRCU struct for local synchronization.
114  * @count:      number of child IRQs assigned to this vector; used to track
115  *              sharing.
116  * @virq:       The underlying VMD Linux interrupt number
117  */
118 struct vmd_irq_list {
119         struct list_head        irq_list;
120         struct srcu_struct      srcu;
121         unsigned int            count;
122         unsigned int            virq;
123 };
124
125 struct vmd_dev {
126         struct pci_dev          *dev;
127
128         spinlock_t              cfg_lock;
129         void __iomem            *cfgbar;
130
131         int msix_count;
132         struct vmd_irq_list     *irqs;
133
134         struct pci_sysdata      sysdata;
135         struct resource         resources[3];
136         struct irq_domain       *irq_domain;
137         struct pci_bus          *bus;
138         u8                      busn_start;
139         u8                      first_vec;
140         char                    *name;
141         int                     instance;
142 };
143
144 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
145 {
146         return container_of(bus->sysdata, struct vmd_dev, sysdata);
147 }
148
149 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
150                                            struct vmd_irq_list *irqs)
151 {
152         return irqs - vmd->irqs;
153 }
154
155 /*
156  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
157  * but the MSI entry for the hardware it's driving will be programmed with a
158  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
159  * domain into one of its own, and the VMD driver de-muxes these for the
160  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
161  * and irq_chip to set this up.
162  */
163 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
164 {
165         struct vmd_irq *vmdirq = data->chip_data;
166         struct vmd_irq_list *irq = vmdirq->irq;
167         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
168
169         memset(msg, 0, sizeof(*msg));
170         msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
171         msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
172         msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
173 }
174
175 /*
176  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
177  */
178 static void vmd_irq_enable(struct irq_data *data)
179 {
180         struct vmd_irq *vmdirq = data->chip_data;
181         unsigned long flags;
182
183         raw_spin_lock_irqsave(&list_lock, flags);
184         WARN_ON(vmdirq->enabled);
185         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
186         vmdirq->enabled = true;
187         raw_spin_unlock_irqrestore(&list_lock, flags);
188
189         data->chip->irq_unmask(data);
190 }
191
192 static void vmd_irq_disable(struct irq_data *data)
193 {
194         struct vmd_irq *vmdirq = data->chip_data;
195         unsigned long flags;
196
197         data->chip->irq_mask(data);
198
199         raw_spin_lock_irqsave(&list_lock, flags);
200         if (vmdirq->enabled) {
201                 list_del_rcu(&vmdirq->node);
202                 vmdirq->enabled = false;
203         }
204         raw_spin_unlock_irqrestore(&list_lock, flags);
205 }
206
207 /*
208  * XXX: Stubbed until we develop acceptable way to not create conflicts with
209  * other devices sharing the same vector.
210  */
211 static int vmd_irq_set_affinity(struct irq_data *data,
212                                 const struct cpumask *dest, bool force)
213 {
214         return -EINVAL;
215 }
216
217 static struct irq_chip vmd_msi_controller = {
218         .name                   = "VMD-MSI",
219         .irq_enable             = vmd_irq_enable,
220         .irq_disable            = vmd_irq_disable,
221         .irq_compose_msi_msg    = vmd_compose_msi_msg,
222         .irq_set_affinity       = vmd_irq_set_affinity,
223 };
224
225 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
226                                      msi_alloc_info_t *arg)
227 {
228         return 0;
229 }
230
231 /*
232  * XXX: We can be even smarter selecting the best IRQ once we solve the
233  * affinity problem.
234  */
235 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
236 {
237         unsigned long flags;
238         int i, best;
239
240         if (vmd->msix_count == 1 + vmd->first_vec)
241                 return &vmd->irqs[vmd->first_vec];
242
243         /*
244          * White list for fast-interrupt handlers. All others will share the
245          * "slow" interrupt vector.
