1 // SPDX-License-Identifier: GPL-2.0-or-later
4 ** DMA management routines for first generation cache-coherent machines.
5 ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
7 ** (c) Copyright 2000 Grant Grundler
8 ** (c) Copyright 2000 Ryan Bradetich
9 ** (c) Copyright 2000 Hewlett-Packard Company
13 ** "Real Mode" operation refers to U2/Uturn chip operation.
14 ** U2/Uturn were designed to perform coherency checks w/o using
15 ** the I/O MMU - basically what x86 does.
17 ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
18 ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
19 ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
21 ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
23 ** Drawbacks of using Real Mode are:
24 ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
25 ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
26 ** o Ability to do scatter/gather in HW is lost.
27 ** o Doesn't work under PCX-U/U+ machines since they didn't follow
28 ** the coherency design originally worked out. Only PCX-W does.
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/init.h>
35 #include <linux/spinlock.h>
36 #include <linux/slab.h>
37 #include <linux/string.h>
38 #include <linux/pci.h>
39 #include <linux/reboot.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 #include <linux/dma-map-ops.h>
43 #include <linux/scatterlist.h>
44 #include <linux/iommu-helper.h>
45 #include <linux/export.h>
47 #include <asm/byteorder.h>
48 #include <asm/cache.h> /* for L1_CACHE_BYTES */
49 #include <linux/uaccess.h>
53 #include <asm/hardware.h> /* for register_module() */
54 #include <asm/parisc-device.h>
59 ** Choose "ccio" since that's what HP-UX calls it.
60 ** Make it easier for folks to migrate from one to the other :^)
62 #define MODULE_NAME "ccio"
66 #undef DEBUG_CCIO_INIT
67 #undef DEBUG_CCIO_RUN_SG
70 /* depends on proc fs support. But costs CPU performance. */
71 #undef CCIO_COLLECT_STATS
74 #include <asm/runway.h> /* for proc_runway_root */
76 #ifdef DEBUG_CCIO_INIT
77 #define DBG_INIT(x...) printk(x)
79 #define DBG_INIT(x...)
83 #define DBG_RUN(x...) printk(x)
89 #define DBG_RES(x...) printk(x)
94 #ifdef DEBUG_CCIO_RUN_SG
95 #define DBG_RUN_SG(x...) printk(x)
97 #define DBG_RUN_SG(x...)
100 #define CCIO_INLINE inline
101 #define WRITE_U32(value, addr) __raw_writel(value, addr)
102 #define READ_U32(addr) __raw_readl(addr)
104 #define U2_IOA_RUNWAY 0x580
105 #define U2_BC_GSC 0x501
106 #define UTURN_IOA_RUNWAY 0x581
107 #define UTURN_BC_GSC 0x502
109 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
110 #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
111 #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
113 struct ioa_registers {
114 /* Runway Supervisory Set */
116 uint32_t io_command; /* Offset 12 */
117 uint32_t io_status; /* Offset 13 */
118 uint32_t io_control; /* Offset 14 */
121 /* Runway Auxiliary Register Set */
122 uint32_t io_err_resp; /* Offset 0 */
123 uint32_t io_err_info; /* Offset 1 */
124 uint32_t io_err_req; /* Offset 2 */
125 uint32_t io_err_resp_hi; /* Offset 3 */
126 uint32_t io_tlb_entry_m; /* Offset 4 */
127 uint32_t io_tlb_entry_l; /* Offset 5 */
129 uint32_t io_pdir_base; /* Offset 7 */
130 uint32_t io_io_low_hv; /* Offset 8 */
131 uint32_t io_io_high_hv; /* Offset 9 */
133 uint32_t io_chain_id_mask; /* Offset 11 */
135 uint32_t io_io_low; /* Offset 14 */
136 uint32_t io_io_high; /* Offset 15 */
143 ** Runway IO_CONTROL Register (+0x38)
145 ** The Runway IO_CONTROL register controls the forwarding of transactions.
147 ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
148 ** | HV | TLB | reserved | HV | mode | reserved |
150 ** o mode field indicates the address translation of transactions
151 ** forwarded from Runway to GSC+:
152 ** Mode Name Value Definition
153 ** Off (default) 0 Opaque to matching addresses.
154 ** Include 1 Transparent for matching addresses.
155 ** Peek 3 Map matching addresses.
157 ** + "Off" mode: Runway transactions which match the I/O range
158 ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
159 ** + "Include" mode: all addresses within the I/O range specified
160 ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
161 ** forwarded. This is the I/O Adapter's normal operating mode.
162 ** + "Peek" mode: used during system configuration to initialize the
163 ** GSC+ bus. Runway Write_Shorts in the address range specified by
164 ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
165 ** *AND* the GSC+ address is remapped to the Broadcast Physical
166 ** Address space by setting the 14 high order address bits of the
167 ** 32 bit GSC+ address to ones.
169 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
170 ** "Real" mode is the poweron default.
