Merge tag 'timers-core-2023-09-04-v2' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / drivers / opp / of.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP OF helpers
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *      Nishanth Menon
7  *      Romit Dasgupta
8  *      Kevin Hilman
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
21
22 #include "opp.h"
23
24 /* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
25 static LIST_HEAD(lazy_opp_tables);
26
27 /*
28  * Returns opp descriptor node for a device node, caller must
29  * do of_node_put().
30  */
31 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
32                                                      int index)
33 {
34         /* "operating-points-v2" can be an array for power domain providers */
35         return of_parse_phandle(np, "operating-points-v2", index);
36 }
37
38 /* Returns opp descriptor node for a device, caller must do of_node_put() */
39 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
40 {
41         return _opp_of_get_opp_desc_node(dev->of_node, 0);
42 }
43 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
44
45 struct opp_table *_managed_opp(struct device *dev, int index)
46 {
47         struct opp_table *opp_table, *managed_table = NULL;
48         struct device_node *np;
49
50         np = _opp_of_get_opp_desc_node(dev->of_node, index);
51         if (!np)
52                 return NULL;
53
54         list_for_each_entry(opp_table, &opp_tables, node) {
55                 if (opp_table->np == np) {
56                         /*
57                          * Multiple devices can point to the same OPP table and
58                          * so will have same node-pointer, np.
59                          *
60                          * But the OPPs will be considered as shared only if the
61                          * OPP table contains a "opp-shared" property.
62                          */
63                         if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
64                                 _get_opp_table_kref(opp_table);
65                                 managed_table = opp_table;
66                         }
67
68                         break;
69                 }
70         }
71
72         of_node_put(np);
73
74         return managed_table;
75 }
76
77 /* The caller must call dev_pm_opp_put() after the OPP is used */
78 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
79                                           struct device_node *opp_np)
80 {
81         struct dev_pm_opp *opp;
82
83         mutex_lock(&opp_table->lock);
84
85         list_for_each_entry(opp, &opp_table->opp_list, node) {
86                 if (opp->np == opp_np) {
87                         dev_pm_opp_get(opp);
88                         mutex_unlock(&opp_table->lock);
89                         return opp;
90                 }
91         }
92
93         mutex_unlock(&opp_table->lock);
94
95         return NULL;
96 }
97
98 static struct device_node *of_parse_required_opp(struct device_node *np,
99                                                  int index)
100 {
101         return of_parse_phandle(np, "required-opps", index);
102 }
103
104 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
105 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
106 {
107         struct opp_table *opp_table;
108         struct device_node *opp_table_np;
109
110         opp_table_np = of_get_parent(opp_np);
111         if (!opp_table_np)
112                 goto err;
113
114         /* It is safe to put the node now as all we need now is its address */
115         of_node_put(opp_table_np);
116
117         mutex_lock(&opp_table_lock);
118         list_for_each_entry(opp_table, &opp_tables, node) {
119                 if (opp_table_np == opp_table->np) {
120                         _get_opp_table_kref(opp_table);
121                         mutex_unlock(&opp_table_lock);
122                         return opp_table;
123                 }
124         }
125         mutex_unlock(&opp_table_lock);
126
127 err:
128         return ERR_PTR(-ENODEV);
129 }
130
131 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
132 static void _opp_table_free_required_tables(struct opp_table *opp_table)
133 {
134         struct opp_table **required_opp_tables = opp_table->required_opp_tables;
135         int i;
136
137         if (!required_opp_tables)
138                 return;
139
140         for (i = 0; i < opp_table->required_opp_count; i++) {
141                 if (IS_ERR_OR_NULL(required_opp_tables[i]))
142                         continue;
143
144                 dev_pm_opp_put_opp_table(required_opp_tables[i]);
145         }
146
147         kfree(required_opp_tables);
148
149         opp_table->required_opp_count = 0;
150         opp_table->required_opp_tables = NULL;
151
152         mutex_lock(&opp_table_lock);
153         list_del(&opp_table->lazy);
154         mutex_unlock(&opp_table_lock);
155 }
156
157 /*
158  * Populate all devices and opp tables which are part of "required-opps" list.
159  * Checking only the first OPP node should be enough.
160  */
161 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
162                                              struct device *dev,
163                                              struct device_node *opp_np)
164 {
165         struct opp_table **required_opp_tables;
166         struct device_node *required_np, *np;
167         bool lazy = false;
168         int count, i;
169
170         /* Traversing the first OPP node is all we need */
171         np = of_get_next_available_child(opp_np, NULL);
172         if (!np) {
173                 dev_warn(dev, "Empty OPP table\n");
174
175                 return;
176         }
177
178         count = of_count_phandle_with_args(np, "required-opps", NULL);
179         if (count <= 0)
180                 goto put_np;
181
182         required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
183                                       GFP_KERNEL);
184         if (!required_opp_tables)
185                 goto put_np;
186
187         opp_table->required_opp_tables = required_opp_tables;
188         opp_table->required_opp_count = count;
189
190         for (i = 0; i < count; i++) {
191                 required_np = of_parse_required_opp(np, i);
192                 if (!required_np)
193                         goto free_required_tables;
194
195                 required_opp_tables[i] = _find_table_of_opp_np(required_np);
196                 of_node_put(required_np);
197
198                 if (IS_ERR(required_opp_tables[i]))
199                         lazy = true;
200         }
201
202         /* Let's do the linking later on */
203         if (lazy) {
204                 /*
205                  * The OPP table is not held while allocating the table, take it
206                  * now to avoid corruption to the lazy_opp_tables list.
