Merge branch 'linux-4.20' of git://github.com/skeggsb/linux into drm-fixes
[platform/kernel/linux-starfive.git] / drivers / of / of_reserved_mem.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *              http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11
12 #define pr_fmt(fmt)     "OF: reserved mem: " fmt
13
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24
25 #define MAX_RESERVED_REGIONS    32
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
28
29 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
30         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
31         phys_addr_t *res_base)
32 {
33         phys_addr_t base;
34         /*
35          * We use __memblock_alloc_base() because memblock_alloc_base()
36          * panic()s on allocation failure.
37          */
38         end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
39         align = !align ? SMP_CACHE_BYTES : align;
40         base = __memblock_alloc_base(size, align, end);
41         if (!base)
42                 return -ENOMEM;
43
44         /*
45          * Check if the allocated region fits in to start..end window
46          */
47         if (base < start) {
48                 memblock_free(base, size);
49                 return -ENOMEM;
50         }
51
52         *res_base = base;
53         if (nomap)
54                 return memblock_remove(base, size);
55         return 0;
56 }
57
58 /**
59  * res_mem_save_node() - save fdt node for second pass initialization
60  */
61 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
62                                       phys_addr_t base, phys_addr_t size)
63 {
64         struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
65
66         if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
67                 pr_err("not enough space all defined regions.\n");
68                 return;
69         }
70
71         rmem->fdt_node = node;
72         rmem->name = uname;
73         rmem->base = base;
74         rmem->size = size;
75
76         reserved_mem_count++;
77         return;
78 }
79
80 /**
81  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
82  *                        and 'alloc-ranges' properties
83  */
84 static int __init __reserved_mem_alloc_size(unsigned long node,
85         const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
86 {
87         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
88         phys_addr_t start = 0, end = 0;
89         phys_addr_t base = 0, align = 0, size;
90         int len;
91         const __be32 *prop;
92         int nomap;
93         int ret;
94
95         prop = of_get_flat_dt_prop(node, "size", &len);
96         if (!prop)
97                 return -EINVAL;
98
99         if (len != dt_root_size_cells * sizeof(__be32)) {
100                 pr_err("invalid size property in '%s' node.\n", uname);
101                 return -EINVAL;
102         }
103         size = dt_mem_next_cell(dt_root_size_cells, &prop);
104
105         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
106
107         prop = of_get_flat_dt_prop(node, "alignment", &len);
108         if (prop) {
109                 if (len != dt_root_addr_cells * sizeof(__be32)) {
110                         pr_err("invalid alignment property in '%s' node.\n",
111                                 uname);
112                         return -EINVAL;
113                 }
114                 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
115         }
116
117         /* Need adjust the alignment to satisfy the CMA requirement */
118         if (IS_ENABLED(CONFIG_CMA)
119             && of_flat_dt_is_compatible(node, "shared-dma-pool")
120             && of_get_flat_dt_prop(node, "reusable", NULL)
121             && !of_get_flat_dt_prop(node, "no-map", NULL)) {
122                 unsigned long order =
123                         max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
124
125                 align = max(align, (phys_addr_t)PAGE_SIZE << order);
126         }
127
128         prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
129         if (prop) {
130
131                 if (len % t_len != 0) {
132                         pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
133                                uname);
134                         return -EINVAL;
135                 }
136
137                 base = 0;
138
139                 while (len > 0) {
140                         start = dt_mem_next_cell(dt_root_addr_cells, &prop);
141                         end = start + dt_mem_next_cell(dt_root_size_cells,
142                                                        &prop);
143
144                         ret = early_init_dt_alloc_reserved_memory_arch(size,
145                                         align, start, end, nomap, &base);
146                         if (ret == 0) {
147                                 pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
148                                         uname, &base,
149                                         (unsigned long)size / SZ_1M);
150                                 break;
151                         }
152                         len -= t_len;
153                 }
154
155         } else {
156                 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
157                                                         0, 0, nomap, &base);
158                 if (ret == 0)
159                         pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
160                                 uname, &base, (unsigned long)size / SZ_1M);
161         }
162
163         if (base == 0) {
164                 pr_info("failed to allocate memory for node '%s'\n", uname);
165                 return -ENOMEM;
166         }
167
168         *res_base = base;
169         *res_size = size;
170
171         return 0;
172 }
173
174 static const struct of_device_id __rmem_of_table_sentinel
175         __used __section(__reservedmem_of_table_end);
176
177 /**
178  * res_mem_init_node() - call region specific reserved memory init code
179  */
180 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
181 {
182         extern const struct of_device_id __reservedmem_of_table[];
183         const struct of_device_id *i;
184
185         for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
186                 reservedmem_of_init_fn initfn = i->data;
187                 const char *compat = i->compatible;
188
189                 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
190                         continue;
191
192                 if (initfn(rmem) == 0) {
193                         pr_info("initialized node %s, compatible id %s\n",
194                                 rmem->name, compat);
195                         return 0;
196                 }
197         }
198         return -ENOENT;
199 }
200
201 static int __init __rmem_cmp(const void *a, const void *b)
202 {
203         const struct reserved_mem *ra = a, *rb = b;
204
205         if (ra->base < rb->base)
206                 return -1;
207
208         if (ra->base > rb->base)
209                 return 1;