172 ** TLB Mode Value Description
173 ** Real 0 No TLB translation. Address is directly mapped and the
174 ** virtual address is composed of selected physical bits.
175 ** Error 1 Software fills the TLB manually.
176 ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
179 ** IO_IO_LOW_HV +0x60 (HV dependent)
180 ** IO_IO_HIGH_HV +0x64 (HV dependent)
181 ** IO_IO_LOW +0x78 (Architected register)
182 ** IO_IO_HIGH +0x7c (Architected register)
184 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
185 ** I/O Adapter address space, respectively.
187 ** 0 ... 7 | 8 ... 15 | 16 ... 31 |
188 ** 11111111 | 11111111 | address |
190 ** Each LOW/HIGH pair describes a disjoint address space region.
191 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
192 ** with both sets of LOW/HIGH registers. If the address is in the range
193 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
194 ** for forwarded to the respective GSC+ bus.
195 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
196 ** an address space region.
198 ** In order for a Runway address to reside within GSC+ extended address space:
199 ** Runway Address [0:7] must identically compare to 8'b11111111
200 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
201 ** Runway Address [12:23] must be greater than or equal to
202 ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
203 ** Runway Address [24:39] is not used in the comparison.
205 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
207 ** GSC+ Address[0:3] 4'b1111
208 ** GSC+ Address[4:29] Runway Address[12:37]
209 ** GSC+ Address[30:31] 2'b00
211 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
212 ** is interrogated and address space is defined. The operating system will
213 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
214 ** the PDC initialization. However, the hardware version dependent IO_IO_LOW
215 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
217 ** Writes to both sets of registers will take effect immediately, bypassing
218 ** the queues, which ensures that subsequent Runway transactions are checked
219 ** against the updated bounds values. However reads are queued, introducing
220 ** the possibility of a read being bypassed by a subsequent write to the same
221 ** register. This sequence can be avoided by having software wait for read
222 ** returns before issuing subsequent writes.
226 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
227 u8 *res_map; /* resource map, bit == pdir entry */
228 u64 *pdir_base; /* physical base address */
229 u32 pdir_size; /* bytes, function of IOV Space size */
230 u32 res_hint; /* next available IOVP -
232 u32 res_size; /* size of resource map in bytes */
235 #ifdef CCIO_COLLECT_STATS
236 #define CCIO_SEARCH_SAMPLE 0x100
237 unsigned long avg_search[CCIO_SEARCH_SAMPLE];
238 unsigned long avg_idx; /* current index into avg_search */
239 unsigned long used_pages;
240 unsigned long msingle_calls;
241 unsigned long msingle_pages;
242 unsigned long msg_calls;
243 unsigned long msg_pages;
244 unsigned long usingle_calls;
245 unsigned long usingle_pages;
246 unsigned long usg_calls;
247 unsigned long usg_pages;
249 unsigned short cujo20_bug;
251 /* STUFF We don't need in performance path */
252 u32 chainid_shift; /* specify bit location of chain_id */
253 struct ioc *next; /* Linked list of discovered iocs */
254 const char *name; /* device name from firmware */
255 unsigned int hw_path; /* the hardware path this ioc is associatd with */
256 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
257 struct resource mmio_region[2]; /* The "routed" MMIO regions */
260 static struct ioc *ioc_list;
261 static int ioc_count;
263 /**************************************************************
265 * I/O Pdir Resource Management
267 * Bits set in the resource map are in use.
268 * Each bit can represent a number of pages.
269 * LSbs represent lower addresses (IOVA's).
271 * This was was copied from sba_iommu.c. Don't try to unify
272 * the two resource managers unless a way to have different
273 * allocation policies is also adjusted. We'd like to avoid
274 * I/O TLB thrashing by having resource allocation policy
275 * match the I/O TLB replacement policy.
277 ***************************************************************/
278 #define IOVP_SIZE PAGE_SIZE
279 #define IOVP_SHIFT PAGE_SHIFT
280 #define IOVP_MASK PAGE_MASK
282 /* Convert from IOVP to IOVA and vice versa. */
283 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
284 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
286 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
287 #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
288 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
291 ** Don't worry about the 150% average search length on a miss.
292 ** If the search wraps around, and passes the res_hint, it will
293 ** cause the kernel to panic anyhow.
295 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
296 for (; res_ptr < res_end; ++res_ptr) { \
299 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
300 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
301 if ((0 == (*res_ptr & mask)) && !ret) { \
304 ioc->res_hint = res_idx + (size >> 3); \
305 goto resource_found; \
309 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
310 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
311 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
312 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
313 res_ptr = (u##size *)&(ioc)->res_map[0]; \
314 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
317 ** Find available bit in this ioa's resource map.
318 ** Use a "circular" search:
319 ** o Most IOVA's are "temporary" - avg search time should be small.
320 ** o keep a history of what happened for debugging
323 ** Perf optimizations:
324 ** o search for log2(size) bits at a time.
325 ** o search for available resource bits using byte/word/whatever.
326 ** o use different search for "large" (eg > 4 pages) or "very large"
327 ** (eg > 16 pages) mappings.