207                  */
208                 mutex_lock(&opp_table_lock);
209                 list_add(&opp_table->lazy, &lazy_opp_tables);
210                 mutex_unlock(&opp_table_lock);
211         }
212         else
213                 _update_set_required_opps(opp_table);
214
215         goto put_np;
216
217 free_required_tables:
218         _opp_table_free_required_tables(opp_table);
219 put_np:
220         of_node_put(np);
221 }
222
223 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
224                         int index)
225 {
226         struct device_node *np, *opp_np;
227         u32 val;
228
229         /*
230          * Only required for backward compatibility with v1 bindings, but isn't
231          * harmful for other cases. And so we do it unconditionally.
232          */
233         np = of_node_get(dev->of_node);
234         if (!np)
235                 return;
236
237         if (!of_property_read_u32(np, "clock-latency", &val))
238                 opp_table->clock_latency_ns_max = val;
239         of_property_read_u32(np, "voltage-tolerance",
240                              &opp_table->voltage_tolerance_v1);
241
242         if (of_property_present(np, "#power-domain-cells"))
243                 opp_table->is_genpd = true;
244
245         /* Get OPP table node */
246         opp_np = _opp_of_get_opp_desc_node(np, index);
247         of_node_put(np);
248
249         if (!opp_np)
250                 return;
251
252         if (of_property_read_bool(opp_np, "opp-shared"))
253                 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
254         else
255                 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
256
257         opp_table->np = opp_np;
258
259         _opp_table_alloc_required_tables(opp_table, dev, opp_np);
260 }
261
262 void _of_clear_opp_table(struct opp_table *opp_table)
263 {
264         _opp_table_free_required_tables(opp_table);
265         of_node_put(opp_table->np);
266 }
267
268 /*
269  * Release all resources previously acquired with a call to
270  * _of_opp_alloc_required_opps().
271  */
272 static void _of_opp_free_required_opps(struct opp_table *opp_table,
273                                        struct dev_pm_opp *opp)
274 {
275         struct dev_pm_opp **required_opps = opp->required_opps;
276         int i;
277
278         if (!required_opps)
279                 return;
280
281         for (i = 0; i < opp_table->required_opp_count; i++) {
282                 if (!required_opps[i])
283                         continue;
284
285                 /* Put the reference back */
286                 dev_pm_opp_put(required_opps[i]);
287         }
288
289         opp->required_opps = NULL;
290         kfree(required_opps);
291 }
292
293 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
294 {
295         _of_opp_free_required_opps(opp_table, opp);
296         of_node_put(opp->np);
297 }
298
299 /* Populate all required OPPs which are part of "required-opps" list */
300 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
301                                        struct dev_pm_opp *opp)
302 {
303         struct dev_pm_opp **required_opps;
304         struct opp_table *required_table;
305         struct device_node *np;
306         int i, ret, count = opp_table->required_opp_count;
307
308         if (!count)
309                 return 0;
310
311         required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
312         if (!required_opps)
313                 return -ENOMEM;
314
315         opp->required_opps = required_opps;
316
317         for (i = 0; i < count; i++) {
318                 required_table = opp_table->required_opp_tables[i];
319
320                 /* Required table not added yet, we will link later */
321                 if (IS_ERR_OR_NULL(required_table))
322                         continue;
323
324                 np = of_parse_required_opp(opp->np, i);
325                 if (unlikely(!np)) {
326                         ret = -ENODEV;
327                         goto free_required_opps;
328                 }
329
330                 required_opps[i] = _find_opp_of_np(required_table, np);
331                 of_node_put(np);
332
333                 if (!required_opps[i]) {
334                         pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
335                                __func__, opp->np, i);
336                         ret = -ENODEV;
337                         goto free_required_opps;
338                 }
339         }
340
341         return 0;
342
343 free_required_opps:
344         _of_opp_free_required_opps(opp_table, opp);
345
346         return ret;
347 }
348
349 /* Link required OPPs for an individual OPP */
350 static int lazy_link_required_opps(struct opp_table *opp_table,
351                                    struct opp_table *new_table, int index)
352 {
353         struct device_node *required_np;
354         struct dev_pm_opp *opp;
355
356         list_for_each_entry(opp, &opp_table->opp_list, node) {
357                 required_np = of_parse_required_opp(opp->np, index);
358                 if (unlikely(!required_np))
359                         return -ENODEV;
360
361                 opp->required_opps[index] = _find_opp_of_np(new_table, required_np);
362                 of_node_put(required_np);
363
364                 if (!opp->required_opps[index]) {
365                         pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
366                                __func__, opp->np, index);
367                         return -ENODEV;
368                 }
369         }
370
371         return 0;
372 }
373
374 /* Link required OPPs for all OPPs of the newly added OPP table */
375 static void lazy_link_required_opp_table(struct opp_table *new_table)
376 {
377         struct opp_table *opp_table, *temp, **required_opp_tables;
378         struct device_node *required_np, *opp_np, *required_table_np;
379         struct dev_pm_opp *opp;
380         int i, ret;
381
382         mutex_lock(&opp_table_lock);
383
384         list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
385                 bool lazy = false;
386
387                 /* opp_np can't be invalid here */
388                 opp_np = of_get_next_available_child(opp_table->np, NULL);
389
390                 for (i = 0; i < opp_table->required_opp_count; i++) {
391                         required_opp_tables = opp_table->required_opp_tables;
392
393                         /* Required opp-table is already parsed */
394                         if (!IS_ERR(required_opp_tables[i]))
395                                 continue;
396
397                         /* required_np can't be invalid here */
398                         required_np = of_parse_required_opp(opp_np, i);
399                         required_table_np = of_get_parent(required_np);
400
401                         of_node_put(required_table_np);
402                         of_node_put(required_np);
403
404                         /*
405                          * Newly added table isn't the required opp-table for
406                          * opp_table.
