1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic OPP Interface
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
30 LIST_HEAD(opp_tables);
32 /* OPP tables with uninitialized required OPPs */
33 LIST_HEAD(lazy_opp_tables);
35 /* Lock to allow exclusive modification to the device and opp lists */
36 DEFINE_MUTEX(opp_table_lock);
37 /* Flag indicating that opp_tables list is being updated at the moment */
38 static bool opp_tables_busy;
40 /* OPP ID allocator */
41 static DEFINE_XARRAY_ALLOC1(opp_configs);
43 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
45 struct opp_device *opp_dev;
48 mutex_lock(&opp_table->lock);
49 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
50 if (opp_dev->dev == dev) {
55 mutex_unlock(&opp_table->lock);
59 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
61 struct opp_table *opp_table;
63 list_for_each_entry(opp_table, &opp_tables, node) {
64 if (_find_opp_dev(dev, opp_table)) {
65 _get_opp_table_kref(opp_table);
70 return ERR_PTR(-ENODEV);
74 * _find_opp_table() - find opp_table struct using device pointer
75 * @dev: device pointer used to lookup OPP table
77 * Search OPP table for one containing matching device.
79 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
80 * -EINVAL based on type of error.
82 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
84 struct opp_table *_find_opp_table(struct device *dev)
86 struct opp_table *opp_table;
88 if (IS_ERR_OR_NULL(dev)) {
89 pr_err("%s: Invalid parameters\n", __func__);
90 return ERR_PTR(-EINVAL);
93 mutex_lock(&opp_table_lock);
94 opp_table = _find_opp_table_unlocked(dev);
95 mutex_unlock(&opp_table_lock);
101 * Returns true if multiple clocks aren't there, else returns false with WARN.
103 * We don't force clk_count == 1 here as there are users who don't have a clock
104 * representation in the OPP table and manage the clock configuration themselves
105 * in an platform specific way.
107 static bool assert_single_clk(struct opp_table *opp_table)
109 return !WARN_ON(opp_table->clk_count > 1);
113 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
114 * @opp: opp for which voltage has to be returned for
116 * Return: voltage in micro volt corresponding to the opp, else
119 * This is useful only for devices with single power supply.
121 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
123 if (IS_ERR_OR_NULL(opp)) {
124 pr_err("%s: Invalid parameters\n", __func__);
128 return opp->supplies[0].u_volt;
130 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
133 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
134 * @opp: opp for which voltage has to be returned for
135 * @supplies: Placeholder for copying the supply information.
137 * Return: negative error number on failure, 0 otherwise on success after
140 * This can be used for devices with any number of power supplies. The caller
141 * must ensure the @supplies array must contain space for each regulator.
143 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
144 struct dev_pm_opp_supply *supplies)
146 if (IS_ERR_OR_NULL(opp) || !supplies) {
147 pr_err("%s: Invalid parameters\n", __func__);
151 memcpy(supplies, opp->supplies,
152 sizeof(*supplies) * opp->opp_table->regulator_count);
155 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
158 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
159 * @opp: opp for which power has to be returned for
161 * Return: power in micro watt corresponding to the opp, else
164 * This is useful only for devices with single power supply.
166 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
168 unsigned long opp_power = 0;
171 if (IS_ERR_OR_NULL(opp)) {
172 pr_err("%s: Invalid parameters\n", __func__);
175 for (i = 0; i < opp->opp_table->regulator_count; i++)
176 opp_power += opp->supplies[i].u_watt;
180 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
183 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
184 * @opp: opp for which frequency has to be returned for
186 * Return: frequency in hertz corresponding to the opp, else
189 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
191 if (IS_ERR_OR_NULL(opp)) {
192 pr_err("%s: Invalid parameters\n", __func__);
196 if (!assert_single_clk(opp->opp_table))
199 return opp->rates[0];
201 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
204 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
205 * @opp: opp for which level value has to be returned for
207 * Return: level read from device tree corresponding to the opp, else
210 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
212 if (IS_ERR_OR_NULL(opp) || !opp->available) {
213 pr_err("%s: Invalid parameters\n", __func__);
219 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
222 * dev_pm_opp_get_required_pstate() - Gets the required performance state
223 * corresponding to an available opp
224 * @opp: opp for which performance state has to be returned for
225 * @index: index of the required opp
227 * Return: performance state read from device tree corresponding to the
228 * required opp, else return 0.
230 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
233 if (IS_ERR_OR_NULL(opp) || !opp->available ||
234 index >= opp->opp_table->required_opp_count) {
235 pr_err("%s: Invalid parameters\n", __func__);
239 /* required-opps not fully initialized yet */
240 if (lazy_linking_pending(opp->opp_table))
243 return opp->required_opps[index]->pstate;
245 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
249 * @opp: opp for which turbo mode is being verified
251 * Turbo OPPs are not for normal use, and can be enabled (under certain
252 * conditions) for short duration of times to finish high throughput work
253 * quickly. Running on them for longer times may overheat the chip.
255 * Return: true if opp is turbo opp, else false.
257 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
259 if (IS_ERR_OR_NULL(opp) || !opp->available) {
260 pr_err("%s: Invalid parameters\n", __func__);
266 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
270 * @dev: device for which we do this operation
272 * Return: This function returns the max clock latency in nanoseconds.
274 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
276 struct opp_table *opp_table;
277 unsigned long clock_latency_ns;
279 opp_table = _find_opp_table(dev);
280 if (IS_ERR(opp_table))
283 clock_latency_ns = opp_table->clock_latency_ns_max;
285 dev_pm_opp_put_opp_table(opp_table);
287 return clock_latency_ns;
289 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
293 * @dev: device for which we do this operation
295 * Return: This function returns the max voltage latency in nanoseconds.
297 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
299 struct opp_table *opp_table;
300 struct dev_pm_opp *opp;
301 struct regulator *reg;
302 unsigned long latency_ns = 0;
309 opp_table = _find_opp_table(dev);
310 if (IS_ERR(opp_table))
313 /* Regulator may not be required for the device */
314 if (!opp_table->regulators)
317 count = opp_table->regulator_count;
319 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
323 mutex_lock(&opp_table->lock);
325 for (i = 0; i < count; i++) {
329 list_for_each_entry(opp, &opp_table->opp_list, node) {
333 if (opp->supplies[i].u_volt_min < uV[i].min)
334 uV[i].min = opp->supplies[i].u_volt_min;
335 if (opp->supplies[i].u_volt_max > uV[i].max)
336 uV[i].max = opp->supplies[i].u_volt_max;
340 mutex_unlock(&opp_table->lock);
343 * The caller needs to ensure that opp_table (and hence the regulator)
344 * isn't freed, while we are executing this routine.
346 for (i = 0; i < count; i++) {
347 reg = opp_table->regulators[i];
348 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
350 latency_ns += ret * 1000;
355 dev_pm_opp_put_opp_table(opp_table);
359 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
364 * @dev: device for which we do this operation
366 * Return: This function returns the max transition latency, in nanoseconds, to
367 * switch from one OPP to other.
369 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
371 return dev_pm_opp_get_max_volt_latency(dev) +
372 dev_pm_opp_get_max_clock_latency(dev);
374 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
378 * @dev: device for which we do this operation
380 * Return: This function returns the frequency of the OPP marked as suspend_opp
381 * if one is available, else returns 0;
383 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
385 struct opp_table *opp_table;
386 unsigned long freq = 0;
388 opp_table = _find_opp_table(dev);
389 if (IS_ERR(opp_table))
392 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
393 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
395 dev_pm_opp_put_opp_table(opp_table);
399 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
401 int _get_opp_count(struct opp_table *opp_table)
403 struct dev_pm_opp *opp;
406 mutex_lock(&opp_table->lock);
408 list_for_each_entry(opp, &opp_table->opp_list, node) {
413 mutex_unlock(&opp_table->lock);
419 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
420 * @dev: device for which we do this operation
422 * Return: This function returns the number of available opps if there are any,
423 * else returns 0 if none or the corresponding error value.