331 * ccio_alloc_range - Allocate pages in the ioc's resource map.
332 * @ioc: The I/O Controller.
333 * @pages_needed: The requested number of pages to be mapped into the
336 * This function searches the resource map of the ioc to locate a range
337 * of available pages for the requested size.
340 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
342 unsigned int pages_needed = size >> IOVP_SHIFT;
343 unsigned int res_idx;
344 unsigned long boundary_size;
345 #ifdef CCIO_COLLECT_STATS
346 unsigned long cr_start = mfctl(16);
349 BUG_ON(pages_needed == 0);
350 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
352 DBG_RES("%s() size: %d pages_needed %d\n",
353 __func__, size, pages_needed);
356 ** "seek and ye shall find"...praying never hurts either...
357 ** ggg sacrifices another 710 to the computer gods.
360 boundary_size = dma_get_seg_boundary_nr_pages(dev, IOVP_SHIFT);
362 if (pages_needed <= 8) {
364 * LAN traffic will not thrash the TLB IFF the same NIC
365 * uses 8 adjacent pages to map separate payload data.
366 * ie the same byte in the resource bit map.
369 /* FIXME: bit search should shift it's way through
370 * an unsigned long - not byte at a time. As it is now,
371 * we effectively allocate this byte to this mapping.
373 unsigned long mask = ~(~0UL >> pages_needed);
374 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
376 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
378 } else if (pages_needed <= 16) {
379 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
380 } else if (pages_needed <= 32) {
381 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
383 } else if (pages_needed <= 64) {
384 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
387 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
388 __FILE__, __func__, pages_needed);
391 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
396 DBG_RES("%s() res_idx %d res_hint: %d\n",
397 __func__, res_idx, ioc->res_hint);
399 #ifdef CCIO_COLLECT_STATS
401 unsigned long cr_end = mfctl(16);
402 unsigned long tmp = cr_end - cr_start;
403 /* check for roll over */
404 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
406 ioc->avg_search[ioc->avg_idx++] = cr_start;
407 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
408 ioc->used_pages += pages_needed;
411 ** return the bit address.
416 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
417 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
418 BUG_ON((*res_ptr & mask) != mask); \
422 * ccio_free_range - Free pages from the ioc's resource map.
423 * @ioc: The I/O Controller.
424 * @iova: The I/O Virtual Address.
425 * @pages_mapped: The requested number of pages to be freed from the
428 * This function frees the resouces allocated for the iova.
431 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
433 unsigned long iovp = CCIO_IOVP(iova);
434 unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
436 BUG_ON(pages_mapped == 0);
437 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
438 BUG_ON(pages_mapped > BITS_PER_LONG);
440 DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
441 __func__, res_idx, pages_mapped);
443 #ifdef CCIO_COLLECT_STATS
444 ioc->used_pages -= pages_mapped;
447 if(pages_mapped <= 8) {
449 /* see matching comments in alloc_range */
450 unsigned long mask = ~(~0UL >> pages_mapped);
451 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
453 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
455 } else if(pages_mapped <= 16) {
456 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
457 } else if(pages_mapped <= 32) {
458 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
460 } else if(pages_mapped <= 64) {
461 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
464 panic("%s:%s() Too many pages to unmap.\n", __FILE__,
469 /****************************************************************
471 ** CCIO dma_ops support routines
473 *****************************************************************/
475 typedef unsigned long space_t;
476 #define KERNEL_SPACE 0
479 ** DMA "Page Type" and Hints
480 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
481 ** set for subcacheline DMA transfers since we don't want to damage the
482 ** other part of a cacheline.
483 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
484 ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
485 ** data can avoid this if the mapping covers full cache lines.
486 ** o STOP_MOST is needed for atomicity across cachelines.
487 ** Apparently only "some EISA devices" need this.
488 ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
489 ** to use this hint iff the EISA devices needs this feature.
490 ** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
491 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
492 ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
493 ** device can be fetched and multiply DMA streams will thrash the
494 ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
495 ** and Invalidation of Prefetch Entries".
497 ** FIXME: the default hints need to be per GSC device - not global.
499 ** HP-UX dorks: linux device driver programming model is totally different
500 ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
501 ** do special things to work on non-coherent platforms...linux has to
502 ** be much more careful with this.
504 #define IOPDIR_VALID 0x01UL
505 #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
507 #define HINT_STOP_MOST 0x04UL /* LSL support */
509 #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
511 #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
512 #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
516 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
517 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
518 ** when it passes in BIDIRECTIONAL flag.
520 static u32 hint_lookup[] = {
521 [DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
522 [DMA_TO_DEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
523 [DMA_FROM_DEVICE] = HINT_STOP_MOST | IOPDIR_VALID,
527 * ccio_io_pdir_entry - Initialize an I/O Pdir.
528 * @pdir_ptr: A pointer into I/O Pdir.
529 * @sid: The Space Identifier.
530 * @vba: The virtual address.