407                          */
408                         if (required_table_np != new_table->np) {
409                                 lazy = true;
410                                 continue;
411                         }
412
413                         required_opp_tables[i] = new_table;
414                         _get_opp_table_kref(new_table);
415
416                         /* Link OPPs now */
417                         ret = lazy_link_required_opps(opp_table, new_table, i);
418                         if (ret) {
419                                 /* The OPPs will be marked unusable */
420                                 lazy = false;
421                                 break;
422                         }
423                 }
424
425                 of_node_put(opp_np);
426
427                 /* All required opp-tables found, remove from lazy list */
428                 if (!lazy) {
429                         _update_set_required_opps(opp_table);
430                         list_del_init(&opp_table->lazy);
431
432                         list_for_each_entry(opp, &opp_table->opp_list, node)
433                                 _required_opps_available(opp, opp_table->required_opp_count);
434                 }
435         }
436
437         mutex_unlock(&opp_table_lock);
438 }
439
440 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
441 {
442         struct device_node *np, *opp_np;
443         struct property *prop;
444
445         if (!opp_table) {
446                 np = of_node_get(dev->of_node);
447                 if (!np)
448                         return -ENODEV;
449
450                 opp_np = _opp_of_get_opp_desc_node(np, 0);
451                 of_node_put(np);
452         } else {
453                 opp_np = of_node_get(opp_table->np);
454         }
455
456         /* Lets not fail in case we are parsing opp-v1 bindings */
457         if (!opp_np)
458                 return 0;
459
460         /* Checking only first OPP is sufficient */
461         np = of_get_next_available_child(opp_np, NULL);
462         of_node_put(opp_np);
463         if (!np) {
464                 dev_err(dev, "OPP table empty\n");
465                 return -EINVAL;
466         }
467
468         prop = of_find_property(np, "opp-peak-kBps", NULL);
469         of_node_put(np);
470
471         if (!prop || !prop->length)
472                 return 0;
473
474         return 1;
475 }
476
477 int dev_pm_opp_of_find_icc_paths(struct device *dev,
478                                  struct opp_table *opp_table)
479 {
480         struct device_node *np;
481         int ret, i, count, num_paths;
482         struct icc_path **paths;
483
484         ret = _bandwidth_supported(dev, opp_table);
485         if (ret == -EINVAL)
486                 return 0; /* Empty OPP table is a valid corner-case, let's not fail */
487         else if (ret <= 0)
488                 return ret;
489
490         ret = 0;
491
492         np = of_node_get(dev->of_node);
493         if (!np)
494                 return 0;
495
496         count = of_count_phandle_with_args(np, "interconnects",
497                                            "#interconnect-cells");
498         of_node_put(np);
499         if (count < 0)
500                 return 0;
501
502         /* two phandles when #interconnect-cells = <1> */
503         if (count % 2) {
504                 dev_err(dev, "%s: Invalid interconnects values\n", __func__);
505                 return -EINVAL;
506         }
507
508         num_paths = count / 2;
509         paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
510         if (!paths)
511                 return -ENOMEM;
512
513         for (i = 0; i < num_paths; i++) {
514                 paths[i] = of_icc_get_by_index(dev, i);
515                 if (IS_ERR(paths[i])) {
516                         ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
517                         goto err;
518                 }
519         }
520
521         if (opp_table) {
522                 opp_table->paths = paths;
523                 opp_table->path_count = num_paths;
524                 return 0;
525         }
526
527 err:
528         while (i--)
529                 icc_put(paths[i]);
530
531         kfree(paths);
532
533         return ret;
534 }
535 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
536
537 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
538                               struct device_node *np)
539 {
540         unsigned int levels = opp_table->supported_hw_count;
541         int count, versions, ret, i, j;
542         u32 val;
543
544         if (!opp_table->supported_hw) {
545                 /*
546                  * In the case that no supported_hw has been set by the
547                  * platform but there is an opp-supported-hw value set for
548                  * an OPP then the OPP should not be enabled as there is
549                  * no way to see if the hardware supports it.
550                  */
551                 if (of_property_present(np, "opp-supported-hw"))
552                         return false;
553                 else
554                         return true;
555         }
556
557         count = of_property_count_u32_elems(np, "opp-supported-hw");
558         if (count <= 0 || count % levels) {
559                 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
560                         __func__, count);
561                 return false;
562         }
563
564         versions = count / levels;
565
566         /* All levels in at least one of the versions should match */
567         for (i = 0; i < versions; i++) {
568                 bool supported = true;
569
570                 for (j = 0; j < levels; j++) {
571                         ret = of_property_read_u32_index(np, "opp-supported-hw",
572                                                          i * levels + j, &val);
573                         if (ret) {
574                                 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
575                                          __func__, i * levels + j, ret);
576                                 return false;
577                         }
578
579                         /* Check if the level is supported */
580                         if (!(val & opp_table->supported_hw[j])) {
581                                 supported = false;
582                                 break;
583                         }
584                 }
585
586                 if (supported)
587                         return true;
588         }
589
590         return false;
591 }
592
593 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
594                               struct opp_table *opp_table,
595                               const char *prop_type, bool *triplet)
596 {
597         struct property *prop = NULL;
598         char name[NAME_MAX];
599         int count, ret;
600         u32 *out;
601
602         /* Search for "opp-<prop_type>-<name>" */
603         if (opp_table->prop_name) {
604                 snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
605                          opp_table->prop_name);
606                 prop = of_find_property(opp->np, name, NULL);
607         }
608
609         if (!prop) {
610                 /* Search for "opp-<prop_type>" */
611                 snprintf(name, sizeof(name), "opp-%s", prop_type);
612                 prop = of_find_property(opp->np, name, NULL);
613                 if (!prop)
614                         return NULL;
615         }
616
617         count = of_property_count_u32_elems(opp->np, name);
618         if (count < 0) {
619                 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
620                         count);
621                 return ERR_PTR(count);
622         }
623
624         /*
625          * Initialize regulator_count, if regulator information isn't provided
626          * by the platform. Now that one of the properties is available, fix the
627          * regulator_count to 1.