425 int dev_pm_opp_get_opp_count(struct device *dev)
427 struct opp_table *opp_table;
430 opp_table = _find_opp_table(dev);
431 if (IS_ERR(opp_table)) {
432 count = PTR_ERR(opp_table);
433 dev_dbg(dev, "%s: OPP table not found (%d)\n",
438 count = _get_opp_count(opp_table);
439 dev_pm_opp_put_opp_table(opp_table);
443 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
445 /* Helpers to read keys */
446 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
448 return opp->rates[0];
451 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
456 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
458 return opp->bandwidth[index].peak;
461 /* Generic comparison helpers */
462 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
463 unsigned long opp_key, unsigned long key)
465 if (opp_key == key) {
473 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
474 unsigned long opp_key, unsigned long key)
476 if (opp_key >= key) {
484 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
485 unsigned long opp_key, unsigned long key)
494 /* Generic key finding helpers */
495 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
496 unsigned long *key, int index, bool available,
497 unsigned long (*read)(struct dev_pm_opp *opp, int index),
498 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
499 unsigned long opp_key, unsigned long key),
500 bool (*assert)(struct opp_table *opp_table))
502 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
504 /* Assert that the requirement is met */
505 if (assert && !assert(opp_table))
506 return ERR_PTR(-EINVAL);
508 mutex_lock(&opp_table->lock);
510 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
511 if (temp_opp->available == available) {
512 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
517 /* Increment the reference count of OPP */
519 *key = read(opp, index);
523 mutex_unlock(&opp_table->lock);
528 static struct dev_pm_opp *
529 _find_key(struct device *dev, unsigned long *key, int index, bool available,
530 unsigned long (*read)(struct dev_pm_opp *opp, int index),
531 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
532 unsigned long opp_key, unsigned long key),
533 bool (*assert)(struct opp_table *opp_table))
535 struct opp_table *opp_table;
536 struct dev_pm_opp *opp;
538 opp_table = _find_opp_table(dev);
539 if (IS_ERR(opp_table)) {
540 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
542 return ERR_CAST(opp_table);
545 opp = _opp_table_find_key(opp_table, key, index, available, read,
548 dev_pm_opp_put_opp_table(opp_table);
553 static struct dev_pm_opp *_find_key_exact(struct device *dev,
554 unsigned long key, int index, bool available,
555 unsigned long (*read)(struct dev_pm_opp *opp, int index),
556 bool (*assert)(struct opp_table *opp_table))
559 * The value of key will be updated here, but will be ignored as the
560 * caller doesn't need it.
562 return _find_key(dev, &key, index, available, read, _compare_exact,
566 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
567 unsigned long *key, int index, bool available,
568 unsigned long (*read)(struct dev_pm_opp *opp, int index),
569 bool (*assert)(struct opp_table *opp_table))
571 return _opp_table_find_key(opp_table, key, index, available, read,
572 _compare_ceil, assert);
575 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
576 int index, bool available,
577 unsigned long (*read)(struct dev_pm_opp *opp, int index),
578 bool (*assert)(struct opp_table *opp_table))
580 return _find_key(dev, key, index, available, read, _compare_ceil,
584 static struct dev_pm_opp *_find_key_floor(struct device *dev,
585 unsigned long *key, int index, bool available,
586 unsigned long (*read)(struct dev_pm_opp *opp, int index),
587 bool (*assert)(struct opp_table *opp_table))
589 return _find_key(dev, key, index, available, read, _compare_floor,
594 * dev_pm_opp_find_freq_exact() - search for an exact frequency
595 * @dev: device for which we do this operation
596 * @freq: frequency to search for
597 * @available: true/false - match for available opp
599 * Return: Searches for exact match in the opp table and returns pointer to the
600 * matching opp if found, else returns ERR_PTR in case of error and should
601 * be handled using IS_ERR. Error return values can be:
602 * EINVAL: for bad pointer
603 * ERANGE: no match found for search
604 * ENODEV: if device not found in list of registered devices
606 * Note: available is a modifier for the search. if available=true, then the
607 * match is for exact matching frequency and is available in the stored OPP
608 * table. if false, the match is for exact frequency which is not available.
610 * This provides a mechanism to enable an opp which is not available currently
611 * or the opposite as well.
613 * The callers are required to call dev_pm_opp_put() for the returned OPP after
616 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
617 unsigned long freq, bool available)
619 return _find_key_exact(dev, freq, 0, available, _read_freq,
622 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
624 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
627 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
632 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
633 * @dev: device for which we do this operation
634 * @freq: Start frequency
636 * Search for the matching ceil *available* OPP from a starting freq
639 * Return: matching *opp and refreshes *freq accordingly, else returns
640 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
642 * EINVAL: for bad pointer
643 * ERANGE: no match found for search
644 * ENODEV: if device not found in list of registered devices
646 * The callers are required to call dev_pm_opp_put() for the returned OPP after
649 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
652 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
654 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
657 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
658 * @dev: device for which we do this operation
659 * @freq: Start frequency
661 * Search for the matching floor *available* OPP from a starting freq
664 * Return: matching *opp and refreshes *freq accordingly, else returns
665 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
667 * EINVAL: for bad pointer
668 * ERANGE: no match found for search
669 * ENODEV: if device not found in list of registered devices
671 * The callers are required to call dev_pm_opp_put() for the returned OPP after
674 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
677 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
679 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
682 * dev_pm_opp_find_level_exact() - search for an exact level
683 * @dev: device for which we do this operation
684 * @level: level to search for
686 * Return: Searches for exact match in the opp table and returns pointer to the
687 * matching opp if found, else returns ERR_PTR in case of error and should
688 * be handled using IS_ERR. Error return values can be:
689 * EINVAL: for bad pointer
690 * ERANGE: no match found for search
691 * ENODEV: if device not found in list of registered devices
693 * The callers are required to call dev_pm_opp_put() for the returned OPP after
696 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
699 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
701 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
704 * dev_pm_opp_find_level_ceil() - search for an rounded up level
705 * @dev: device for which we do this operation
706 * @level: level to search for
708 * Return: Searches for rounded up match in the opp table and returns pointer
709 * to the matching opp if found, else returns ERR_PTR in case of error and
710 * should be handled using IS_ERR. Error return values can be:
711 * EINVAL: for bad pointer
712 * ERANGE: no match found for search
713 * ENODEV: if device not found in list of registered devices
715 * The callers are required to call dev_pm_opp_put() for the returned OPP after
718 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
721 unsigned long temp = *level;
722 struct dev_pm_opp *opp;
724 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
728 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
731 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
732 * @dev: device for which we do this operation
733 * @bw: start bandwidth
734 * @index: which bandwidth to compare, in case of OPPs with several values
736 * Search for the matching floor *available* OPP from a starting bandwidth
739 * Return: matching *opp and refreshes *bw accordingly, else returns
740 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
742 * EINVAL: for bad pointer
743 * ERANGE: no match found for search
744 * ENODEV: if device not found in list of registered devices
746 * The callers are required to call dev_pm_opp_put() for the returned OPP after
749 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
752 unsigned long temp = *bw;
753 struct dev_pm_opp *opp;
755 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
759 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
762 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
763 * @dev: device for which we do this operation
764 * @bw: start bandwidth
765 * @index: which bandwidth to compare, in case of OPPs with several values
767 * Search for the matching floor *available* OPP from a starting bandwidth
770 * Return: matching *opp and refreshes *bw accordingly, else returns
771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
773 * EINVAL: for bad pointer
774 * ERANGE: no match found for search
775 * ENODEV: if device not found in list of registered devices
777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
780 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
781 unsigned int *bw, int index)
783 unsigned long temp = *bw;
784 struct dev_pm_opp *opp;
786 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
790 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
792 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
793 struct dev_pm_opp_supply *supply)
797 /* Regulator not available for device */
799 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
804 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
805 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
807 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
808 supply->u_volt, supply->u_volt_max);
810 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
811 __func__, supply->u_volt_min, supply->u_volt,
812 supply->u_volt_max, ret);
818 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
819 struct dev_pm_opp *opp, void *data, bool scaling_down)
821 unsigned long *target = data;
825 /* One of target and opp must be available */
829 freq = opp->rates[0];
835 ret = clk_set_rate(opp_table->clk, freq);
837 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
840 opp_table->rate_clk_single = freq;
847 * Simple implementation for configuring multiple clocks. Configure clocks in
848 * the order in which they are present in the array while scaling up.