531 * @hints: The DMA Hint.
533 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
534 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
535 * entry consists of 8 bytes as shown below (MSB == bit 0):
539 * +------+----------------+-----------------------------------------------+
540 * | Phys | Virtual Index | Phys |
541 * | 0:3 | 0:11 | 4:19 |
542 * |4 bits| 12 bits | 16 bits |
543 * +------+----------------+-----------------------------------------------+
545 * +-----------------------+-----------------------------------------------+
546 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
547 * | 20:39 | | Enable |Enable | |Enable|DMA | |
548 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
549 * +-----------------------+-----------------------------------------------+
551 * The virtual index field is filled with the results of the LCI
552 * (Load Coherence Index) instruction. The 8 bits used for the virtual
553 * index are bits 12:19 of the value returned by LCI.
555 static void CCIO_INLINE
556 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
559 register unsigned long pa;
560 register unsigned long ci; /* coherent index */
562 /* We currently only support kernel addresses */
563 BUG_ON(sid != KERNEL_SPACE);
566 ** WORD 1 - low order word
567 ** "hints" parm includes the VALID bit!
568 ** "dep" clobbers the physical address offset bits as well.
571 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
572 ((u32 *)pdir_ptr)[1] = (u32) pa;
575 ** WORD 0 - high order word
580 ** get bits 12:15 of physical address
581 ** shift bits 16:31 of physical address
584 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
585 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
586 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
591 ** get CPU coherency index bits
592 ** Grab virtual index [0:11]
593 ** Deposit virt_idx bits into I/O PDIR word
595 asm volatile ("lci %%r0(%1), %0" : "=r" (ci) : "r" (vba));
596 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
597 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
599 ((u32 *)pdir_ptr)[0] = (u32) pa;
602 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
603 ** PCX-U/U+ do. (eg C200/C240)
604 ** PCX-T'? Don't know. (eg C110 or similar K-class)
606 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
608 ** "Since PCX-U employs an offset hash that is incompatible with
609 ** the real mode coherence index generation of U2, the PDIR entry
610 ** must be flushed to memory to retain coherence."
612 asm_io_fdc(pdir_ptr);
617 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
618 * @ioc: The I/O Controller.
619 * @iovp: The I/O Virtual Page.
620 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
622 * Purge invalid I/O PDIR entries from the I/O TLB.
624 * FIXME: Can we change the byte_cnt to pages_mapped?
626 static CCIO_INLINE void
627 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
629 u32 chain_size = 1 << ioc->chainid_shift;
631 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
632 byte_cnt += chain_size;
634 while(byte_cnt > chain_size) {
635 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
637 byte_cnt -= chain_size;
642 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
643 * @ioc: The I/O Controller.
644 * @iova: The I/O Virtual Address.
645 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
647 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
650 * FIXME: at some threshold it might be "cheaper" to just blow
651 * away the entire I/O TLB instead of individual entries.
653 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
654 * PDIR entry - just once for each possible TLB entry.
655 * (We do need to maker I/O PDIR entries invalid regardless).
657 * FIXME: Can we change byte_cnt to pages_mapped?
659 static CCIO_INLINE void
660 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
662 u32 iovp = (u32)CCIO_IOVP(iova);
663 size_t saved_byte_cnt;
665 /* round up to nearest page size */
666 saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
668 while(byte_cnt > 0) {
669 /* invalidate one page at a time */
670 unsigned int idx = PDIR_INDEX(iovp);
671 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
673 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
674 pdir_ptr[7] = 0; /* clear only VALID bit */
676 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
677 ** PCX-U/U+ do. (eg C200/C240)
678 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
680 asm_io_fdc(pdir_ptr);
683 byte_cnt -= IOVP_SIZE;
687 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
690 /****************************************************************
694 *****************************************************************/
697 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
698 * @dev: The PCI device.
699 * @mask: A bit mask describing the DMA address range of the device.
702 ccio_dma_supported(struct device *dev, u64 mask)
705 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
710 /* only support 32-bit or better devices (ie PCI/GSC) */
711 return (int)(mask >= 0xffffffffUL);
715 * ccio_map_single - Map an address range into the IOMMU.
716 * @dev: The PCI device.
717 * @addr: The start address of the DMA region.
718 * @size: The length of the DMA region.
719 * @direction: The direction of the DMA transaction (to/from device).
721 * This function implements the pci_map_single function.