628          */
629         if (unlikely(opp_table->regulator_count == -1))
630                 opp_table->regulator_count = 1;
631
632         if (count != opp_table->regulator_count &&
633             (!triplet || count != opp_table->regulator_count * 3)) {
634                 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
635                         __func__, prop_type, count, opp_table->regulator_count);
636                 return ERR_PTR(-EINVAL);
637         }
638
639         out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
640         if (!out)
641                 return ERR_PTR(-EINVAL);
642
643         ret = of_property_read_u32_array(opp->np, name, out, count);
644         if (ret) {
645                 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
646                 kfree(out);
647                 return ERR_PTR(-EINVAL);
648         }
649
650         if (triplet)
651                 *triplet = count != opp_table->regulator_count;
652
653         return out;
654 }
655
656 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
657                                 struct opp_table *opp_table, bool *triplet)
658 {
659         u32 *microvolt;
660
661         microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
662         if (IS_ERR(microvolt))
663                 return microvolt;
664
665         if (!microvolt) {
666                 /*
667                  * Missing property isn't a problem, but an invalid
668                  * entry is. This property isn't optional if regulator
669                  * information is provided. Check only for the first OPP, as
670                  * regulator_count may get initialized after that to a valid
671                  * value.
672                  */
673                 if (list_empty(&opp_table->opp_list) &&
674                     opp_table->regulator_count > 0) {
675                         dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
676                                 __func__);
677                         return ERR_PTR(-EINVAL);
678                 }
679         }
680
681         return microvolt;
682 }
683
684 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
685                               struct opp_table *opp_table)
686 {
687         u32 *microvolt, *microamp, *microwatt;
688         int ret = 0, i, j;
689         bool triplet;
690
691         microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
692         if (IS_ERR(microvolt))
693                 return PTR_ERR(microvolt);
694
695         microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
696         if (IS_ERR(microamp)) {
697                 ret = PTR_ERR(microamp);
698                 goto free_microvolt;
699         }
700
701         microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
702         if (IS_ERR(microwatt)) {
703                 ret = PTR_ERR(microwatt);
704                 goto free_microamp;
705         }
706
707         /*
708          * Initialize regulator_count if it is uninitialized and no properties
709          * are found.
710          */
711         if (unlikely(opp_table->regulator_count == -1)) {
712                 opp_table->regulator_count = 0;
713                 return 0;
714         }
715
716         for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
717                 if (microvolt) {
718                         opp->supplies[i].u_volt = microvolt[j++];
719
720                         if (triplet) {
721                                 opp->supplies[i].u_volt_min = microvolt[j++];
722                                 opp->supplies[i].u_volt_max = microvolt[j++];
723                         } else {
724                                 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
725                                 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
726                         }
727                 }
728
729                 if (microamp)
730                         opp->supplies[i].u_amp = microamp[i];
731
732                 if (microwatt)
733                         opp->supplies[i].u_watt = microwatt[i];
734         }
735
736         kfree(microwatt);
737 free_microamp:
738         kfree(microamp);
739 free_microvolt:
740         kfree(microvolt);
741
742         return ret;
743 }
744
745 /**
746  * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
747  *                                entries
748  * @dev:        device pointer used to lookup OPP table.
749  *
750  * Free OPPs created using static entries present in DT.
751  */
752 void dev_pm_opp_of_remove_table(struct device *dev)
753 {
754         dev_pm_opp_remove_table(dev);
755 }
756 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
757
758 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
759                       struct device_node *np)
760 {
761         struct property *prop;
762         int i, count, ret;
763         u64 *rates;
764
765         prop = of_find_property(np, "opp-hz", NULL);
766         if (!prop)
767                 return -ENODEV;
768
769         count = prop->length / sizeof(u64);
770         if (opp_table->clk_count != count) {
771                 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
772                        __func__, count, opp_table->clk_count);
773                 return -EINVAL;
774         }
775
776         rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
777         if (!rates)
778                 return -ENOMEM;
779
780         ret = of_property_read_u64_array(np, "opp-hz", rates, count);
781         if (ret) {
782                 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
783         } else {
784                 /*
785                  * Rate is defined as an unsigned long in clk API, and so
786                  * casting explicitly to its type. Must be fixed once rate is 64
787                  * bit guaranteed in clk API.