850 int dev_pm_opp_config_clks_simple(struct device *dev,
851 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
857 for (i = opp_table->clk_count - 1; i >= 0; i--) {
858 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
860 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
866 for (i = 0; i < opp_table->clk_count; i++) {
867 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
869 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
878 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
880 static int _opp_config_regulator_single(struct device *dev,
881 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
882 struct regulator **regulators, unsigned int count)
884 struct regulator *reg = regulators[0];
887 /* This function only supports single regulator per device */
888 if (WARN_ON(count > 1)) {
889 dev_err(dev, "multiple regulators are not supported\n");
893 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
898 * Enable the regulator after setting its voltages, otherwise it breaks
899 * some boot-enabled regulators.
901 if (unlikely(!new_opp->opp_table->enabled)) {
902 ret = regulator_enable(reg);
904 dev_warn(dev, "Failed to enable regulator: %d", ret);
910 static int _set_opp_bw(const struct opp_table *opp_table,
911 struct dev_pm_opp *opp, struct device *dev)
916 if (!opp_table->paths)
919 for (i = 0; i < opp_table->path_count; i++) {
924 avg = opp->bandwidth[i].avg;
925 peak = opp->bandwidth[i].peak;
927 ret = icc_set_bw(opp_table->paths[i], avg, peak);
929 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
930 opp ? "set" : "remove", i, ret);
938 static int _set_required_opp(struct device *dev, struct device *pd_dev,
939 struct dev_pm_opp *opp, int i)
941 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
947 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
949 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
950 dev_name(pd_dev), pstate, ret);
956 /* This is only called for PM domain for now */
957 static int _set_required_opps(struct device *dev,
958 struct opp_table *opp_table,
959 struct dev_pm_opp *opp, bool up)
961 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
962 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
965 if (!required_opp_tables)
968 /* required-opps not fully initialized yet */
969 if (lazy_linking_pending(opp_table))
973 * We only support genpd's OPPs in the "required-opps" for now, as we
974 * don't know much about other use cases. Error out if the required OPP
975 * doesn't belong to a genpd.
977 if (unlikely(!required_opp_tables[0]->is_genpd)) {
978 dev_err(dev, "required-opps don't belong to a genpd\n");
982 /* Single genpd case */
983 if (!genpd_virt_devs)
984 return _set_required_opp(dev, dev, opp, 0);
986 /* Multiple genpd case */
989 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
990 * after it is freed from another thread.
992 mutex_lock(&opp_table->genpd_virt_dev_lock);
994 /* Scaling up? Set required OPPs in normal order, else reverse */
996 for (i = 0; i < opp_table->required_opp_count; i++) {
997 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
1002 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1003 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
1009 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1014 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1016 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1019 if (!IS_ERR(opp_table->clk)) {
1020 freq = clk_get_rate(opp_table->clk);
1021 opp = _find_freq_ceil(opp_table, &freq);
1025 * Unable to find the current OPP ? Pick the first from the list since
1026 * it is in ascending order, otherwise rest of the code will need to
1027 * make special checks to validate current_opp.
1030 mutex_lock(&opp_table->lock);
1031 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1032 dev_pm_opp_get(opp);
1033 mutex_unlock(&opp_table->lock);
1036 opp_table->current_opp = opp;
1039 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1043 if (!opp_table->enabled)
1047 * Some drivers need to support cases where some platforms may
1048 * have OPP table for the device, while others don't and
1049 * opp_set_rate() just needs to behave like clk_set_rate().
1051 if (!_get_opp_count(opp_table))
1054 ret = _set_opp_bw(opp_table, NULL, dev);
1058 if (opp_table->regulators)
1059 regulator_disable(opp_table->regulators[0]);
1061 ret = _set_required_opps(dev, opp_table, NULL, false);
1063 opp_table->enabled = false;
1067 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1068 struct dev_pm_opp *opp, void *clk_data, bool forced)
1070 struct dev_pm_opp *old_opp;
1071 int scaling_down, ret;
1074 return _disable_opp_table(dev, opp_table);
1076 /* Find the currently set OPP if we don't know already */
1077 if (unlikely(!opp_table->current_opp))
1078 _find_current_opp(dev, opp_table);
1080 old_opp = opp_table->current_opp;
1082 /* Return early if nothing to do */
1083 if (!forced && old_opp == opp && opp_table->enabled) {
1084 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1088 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1089 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1090 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1091 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1093 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1094 if (scaling_down == -1)
1097 /* Scaling up? Configure required OPPs before frequency */
1098 if (!scaling_down) {
1099 ret = _set_required_opps(dev, opp_table, opp, true);
1101 dev_err(dev, "Failed to set required opps: %d\n", ret);
1105 ret = _set_opp_bw(opp_table, opp, dev);
1107 dev_err(dev, "Failed to set bw: %d\n", ret);
1111 if (opp_table->config_regulators) {
1112 ret = opp_table->config_regulators(dev, old_opp, opp,
1113 opp_table->regulators,
1114 opp_table->regulator_count);
1116 dev_err(dev, "Failed to set regulator voltages: %d\n",
1123 if (opp_table->config_clks) {
1124 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1129 /* Scaling down? Configure required OPPs after frequency */
1131 if (opp_table->config_regulators) {
1132 ret = opp_table->config_regulators(dev, old_opp, opp,
1133 opp_table->regulators,
1134 opp_table->regulator_count);
1136 dev_err(dev, "Failed to set regulator voltages: %d\n",
1142 ret = _set_opp_bw(opp_table, opp, dev);
1144 dev_err(dev, "Failed to set bw: %d\n", ret);
1148 ret = _set_required_opps(dev, opp_table, opp, false);
1150 dev_err(dev, "Failed to set required opps: %d\n", ret);
1155 opp_table->enabled = true;
1156 dev_pm_opp_put(old_opp);
1158 /* Make sure current_opp doesn't get freed */
1159 dev_pm_opp_get(opp);
1160 opp_table->current_opp = opp;
1166 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1167 * @dev: device for which we do this operation
1168 * @target_freq: frequency to achieve
1170 * This configures the power-supplies to the levels specified by the OPP
1171 * corresponding to the target_freq, and programs the clock to a value <=
1172 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1173 * provided by the opp, should have already rounded to the target OPP's
1176 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1178 struct opp_table *opp_table;
1179 unsigned long freq = 0, temp_freq;
1180 struct dev_pm_opp *opp = NULL;
1181 bool forced = false;
1184 opp_table = _find_opp_table(dev);
1185 if (IS_ERR(opp_table)) {
1186 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1187 return PTR_ERR(opp_table);
1192 * For IO devices which require an OPP on some platforms/SoCs
1193 * while just needing to scale the clock on some others
1194 * we look for empty OPP tables with just a clock handle and
1195 * scale only the clk. This makes dev_pm_opp_set_rate()
1196 * equivalent to a clk_set_rate()
1198 if (!_get_opp_count(opp_table)) {
1199 ret = opp_table->config_clks(dev, opp_table, NULL,
1200 &target_freq, false);
1204 freq = clk_round_rate(opp_table->clk, target_freq);
1205 if ((long)freq <= 0)
1209 * The clock driver may support finer resolution of the
1210 * frequencies than the OPP table, don't update the frequency we
1211 * pass to clk_set_rate() here.
1214 opp = _find_freq_ceil(opp_table, &temp_freq);
1217 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1218 __func__, freq, ret);
1223 * An OPP entry specifies the highest frequency at which other
1224 * properties of the OPP entry apply. Even if the new OPP is
1225 * same as the old one, we may still reach here for a different
1226 * value of the frequency. In such a case, do not abort but
1227 * configure the hardware to the desired frequency forcefully.
1229 forced = opp_table->rate_clk_single != target_freq;
1232 ret = _set_opp(dev, opp_table, opp, &target_freq, forced);
1235 dev_pm_opp_put(opp);
1238 dev_pm_opp_put_opp_table(opp_table);
1241 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1244 * dev_pm_opp_set_opp() - Configure device for OPP
1245 * @dev: device for which we do this operation
1246 * @opp: OPP to set to
1248 * This configures the device based on the properties of the OPP passed to this
1251 * Return: 0 on success, a negative error number otherwise.