724 ccio_map_single(struct device *dev, void *addr, size_t size,
725 enum dma_data_direction direction)
733 unsigned long hint = hint_lookup[(int)direction];
738 return DMA_MAPPING_ERROR;
742 /* save offset bits */
743 offset = ((unsigned long) addr) & ~IOVP_MASK;
745 /* round up to nearest IOVP_SIZE */
746 size = ALIGN(size + offset, IOVP_SIZE);
747 spin_lock_irqsave(&ioc->res_lock, flags);
749 #ifdef CCIO_COLLECT_STATS
750 ioc->msingle_calls++;
751 ioc->msingle_pages += size >> IOVP_SHIFT;
754 idx = ccio_alloc_range(ioc, dev, size);
755 iovp = (dma_addr_t)MKIOVP(idx);
757 pdir_start = &(ioc->pdir_base[idx]);
759 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
760 __func__, addr, (long)iovp | offset, size);
762 /* If not cacheline aligned, force SAFE_DMA on the whole mess */
763 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
764 hint |= HINT_SAFE_DMA;
767 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
769 DBG_RUN(" pdir %p %08x%08x\n",
771 (u32) (((u32 *) pdir_start)[0]),
772 (u32) (((u32 *) pdir_start)[1]));
778 spin_unlock_irqrestore(&ioc->res_lock, flags);
780 /* form complete address */
781 return CCIO_IOVA(iovp, offset);
786 ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
787 size_t size, enum dma_data_direction direction,
790 return ccio_map_single(dev, page_address(page) + offset, size,
796 * ccio_unmap_page - Unmap an address range from the IOMMU.
797 * @dev: The PCI device.
798 * @addr: The start address of the DMA region.
799 * @size: The length of the DMA region.
800 * @direction: The direction of the DMA transaction (to/from device).
803 ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
804 enum dma_data_direction direction, unsigned long attrs)
808 dma_addr_t offset = iova & ~IOVP_MASK;
817 DBG_RUN("%s() iovp 0x%lx/%x\n",
818 __func__, (long)iova, size);
820 iova ^= offset; /* clear offset bits */
822 size = ALIGN(size, IOVP_SIZE);
824 spin_lock_irqsave(&ioc->res_lock, flags);
826 #ifdef CCIO_COLLECT_STATS
827 ioc->usingle_calls++;
828 ioc->usingle_pages += size >> IOVP_SHIFT;
831 ccio_mark_invalid(ioc, iova, size);
832 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
833 spin_unlock_irqrestore(&ioc->res_lock, flags);
837 * ccio_alloc - Allocate a consistent DMA mapping.
838 * @dev: The PCI device.
839 * @size: The length of the DMA region.
840 * @dma_handle: The DMA address handed back to the device (not the cpu).
842 * This function implements the pci_alloc_consistent function.
845 ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
850 /* GRANT Need to establish hierarchy for non-PCI devs as well
851 ** and then provide matching gsc_map_xxx() functions for them as well.
854 /* only support PCI */
859 ret = (void *) __get_free_pages(flag, get_order(size));
862 memset(ret, 0, size);
863 *dma_handle = ccio_map_single(dev, ret, size, DMA_BIDIRECTIONAL);
870 * ccio_free - Free a consistent DMA mapping.
871 * @dev: The PCI device.
872 * @size: The length of the DMA region.
873 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
874 * @dma_handle: The device address returned from the ccio_alloc_consistent.
876 * This function implements the pci_free_consistent function.
879 ccio_free(struct device *dev, size_t size, void *cpu_addr,
880 dma_addr_t dma_handle, unsigned long attrs)
882 ccio_unmap_page(dev, dma_handle, size, 0, 0);
883 free_pages((unsigned long)cpu_addr, get_order(size));
887 ** Since 0 is a valid pdir_base index value, can't use that
888 ** to determine if a value is valid or not. Use a flag to indicate
889 ** the SG list entry contains a valid pdir index.
891 #define PIDE_FLAG 0x80000000UL
893 #ifdef CCIO_COLLECT_STATS
894 #define IOMMU_MAP_STATS
896 #include "iommu-helpers.h"
899 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
900 * @dev: The PCI device.
901 * @sglist: The scatter/gather list to be mapped in the IOMMU.
902 * @nents: The number of entries in the scatter/gather list.
903 * @direction: The direction of the DMA transaction (to/from device).
905 * This function implements the pci_map_sg function.
908 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
909 enum dma_data_direction direction, unsigned long attrs)
912 int coalesced, filled = 0;
914 unsigned long hint = hint_lookup[(int)direction];
915 unsigned long prev_len = 0, current_len = 0;
923 DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
925 /* Fast path single entry scatterlists. */
927 sg_dma_address(sglist) = ccio_map_single(dev,
928 sg_virt(sglist), sglist->length,
930 sg_dma_len(sglist) = sglist->length;
934 for(i = 0; i < nents; i++)
935 prev_len += sglist[i].length;
937 spin_lock_irqsave(&ioc->res_lock, flags);
939 #ifdef CCIO_COLLECT_STATS
944 ** First coalesce the chunks and allocate I/O pdir space
946 ** If this is one DMA stream, we can properly map using the
947 ** correct virtual address associated with each DMA page.
948 ** w/o this association, we wouldn't have coherent DMA!
949 ** Access to the virtual address is what forces a two pass algorithm.
951 coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
954 ** Program the I/O Pdir
956 ** map the virtual addresses to the I/O Pdir
957 ** o dma_address will contain the pdir index
958 ** o dma_len will contain the number of bytes to map
959 ** o page/offset contain the virtual address.