788                  */
789                 for (i = 0; i < count; i++) {
790                         new_opp->rates[i] = (unsigned long)rates[i];
791
792                         /* This will happen for frequencies > 4.29 GHz */
793                         WARN_ON(new_opp->rates[i] != rates[i]);
794                 }
795         }
796
797         kfree(rates);
798
799         return ret;
800 }
801
802 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
803                     struct device_node *np, bool peak)
804 {
805         const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
806         struct property *prop;
807         int i, count, ret;
808         u32 *bw;
809
810         prop = of_find_property(np, name, NULL);
811         if (!prop)
812                 return -ENODEV;
813
814         count = prop->length / sizeof(u32);
815         if (opp_table->path_count != count) {
816                 pr_err("%s: Mismatch between %s and paths (%d %d)\n",
817                                 __func__, name, count, opp_table->path_count);
818                 return -EINVAL;
819         }
820
821         bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
822         if (!bw)
823                 return -ENOMEM;
824
825         ret = of_property_read_u32_array(np, name, bw, count);
826         if (ret) {
827                 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
828                 goto out;
829         }
830
831         for (i = 0; i < count; i++) {
832                 if (peak)
833                         new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
834                 else
835                         new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
836         }
837
838 out:
839         kfree(bw);
840         return ret;
841 }
842
843 static int _read_opp_key(struct dev_pm_opp *new_opp,
844                          struct opp_table *opp_table, struct device_node *np)
845 {
846         bool found = false;
847         int ret;
848
849         ret = _read_rate(new_opp, opp_table, np);
850         if (!ret)
851                 found = true;
852         else if (ret != -ENODEV)
853                 return ret;
854
855         /*
856          * Bandwidth consists of peak and average (optional) values:
857          * opp-peak-kBps = <path1_value path2_value>;
858          * opp-avg-kBps = <path1_value path2_value>;
859          */
860         ret = _read_bw(new_opp, opp_table, np, true);
861         if (!ret) {
862                 found = true;
863                 ret = _read_bw(new_opp, opp_table, np, false);
864         }
865
866         /* The properties were found but we failed to parse them */
867         if (ret && ret != -ENODEV)
868                 return ret;
869
870         if (!of_property_read_u32(np, "opp-level", &new_opp->level))
871                 found = true;
872
873         if (found)
874                 return 0;
875
876         return ret;
877 }
878
879 /**
880  * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
881  * @opp_table:  OPP table
882  * @dev:        device for which we do this operation
883  * @np:         device node
884  *
885  * This function adds an opp definition to the opp table and returns status. The
886  * opp can be controlled using dev_pm_opp_enable/disable functions and may be
887  * removed by dev_pm_opp_remove.
888  *
889  * Return:
890  * Valid OPP pointer:
891  *              On success
892  * NULL:
893  *              Duplicate OPPs (both freq and volt are same) and opp->available
894  *              OR if the OPP is not supported by hardware.
895  * ERR_PTR(-EEXIST):
896  *              Freq are same and volt are different OR
897  *              Duplicate OPPs (both freq and volt are same) and !opp->available
898  * ERR_PTR(-ENOMEM):
899  *              Memory allocation failure
900  * ERR_PTR(-EINVAL):
901  *              Failed parsing the OPP node
902  */
903 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
904                 struct device *dev, struct device_node *np)
905 {
906         struct dev_pm_opp *new_opp;
907         u32 val;
908         int ret;
909
910         new_opp = _opp_allocate(opp_table);
911         if (!new_opp)
912                 return ERR_PTR(-ENOMEM);
913
914         ret = _read_opp_key(new_opp, opp_table, np);
915         if (ret < 0) {
916                 dev_err(dev, "%s: opp key field not found\n", __func__);
917                 goto free_opp;
918         }
919
920         /* Check if the OPP supports hardware's hierarchy of versions or not */
921         if (!_opp_is_supported(dev, opp_table, np)) {
922                 dev_dbg(dev, "OPP not supported by hardware: %s\n",
923                         of_node_full_name(np));
924                 goto free_opp;
925         }
926
927         new_opp->turbo = of_property_read_bool(np, "turbo-mode");
928
929         new_opp->np = of_node_get(np);
930         new_opp->dynamic = false;
931         new_opp->available = true;
932
933         ret = _of_opp_alloc_required_opps(opp_table, new_opp);
934         if (ret)
935                 goto free_opp;
936
937         if (!of_property_read_u32(np, "clock-latency-ns", &val))
938                 new_opp->clock_latency_ns = val;
939
940         ret = opp_parse_supplies(new_opp, dev, opp_table);
941         if (ret)
942                 goto free_required_opps;
943
944         ret = _opp_add(dev, new_opp, opp_table);
945         if (ret) {
946                 /* Don't return error for duplicate OPPs */
947                 if (ret == -EBUSY)
948                         ret = 0;
949                 goto free_required_opps;
950         }
951
952         /* OPP to select on device suspend */
953         if (of_property_read_bool(np, "opp-suspend")) {
954                 if (opp_table->suspend_opp) {
955                         /* Pick the OPP with higher rate/bw/level as suspend OPP */
956                         if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
957                                 opp_table->suspend_opp->suspend = false;
958                                 new_opp->suspend = true;
959                                 opp_table->suspend_opp = new_opp;
960                         }
961                 } else {
962                         new_opp->suspend = true;
963                         opp_table->suspend_opp = new_opp;
964                 }
965         }
966
967         if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
968                 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
969
970         pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
971                  __func__, new_opp->turbo, new_opp->rates[0],
972                  new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
973                  new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
974                  new_opp->level);
975
976         /*
977          * Notify the changes in the availability of the operable
978          * frequency/voltage list.
