Merge tag 'acpi-5.1-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[platform/kernel/linux-starfive.git] / drivers / of / of_reserved_mem.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *              http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11
12 #define pr_fmt(fmt)     "OF: reserved mem: " fmt
13
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24
25 #define MAX_RESERVED_REGIONS    32
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
28
29 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
30         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
31         phys_addr_t *res_base)
32 {
33         phys_addr_t base;
34
35         end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
36         align = !align ? SMP_CACHE_BYTES : align;
37         base = memblock_find_in_range(start, end, size, align);
38         if (!base)
39                 return -ENOMEM;
40
41         *res_base = base;
42         if (nomap)
43                 return memblock_remove(base, size);
44
45         return memblock_reserve(base, size);
46 }
47
48 /**
49  * res_mem_save_node() - save fdt node for second pass initialization
50  */
51 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
52                                       phys_addr_t base, phys_addr_t size)
53 {
54         struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
55
56         if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
57                 pr_err("not enough space all defined regions.\n");
58                 return;
59         }
60
61         rmem->fdt_node = node;
62         rmem->name = uname;
63         rmem->base = base;
64         rmem->size = size;
65
66         reserved_mem_count++;
67         return;
68 }
69
70 /**
71  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
72  *                        and 'alloc-ranges' properties
73  */
74 static int __init __reserved_mem_alloc_size(unsigned long node,
75         const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
76 {
77         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
78         phys_addr_t start = 0, end = 0;
79         phys_addr_t base = 0, align = 0, size;
80         int len;
81         const __be32 *prop;
82         int nomap;
83         int ret;
84
85         prop = of_get_flat_dt_prop(node, "size", &len);
86         if (!prop)
87                 return -EINVAL;
88
89         if (len != dt_root_size_cells * sizeof(__be32)) {
90                 pr_err("invalid size property in '%s' node.\n", uname);
91                 return -EINVAL;
92         }
93         size = dt_mem_next_cell(dt_root_size_cells, &prop);
94
95         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
96
97         prop = of_get_flat_dt_prop(node, "alignment", &len);
98         if (prop) {
99                 if (len != dt_root_addr_cells * sizeof(__be32)) {
100                         pr_err("invalid alignment property in '%s' node.\n",
101                                 uname);
102                         return -EINVAL;
103                 }
104                 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
105         }
106
107         /* Need adjust the alignment to satisfy the CMA requirement */
108         if (IS_ENABLED(CONFIG_CMA)
109             && of_flat_dt_is_compatible(node, "shared-dma-pool")
110             && of_get_flat_dt_prop(node, "reusable", NULL)
111             && !of_get_flat_dt_prop(node, "no-map", NULL)) {
112                 unsigned long order =
113                         max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
114
115                 align = max(align, (phys_addr_t)PAGE_SIZE << order);
116         }
117
118         prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
119         if (prop) {
120
121                 if (len % t_len != 0) {
122                         pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
123                                uname);
124                         return -EINVAL;
125                 }
126
127                 base = 0;
128
129                 while (len > 0) {
130                         start = dt_mem_next_cell(dt_root_addr_cells, &prop);
131                         end = start + dt_mem_next_cell(dt_root_size_cells,
132                                                        &prop);
133
134                         ret = early_init_dt_alloc_reserved_memory_arch(size,
135                                         align, start, end, nomap, &base);
136                         if (ret == 0) {
137                                 pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
138                                         uname, &base,
139                                         (unsigned long)size / SZ_1M);
140                                 break;
141                         }
142                         len -= t_len;
143                 }
144
145         } else {
146                 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
147                                                         0, 0, nomap, &base);
148                 if (ret == 0)
149                         pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
150                                 uname, &base, (unsigned long)size / SZ_1M);
151         }
152
153         if (base == 0) {
154                 pr_info("failed to allocate memory for node '%s'\n", uname);
155                 return -ENOMEM;
156         }
157
158         *res_base = base;
159         *res_size = size;
160
161         return 0;
162 }
163
164 static const struct of_device_id __rmem_of_table_sentinel
165         __used __section(__reservedmem_of_table_end);
166
167 /**
168  * res_mem_init_node() - call region specific reserved memory init code
169  */
170 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
171 {
172         extern const struct of_device_id __reservedmem_of_table[];
173         const struct of_device_id *i;
174
175         for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
176                 reservedmem_of_init_fn initfn = i->data;
177                 const char *compat = i->compatible;
178
179                 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
180                         continue;
181
182                 if (initfn(rmem) == 0) {
183                         pr_info("initialized node %s, compatible id %s\n",
184                                 rmem->name, compat);
185                         return 0;
186                 }
187         }
188         return -ENOENT;
189 }
190
191 static int __init __rmem_cmp(const void *a, const void *b)
192 {
193         const struct reserved_mem *ra = a, *rb = b;
194
195         if (ra->base < rb->base)
196                 return -1;
197
198         if (ra->base > rb->base)
199                 return 1;
200
201         return 0;
202 }
203
204 static void __init __rmem_check_for_overlap(void)