961 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
963 spin_unlock_irqrestore(&ioc->res_lock, flags);
965 BUG_ON(coalesced != filled);
967 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
969 for (i = 0; i < filled; i++)
970 current_len += sg_dma_len(sglist + i);
972 BUG_ON(current_len != prev_len);
978 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
979 * @dev: The PCI device.
980 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
981 * @nents: The number of entries in the scatter/gather list.
982 * @direction: The direction of the DMA transaction (to/from device).
984 * This function implements the pci_unmap_sg function.
987 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
988 enum dma_data_direction direction, unsigned long attrs)
999 DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1000 __func__, nents, sg_virt(sglist), sglist->length);
1002 #ifdef CCIO_COLLECT_STATS
1006 while(sg_dma_len(sglist) && nents--) {
1008 #ifdef CCIO_COLLECT_STATS
1009 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1011 ccio_unmap_page(dev, sg_dma_address(sglist),
1012 sg_dma_len(sglist), direction, 0);
1016 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1019 static const struct dma_map_ops ccio_ops = {
1020 .dma_supported = ccio_dma_supported,
1021 .alloc = ccio_alloc,
1023 .map_page = ccio_map_page,
1024 .unmap_page = ccio_unmap_page,
1025 .map_sg = ccio_map_sg,
1026 .unmap_sg = ccio_unmap_sg,
1027 .get_sgtable = dma_common_get_sgtable,
1028 .alloc_pages = dma_common_alloc_pages,
1029 .free_pages = dma_common_free_pages,
1032 #ifdef CONFIG_PROC_FS
1033 static int ccio_proc_info(struct seq_file *m, void *p)
1035 struct ioc *ioc = ioc_list;
1037 while (ioc != NULL) {
1038 unsigned int total_pages = ioc->res_size << 3;
1039 #ifdef CCIO_COLLECT_STATS
1040 unsigned long avg = 0, min, max;
1044 seq_printf(m, "%s\n", ioc->name);
1046 seq_printf(m, "Cujo 2.0 bug : %s\n",
1047 (ioc->cujo20_bug ? "yes" : "no"));
1049 seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
1050 total_pages * 8, total_pages);
1052 #ifdef CCIO_COLLECT_STATS
1053 seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1054 total_pages - ioc->used_pages, ioc->used_pages,
1055 (int)(ioc->used_pages * 100 / total_pages));
1058 seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1059 ioc->res_size, total_pages);
1061 #ifdef CCIO_COLLECT_STATS
1062 min = max = ioc->avg_search[0];
1063 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1064 avg += ioc->avg_search[j];
1065 if(ioc->avg_search[j] > max)
1066 max = ioc->avg_search[j];
1067 if(ioc->avg_search[j] < min)
1068 min = ioc->avg_search[j];
1070 avg /= CCIO_SEARCH_SAMPLE;
1071 seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1074 seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1075 ioc->msingle_calls, ioc->msingle_pages,
1076 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1078 /* KLUGE - unmap_sg calls unmap_page for each mapped page */
1079 min = ioc->usingle_calls - ioc->usg_calls;
1080 max = ioc->usingle_pages - ioc->usg_pages;
1081 seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1082 min, max, (int)((max * 1000)/min));
1084 seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1085 ioc->msg_calls, ioc->msg_pages,
1086 (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1088 seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1089 ioc->usg_calls, ioc->usg_pages,
1090 (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1091 #endif /* CCIO_COLLECT_STATS */
1099 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1101 struct ioc *ioc = ioc_list;
1103 while (ioc != NULL) {
1104 seq_hex_dump(m, " ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1105 ioc->res_size, false);
1108 break; /* XXX - remove me */
1113 #endif /* CONFIG_PROC_FS */
1116 * ccio_find_ioc - Find the ioc in the ioc_list
1117 * @hw_path: The hardware path of the ioc.
1119 * This function searches the ioc_list for an ioc that matches
1120 * the provide hardware path.
1122 static struct ioc * ccio_find_ioc(int hw_path)
1128 for (i = 0; i < ioc_count; i++) {
1129 if (ioc->hw_path == hw_path)
1139 * ccio_get_iommu - Find the iommu which controls this device
1140 * @dev: The parisc device.
1142 * This function searches through the registered IOMMU's and returns
1143 * the appropriate IOMMU for the device based on its hardware path.
1145 void * ccio_get_iommu(const struct parisc_device *dev)
1147 dev = find_pa_parent_type(dev, HPHW_IOA);
1151 return ccio_find_ioc(dev->hw_path);
1154 #define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1156 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1157 * to/from certain pages. To avoid this happening, we mark these pages
1158 * as `used', and ensure that nothing will try to allocate from them.
1160 void __init ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1163 struct parisc_device *dev = parisc_parent(cujo);
1164 struct ioc *ioc = ccio_get_iommu(dev);
1167 ioc->cujo20_bug = 1;
1168 res_ptr = ioc->res_map;
1169 idx = PDIR_INDEX(iovp) >> 3;
1171 while (idx < ioc->res_size) {
1172 res_ptr[idx] |= 0xff;
1173 idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1178 /* GRANT - is this needed for U2 or not? */
1181 ** Get the size of the I/O TLB for this I/O MMU.