979          */
980         blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
981         return new_opp;
982
983 free_required_opps:
984         _of_opp_free_required_opps(opp_table, new_opp);
985 free_opp:
986         _opp_free(new_opp);
987
988         return ret ? ERR_PTR(ret) : NULL;
989 }
990
991 /* Initializes OPP tables based on new bindings */
992 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
993 {
994         struct device_node *np;
995         int ret, count = 0;
996         struct dev_pm_opp *opp;
997
998         /* OPP table is already initialized for the device */
999         mutex_lock(&opp_table->lock);
1000         if (opp_table->parsed_static_opps) {
1001                 opp_table->parsed_static_opps++;
1002                 mutex_unlock(&opp_table->lock);
1003                 return 0;
1004         }
1005
1006         opp_table->parsed_static_opps = 1;
1007         mutex_unlock(&opp_table->lock);
1008
1009         /* We have opp-table node now, iterate over it and add OPPs */
1010         for_each_available_child_of_node(opp_table->np, np) {
1011                 opp = _opp_add_static_v2(opp_table, dev, np);
1012                 if (IS_ERR(opp)) {
1013                         ret = PTR_ERR(opp);
1014                         dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1015                                 ret);
1016                         of_node_put(np);
1017                         goto remove_static_opp;
1018                 } else if (opp) {
1019                         count++;
1020                 }
1021         }
1022
1023         /* There should be one or more OPPs defined */
1024         if (!count) {
1025                 dev_err(dev, "%s: no supported OPPs", __func__);
1026                 ret = -ENOENT;
1027                 goto remove_static_opp;
1028         }
1029
1030         lazy_link_required_opp_table(opp_table);
1031
1032         return 0;
1033
1034 remove_static_opp:
1035         _opp_remove_all_static(opp_table);
1036
1037         return ret;
1038 }
1039
1040 /* Initializes OPP tables based on old-deprecated bindings */
1041 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1042 {
1043         const struct property *prop;
1044         const __be32 *val;
1045         int nr, ret = 0;
1046
1047         mutex_lock(&opp_table->lock);
1048         if (opp_table->parsed_static_opps) {
1049                 opp_table->parsed_static_opps++;
1050                 mutex_unlock(&opp_table->lock);
1051                 return 0;
1052         }
1053
1054         opp_table->parsed_static_opps = 1;
1055         mutex_unlock(&opp_table->lock);
1056
1057         prop = of_find_property(dev->of_node, "operating-points", NULL);
1058         if (!prop) {
1059                 ret = -ENODEV;
1060                 goto remove_static_opp;
1061         }
1062         if (!prop->value) {
1063                 ret = -ENODATA;
1064                 goto remove_static_opp;
1065         }
1066
1067         /*
1068          * Each OPP is a set of tuples consisting of frequency and
1069          * voltage like <freq-kHz vol-uV>.
1070          */
1071         nr = prop->length / sizeof(u32);
1072         if (nr % 2) {
1073                 dev_err(dev, "%s: Invalid OPP table\n", __func__);
1074                 ret = -EINVAL;
1075                 goto remove_static_opp;
1076         }
1077
1078         val = prop->value;
1079         while (nr) {
1080                 unsigned long freq = be32_to_cpup(val++) * 1000;
1081                 unsigned long volt = be32_to_cpup(val++);
1082
1083                 ret = _opp_add_v1(opp_table, dev, freq, volt, false);
1084                 if (ret) {
1085                         dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1086                                 __func__, freq, ret);
1087                         goto remove_static_opp;
1088                 }
1089                 nr -= 2;
1090         }
1091
1092         return 0;
1093
1094 remove_static_opp:
1095         _opp_remove_all_static(opp_table);
1096
1097         return ret;
1098 }
1099
1100 static int _of_add_table_indexed(struct device *dev, int index)
1101 {
1102         struct opp_table *opp_table;
1103         int ret, count;
1104
1105         if (index) {
1106                 /*
1107                  * If only one phandle is present, then the same OPP table
1108                  * applies for all index requests.
1109                  */
1110                 count = of_count_phandle_with_args(dev->of_node,
1111                                                    "operating-points-v2", NULL);
1112                 if (count == 1)
1113                         index = 0;
1114         }
1115
1116         opp_table = _add_opp_table_indexed(dev, index, true);
1117         if (IS_ERR(opp_table))
1118                 return PTR_ERR(opp_table);
1119
1120         /*
1121          * OPPs have two version of bindings now. Also try the old (v1)
1122          * bindings for backward compatibility with older dtbs.
1123          */
1124         if (opp_table->np)
1125                 ret = _of_add_opp_table_v2(dev, opp_table);
1126         else
1127                 ret = _of_add_opp_table_v1(dev, opp_table);
1128
1129         if (ret)
1130                 dev_pm_opp_put_opp_table(opp_table);
1131
1132         return ret;
1133 }
1134
1135 static void devm_pm_opp_of_table_release(void *data)
1136 {
1137         dev_pm_opp_of_remove_table(data);
1138 }
1139
1140 static int _devm_of_add_table_indexed(struct device *dev, int index)
1141 {
1142         int ret;
1143
1144         ret = _of_add_table_indexed(dev, index);
1145         if (ret)
1146                 return ret;
1147
1148         return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1149 }
1150
1151 /**
1152  * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1153  * @dev:        device pointer used to lookup OPP table.
1154  *
1155  * Register the initial OPP table with the OPP library for given device.
1156  *
1157  * The opp_table structure will be freed after the device is destroyed.
1158  *
1159  * Return:
1160  * 0            On success OR
1161  *              Duplicate OPPs (both freq and volt are same) and opp->available
1162  * -EEXIST      Freq are same and volt are different OR
1163  *              Duplicate OPPs (both freq and volt are same) and !opp->available
1164  * -ENOMEM      Memory allocation failure
1165  * -ENODEV      when 'operating-points' property is not found or is invalid data
1166  *              in device node.
1167  * -ENODATA     when empty 'operating-points' property is found
1168  * -EINVAL      when invalid entries are found in opp-v2 table
1169  */
1170 int devm_pm_opp_of_add_table(struct device *dev)
1171 {
1172         return _devm_of_add_table_indexed(dev, 0);
1173 }
1174 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1175
1176 /**
1177  * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1178  * @dev:        device pointer used to lookup OPP table.
1179  *
1180  * Register the initial OPP table with the OPP library for given device.
1181  *
1182  * Return:
1183  * 0            On success OR
1184  *              Duplicate OPPs (both freq and volt are same) and opp->available
1185  * -EEXIST      Freq are same and volt are different OR
1186  *              Duplicate OPPs (both freq and volt are same) and !opp->available
1187  * -ENOMEM      Memory allocation failure
1188  * -ENODEV      when 'operating-points' property is not found or is invalid data
1189  *              in device node.