1253 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1255 struct opp_table *opp_table;
1258 opp_table = _find_opp_table(dev);
1259 if (IS_ERR(opp_table)) {
1260 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1261 return PTR_ERR(opp_table);
1264 ret = _set_opp(dev, opp_table, opp, NULL, false);
1265 dev_pm_opp_put_opp_table(opp_table);
1269 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1271 /* OPP-dev Helpers */
1272 static void _remove_opp_dev(struct opp_device *opp_dev,
1273 struct opp_table *opp_table)
1275 opp_debug_unregister(opp_dev, opp_table);
1276 list_del(&opp_dev->node);
1280 struct opp_device *_add_opp_dev(const struct device *dev,
1281 struct opp_table *opp_table)
1283 struct opp_device *opp_dev;
1285 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1289 /* Initialize opp-dev */
1292 mutex_lock(&opp_table->lock);
1293 list_add(&opp_dev->node, &opp_table->dev_list);
1294 mutex_unlock(&opp_table->lock);
1296 /* Create debugfs entries for the opp_table */
1297 opp_debug_register(opp_dev, opp_table);
1302 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1304 struct opp_table *opp_table;
1305 struct opp_device *opp_dev;
1309 * Allocate a new OPP table. In the infrequent case where a new
1310 * device is needed to be added, we pay this penalty.
1312 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1314 return ERR_PTR(-ENOMEM);
1316 mutex_init(&opp_table->lock);
1317 mutex_init(&opp_table->genpd_virt_dev_lock);
1318 INIT_LIST_HEAD(&opp_table->dev_list);
1319 INIT_LIST_HEAD(&opp_table->lazy);
1321 opp_table->clk = ERR_PTR(-ENODEV);
1323 /* Mark regulator count uninitialized */
1324 opp_table->regulator_count = -1;
1326 opp_dev = _add_opp_dev(dev, opp_table);
1332 _of_init_opp_table(opp_table, dev, index);
1334 /* Find interconnect path(s) for the device */
1335 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1337 if (ret == -EPROBE_DEFER)
1338 goto remove_opp_dev;
1340 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1344 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1345 INIT_LIST_HEAD(&opp_table->opp_list);
1346 kref_init(&opp_table->kref);
1351 _remove_opp_dev(opp_dev, opp_table);
1354 return ERR_PTR(ret);
1357 void _get_opp_table_kref(struct opp_table *opp_table)
1359 kref_get(&opp_table->kref);
1362 static struct opp_table *_update_opp_table_clk(struct device *dev,
1363 struct opp_table *opp_table,
1369 * Return early if we don't need to get clk or we have already done it
1372 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1376 /* Find clk for the device */
1377 opp_table->clk = clk_get(dev, NULL);
1379 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1381 opp_table->config_clks = _opp_config_clk_single;
1382 opp_table->clk_count = 1;
1386 if (ret == -ENOENT) {
1388 * There are few platforms which don't want the OPP core to
1389 * manage device's clock settings. In such cases neither the
1390 * platform provides the clks explicitly to us, nor the DT
1391 * contains a valid clk entry. The OPP nodes in DT may still
1392 * contain "opp-hz" property though, which we need to parse and
1393 * allow the platform to find an OPP based on freq later on.
1395 * This is a simple solution to take care of such corner cases,
1396 * i.e. make the clk_count 1, which lets us allocate space for
1397 * frequency in opp->rates and also parse the entries in DT.
1399 opp_table->clk_count = 1;
1401 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1405 dev_pm_opp_put_opp_table(opp_table);
1406 dev_err_probe(dev, ret, "Couldn't find clock\n");
1408 return ERR_PTR(ret);
1412 * We need to make sure that the OPP table for a device doesn't get added twice,
1413 * if this routine gets called in parallel with the same device pointer.
1415 * The simplest way to enforce that is to perform everything (find existing
1416 * table and if not found, create a new one) under the opp_table_lock, so only
1417 * one creator gets access to the same. But that expands the critical section
1418 * under the lock and may end up causing circular dependencies with frameworks
1419 * like debugfs, interconnect or clock framework as they may be direct or
1420 * indirect users of OPP core.
1422 * And for that reason we have to go for a bit tricky implementation here, which
1423 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1424 * of adding an OPP table and others should wait for it to finish.
1426 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1429 struct opp_table *opp_table;
1432 mutex_lock(&opp_table_lock);
1434 opp_table = _find_opp_table_unlocked(dev);
1435 if (!IS_ERR(opp_table))
1439 * The opp_tables list or an OPP table's dev_list is getting updated by
1440 * another user, wait for it to finish.
1442 if (unlikely(opp_tables_busy)) {
1443 mutex_unlock(&opp_table_lock);
1448 opp_tables_busy = true;
1449 opp_table = _managed_opp(dev, index);
1451 /* Drop the lock to reduce the size of critical section */
1452 mutex_unlock(&opp_table_lock);
1455 if (!_add_opp_dev(dev, opp_table)) {
1456 dev_pm_opp_put_opp_table(opp_table);
1457 opp_table = ERR_PTR(-ENOMEM);
1460 mutex_lock(&opp_table_lock);
1462 opp_table = _allocate_opp_table(dev, index);
1464 mutex_lock(&opp_table_lock);
1465 if (!IS_ERR(opp_table))
1466 list_add(&opp_table->node, &opp_tables);
1469 opp_tables_busy = false;
1472 mutex_unlock(&opp_table_lock);
1474 return _update_opp_table_clk(dev, opp_table, getclk);
1477 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1479 return _add_opp_table_indexed(dev, 0, getclk);
1482 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1484 return _find_opp_table(dev);
1486 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1488 static void _opp_table_kref_release(struct kref *kref)
1490 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1491 struct opp_device *opp_dev, *temp;
1494 /* Drop the lock as soon as we can */
1495 list_del(&opp_table->node);
1496 mutex_unlock(&opp_table_lock);
1498 if (opp_table->current_opp)
1499 dev_pm_opp_put(opp_table->current_opp);
1501 _of_clear_opp_table(opp_table);
1503 /* Release automatically acquired single clk */
1504 if (!IS_ERR(opp_table->clk))
1505 clk_put(opp_table->clk);
1507 if (opp_table->paths) {
1508 for (i = 0; i < opp_table->path_count; i++)
1509 icc_put(opp_table->paths[i]);
1510 kfree(opp_table->paths);
1513 WARN_ON(!list_empty(&opp_table->opp_list));
1515 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1517 * The OPP table is getting removed, drop the performance state
1520 if (opp_table->genpd_performance_state)
1521 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1523 _remove_opp_dev(opp_dev, opp_table);
1526 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1527 mutex_destroy(&opp_table->lock);
1531 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1533 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1536 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1538 void _opp_free(struct dev_pm_opp *opp)
1543 static void _opp_kref_release(struct kref *kref)
1545 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1546 struct opp_table *opp_table = opp->opp_table;
1548 list_del(&opp->node);
1549 mutex_unlock(&opp_table->lock);
1552 * Notify the changes in the availability of the operable
1553 * frequency/voltage list.
1555 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1556 _of_clear_opp(opp_table, opp);
1557 opp_debug_remove_one(opp);
1561 void dev_pm_opp_get(struct dev_pm_opp *opp)
1563 kref_get(&opp->kref);
1566 void dev_pm_opp_put(struct dev_pm_opp *opp)
1568 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1570 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1573 * dev_pm_opp_remove() - Remove an OPP from OPP table
1574 * @dev: device for which we do this operation
1575 * @freq: OPP to remove with matching 'freq'
1577 * This function removes an opp from the opp table.
1579 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1581 struct dev_pm_opp *opp = NULL, *iter;
1582 struct opp_table *opp_table;
1584 opp_table = _find_opp_table(dev);
1585 if (IS_ERR(opp_table))
1588 if (!assert_single_clk(opp_table))
1591 mutex_lock(&opp_table->lock);
1593 list_for_each_entry(iter, &opp_table->opp_list, node) {
1594 if (iter->rates[0] == freq) {
1600 mutex_unlock(&opp_table->lock);
1603 dev_pm_opp_put(opp);
1605 /* Drop the reference taken by dev_pm_opp_add() */
1606 dev_pm_opp_put_opp_table(opp_table);
1608 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1613 /* Drop the reference taken by _find_opp_table() */
1614 dev_pm_opp_put_opp_table(opp_table);
1616 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1618 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1621 struct dev_pm_opp *opp = NULL, *temp;
1623 mutex_lock(&opp_table->lock);
1624 list_for_each_entry(temp, &opp_table->opp_list, node) {
1626 * Refcount must be dropped only once for each OPP by OPP core,
1627 * do that with help of "removed" flag.