246          */
247         switch (msi_desc_to_pci_dev(desc)->class) {
248         case PCI_CLASS_STORAGE_EXPRESS:
249                 break;
250         default:
251                 return &vmd->irqs[vmd->first_vec];
252         }
253
254         raw_spin_lock_irqsave(&list_lock, flags);
255         best = vmd->first_vec + 1;
256         for (i = best; i < vmd->msix_count; i++)
257                 if (vmd->irqs[i].count < vmd->irqs[best].count)
258                         best = i;
259         vmd->irqs[best].count++;
260         raw_spin_unlock_irqrestore(&list_lock, flags);
261
262         return &vmd->irqs[best];
263 }
264
265 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
266                         unsigned int virq, irq_hw_number_t hwirq,
267                         msi_alloc_info_t *arg)
268 {
269         struct msi_desc *desc = arg->desc;
270         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
271         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
272
273         if (!vmdirq)
274                 return -ENOMEM;
275
276         INIT_LIST_HEAD(&vmdirq->node);
277         vmdirq->irq = vmd_next_irq(vmd, desc);
278         vmdirq->virq = virq;
279
280         irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
281                             handle_untracked_irq, vmd, NULL);
282         return 0;
283 }
284
285 static void vmd_msi_free(struct irq_domain *domain,
286                         struct msi_domain_info *info, unsigned int virq)
287 {
288         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
289         unsigned long flags;
290
291         synchronize_srcu(&vmdirq->irq->srcu);
292
293         /* XXX: Potential optimization to rebalance */
294         raw_spin_lock_irqsave(&list_lock, flags);
295         vmdirq->irq->count--;
296         raw_spin_unlock_irqrestore(&list_lock, flags);
297
298         kfree(vmdirq);
299 }
300
301 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
302                            int nvec, msi_alloc_info_t *arg)
303 {
304         struct pci_dev *pdev = to_pci_dev(dev);
305         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
306
307         if (nvec > vmd->msix_count)
308                 return vmd->msix_count;
309
310         memset(arg, 0, sizeof(*arg));
311         return 0;
312 }
313
314 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
315 {
316         arg->desc = desc;
317 }
318
319 static struct msi_domain_ops vmd_msi_domain_ops = {
320         .get_hwirq      = vmd_get_hwirq,
321         .msi_init       = vmd_msi_init,
322         .msi_free       = vmd_msi_free,
323         .msi_prepare    = vmd_msi_prepare,
324         .set_desc       = vmd_set_desc,
325 };
326
327 static struct msi_domain_info vmd_msi_domain_info = {
328         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
329                           MSI_FLAG_PCI_MSIX,
330         .ops            = &vmd_msi_domain_ops,
331         .chip           = &vmd_msi_controller,
332 };
333
334 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
335 {
336         u16 reg;
337
338         pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
339         reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
340                        (reg | VMCONFIG_MSI_REMAP);
341         pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
342 }
343
344 static int vmd_create_irq_domain(struct vmd_dev *vmd)
345 {
346         struct fwnode_handle *fn;
347
348         fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
349         if (!fn)
350                 return -ENODEV;
351
352         vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
353         if (!vmd->irq_domain) {
354                 irq_domain_free_fwnode(fn);
355                 return -ENODEV;
356         }
357
358         return 0;
359 }
360
361 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
362 {
363         /*
364          * Some production BIOS won't enable remapping between soft reboots.
365          * Ensure remapping is restored before unloading the driver.
366          */
367         if (!vmd->msix_count)
368                 vmd_set_msi_remapping(vmd, true);
369
370         if (vmd->irq_domain) {
371                 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
372
373                 irq_domain_remove(vmd->irq_domain);
374                 irq_domain_free_fwnode(fn);
375         }
376 }
377
378 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
379                                   unsigned int devfn, int reg, int len)
380 {
381         unsigned int busnr_ecam = bus->number - vmd->busn_start;
382         u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
383
384         if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
385                 return NULL;
386
387         return vmd->cfgbar + offset;
388 }
389
390 /*
391  * CPU may deadlock if config space is not serialized on some versions of this
392  * hardware, so all config space access is done under a spinlock.
393  */
394 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
395                         int len, u32 *value)
396 {
397         struct vmd_dev *vmd = vmd_from_bus(bus);
398         void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
399         unsigned long flags;
400         int ret = 0;
401
402         if (!addr)
403                 return -EFAULT;
404
405         spin_lock_irqsave(&vmd->cfg_lock, flags);
406         switch (len) {
407         case 1:
408                 *value = readb(addr);
409                 break;
410         case 2:
411                 *value = readw(addr);
412                 break;
413         case 4:
414                 *value = readl(addr);
415                 break;
416         default:
417                 ret = -EINVAL;
418                 break;
419         }
420         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
421         return ret;
422 }
423
424 /*
425  * VMD h/w converts non-posted config writes to posted memory writes. The
426  * read-back in this function forces the completion so it returns only after
427  * the config space was written, as expected.