1183 ** If spa_shift is non-zero (ie probably U2),
1184 ** then calculate the I/O TLB size using spa_shift.
1186 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1187 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1188 ** I think only Java (K/D/R-class too?) systems don't do this.
1191 ccio_get_iotlb_size(struct parisc_device *dev)
1193 if (dev->spa_shift == 0) {
1194 panic("%s() : Can't determine I/O TLB size.\n", __func__);
1196 return (1 << dev->spa_shift);
1200 /* Uturn supports 256 TLB entries */
1201 #define CCIO_CHAINID_SHIFT 8
1202 #define CCIO_CHAINID_MASK 0xff
1205 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1206 static const struct parisc_device_id ccio_tbl[] __initconst = {
1207 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1208 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1212 static int ccio_probe(struct parisc_device *dev);
1214 static struct parisc_driver ccio_driver __refdata = {
1216 .id_table = ccio_tbl,
1217 .probe = ccio_probe,
1221 * ccio_ioc_init - Initialize the I/O Controller
1222 * @ioc: The I/O Controller.
1224 * Initialize the I/O Controller which includes setting up the
1225 * I/O Page Directory, the resource map, and initalizing the
1226 * U2/Uturn chip into virtual mode.
1229 ccio_ioc_init(struct ioc *ioc)
1232 unsigned int iov_order;
1233 u32 iova_space_size;
1236 ** Determine IOVA Space size from memory size.
1238 ** Ideally, PCI drivers would register the maximum number
1239 ** of DMA they can have outstanding for each device they
1240 ** own. Next best thing would be to guess how much DMA
1241 ** can be outstanding based on PCI Class/sub-class. Both
1242 ** methods still require some "extra" to support PCI
1243 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1246 iova_space_size = (u32) (totalram_pages() / count_parisc_driver(&ccio_driver));
1248 /* limit IOVA space size to 1MB-1GB */
1250 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1251 iova_space_size = 1 << (20 - PAGE_SHIFT);
1253 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1254 iova_space_size = 1 << (30 - PAGE_SHIFT);
1259 ** iova space must be log2() in size.
1260 ** thus, pdir/res_map will also be log2().
1263 /* We could use larger page sizes in order to *decrease* the number
1264 ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1266 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1267 ** since the pages must also be physically contiguous - typically
1268 ** this is the case under linux."
1271 iov_order = get_order(iova_space_size << PAGE_SHIFT);
1273 /* iova_space_size is now bytes, not pages */
1274 iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1276 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1278 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
1280 /* Verify it's a power of two */
1281 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1283 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1284 __func__, ioc->ioc_regs,
1285 (unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
1286 iova_space_size>>20,
1287 iov_order + PAGE_SHIFT);
1289 ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1290 get_order(ioc->pdir_size));
1291 if(NULL == ioc->pdir_base) {
1292 panic("%s() could not allocate I/O Page Table\n", __func__);
1294 memset(ioc->pdir_base, 0, ioc->pdir_size);
1296 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1297 DBG_INIT(" base %p\n", ioc->pdir_base);
1299 /* resource map size dictated by pdir_size */
1300 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1301 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1303 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1304 get_order(ioc->res_size));
1305 if(NULL == ioc->res_map) {
1306 panic("%s() could not allocate resource map\n", __func__);
1308 memset(ioc->res_map, 0, ioc->res_size);
1310 /* Initialize the res_hint to 16 */
1313 /* Initialize the spinlock */
1314 spin_lock_init(&ioc->res_lock);
1317 ** Chainid is the upper most bits of an IOVP used to determine
1318 ** which TLB entry an IOVP will use.
1320 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1321 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1324 ** Initialize IOA hardware
1326 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1327 &ioc->ioc_regs->io_chain_id_mask);
1329 WRITE_U32(virt_to_phys(ioc->pdir_base),
1330 &ioc->ioc_regs->io_pdir_base);
1333 ** Go to "Virtual Mode"
1335 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1338 ** Initialize all I/O TLB entries to 0 (Valid bit off).
1340 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1341 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1343 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1344 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1345 &ioc->ioc_regs->io_command);
1350 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1355 res->flags = IORESOURCE_MEM;
1357 * bracing ((signed) ...) are required for 64bit kernel because
1358 * we only want to sign extend the lower 16 bits of the register.
1359 * The upper 16-bits of range registers are hardcoded to 0xffff.