205 {
206         int i;
207
208         if (reserved_mem_count < 2)
209                 return;
210
211         sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
212              __rmem_cmp, NULL);
213         for (i = 0; i < reserved_mem_count - 1; i++) {
214                 struct reserved_mem *this, *next;
215
216                 this = &reserved_mem[i];
217                 next = &reserved_mem[i + 1];
218                 if (!(this->base && next->base))
219                         continue;
220                 if (this->base + this->size > next->base) {
221                         phys_addr_t this_end, next_end;
222
223                         this_end = this->base + this->size;
224                         next_end = next->base + next->size;
225                         pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
226                                this->name, &this->base, &this_end,
227                                next->name, &next->base, &next_end);
228                 }
229         }
230 }
231
232 /**
233  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
234  */
235 void __init fdt_init_reserved_mem(void)
236 {
237         int i;
238
239         /* check for overlapping reserved regions */
240         __rmem_check_for_overlap();
241
242         for (i = 0; i < reserved_mem_count; i++) {
243                 struct reserved_mem *rmem = &reserved_mem[i];
244                 unsigned long node = rmem->fdt_node;
245                 int len;
246                 const __be32 *prop;
247                 int err = 0;
248
249                 prop = of_get_flat_dt_prop(node, "phandle", &len);
250                 if (!prop)
251                         prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
252                 if (prop)
253                         rmem->phandle = of_read_number(prop, len/4);
254
255                 if (rmem->size == 0)
256                         err = __reserved_mem_alloc_size(node, rmem->name,
257                                                  &rmem->base, &rmem->size);
258                 if (err == 0)
259                         __reserved_mem_init_node(rmem);
260         }
261 }
262
263 static inline struct reserved_mem *__find_rmem(struct device_node *node)
264 {
265         unsigned int i;
266
267         if (!node->phandle)
268                 return NULL;
269
270         for (i = 0; i < reserved_mem_count; i++)
271                 if (reserved_mem[i].phandle == node->phandle)
272                         return &reserved_mem[i];
273         return NULL;
274 }
275
276 struct rmem_assigned_device {
277         struct device *dev;
278         struct reserved_mem *rmem;
279         struct list_head list;
280 };
281
282 static LIST_HEAD(of_rmem_assigned_device_list);
283 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
284
285 /**
286  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
287  *                                        given device
288  * @dev:        Pointer to the device to configure
289  * @np:         Pointer to the device_node with 'reserved-memory' property
290  * @idx:        Index of selected region
291  *
292  * This function assigns respective DMA-mapping operations based on reserved
293  * memory region specified by 'memory-region' property in @np node to the @dev
294  * device. When driver needs to use more than one reserved memory region, it
295  * should allocate child devices and initialize regions by name for each of
296  * child device.
297  *
298  * Returns error code or zero on success.
299  */
300 int of_reserved_mem_device_init_by_idx(struct device *dev,
301                                        struct device_node *np, int idx)
302 {
303         struct rmem_assigned_device *rd;
304         struct device_node *target;
305         struct reserved_mem *rmem;
306         int ret;
307
308         if (!np || !dev)
309                 return -EINVAL;
310
311         target = of_parse_phandle(np, "memory-region", idx);
312         if (!target)
313                 return -ENODEV;
314
315         rmem = __find_rmem(target);
316         of_node_put(target);
317
318         if (!rmem || !rmem->ops || !rmem->ops->device_init)
319                 return -EINVAL;
320
321         rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
322         if (!rd)
323                 return -ENOMEM;
324
325         ret = rmem->ops->device_init(rmem, dev);
326         if (ret == 0) {
327                 rd->dev = dev;
328                 rd->rmem = rmem;
329
330                 mutex_lock(&of_rmem_assigned_device_mutex);
331                 list_add(&rd->list, &of_rmem_assigned_device_list);
332                 mutex_unlock(&of_rmem_assigned_device_mutex);
333
334                 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
335         } else {
336                 kfree(rd);
337         }
338
339         return ret;
340 }
341 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
342
343 /**
344  * of_reserved_mem_device_release() - release reserved memory device structures
345  * @dev:        Pointer to the device to deconfigure
346  *
347  * This function releases structures allocated for memory region handling for
348  * the given device.
349  */
350 void of_reserved_mem_device_release(struct device *dev)
351 {
352         struct rmem_assigned_device *rd;
353         struct reserved_mem *rmem = NULL;
354
355         mutex_lock(&of_rmem_assigned_device_mutex);
356         list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
357                 if (rd->dev == dev) {
358                         rmem = rd->rmem;
359                         list_del(&rd->list);
360                         kfree(rd);
361                         break;
362                 }
363         }
364         mutex_unlock(&of_rmem_assigned_device_mutex);
365
366         if (!rmem || !rmem->ops || !rmem->ops->device_release)
367                 return;
368
369         rmem->ops->device_release(rmem, dev);
370 }
371 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
372
373 /**
374  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
375  * @np:         node pointer of the desired reserved-memory region
376  *
377  * This function allows drivers to acquire a reference to the reserved_mem
378  * struct based on a device node handle.
379  *
380  * Returns a reserved_mem reference, or NULL on error.
381  */
382 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
383 {
384         const char *name;
385         int i;
386
387         if (!np->full_name)
388                 return NULL;
389
390         name = kbasename(np->full_name);
391         for (i = 0; i < reserved_mem_count; i++)
392                 if (!strcmp(reserved_mem[i].name, name))
393                         return &reserved_mem[i];
394
395         return NULL;
396 }
397 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);