1629 if (!temp->removed && dynamic == temp->dynamic) {
1635 mutex_unlock(&opp_table->lock);
1640 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1641 * happen lock less to avoid circular dependency issues. This routine must be
1642 * called without the opp_table->lock held.
1644 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1646 struct dev_pm_opp *opp;
1648 while ((opp = _opp_get_next(opp_table, dynamic))) {
1649 opp->removed = true;
1650 dev_pm_opp_put(opp);
1652 /* Drop the references taken by dev_pm_opp_add() */
1654 dev_pm_opp_put_opp_table(opp_table);
1658 bool _opp_remove_all_static(struct opp_table *opp_table)
1660 mutex_lock(&opp_table->lock);
1662 if (!opp_table->parsed_static_opps) {
1663 mutex_unlock(&opp_table->lock);
1667 if (--opp_table->parsed_static_opps) {
1668 mutex_unlock(&opp_table->lock);
1672 mutex_unlock(&opp_table->lock);
1674 _opp_remove_all(opp_table, false);
1679 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1680 * @dev: device for which we do this operation
1682 * This function removes all dynamically created OPPs from the opp table.
1684 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1686 struct opp_table *opp_table;
1688 opp_table = _find_opp_table(dev);
1689 if (IS_ERR(opp_table))
1692 _opp_remove_all(opp_table, true);
1694 /* Drop the reference taken by _find_opp_table() */
1695 dev_pm_opp_put_opp_table(opp_table);
1697 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1699 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1701 struct dev_pm_opp *opp;
1702 int supply_count, supply_size, icc_size, clk_size;
1704 /* Allocate space for at least one supply */
1705 supply_count = opp_table->regulator_count > 0 ?
1706 opp_table->regulator_count : 1;
1707 supply_size = sizeof(*opp->supplies) * supply_count;
1708 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1709 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1711 /* allocate new OPP node and supplies structures */
1712 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1716 /* Put the supplies, bw and clock at the end of the OPP structure */
1717 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1719 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1722 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1724 INIT_LIST_HEAD(&opp->node);
1729 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1730 struct opp_table *opp_table)
1732 struct regulator *reg;
1735 if (!opp_table->regulators)
1738 for (i = 0; i < opp_table->regulator_count; i++) {
1739 reg = opp_table->regulators[i];
1741 if (!regulator_is_supported_voltage(reg,
1742 opp->supplies[i].u_volt_min,
1743 opp->supplies[i].u_volt_max)) {
1744 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1745 __func__, opp->supplies[i].u_volt_min,
1746 opp->supplies[i].u_volt_max);
1754 static int _opp_compare_rate(struct opp_table *opp_table,
1755 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1759 for (i = 0; i < opp_table->clk_count; i++) {
1760 if (opp1->rates[i] != opp2->rates[i])
1761 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1764 /* Same rates for both OPPs */
1768 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1769 struct dev_pm_opp *opp2)
1773 for (i = 0; i < opp_table->path_count; i++) {
1774 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1775 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1778 /* Same bw for both OPPs */
1788 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1789 struct dev_pm_opp *opp2)
1793 ret = _opp_compare_rate(opp_table, opp1, opp2);
1797 ret = _opp_compare_bw(opp_table, opp1, opp2);
1801 if (opp1->level != opp2->level)
1802 return opp1->level < opp2->level ? -1 : 1;
1804 /* Duplicate OPPs */
1808 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1809 struct opp_table *opp_table,
1810 struct list_head **head)
1812 struct dev_pm_opp *opp;
1816 * Insert new OPP in order of increasing frequency and discard if
1819 * Need to use &opp_table->opp_list in the condition part of the 'for'
1820 * loop, don't replace it with head otherwise it will become an infinite
1823 list_for_each_entry(opp, &opp_table->opp_list, node) {
1824 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1833 /* Duplicate OPPs */
1834 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1835 __func__, opp->rates[0], opp->supplies[0].u_volt,
1836 opp->available, new_opp->rates[0],
1837 new_opp->supplies[0].u_volt, new_opp->available);
1839 /* Should we compare voltages for all regulators here ? */
1840 return opp->available &&
1841 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1847 void _required_opps_available(struct dev_pm_opp *opp, int count)
1851 for (i = 0; i < count; i++) {
1852 if (opp->required_opps[i]->available)
1855 opp->available = false;
1856 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1857 __func__, opp->required_opps[i]->np, opp->rates[0]);
1864 * 0: On success. And appropriate error message for duplicate OPPs.
1865 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1866 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1867 * sure we don't print error messages unnecessarily if different parts of
1868 * kernel try to initialize the OPP table.
1869 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1870 * should be considered an error by the callers of _opp_add().
1872 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1873 struct opp_table *opp_table)
1875 struct list_head *head;
1878 mutex_lock(&opp_table->lock);
1879 head = &opp_table->opp_list;
1881 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1883 mutex_unlock(&opp_table->lock);
1887 list_add(&new_opp->node, head);
1888 mutex_unlock(&opp_table->lock);
1890 new_opp->opp_table = opp_table;
1891 kref_init(&new_opp->kref);
1893 opp_debug_create_one(new_opp, opp_table);
1895 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1896 new_opp->available = false;
1897 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1898 __func__, new_opp->rates[0]);
1901 /* required-opps not fully initialized yet */
1902 if (lazy_linking_pending(opp_table))
1905 _required_opps_available(new_opp, opp_table->required_opp_count);
1911 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1912 * @opp_table: OPP table
1913 * @dev: device for which we do this operation
1914 * @freq: Frequency in Hz for this OPP
1915 * @u_volt: Voltage in uVolts for this OPP
1916 * @dynamic: Dynamically added OPPs.
1918 * This function adds an opp definition to the opp table and returns status.
1919 * The opp is made available by default and it can be controlled using
1920 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1922 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1923 * and freed by dev_pm_opp_of_remove_table.
1927 * Duplicate OPPs (both freq and volt are same) and opp->available
1928 * -EEXIST Freq are same and volt are different OR
1929 * Duplicate OPPs (both freq and volt are same) and !opp->available
1930 * -ENOMEM Memory allocation failure
1932 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1933 unsigned long freq, long u_volt, bool dynamic)
1935 struct dev_pm_opp *new_opp;
1939 if (!assert_single_clk(opp_table))
1942 new_opp = _opp_allocate(opp_table);
1946 /* populate the opp table */
1947 new_opp->rates[0] = freq;
1948 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1949 new_opp->supplies[0].u_volt = u_volt;
1950 new_opp->supplies[0].u_volt_min = u_volt - tol;
1951 new_opp->supplies[0].u_volt_max = u_volt + tol;
1952 new_opp->available = true;
1953 new_opp->dynamic = dynamic;
1955 ret = _opp_add(dev, new_opp, opp_table);
1957 /* Don't return error for duplicate OPPs */
1964 * Notify the changes in the availability of the operable
1965 * frequency/voltage list.
1967 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1977 * _opp_set_supported_hw() - Set supported platforms
1978 * @dev: Device for which supported-hw has to be set.
1979 * @versions: Array of hierarchy of versions to match.
1980 * @count: Number of elements in the array.
1982 * This is required only for the V2 bindings, and it enables a platform to
1983 * specify the hierarchy of versions it supports. OPP layer will then enable
1984 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1987 static int _opp_set_supported_hw(struct opp_table *opp_table,
1988 const u32 *versions, unsigned int count)
1990 /* Another CPU that shares the OPP table has set the property ? */
1991 if (opp_table->supported_hw)
1994 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1996 if (!opp_table->supported_hw)
1999 opp_table->supported_hw_count = count;
2005 * _opp_put_supported_hw() - Releases resources blocked for supported hw
2006 * @opp_table: OPP table returned by _opp_set_supported_hw().
2008 * This is required only for the V2 bindings, and is called for a matching
2009 * _opp_set_supported_hw(). Until this is called, the opp_table structure
2010 * will not be freed.