210
211         return 0;
212 }
213
214 static void __init __rmem_check_for_overlap(void)
215 {
216         int i;
217
218         if (reserved_mem_count < 2)
219                 return;
220
221         sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
222              __rmem_cmp, NULL);
223         for (i = 0; i < reserved_mem_count - 1; i++) {
224                 struct reserved_mem *this, *next;
225
226                 this = &reserved_mem[i];
227                 next = &reserved_mem[i + 1];
228                 if (!(this->base && next->base))
229                         continue;
230                 if (this->base + this->size > next->base) {
231                         phys_addr_t this_end, next_end;
232
233                         this_end = this->base + this->size;
234                         next_end = next->base + next->size;
235                         pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
236                                this->name, &this->base, &this_end,
237                                next->name, &next->base, &next_end);
238                 }
239         }
240 }
241
242 /**
243  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
244  */
245 void __init fdt_init_reserved_mem(void)
246 {
247         int i;
248
249         /* check for overlapping reserved regions */
250         __rmem_check_for_overlap();
251
252         for (i = 0; i < reserved_mem_count; i++) {
253                 struct reserved_mem *rmem = &reserved_mem[i];
254                 unsigned long node = rmem->fdt_node;
255                 int len;
256                 const __be32 *prop;
257                 int err = 0;
258
259                 prop = of_get_flat_dt_prop(node, "phandle", &len);
260                 if (!prop)
261                         prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
262                 if (prop)
263                         rmem->phandle = of_read_number(prop, len/4);
264
265                 if (rmem->size == 0)
266                         err = __reserved_mem_alloc_size(node, rmem->name,
267                                                  &rmem->base, &rmem->size);
268                 if (err == 0)
269                         __reserved_mem_init_node(rmem);
270         }
271 }
272
273 static inline struct reserved_mem *__find_rmem(struct device_node *node)
274 {
275         unsigned int i;
276
277         if (!node->phandle)
278                 return NULL;
279
280         for (i = 0; i < reserved_mem_count; i++)
281                 if (reserved_mem[i].phandle == node->phandle)
282                         return &reserved_mem[i];
283         return NULL;
284 }
285
286 struct rmem_assigned_device {
287         struct device *dev;
288         struct reserved_mem *rmem;
289         struct list_head list;
290 };
291
292 static LIST_HEAD(of_rmem_assigned_device_list);
293 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
294
295 /**
296  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
297  *                                        given device
298  * @dev:        Pointer to the device to configure
299  * @np:         Pointer to the device_node with 'reserved-memory' property
300  * @idx:        Index of selected region
301  *
302  * This function assigns respective DMA-mapping operations based on reserved
303  * memory region specified by 'memory-region' property in @np node to the @dev
304  * device. When driver needs to use more than one reserved memory region, it
305  * should allocate child devices and initialize regions by name for each of
306  * child device.
307  *
308  * Returns error code or zero on success.
309  */
310 int of_reserved_mem_device_init_by_idx(struct device *dev,
311                                        struct device_node *np, int idx)
312 {
313         struct rmem_assigned_device *rd;
314         struct device_node *target;
315         struct reserved_mem *rmem;
316         int ret;
317
318         if (!np || !dev)
319                 return -EINVAL;
320
321         target = of_parse_phandle(np, "memory-region", idx);
322         if (!target)
323                 return -ENODEV;
324
325         rmem = __find_rmem(target);
326         of_node_put(target);
327
328         if (!rmem || !rmem->ops || !rmem->ops->device_init)
329                 return -EINVAL;
330
331         rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
332         if (!rd)
333                 return -ENOMEM;
334
335         ret = rmem->ops->device_init(rmem, dev);
336         if (ret == 0) {
337                 rd->dev = dev;
338                 rd->rmem = rmem;
339
340                 mutex_lock(&of_rmem_assigned_device_mutex);
341                 list_add(&rd->list, &of_rmem_assigned_device_list);
342                 mutex_unlock(&of_rmem_assigned_device_mutex);
343                 /* ensure that dma_ops is set for virtual devices
344                  * using reserved memory
345                  */
346                 of_dma_configure(dev, np, true);
347
348                 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
349         } else {
350                 kfree(rd);
351         }
352
353         return ret;
354 }
355 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
356
357 /**
358  * of_reserved_mem_device_release() - release reserved memory device structures
359  * @dev:        Pointer to the device to deconfigure
360  *
361  * This function releases structures allocated for memory region handling for
362  * the given device.
363  */
364 void of_reserved_mem_device_release(struct device *dev)
365 {
366         struct rmem_assigned_device *rd;
367         struct reserved_mem *rmem = NULL;
368
369         mutex_lock(&of_rmem_assigned_device_mutex);
370         list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
371                 if (rd->dev == dev) {
372                         rmem = rd->rmem;
373                         list_del(&rd->list);
374                         kfree(rd);
375                         break;
376                 }
377         }
378         mutex_unlock(&of_rmem_assigned_device_mutex);
379
380         if (!rmem || !rmem->ops || !rmem->ops->device_release)
381                 return;
382
383         rmem->ops->device_release(rmem, dev);
384 }
385 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
386
387 /**
388  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
389  * @np:         node pointer of the desired reserved-memory region
390  *
391  * This function allows drivers to acquire a reference to the reserved_mem
392  * struct based on a device node handle.
393  *
394  * Returns a reserved_mem reference, or NULL on error.
395  */
396 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
397 {
398         const char *name;
399         int i;
400
401         if (!np->full_name)
402                 return NULL;
403
404         name = kbasename(np->full_name);
405         for (i = 0; i < reserved_mem_count; i++)
406                 if (!strcmp(reserved_mem[i].name, name))
407                         return &reserved_mem[i];
408
409         return NULL;
410 }
411 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);