1190  * -ENODATA     when empty 'operating-points' property is found
1191  * -EINVAL      when invalid entries are found in opp-v2 table
1192  */
1193 int dev_pm_opp_of_add_table(struct device *dev)
1194 {
1195         return _of_add_table_indexed(dev, 0);
1196 }
1197 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1198
1199 /**
1200  * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1201  * @dev:        device pointer used to lookup OPP table.
1202  * @index:      Index number.
1203  *
1204  * Register the initial OPP table with the OPP library for given device only
1205  * using the "operating-points-v2" property.
1206  *
1207  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1208  */
1209 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1210 {
1211         return _of_add_table_indexed(dev, index);
1212 }
1213 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1214
1215 /**
1216  * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1217  * @dev:        device pointer used to lookup OPP table.
1218  * @index:      Index number.
1219  *
1220  * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1221  */
1222 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1223 {
1224         return _devm_of_add_table_indexed(dev, index);
1225 }
1226 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1227
1228 /* CPU device specific helpers */
1229
1230 /**
1231  * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1232  * @cpumask:    cpumask for which OPP table needs to be removed
1233  *
1234  * This removes the OPP tables for CPUs present in the @cpumask.
1235  * This should be used only to remove static entries created from DT.
1236  */
1237 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1238 {
1239         _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1240 }
1241 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1242
1243 /**
1244  * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1245  * @cpumask:    cpumask for which OPP table needs to be added.
1246  *
1247  * This adds the OPP tables for CPUs present in the @cpumask.
1248  */
1249 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1250 {
1251         struct device *cpu_dev;
1252         int cpu, ret;
1253
1254         if (WARN_ON(cpumask_empty(cpumask)))
1255                 return -ENODEV;
1256
1257         for_each_cpu(cpu, cpumask) {
1258                 cpu_dev = get_cpu_device(cpu);
1259                 if (!cpu_dev) {
1260                         pr_err("%s: failed to get cpu%d device\n", __func__,
1261                                cpu);
1262                         ret = -ENODEV;
1263                         goto remove_table;
1264                 }
1265
1266                 ret = dev_pm_opp_of_add_table(cpu_dev);
1267                 if (ret) {
1268                         /*
1269                          * OPP may get registered dynamically, don't print error
1270                          * message here.
1271                          */
1272                         pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1273                                  __func__, cpu, ret);
1274
1275                         goto remove_table;
1276                 }
1277         }
1278
1279         return 0;
1280
1281 remove_table:
1282         /* Free all other OPPs */
1283         _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1284
1285         return ret;
1286 }
1287 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1288
1289 /*
1290  * Works only for OPP v2 bindings.
1291  *
1292  * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1293  */
1294 /**
1295  * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1296  *                                    @cpu_dev using operating-points-v2
1297  *                                    bindings.
1298  *
1299  * @cpu_dev:    CPU device for which we do this operation
1300  * @cpumask:    cpumask to update with information of sharing CPUs
1301  *
1302  * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1303  *
1304  * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1305  */
1306 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1307                                    struct cpumask *cpumask)
1308 {
1309         struct device_node *np, *tmp_np, *cpu_np;
1310         int cpu, ret = 0;
1311
1312         /* Get OPP descriptor node */
1313         np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1314         if (!np) {
1315                 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1316                 return -ENOENT;
1317         }
1318
1319         cpumask_set_cpu(cpu_dev->id, cpumask);
1320
1321         /* OPPs are shared ? */
1322         if (!of_property_read_bool(np, "opp-shared"))
1323                 goto put_cpu_node;
1324
1325         for_each_possible_cpu(cpu) {
1326                 if (cpu == cpu_dev->id)
1327                         continue;
1328
1329                 cpu_np = of_cpu_device_node_get(cpu);
1330                 if (!cpu_np) {
1331                         dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1332                                 __func__, cpu);
1333                         ret = -ENOENT;
1334                         goto put_cpu_node;
1335                 }
1336
1337                 /* Get OPP descriptor node */
1338                 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1339                 of_node_put(cpu_np);
1340                 if (!tmp_np) {
1341                         pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1342                         ret = -ENOENT;
1343                         goto put_cpu_node;
1344                 }
1345
1346                 /* CPUs are sharing opp node */
1347                 if (np == tmp_np)
1348                         cpumask_set_cpu(cpu, cpumask);
1349
1350                 of_node_put(tmp_np);
1351         }
1352
1353 put_cpu_node:
1354         of_node_put(np);
1355         return ret;
1356 }
1357 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1358
1359 /**
1360  * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1361  * @np: Node that contains the "required-opps" property.
1362  * @index: Index of the phandle to parse.
1363  *
1364  * Returns the performance state of the OPP pointed out by the "required-opps"
1365  * property at @index in @np.
1366  *
1367  * Return: Zero or positive performance state on success, otherwise negative
1368  * value on errors.
1369  */
1370 int of_get_required_opp_performance_state(struct device_node *np, int index)
1371 {
1372         struct dev_pm_opp *opp;
1373         struct device_node *required_np;
1374         struct opp_table *opp_table;
1375         int pstate = -EINVAL;
1376
1377         required_np = of_parse_required_opp(np, index);
1378         if (!required_np)
1379                 return -ENODEV;
1380
1381         opp_table = _find_table_of_opp_np(required_np);
1382         if (IS_ERR(opp_table)) {
1383                 pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1384                        __func__, np, PTR_ERR(opp_table));
1385                 goto put_required_np;
1386         }
1387
1388         /* The OPP tables must belong to a genpd */
1389         if (unlikely(!opp_table->is_genpd)) {
1390                 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1391                 goto put_required_np;
1392         }
1393
1394         opp = _find_opp_of_np(opp_table, required_np);
1395         if (opp) {
1396                 pstate = opp->level;
1397                 dev_pm_opp_put(opp);
1398         }
1399
1400         dev_pm_opp_put_opp_table(opp_table);
1401
1402 put_required_np:
1403         of_node_put(required_np);
1404
1405         return pstate;
1406 }
1407 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1408
1409 /**
1410  * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1411  * @opp:        opp for which DT node has to be returned for
1412  *
1413  * Return: DT node corresponding to the opp, else 0 on success.