428  */
429 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
430                          int len, u32 value)
431 {
432         struct vmd_dev *vmd = vmd_from_bus(bus);
433         void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
434         unsigned long flags;
435         int ret = 0;
436
437         if (!addr)
438                 return -EFAULT;
439
440         spin_lock_irqsave(&vmd->cfg_lock, flags);
441         switch (len) {
442         case 1:
443                 writeb(value, addr);
444                 readb(addr);
445                 break;
446         case 2:
447                 writew(value, addr);
448                 readw(addr);
449                 break;
450         case 4:
451                 writel(value, addr);
452                 readl(addr);
453                 break;
454         default:
455                 ret = -EINVAL;
456                 break;
457         }
458         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
459         return ret;
460 }
461
462 static struct pci_ops vmd_ops = {
463         .read           = vmd_pci_read,
464         .write          = vmd_pci_write,
465 };
466
467 #ifdef CONFIG_ACPI
468 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
469 {
470         struct pci_host_bridge *bridge;
471         u32 busnr, addr;
472
473         if (pci_dev->bus->ops != &vmd_ops)
474                 return NULL;
475
476         bridge = pci_find_host_bridge(pci_dev->bus);
477         busnr = pci_dev->bus->number - bridge->bus->number;
478         /*
479          * The address computation below is only applicable to relative bus
480          * numbers below 32.
481          */
482         if (busnr > 31)
483                 return NULL;
484
485         addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
486
487         dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
488                 addr);
489
490         return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
491                                       false);
492 }
493
494 static bool hook_installed;
495
496 static void vmd_acpi_begin(void)
497 {
498         if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
499                 return;
500
501         hook_installed = true;
502 }
503
504 static void vmd_acpi_end(void)
505 {
506         if (!hook_installed)
507                 return;
508
509         pci_acpi_clear_companion_lookup_hook();
510         hook_installed = false;
511 }
512 #else
513 static inline void vmd_acpi_begin(void) { }
514 static inline void vmd_acpi_end(void) { }
515 #endif /* CONFIG_ACPI */
516
517 static void vmd_domain_reset(struct vmd_dev *vmd)
518 {
519         u16 bus, max_buses = resource_size(&vmd->resources[0]);
520         u8 dev, functions, fn, hdr_type;
521         char __iomem *base;
522
523         for (bus = 0; bus < max_buses; bus++) {
524                 for (dev = 0; dev < 32; dev++) {
525                         base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
526                                                 PCI_DEVFN(dev, 0), 0);
527
528                         hdr_type = readb(base + PCI_HEADER_TYPE) &
529                                          PCI_HEADER_TYPE_MASK;
530
531                         functions = (hdr_type & 0x80) ? 8 : 1;
532                         for (fn = 0; fn < functions; fn++) {
533                                 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
534                                                 PCI_DEVFN(dev, fn), 0);
535
536                                 hdr_type = readb(base + PCI_HEADER_TYPE) &
537                                                 PCI_HEADER_TYPE_MASK;
538
539                                 if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
540                                     (readw(base + PCI_CLASS_DEVICE) !=
541                                      PCI_CLASS_BRIDGE_PCI))
542                                         continue;
543
544                                 /*
545                                  * Temporarily disable the I/O range before updating
546                                  * PCI_IO_BASE.
547                                  */
548                                 writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
549                                 /* Update lower 16 bits of I/O base/limit */
550                                 writew(0x00f0, base + PCI_IO_BASE);
551                                 /* Update upper 16 bits of I/O base/limit */
552                                 writel(0, base + PCI_IO_BASE_UPPER16);
553
554                                 /* MMIO Base/Limit */
555                                 writel(0x0000fff0, base + PCI_MEMORY_BASE);
556
557                                 /* Prefetchable MMIO Base/Limit */
558                                 writel(0, base + PCI_PREF_LIMIT_UPPER32);
559                                 writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
560                                 writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
561                         }
562                 }
563         }
564 }
565
566 static void vmd_attach_resources(struct vmd_dev *vmd)
567 {
568         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
569         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
570 }
571
572 static void vmd_detach_resources(struct vmd_dev *vmd)
573 {
574         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
575         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
576 }
577
578 /*
579  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
580  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
581  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
582  * currently reserved.