2012 static void _opp_put_supported_hw(struct opp_table *opp_table)
2014 if (opp_table->supported_hw) {
2015 kfree(opp_table->supported_hw);
2016 opp_table->supported_hw = NULL;
2017 opp_table->supported_hw_count = 0;
2022 * _opp_set_prop_name() - Set prop-extn name
2023 * @dev: Device for which the prop-name has to be set.
2024 * @name: name to postfix to properties.
2026 * This is required only for the V2 bindings, and it enables a platform to
2027 * specify the extn to be used for certain property names. The properties to
2028 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2029 * should postfix the property name with -<name> while looking for them.
2031 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2033 /* Another CPU that shares the OPP table has set the property ? */
2034 if (!opp_table->prop_name) {
2035 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2036 if (!opp_table->prop_name)
2044 * _opp_put_prop_name() - Releases resources blocked for prop-name
2045 * @opp_table: OPP table returned by _opp_set_prop_name().
2047 * This is required only for the V2 bindings, and is called for a matching
2048 * _opp_set_prop_name(). Until this is called, the opp_table structure
2049 * will not be freed.
2051 static void _opp_put_prop_name(struct opp_table *opp_table)
2053 if (opp_table->prop_name) {
2054 kfree(opp_table->prop_name);
2055 opp_table->prop_name = NULL;
2060 * _opp_set_regulators() - Set regulator names for the device
2061 * @dev: Device for which regulator name is being set.
2062 * @names: Array of pointers to the names of the regulator.
2063 * @count: Number of regulators.
2065 * In order to support OPP switching, OPP layer needs to know the name of the
2066 * device's regulators, as the core would be required to switch voltages as
2069 * This must be called before any OPPs are initialized for the device.
2071 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2072 const char * const names[])
2074 const char * const *temp = names;
2075 struct regulator *reg;
2076 int count = 0, ret, i;
2078 /* Count number of regulators */
2085 /* Another CPU that shares the OPP table has set the regulators ? */
2086 if (opp_table->regulators)
2089 opp_table->regulators = kmalloc_array(count,
2090 sizeof(*opp_table->regulators),
2092 if (!opp_table->regulators)
2095 for (i = 0; i < count; i++) {
2096 reg = regulator_get_optional(dev, names[i]);
2098 ret = dev_err_probe(dev, PTR_ERR(reg),
2099 "%s: no regulator (%s) found\n",
2100 __func__, names[i]);
2101 goto free_regulators;
2104 opp_table->regulators[i] = reg;
2107 opp_table->regulator_count = count;
2109 /* Set generic config_regulators() for single regulators here */
2111 opp_table->config_regulators = _opp_config_regulator_single;
2117 regulator_put(opp_table->regulators[--i]);
2119 kfree(opp_table->regulators);
2120 opp_table->regulators = NULL;
2121 opp_table->regulator_count = -1;
2127 * _opp_put_regulators() - Releases resources blocked for regulator
2128 * @opp_table: OPP table returned from _opp_set_regulators().
2130 static void _opp_put_regulators(struct opp_table *opp_table)
2134 if (!opp_table->regulators)
2137 if (opp_table->enabled) {
2138 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2139 regulator_disable(opp_table->regulators[i]);
2142 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2143 regulator_put(opp_table->regulators[i]);
2145 kfree(opp_table->regulators);
2146 opp_table->regulators = NULL;
2147 opp_table->regulator_count = -1;
2150 static void _put_clks(struct opp_table *opp_table, int count)
2154 for (i = count - 1; i >= 0; i--)
2155 clk_put(opp_table->clks[i]);
2157 kfree(opp_table->clks);
2158 opp_table->clks = NULL;
2162 * _opp_set_clknames() - Set clk names for the device
2163 * @dev: Device for which clk names is being set.
2164 * @names: Clk names.
2166 * In order to support OPP switching, OPP layer needs to get pointers to the
2167 * clocks for the device. Simple cases work fine without using this routine
2168 * (i.e. by passing connection-id as NULL), but for a device with multiple
2169 * clocks available, the OPP core needs to know the exact names of the clks to
2172 * This must be called before any OPPs are initialized for the device.
2174 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2175 const char * const names[],
2176 config_clks_t config_clks)
2178 const char * const *temp = names;
2179 int count = 0, ret, i;
2182 /* Count number of clks */
2187 * This is a special case where we have a single clock, whose connection
2188 * id name is NULL, i.e. first two entries are NULL in the array.
2190 if (!count && !names[1])
2193 /* Fail early for invalid configurations */
2194 if (!count || (!config_clks && count > 1))
2197 /* Another CPU that shares the OPP table has set the clkname ? */
2198 if (opp_table->clks)
2201 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2203 if (!opp_table->clks)
2206 /* Find clks for the device */
2207 for (i = 0; i < count; i++) {
2208 clk = clk_get(dev, names[i]);
2210 ret = dev_err_probe(dev, PTR_ERR(clk),
2211 "%s: Couldn't find clock with name: %s\n",
2212 __func__, names[i]);
2216 opp_table->clks[i] = clk;
2219 opp_table->clk_count = count;
2220 opp_table->config_clks = config_clks;
2222 /* Set generic single clk set here */
2224 if (!opp_table->config_clks)
2225 opp_table->config_clks = _opp_config_clk_single;
2228 * We could have just dropped the "clk" field and used "clks"
2229 * everywhere. Instead we kept the "clk" field around for
2230 * following reasons:
2232 * - avoiding clks[0] everywhere else.
2233 * - not running single clk helpers for multiple clk usecase by
2236 * Since this is single-clk case, just update the clk pointer
2239 opp_table->clk = opp_table->clks[0];
2245 _put_clks(opp_table, i);
2250 * _opp_put_clknames() - Releases resources blocked for clks.
2251 * @opp_table: OPP table returned from _opp_set_clknames().
2253 static void _opp_put_clknames(struct opp_table *opp_table)
2255 if (!opp_table->clks)
2258 opp_table->config_clks = NULL;
2259 opp_table->clk = ERR_PTR(-ENODEV);
2261 _put_clks(opp_table, opp_table->clk_count);
2265 * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2266 * @dev: Device for which the helper is getting registered.
2267 * @config_regulators: Custom set regulator helper.
2269 * This is useful to support platforms with multiple regulators per device.
2271 * This must be called before any OPPs are initialized for the device.
2273 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2274 struct device *dev, config_regulators_t config_regulators)
2276 /* Another CPU that shares the OPP table has set the helper ? */
2277 if (!opp_table->config_regulators)
2278 opp_table->config_regulators = config_regulators;
2284 * _opp_put_config_regulators_helper() - Releases resources blocked for
2285 * config_regulators helper.
2286 * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2288 * Release resources blocked for platform specific config_regulators helper.
2290 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2292 if (opp_table->config_regulators)
2293 opp_table->config_regulators = NULL;
2296 static void _detach_genpd(struct opp_table *opp_table)
2300 if (!opp_table->genpd_virt_devs)
2303 for (index = 0; index < opp_table->required_opp_count; index++) {
2304 if (!opp_table->genpd_virt_devs[index])
2307 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2308 opp_table->genpd_virt_devs[index] = NULL;
2311 kfree(opp_table->genpd_virt_devs);
2312 opp_table->genpd_virt_devs = NULL;
2316 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2317 * @dev: Consumer device for which the genpd is getting attached.
2318 * @names: Null terminated array of pointers containing names of genpd to attach.
2319 * @virt_devs: Pointer to return the array of virtual devices.
2321 * Multiple generic power domains for a device are supported with the help of
2322 * virtual genpd devices, which are created for each consumer device - genpd
2323 * pair. These are the device structures which are attached to the power domain
2324 * and are required by the OPP core to set the performance state of the genpd.
2325 * The same API also works for the case where single genpd is available and so
2326 * we don't need to support that separately.
2328 * This helper will normally be called by the consumer driver of the device
2329 * "dev", as only that has details of the genpd names.
2331 * This helper needs to be called once with a list of all genpd to attach.
2332 * Otherwise the original device structure will be used instead by the OPP core.
2334 * The order of entries in the names array must match the order in which
2335 * "required-opps" are added in DT.