1414  *
1415  * The caller needs to put the node with of_node_put() after using it.
1416  */
1417 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1418 {
1419         if (IS_ERR_OR_NULL(opp)) {
1420                 pr_err("%s: Invalid parameters\n", __func__);
1421                 return NULL;
1422         }
1423
1424         return of_node_get(opp->np);
1425 }
1426 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1427
1428 /*
1429  * Callback function provided to the Energy Model framework upon registration.
1430  * It provides the power used by @dev at @kHz if it is the frequency of an
1431  * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1432  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1433  * frequency and @uW to the associated power.
1434  *
1435  * Returns 0 on success or a proper -EINVAL value in case of error.
1436  */
1437 static int __maybe_unused
1438 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1439 {
1440         struct dev_pm_opp *opp;
1441         unsigned long opp_freq, opp_power;
1442
1443         /* Find the right frequency and related OPP */
1444         opp_freq = *kHz * 1000;
1445         opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1446         if (IS_ERR(opp))
1447                 return -EINVAL;
1448
1449         opp_power = dev_pm_opp_get_power(opp);
1450         dev_pm_opp_put(opp);
1451         if (!opp_power)
1452                 return -EINVAL;
1453
1454         *kHz = opp_freq / 1000;
1455         *uW = opp_power;
1456
1457         return 0;
1458 }
1459
1460 /*
1461  * Callback function provided to the Energy Model framework upon registration.
1462  * This computes the power estimated by @dev at @kHz if it is the frequency
1463  * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1464  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1465  * frequency and @uW to the associated power. The power is estimated as
1466  * P = C * V^2 * f with C being the device's capacitance and V and f
1467  * respectively the voltage and frequency of the OPP.
1468  *
1469  * Returns -EINVAL if the power calculation failed because of missing
1470  * parameters, 0 otherwise.
1471  */
1472 static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1473                                      unsigned long *kHz)
1474 {
1475         struct dev_pm_opp *opp;
1476         struct device_node *np;
1477         unsigned long mV, Hz;
1478         u32 cap;
1479         u64 tmp;
1480         int ret;
1481
1482         np = of_node_get(dev->of_node);
1483         if (!np)
1484                 return -EINVAL;
1485
1486         ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1487         of_node_put(np);
1488         if (ret)
1489                 return -EINVAL;
1490
1491         Hz = *kHz * 1000;
1492         opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1493         if (IS_ERR(opp))
1494                 return -EINVAL;
1495
1496         mV = dev_pm_opp_get_voltage(opp) / 1000;
1497         dev_pm_opp_put(opp);
1498         if (!mV)
1499                 return -EINVAL;
1500
1501         tmp = (u64)cap * mV * mV * (Hz / 1000000);
1502         /* Provide power in micro-Watts */
1503         do_div(tmp, 1000000);
1504
1505         *uW = (unsigned long)tmp;
1506         *kHz = Hz / 1000;
1507
1508         return 0;
1509 }
1510
1511 static bool _of_has_opp_microwatt_property(struct device *dev)
1512 {
1513         unsigned long power, freq = 0;
1514         struct dev_pm_opp *opp;
1515
1516         /* Check if at least one OPP has needed property */
1517         opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1518         if (IS_ERR(opp))
1519                 return false;
1520
1521         power = dev_pm_opp_get_power(opp);
1522         dev_pm_opp_put(opp);
1523         if (!power)
1524                 return false;
1525
1526         return true;
1527 }
1528
1529 /**
1530  * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1531  * @dev         : Device for which an Energy Model has to be registered
1532  * @cpus        : CPUs for which an Energy Model has to be registered. For
1533  *              other type of devices it should be set to NULL.
1534  *
1535  * This checks whether the "dynamic-power-coefficient" devicetree property has
1536  * been specified, and tries to register an Energy Model with it if it has.
1537  * Having this property means the voltages are known for OPPs and the EM
1538  * might be calculated.
1539  */
1540 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1541 {
1542         struct em_data_callback em_cb;
1543         struct device_node *np;
1544         int ret, nr_opp;
1545         u32 cap;
1546
1547         if (IS_ERR_OR_NULL(dev)) {
1548                 ret = -EINVAL;
1549                 goto failed;
1550         }
1551
1552         nr_opp = dev_pm_opp_get_opp_count(dev);
1553         if (nr_opp <= 0) {
1554                 ret = -EINVAL;
1555                 goto failed;
1556         }
1557
1558         /* First, try to find more precised Energy Model in DT */
1559         if (_of_has_opp_microwatt_property(dev)) {
1560                 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1561                 goto register_em;
1562         }
1563
1564         np = of_node_get(dev->of_node);
1565         if (!np) {
1566                 ret = -EINVAL;
1567                 goto failed;
1568         }
1569
1570         /*
1571          * Register an EM only if the 'dynamic-power-coefficient' property is
1572          * set in devicetree. It is assumed the voltage values are known if that
1573          * property is set since it is useless otherwise. If voltages are not
1574          * known, just let the EM registration fail with an error to alert the
1575          * user about the inconsistent configuration.
1576          */
1577         ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1578         of_node_put(np);
1579         if (ret || !cap) {
1580                 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1581                 ret = -EINVAL;
1582                 goto failed;
1583         }
1584
1585         EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1586
1587 register_em:
1588         ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1589         if (ret)
1590                 goto failed;
1591
1592         return 0;
1593
1594 failed:
1595         dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1596         return ret;
1597 }
1598 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);