583  */
584 static int vmd_find_free_domain(void)
585 {
586         int domain = 0xffff;
587         struct pci_bus *bus = NULL;
588
589         while ((bus = pci_find_next_bus(bus)) != NULL)
590                 domain = max_t(int, domain, pci_domain_nr(bus));
591         return domain + 1;
592 }
593
594 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
595                                 resource_size_t *offset1,
596                                 resource_size_t *offset2)
597 {
598         struct pci_dev *dev = vmd->dev;
599         u64 phys1, phys2;
600
601         if (native_hint) {
602                 u32 vmlock;
603                 int ret;
604
605                 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
606                 if (ret || PCI_POSSIBLE_ERROR(vmlock))
607                         return -ENODEV;
608
609                 if (MB2_SHADOW_EN(vmlock)) {
610                         void __iomem *membar2;
611
612                         membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
613                         if (!membar2)
614                                 return -ENOMEM;
615                         phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
616                         phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
617                         pci_iounmap(dev, membar2);
618                 } else
619                         return 0;
620         } else {
621                 /* Hypervisor-Emulated Vendor-Specific Capability */
622                 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
623                 u32 reg, regu;
624
625                 pci_read_config_dword(dev, pos + 4, &reg);
626
627                 /* "SHDW" */
628                 if (pos && reg == 0x53484457) {
629                         pci_read_config_dword(dev, pos + 8, &reg);
630                         pci_read_config_dword(dev, pos + 12, &regu);
631                         phys1 = (u64) regu << 32 | reg;
632
633                         pci_read_config_dword(dev, pos + 16, &reg);
634                         pci_read_config_dword(dev, pos + 20, &regu);
635                         phys2 = (u64) regu << 32 | reg;
636                 } else
637                         return 0;
638         }
639
640         *offset1 = dev->resource[VMD_MEMBAR1].start -
641                         (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
642         *offset2 = dev->resource[VMD_MEMBAR2].start -
643                         (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
644
645         return 0;
646 }
647
648 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
649 {
650         struct pci_dev *dev = vmd->dev;
651         u16 reg;
652
653         pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
654         if (BUS_RESTRICT_CAP(reg)) {
655                 pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
656
657                 switch (BUS_RESTRICT_CFG(reg)) {
658                 case 0:
659                         vmd->busn_start = 0;
660                         break;
661                 case 1:
662                         vmd->busn_start = 128;
663                         break;
664                 case 2:
665                         vmd->busn_start = 224;
666                         break;
667                 default:
668                         pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
669                                 BUS_RESTRICT_CFG(reg));
670                         return -ENODEV;
671                 }
672         }
673
674         return 0;
675 }
676
677 static irqreturn_t vmd_irq(int irq, void *data)
678 {
679         struct vmd_irq_list *irqs = data;
680         struct vmd_irq *vmdirq;
681         int idx;
682
683         idx = srcu_read_lock(&irqs->srcu);
684         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
685                 generic_handle_irq(vmdirq->virq);
686         srcu_read_unlock(&irqs->srcu, idx);
687
688         return IRQ_HANDLED;
689 }
690
691 static int vmd_alloc_irqs(struct vmd_dev *vmd)
692 {
693         struct pci_dev *dev = vmd->dev;
694         int i, err;
695
696         vmd->msix_count = pci_msix_vec_count(dev);
697         if (vmd->msix_count < 0)
698                 return -ENODEV;
699
700         vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
701                                                 vmd->msix_count, PCI_IRQ_MSIX);
702         if (vmd->msix_count < 0)
703                 return vmd->msix_count;
704
705         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
706                                  GFP_KERNEL);
707         if (!vmd->irqs)
708                 return -ENOMEM;
709
710         for (i = 0; i < vmd->msix_count; i++) {
711                 err = init_srcu_struct(&vmd->irqs[i].srcu);
712                 if (err)
713                         return err;
714
715                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
716                 vmd->irqs[i].virq = pci_irq_vector(dev, i);
717                 err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
718                                        vmd_irq, IRQF_NO_THREAD,
719                                        vmd->name, &vmd->irqs[i]);
720                 if (err)
721                         return err;
722         }
723
724         return 0;
725 }
726
727 /*
728  * Since VMD is an aperture to regular PCIe root ports, only allow it to
729  * control features that the OS is allowed to control on the physical PCI bus.