2337 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2338 const char * const *names, struct device ***virt_devs)
2340 struct device *virt_dev;
2341 int index = 0, ret = -EINVAL;
2342 const char * const *name = names;
2344 if (opp_table->genpd_virt_devs)
2348 * If the genpd's OPP table isn't already initialized, parsing of the
2349 * required-opps fail for dev. We should retry this after genpd's OPP
2352 if (!opp_table->required_opp_count)
2353 return -EPROBE_DEFER;
2355 mutex_lock(&opp_table->genpd_virt_dev_lock);
2357 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2358 sizeof(*opp_table->genpd_virt_devs),
2360 if (!opp_table->genpd_virt_devs)
2364 if (index >= opp_table->required_opp_count) {
2365 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2366 *name, opp_table->required_opp_count, index);
2370 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2371 if (IS_ERR_OR_NULL(virt_dev)) {
2372 ret = PTR_ERR(virt_dev) ? : -ENODEV;
2373 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2377 opp_table->genpd_virt_devs[index] = virt_dev;
2383 *virt_devs = opp_table->genpd_virt_devs;
2384 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2389 _detach_genpd(opp_table);
2391 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2397 * _opp_detach_genpd() - Detach genpd(s) from the device.
2398 * @opp_table: OPP table returned by _opp_attach_genpd().
2400 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2403 static void _opp_detach_genpd(struct opp_table *opp_table)
2406 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2409 mutex_lock(&opp_table->genpd_virt_dev_lock);
2410 _detach_genpd(opp_table);
2411 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2414 static void _opp_clear_config(struct opp_config_data *data)
2416 if (data->flags & OPP_CONFIG_GENPD)
2417 _opp_detach_genpd(data->opp_table);
2418 if (data->flags & OPP_CONFIG_REGULATOR)
2419 _opp_put_regulators(data->opp_table);
2420 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2421 _opp_put_supported_hw(data->opp_table);
2422 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2423 _opp_put_config_regulators_helper(data->opp_table);
2424 if (data->flags & OPP_CONFIG_PROP_NAME)
2425 _opp_put_prop_name(data->opp_table);
2426 if (data->flags & OPP_CONFIG_CLK)
2427 _opp_put_clknames(data->opp_table);
2429 dev_pm_opp_put_opp_table(data->opp_table);
2434 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2435 * @dev: Device for which configuration is being set.
2436 * @config: OPP configuration.
2438 * This allows all device OPP configurations to be performed at once.
2440 * This must be called before any OPPs are initialized for the device. This may
2441 * be called multiple times for the same OPP table, for example once for each
2442 * CPU that share the same table. This must be balanced by the same number of
2443 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2445 * This returns a token to the caller, which must be passed to
2446 * dev_pm_opp_clear_config() to free the resources later. The value of the
2447 * returned token will be >= 1 for success and negative for errors. The minimum
2448 * value of 1 is chosen here to make it easy for callers to manage the resource.
2450 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2452 struct opp_table *opp_table;
2453 struct opp_config_data *data;
2457 data = kmalloc(sizeof(*data), GFP_KERNEL);
2461 opp_table = _add_opp_table(dev, false);
2462 if (IS_ERR(opp_table)) {
2464 return PTR_ERR(opp_table);
2467 data->opp_table = opp_table;
2470 /* This should be called before OPPs are initialized */
2471 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2476 /* Configure clocks */
2477 if (config->clk_names) {
2478 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2479 config->config_clks);
2483 data->flags |= OPP_CONFIG_CLK;
2484 } else if (config->config_clks) {
2485 /* Don't allow config callback without clocks */
2490 /* Configure property names */
2491 if (config->prop_name) {
2492 ret = _opp_set_prop_name(opp_table, config->prop_name);
2496 data->flags |= OPP_CONFIG_PROP_NAME;
2499 /* Configure config_regulators helper */
2500 if (config->config_regulators) {
2501 ret = _opp_set_config_regulators_helper(opp_table, dev,
2502 config->config_regulators);
2506 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2509 /* Configure supported hardware */
2510 if (config->supported_hw) {
2511 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2512 config->supported_hw_count);
2516 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2519 /* Configure supplies */
2520 if (config->regulator_names) {
2521 ret = _opp_set_regulators(opp_table, dev,
2522 config->regulator_names);
2526 data->flags |= OPP_CONFIG_REGULATOR;
2530 if (config->genpd_names) {
2531 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2536 data->flags |= OPP_CONFIG_GENPD;
2539 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2547 _opp_clear_config(data);
2550 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2553 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2554 * @opp_table: OPP table returned from dev_pm_opp_set_config().
2556 * This allows all device OPP configurations to be cleared at once. This must be
2557 * called once for each call made to dev_pm_opp_set_config(), in order to free
2558 * the OPPs properly.
2560 * Currently the first call itself ends up freeing all the OPP configurations,
2561 * while the later ones only drop the OPP table reference. This works well for
2562 * now as we would never want to use an half initialized OPP table and want to
2563 * remove the configurations together.
2565 void dev_pm_opp_clear_config(int token)
2567 struct opp_config_data *data;
2570 * This lets the callers call this unconditionally and keep their code
2573 if (unlikely(token <= 0))
2576 data = xa_erase(&opp_configs, token);
2580 _opp_clear_config(data);
2582 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2584 static void devm_pm_opp_config_release(void *token)
2586 dev_pm_opp_clear_config((unsigned long)token);
2590 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2591 * @dev: Device for which configuration is being set.
2592 * @config: OPP configuration.
2594 * This allows all device OPP configurations to be performed at once.
2595 * This is a resource-managed variant of dev_pm_opp_set_config().
2597 * Return: 0 on success and errorno otherwise.
2599 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2601 int token = dev_pm_opp_set_config(dev, config);
2606 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2607 (void *) ((unsigned long) token));
2609 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2612 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2613 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2614 * @dst_table: Required OPP table of the @src_table.
2615 * @src_opp: OPP from the @src_table.
2617 * This function returns the OPP (present in @dst_table) pointed out by the
2618 * "required-opps" property of the @src_opp (present in @src_table).
2620 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2623 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2625 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2626 struct opp_table *dst_table,
2627 struct dev_pm_opp *src_opp)
2629 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2632 if (!src_table || !dst_table || !src_opp ||
2633 !src_table->required_opp_tables)
2634 return ERR_PTR(-EINVAL);
2636 /* required-opps not fully initialized yet */
2637 if (lazy_linking_pending(src_table))
2638 return ERR_PTR(-EBUSY);
2640 for (i = 0; i < src_table->required_opp_count; i++) {
2641 if (src_table->required_opp_tables[i] == dst_table) {
2642 mutex_lock(&src_table->lock);
2644 list_for_each_entry(opp, &src_table->opp_list, node) {
2645 if (opp == src_opp) {
2646 dest_opp = opp->required_opps[i];
2647 dev_pm_opp_get(dest_opp);
2652 mutex_unlock(&src_table->lock);
2657 if (IS_ERR(dest_opp)) {
2658 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2659 src_table, dst_table);
2664 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2667 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2668 * @src_table: OPP table which has dst_table as one of its required OPP table.
2669 * @dst_table: Required OPP table of the src_table.
2670 * @pstate: Current performance state of the src_table.
2672 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2673 * "required-opps" property of the OPP (present in @src_table) which has
2674 * performance state set to @pstate.
2676 * Return: Zero or positive performance state on success, otherwise negative
2679 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2680 struct opp_table *dst_table,
2681 unsigned int pstate)
2683 struct dev_pm_opp *opp;
2684 int dest_pstate = -EINVAL;
2688 * Normally the src_table will have the "required_opps" property set to
2689 * point to one of the OPPs in the dst_table, but in some cases the
2690 * genpd and its master have one to one mapping of performance states
2691 * and so none of them have the "required-opps" property set. Return the
2692 * pstate of the src_table as it is in such cases.