1361 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1362 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1365 * Check if this MMIO range is disable
1367 if (res->end + 1 == res->start)
1370 /* On some platforms (e.g. K-Class), we have already registered
1371 * resources for devices reported by firmware. Some are children
1373 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1375 result = insert_resource(&iomem_resource, res);
1377 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1378 __func__, (unsigned long)res->start, (unsigned long)res->end);
1382 static void __init ccio_init_resources(struct ioc *ioc)
1384 struct resource *res = ioc->mmio_region;
1385 char *name = kmalloc(14, GFP_KERNEL);
1387 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1389 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1390 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1393 static int new_ioc_area(struct resource *res, unsigned long size,
1394 unsigned long min, unsigned long max, unsigned long align)
1399 res->start = (max - size + 1) &~ (align - 1);
1400 res->end = res->start + size;
1402 /* We might be trying to expand the MMIO range to include
1403 * a child device that has already registered it's MMIO space.
1404 * Use "insert" instead of request_resource().
1406 if (!insert_resource(&iomem_resource, res))
1409 return new_ioc_area(res, size, min, max - size, align);
1412 static int expand_ioc_area(struct resource *res, unsigned long size,
1413 unsigned long min, unsigned long max, unsigned long align)
1415 unsigned long start, len;
1418 return new_ioc_area(res, size, min, max, align);
1420 start = (res->start - size) &~ (align - 1);
1421 len = res->end - start + 1;
1423 if (!adjust_resource(res, start, len))
1428 len = ((size + res->end + align) &~ (align - 1)) - start;
1429 if (start + len <= max) {
1430 if (!adjust_resource(res, start, len))
1438 * Dino calls this function. Beware that we may get called on systems
1439 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1440 * So it's legal to find no parent IOC.
1442 * Some other issues: one of the resources in the ioc may be unassigned.
1444 int ccio_allocate_resource(const struct parisc_device *dev,
1445 struct resource *res, unsigned long size,
1446 unsigned long min, unsigned long max, unsigned long align)
1448 struct resource *parent = &iomem_resource;
1449 struct ioc *ioc = ccio_get_iommu(dev);
1453 parent = ioc->mmio_region;
1454 if (parent->parent &&
1455 !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1458 if ((parent + 1)->parent &&
1459 !allocate_resource(parent + 1, res, size, min, max, align,
1463 if (!expand_ioc_area(parent, size, min, max, align)) {
1464 __raw_writel(((parent->start)>>16) | 0xffff0000,
1465 &ioc->ioc_regs->io_io_low);
1466 __raw_writel(((parent->end)>>16) | 0xffff0000,
1467 &ioc->ioc_regs->io_io_high);
1468 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1470 __raw_writel(((parent->start)>>16) | 0xffff0000,
1471 &ioc->ioc_regs->io_io_low_hv);
1472 __raw_writel(((parent->end)>>16) | 0xffff0000,
1473 &ioc->ioc_regs->io_io_high_hv);
1479 return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1482 int ccio_request_resource(const struct parisc_device *dev,
1483 struct resource *res)
1485 struct resource *parent;
1486 struct ioc *ioc = ccio_get_iommu(dev);
1489 parent = &iomem_resource;
1490 } else if ((ioc->mmio_region->start <= res->start) &&
1491 (res->end <= ioc->mmio_region->end)) {
1492 parent = ioc->mmio_region;
1493 } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1494 (res->end <= (ioc->mmio_region + 1)->end)) {
1495 parent = ioc->mmio_region + 1;
1500 /* "transparent" bus bridges need to register MMIO resources
1501 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1502 * registered their resources in the PDC "bus walk" (See
1503 * arch/parisc/kernel/inventory.c).
1505 return insert_resource(parent, res);
1509 * ccio_probe - Determine if ccio should claim this device.
1510 * @dev: The device which has been found
1512 * Determine if ccio should claim this chip (return 0) or not (return 1).
1513 * If so, initialize the chip and tell other partners in crime they
1516 static int __init ccio_probe(struct parisc_device *dev)
1519 struct ioc *ioc, **ioc_p = &ioc_list;
1520 struct pci_hba_data *hba;
1522 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1524 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1528 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1530 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1531 (unsigned long)dev->hpa.start);
1533 for (i = 0; i < ioc_count; i++) {
1534 ioc_p = &(*ioc_p)->next;
1538 ioc->hw_path = dev->hw_path;
1539 ioc->ioc_regs = ioremap(dev->hpa.start, 4096);
1540 if (!ioc->ioc_regs) {
1545 ccio_init_resources(ioc);
1546 hppa_dma_ops = &ccio_ops;
1548 hba = kzalloc(sizeof(*hba), GFP_KERNEL);
1549 /* if this fails, no I/O cards will work, so may as well bug */
1550 BUG_ON(hba == NULL);
1553 dev->dev.platform_data = hba;
1555 #ifdef CONFIG_PROC_FS
1556 if (ioc_count == 0) {
1557 proc_create_single(MODULE_NAME, 0, proc_runway_root,
1559 proc_create_single(MODULE_NAME"-bitmap", 0, proc_runway_root,
1560 ccio_proc_bitmap_info);
1568 * ccio_init - ccio initialization procedure.
1570 * Register this driver.
1572 void __init ccio_init(void)
1574 register_parisc_driver(&ccio_driver);