730  */
731 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
732                                        struct pci_host_bridge *vmd_bridge)
733 {
734         vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
735         vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
736         vmd_bridge->native_aer = root_bridge->native_aer;
737         vmd_bridge->native_pme = root_bridge->native_pme;
738         vmd_bridge->native_ltr = root_bridge->native_ltr;
739         vmd_bridge->native_dpc = root_bridge->native_dpc;
740 }
741
742 /*
743  * Enable ASPM and LTR settings on devices that aren't configured by BIOS.
744  */
745 static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
746 {
747         unsigned long features = *(unsigned long *)userdata;
748         u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
749         u32 ltr_reg;
750         int pos;
751
752         if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
753                 return 0;
754
755         pci_enable_link_state(pdev, PCIE_LINK_STATE_ALL);
756
757         pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
758         if (!pos)
759                 return 0;
760
761         /*
762          * Skip if the max snoop LTR is non-zero, indicating BIOS has set it
763          * so the LTR quirk is not needed.
764          */
765         pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, &ltr_reg);
766         if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
767                 return 0;
768
769         /*
770          * Set the default values to the maximum required by the platform to
771          * allow the deepest power management savings. Write as a DWORD where
772          * the lower word is the max snoop latency and the upper word is the
773          * max non-snoop latency.
774          */
775         ltr_reg = (ltr << 16) | ltr;
776         pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
777         pci_info(pdev, "VMD: Default LTR value set by driver\n");
778
779         return 0;
780 }
781
782 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
783 {
784         struct pci_sysdata *sd = &vmd->sysdata;
785         struct resource *res;
786         u32 upper_bits;
787         unsigned long flags;
788         LIST_HEAD(resources);
789         resource_size_t offset[2] = {0};
790         resource_size_t membar2_offset = 0x2000;
791         struct pci_bus *child;
792         struct pci_dev *dev;
793         int ret;
794
795         /*
796          * Shadow registers may exist in certain VMD device ids which allow
797          * guests to correctly assign host physical addresses to the root ports
798          * and child devices. These registers will either return the host value
799          * or 0, depending on an enable bit in the VMD device.
800          */
801         if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
802                 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
803                 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
804                 if (ret)
805                         return ret;
806         } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
807                 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
808                 if (ret)
809                         return ret;
810         }
811
812         /*
813          * Certain VMD devices may have a root port configuration option which
814          * limits the bus range to between 0-127, 128-255, or 224-255
815          */
816         if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
817                 ret = vmd_get_bus_number_start(vmd);
818                 if (ret)
819                         return ret;
820         }
821
822         res = &vmd->dev->resource[VMD_CFGBAR];
823         vmd->resources[0] = (struct resource) {
824                 .name  = "VMD CFGBAR",
825                 .start = vmd->busn_start,
826                 .end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
827                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
828         };
829
830         /*
831          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
832          * put 32-bit resources in the window.
833          *
834          * There's no hardware reason why a 64-bit window *couldn't*
835          * contain a 32-bit resource, but pbus_size_mem() computes the
836          * bridge window size assuming a 64-bit window will contain no
837          * 32-bit resources.  __pci_assign_resource() enforces that
838          * artificial restriction to make sure everything will fit.
839          *
840          * The only way we could use a 64-bit non-prefetchable MEMBAR is
841          * if its address is <4GB so that we can convert it to a 32-bit
842          * resource.  To be visible to the host OS, all VMD endpoints must
843          * be initially configured by platform BIOS, which includes setting
844          * up these resources.  We can assume the device is configured
845          * according to the platform needs.
846          */
847         res = &vmd->dev->resource[VMD_MEMBAR1];
848         upper_bits = upper_32_bits(res->end);
849         flags = res->flags & ~IORESOURCE_SIZEALIGN;
850         if (!upper_bits)
851                 flags &= ~IORESOURCE_MEM_64;
852         vmd->resources[1] = (struct resource) {
853                 .name  = "VMD MEMBAR1",
854                 .start = res->start,
855                 .end   = res->end,
856                 .flags = flags,
857                 .parent = res,
858         };
859
860         res = &vmd->dev->resource[VMD_MEMBAR2];
861         upper_bits = upper_32_bits(res->end);
862         flags = res->flags & ~IORESOURCE_SIZEALIGN;
863         if (!upper_bits)
864                 flags &= ~IORESOURCE_MEM_64;
865         vmd->resources[2] = (struct resource) {
866                 .name  = "VMD MEMBAR2",
867                 .start = res->start + membar2_offset,
868                 .end   = res->end,
869                 .flags = flags,
870                 .parent = res,
871         };
872
873         sd->vmd_dev = vmd->dev;
874         sd->domain = vmd_find_free_domain();
875         if (sd->domain < 0)
876                 return sd->domain;
877
878         sd->node = pcibus_to_node(vmd->dev->bus);
879
880         /*
881          * Currently MSI remapping must be enabled in guest passthrough mode
882          * due to some missing interrupt remapping plumbing. This is probably
883          * acceptable because the guest is usually CPU-limited and MSI
884          * remapping doesn't become a performance bottleneck.