2694 if (!src_table || !src_table->required_opp_count)
2697 /* required-opps not fully initialized yet */
2698 if (lazy_linking_pending(src_table))
2701 for (i = 0; i < src_table->required_opp_count; i++) {
2702 if (src_table->required_opp_tables[i]->np == dst_table->np)
2706 if (unlikely(i == src_table->required_opp_count)) {
2707 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2708 __func__, src_table, dst_table);
2712 mutex_lock(&src_table->lock);
2714 list_for_each_entry(opp, &src_table->opp_list, node) {
2715 if (opp->pstate == pstate) {
2716 dest_pstate = opp->required_opps[i]->pstate;
2721 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2725 mutex_unlock(&src_table->lock);
2731 * dev_pm_opp_add() - Add an OPP table from a table definitions
2732 * @dev: device for which we do this operation
2733 * @freq: Frequency in Hz for this OPP
2734 * @u_volt: Voltage in uVolts for this OPP
2736 * This function adds an opp definition to the opp table and returns status.
2737 * The opp is made available by default and it can be controlled using
2738 * dev_pm_opp_enable/disable functions.
2742 * Duplicate OPPs (both freq and volt are same) and opp->available
2743 * -EEXIST Freq are same and volt are different OR
2744 * Duplicate OPPs (both freq and volt are same) and !opp->available
2745 * -ENOMEM Memory allocation failure
2747 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2749 struct opp_table *opp_table;
2752 opp_table = _add_opp_table(dev, true);
2753 if (IS_ERR(opp_table))
2754 return PTR_ERR(opp_table);
2756 /* Fix regulator count for dynamic OPPs */
2757 opp_table->regulator_count = 1;
2759 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2761 dev_pm_opp_put_opp_table(opp_table);
2765 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2768 * _opp_set_availability() - helper to set the availability of an opp
2769 * @dev: device for which we do this operation
2770 * @freq: OPP frequency to modify availability
2771 * @availability_req: availability status requested for this opp
2773 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2774 * which is isolated here.
2776 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2777 * copy operation, returns 0 if no modification was done OR modification was
2780 static int _opp_set_availability(struct device *dev, unsigned long freq,
2781 bool availability_req)
2783 struct opp_table *opp_table;
2784 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2787 /* Find the opp_table */
2788 opp_table = _find_opp_table(dev);
2789 if (IS_ERR(opp_table)) {
2790 r = PTR_ERR(opp_table);
2791 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2795 if (!assert_single_clk(opp_table)) {
2800 mutex_lock(&opp_table->lock);
2802 /* Do we have the frequency? */
2803 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2804 if (tmp_opp->rates[0] == freq) {
2815 /* Is update really needed? */
2816 if (opp->available == availability_req)
2819 opp->available = availability_req;
2821 dev_pm_opp_get(opp);
2822 mutex_unlock(&opp_table->lock);
2824 /* Notify the change of the OPP availability */
2825 if (availability_req)
2826 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2829 blocking_notifier_call_chain(&opp_table->head,
2830 OPP_EVENT_DISABLE, opp);
2832 dev_pm_opp_put(opp);
2836 mutex_unlock(&opp_table->lock);
2838 dev_pm_opp_put_opp_table(opp_table);
2843 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2844 * @dev: device for which we do this operation
2845 * @freq: OPP frequency to adjust voltage of
2846 * @u_volt: new OPP target voltage
2847 * @u_volt_min: new OPP min voltage
2848 * @u_volt_max: new OPP max voltage
2850 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2851 * copy operation, returns 0 if no modifcation was done OR modification was
2854 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2855 unsigned long u_volt, unsigned long u_volt_min,
2856 unsigned long u_volt_max)
2859 struct opp_table *opp_table;
2860 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2863 /* Find the opp_table */
2864 opp_table = _find_opp_table(dev);
2865 if (IS_ERR(opp_table)) {
2866 r = PTR_ERR(opp_table);
2867 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2871 if (!assert_single_clk(opp_table)) {
2876 mutex_lock(&opp_table->lock);
2878 /* Do we have the frequency? */
2879 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2880 if (tmp_opp->rates[0] == freq) {
2891 /* Is update really needed? */
2892 if (opp->supplies->u_volt == u_volt)
2895 opp->supplies->u_volt = u_volt;
2896 opp->supplies->u_volt_min = u_volt_min;
2897 opp->supplies->u_volt_max = u_volt_max;
2899 dev_pm_opp_get(opp);
2900 mutex_unlock(&opp_table->lock);
2902 /* Notify the voltage change of the OPP */
2903 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2906 dev_pm_opp_put(opp);
2910 mutex_unlock(&opp_table->lock);
2912 dev_pm_opp_put_opp_table(opp_table);
2915 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2918 * dev_pm_opp_enable() - Enable a specific OPP
2919 * @dev: device for which we do this operation
2920 * @freq: OPP frequency to enable
2922 * Enables a provided opp. If the operation is valid, this returns 0, else the
2923 * corresponding error value. It is meant to be used for users an OPP available
2924 * after being temporarily made unavailable with dev_pm_opp_disable.
2926 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2927 * copy operation, returns 0 if no modification was done OR modification was
2930 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2932 return _opp_set_availability(dev, freq, true);
2934 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2937 * dev_pm_opp_disable() - Disable a specific OPP
2938 * @dev: device for which we do this operation
2939 * @freq: OPP frequency to disable
2941 * Disables a provided opp. If the operation is valid, this returns
2942 * 0, else the corresponding error value. It is meant to be a temporary
2943 * control by users to make this OPP not available until the circumstances are
2944 * right to make it available again (with a call to dev_pm_opp_enable).
2946 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2947 * copy operation, returns 0 if no modification was done OR modification was
2950 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2952 return _opp_set_availability(dev, freq, false);
2954 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2957 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2958 * @dev: Device for which notifier needs to be registered
2959 * @nb: Notifier block to be registered
2961 * Return: 0 on success or a negative error value.
2963 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2965 struct opp_table *opp_table;
2968 opp_table = _find_opp_table(dev);
2969 if (IS_ERR(opp_table))
2970 return PTR_ERR(opp_table);
2972 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2974 dev_pm_opp_put_opp_table(opp_table);
2978 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2981 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2982 * @dev: Device for which notifier needs to be unregistered
2983 * @nb: Notifier block to be unregistered
2985 * Return: 0 on success or a negative error value.
2987 int dev_pm_opp_unregister_notifier(struct device *dev,
2988 struct notifier_block *nb)
2990 struct opp_table *opp_table;
2993 opp_table = _find_opp_table(dev);
2994 if (IS_ERR(opp_table))
2995 return PTR_ERR(opp_table);
2997 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2999 dev_pm_opp_put_opp_table(opp_table);
3003 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3006 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3007 * @dev: device pointer used to lookup OPP table.
3009 * Free both OPPs created using static entries present in DT and the
3010 * dynamically added entries.
3012 void dev_pm_opp_remove_table(struct device *dev)
3014 struct opp_table *opp_table;
3016 /* Check for existing table for 'dev' */
3017 opp_table = _find_opp_table(dev);
3018 if (IS_ERR(opp_table)) {
3019 int error = PTR_ERR(opp_table);
3021 if (error != -ENODEV)
3022 WARN(1, "%s: opp_table: %d\n",
3023 IS_ERR_OR_NULL(dev) ?
3024 "Invalid device" : dev_name(dev),
3030 * Drop the extra reference only if the OPP table was successfully added
3031 * with dev_pm_opp_of_add_table() earlier.
3033 if (_opp_remove_all_static(opp_table))
3034 dev_pm_opp_put_opp_table(opp_table);
3036 /* Drop reference taken by _find_opp_table() */
3037 dev_pm_opp_put_opp_table(opp_table);
3039 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3042 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3043 * @dev: device for which we do this operation
3045 * Sync voltage state of the OPP table regulators.
3047 * Return: 0 on success or a negative error value.
3049 int dev_pm_opp_sync_regulators(struct device *dev)
3051 struct opp_table *opp_table;
3052 struct regulator *reg;
3055 /* Device may not have OPP table */
3056 opp_table = _find_opp_table(dev);
3057 if (IS_ERR(opp_table))
3060 /* Regulator may not be required for the device */
3061 if (unlikely(!opp_table->regulators))
3064 /* Nothing to sync if voltage wasn't changed */
3065 if (!opp_table->enabled)
3068 for (i = 0; i < opp_table->regulator_count; i++) {
3069 reg = opp_table->regulators[i];
3070 ret = regulator_sync_voltage(reg);
3075 /* Drop reference taken by _find_opp_table() */
3076 dev_pm_opp_put_opp_table(opp_table);
3080 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);