885          */
886         if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
887             offset[0] || offset[1]) {
888                 ret = vmd_alloc_irqs(vmd);
889                 if (ret)
890                         return ret;
891
892                 vmd_set_msi_remapping(vmd, true);
893
894                 ret = vmd_create_irq_domain(vmd);
895                 if (ret)
896                         return ret;
897
898                 /*
899                  * Override the IRQ domain bus token so the domain can be
900                  * distinguished from a regular PCI/MSI domain.
901                  */
902                 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
903         } else {
904                 vmd_set_msi_remapping(vmd, false);
905         }
906
907         pci_add_resource(&resources, &vmd->resources[0]);
908         pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
909         pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
910
911         vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
912                                        &vmd_ops, sd, &resources);
913         if (!vmd->bus) {
914                 pci_free_resource_list(&resources);
915                 vmd_remove_irq_domain(vmd);
916                 return -ENODEV;
917         }
918
919         vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
920                                    to_pci_host_bridge(vmd->bus->bridge));
921
922         vmd_attach_resources(vmd);
923         if (vmd->irq_domain)
924                 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
925         else
926                 dev_set_msi_domain(&vmd->bus->dev,
927                                    dev_get_msi_domain(&vmd->dev->dev));
928
929         vmd_acpi_begin();
930
931         pci_scan_child_bus(vmd->bus);
932         vmd_domain_reset(vmd);
933
934         /* When Intel VMD is enabled, the OS does not discover the Root Ports
935          * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
936          * a reset to the parent of the PCI device supplied as argument. This
937          * is why we pass a child device, so the reset can be triggered at
938          * the Intel bridge level and propagated to all the children in the
939          * hierarchy.
940          */
941         list_for_each_entry(child, &vmd->bus->children, node) {
942                 if (!list_empty(&child->devices)) {
943                         dev = list_first_entry(&child->devices,
944                                                struct pci_dev, bus_list);
945                         ret = pci_reset_bus(dev);
946                         if (ret)
947                                 pci_warn(dev, "can't reset device: %d\n", ret);
948
949                         break;
950                 }
951         }
952
953         pci_assign_unassigned_bus_resources(vmd->bus);
954
955         pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
956
957         /*
958          * VMD root buses are virtual and don't return true on pci_is_pcie()
959          * and will fail pcie_bus_configure_settings() early. It can instead be
960          * run on each of the real root ports.
961          */
962         list_for_each_entry(child, &vmd->bus->children, node)
963                 pcie_bus_configure_settings(child);
964
965         pci_bus_add_devices(vmd->bus);
966
967         vmd_acpi_end();
968
969         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
970                                "domain"), "Can't create symlink to domain\n");
971         return 0;
972 }
973
974 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
975 {
976         unsigned long features = (unsigned long) id->driver_data;
977         struct vmd_dev *vmd;
978         int err;
979
980         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
981                 return -ENOMEM;
982
983         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
984         if (!vmd)
985                 return -ENOMEM;
986
987         vmd->dev = dev;
988         vmd->instance = ida_simple_get(&vmd_instance_ida, 0, 0, GFP_KERNEL);
989         if (vmd->instance < 0)
990                 return vmd->instance;
991
992         vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
993                                    vmd->instance);
994         if (!vmd->name) {
995                 err = -ENOMEM;
996                 goto out_release_instance;
997         }
998
999         err = pcim_enable_device(dev);
1000         if (err < 0)
1001                 goto out_release_instance;
1002
1003         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
1004         if (!vmd->cfgbar) {
1005                 err = -ENOMEM;
1006                 goto out_release_instance;
1007         }
1008
1009         pci_set_master(dev);
1010         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
1011             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
1012                 err = -ENODEV;
1013                 goto out_release_instance;
1014         }
1015
1016         if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
1017                 vmd->first_vec = 1;
1018
1019         spin_lock_init(&vmd->cfg_lock);
1020         pci_set_drvdata(dev, vmd);
1021         err = vmd_enable_domain(vmd, features);
1022         if (err)
1023                 goto out_release_instance;
1024
1025         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
1026                  vmd->sysdata.domain);
1027         return 0;
1028
1029  out_release_instance:
1030         ida_simple_remove(&vmd_instance_ida, vmd->instance);
1031         return err;
1032 }
1033
1034 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
1035 {
1036         int i;
1037
1038         for (i = 0; i < vmd->msix_count; i++)
1039                 cleanup_srcu_struct(&vmd->irqs[i].srcu);
1040 }
1041
1042 static void vmd_remove(struct pci_dev *dev)
1043 {
1044         struct vmd_dev *vmd = pci_get_drvdata(dev);
1045
1046         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
1047         pci_stop_root_bus(vmd->bus);
1048         pci_remove_root_bus(vmd->bus);
1049         vmd_cleanup_srcu(vmd);
1050         vmd_detach_resources(vmd);
1051         vmd_remove_irq_domain(vmd);
1052         ida_simple_remove(&vmd_instance_ida, vmd->instance);
1053 }
1054
1055 static void vmd_shutdown(struct pci_dev *dev)
1056 {
1057         struct vmd_dev *vmd = pci_get_drvdata(dev);
1058
1059         vmd_remove_irq_domain(vmd);
1060 }
1061
1062 #ifdef CONFIG_PM_SLEEP
1063 static int vmd_suspend(struct device *dev)
1064 {
1065         struct pci_dev *pdev = to_pci_dev(dev);
1066         struct vmd_dev *vmd = pci_get_drvdata(pdev);
1067         int i;
1068
1069         for (i = 0; i < vmd->msix_count; i++)
1070                 devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
1071
1072         return 0;
1073 }
1074
1075 static int vmd_resume(struct device *dev)
1076 {
1077         struct pci_dev *pdev = to_pci_dev(dev);
1078         struct vmd_dev *vmd = pci_get_drvdata(pdev);
1079         int err, i;
1080
1081        if (vmd->irq_domain)
1082                vmd_set_msi_remapping(vmd, true);
1083        else
1084                vmd_set_msi_remapping(vmd, false);
1085
1086         for (i = 0; i < vmd->msix_count; i++) {
1087                 err = devm_request_irq(dev, vmd->irqs[i].virq,
1088                                        vmd_irq, IRQF_NO_THREAD,
1089                                        vmd->name, &vmd->irqs[i]);
1090                 if (err)
1091                         return err;
1092         }
1093
1094         return 0;
1095 }
1096 #endif
1097 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1098
1099 static const struct pci_device_id vmd_ids[] = {
1100         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1101                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1102         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1103                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1104                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1105                                 VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1106         {PCI_VDEVICE(INTEL, 0x467f),
1107                 .driver_data = VMD_FEATS_CLIENT,},
1108         {PCI_VDEVICE(INTEL, 0x4c3d),
1109                 .driver_data = VMD_FEATS_CLIENT,},
1110         {PCI_VDEVICE(INTEL, 0xa77f),
1111                 .driver_data = VMD_FEATS_CLIENT,},
1112         {PCI_VDEVICE(INTEL, 0x7d0b),
1113                 .driver_data = VMD_FEATS_CLIENT,},
1114         {PCI_VDEVICE(INTEL, 0xad0b),
1115                 .driver_data = VMD_FEATS_CLIENT,},
1116         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1117                 .driver_data = VMD_FEATS_CLIENT,},
1118         {0,}
1119 };
1120 MODULE_DEVICE_TABLE(pci, vmd_ids);
1121
1122 static struct pci_driver vmd_drv = {
1123         .name           = "vmd",
1124         .id_table       = vmd_ids,
1125         .probe          = vmd_probe,
1126         .remove         = vmd_remove,
1127         .shutdown       = vmd_shutdown,
1128         .driver         = {
1129                 .pm     = &vmd_dev_pm_ops,
1130         },
1131 };
1132 module_pci_driver(vmd_drv);
1133
1134 MODULE_AUTHOR("Intel Corporation");
1135 MODULE_LICENSE("GPL v2");
1136 MODULE_VERSION("0.6");