Merge tag 'tty-5.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[platform/kernel/linux-rpi.git] / drivers / of / of_reserved_mem.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *              http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11
12 #define pr_fmt(fmt)     "OF: reserved mem: " fmt
13
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24
25 #define MAX_RESERVED_REGIONS    64
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
28
29 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
30         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
31         phys_addr_t *res_base)
32 {
33         phys_addr_t base;
34
35         end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
36         align = !align ? SMP_CACHE_BYTES : align;
37         base = memblock_find_in_range(start, end, size, align);
38         if (!base)
39                 return -ENOMEM;
40
41         *res_base = base;
42         if (nomap)
43                 return memblock_remove(base, size);
44
45         return memblock_reserve(base, size);
46 }
47
48 /**
49  * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
50  */
51 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
52                                       phys_addr_t base, phys_addr_t size)
53 {
54         struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
55
56         if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
57                 pr_err("not enough space for all defined regions.\n");
58                 return;
59         }
60
61         rmem->fdt_node = node;
62         rmem->name = uname;
63         rmem->base = base;
64         rmem->size = size;
65
66         reserved_mem_count++;
67         return;
68 }
69
70 /**
71  * __reserved_mem_alloc_size() - allocate reserved memory described by
72  *      'size', 'alignment'  and 'alloc-ranges' properties.
73  */
74 static int __init __reserved_mem_alloc_size(unsigned long node,
75         const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
76 {
77         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
78         phys_addr_t start = 0, end = 0;
79         phys_addr_t base = 0, align = 0, size;
80         int len;
81         const __be32 *prop;
82         bool nomap;
83         int ret;
84
85         prop = of_get_flat_dt_prop(node, "size", &len);
86         if (!prop)
87                 return -EINVAL;
88
89         if (len != dt_root_size_cells * sizeof(__be32)) {
90                 pr_err("invalid size property in '%s' node.\n", uname);
91                 return -EINVAL;
92         }
93         size = dt_mem_next_cell(dt_root_size_cells, &prop);
94
95         prop = of_get_flat_dt_prop(node, "alignment", &len);
96         if (prop) {
97                 if (len != dt_root_addr_cells * sizeof(__be32)) {
98                         pr_err("invalid alignment property in '%s' node.\n",
99                                 uname);
100                         return -EINVAL;
101                 }
102                 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
103         }
104
105         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
106
107         /* Need adjust the alignment to satisfy the CMA requirement */
108         if (IS_ENABLED(CONFIG_CMA)
109             && of_flat_dt_is_compatible(node, "shared-dma-pool")
110             && of_get_flat_dt_prop(node, "reusable", NULL)
111             && !nomap) {
112                 unsigned long order =
113                         max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
114
115                 align = max(align, (phys_addr_t)PAGE_SIZE << order);
116         }
117
118         prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
119         if (prop) {
120
121                 if (len % t_len != 0) {
122                         pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
123                                uname);
124                         return -EINVAL;
125                 }
126
127                 base = 0;
128
129                 while (len > 0) {
130                         start = dt_mem_next_cell(dt_root_addr_cells, &prop);
131                         end = start + dt_mem_next_cell(dt_root_size_cells,
132                                                        &prop);
133
134                         ret = early_init_dt_alloc_reserved_memory_arch(size,
135                                         align, start, end, nomap, &base);
136                         if (ret == 0) {
137                                 pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
138                                         uname, &base,
139                                         (unsigned long)size / SZ_1M);
140                                 break;
141                         }
142                         len -= t_len;
143                 }
144
145         } else {
146                 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
147                                                         0, 0, nomap, &base);
148                 if (ret == 0)
149                         pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
150                                 uname, &base, (unsigned long)size / SZ_1M);
151         }
152
153         if (base == 0) {
154                 pr_info("failed to allocate memory for node '%s'\n", uname);
155                 return -ENOMEM;
156         }
157
158         *res_base = base;
159         *res_size = size;
160
161         return 0;
162 }
163
164 static const struct of_device_id __rmem_of_table_sentinel
165         __used __section("__reservedmem_of_table_end");
166
167 /**
168  * __reserved_mem_init_node() - call region specific reserved memory init code
169  */
170 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
171 {
172         extern const struct of_device_id __reservedmem_of_table[];
173         const struct of_device_id *i;
174         int ret = -ENOENT;
175
176         for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
177                 reservedmem_of_init_fn initfn = i->data;
178                 const char *compat = i->compatible;
179
180                 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
181                         continue;
182
183                 ret = initfn(rmem);
184                 if (ret == 0) {
185                         pr_info("initialized node %s, compatible id %s\n",
186                                 rmem->name, compat);
187                         break;
188                 }
189         }
190         return ret;
191 }
192
193 static int __init __rmem_cmp(const void *a, const void *b)
194 {
195         const struct reserved_mem *ra = a, *rb = b;
196
197         if (ra->base < rb->base)
198                 return -1;
199
200         if (ra->base > rb->base)
201                 return 1;
202
203         /*
204          * Put the dynamic allocations (address == 0, size == 0) before static
205          * allocations at address 0x0 so that overlap detection works
206          * correctly.
207          */
208         if (ra->size < rb->size)
209                 return -1;
210         if (ra->size > rb->size)
211                 return 1;
212
213         return 0;
214 }
215
216 static void __init __rmem_check_for_overlap(void)
217 {
218         int i;
219
220         if (reserved_mem_count < 2)
221                 return;
222
223         sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
224              __rmem_cmp, NULL);
225         for (i = 0; i < reserved_mem_count - 1; i++) {
226                 struct reserved_mem *this, *next;
227
228                 this = &reserved_mem[i];
229                 next = &reserved_mem[i + 1];
230
231                 if (this->base + this->size > next->base) {
232                         phys_addr_t this_end, next_end;
233
234                         this_end = this->base + this->size;
235                         next_end = next->base + next->size;
236                         pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
237                                this->name, &this->base, &this_end,
238                                next->name, &next->base, &next_end);
239                 }
240         }
241 }
242
243 /**
244  * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
245  */
246 void __init fdt_init_reserved_mem(void)
247 {
248         int i;
249
250         /* check for overlapping reserved regions */
251         __rmem_check_for_overlap();
252
253         for (i = 0; i < reserved_mem_count; i++) {
254                 struct reserved_mem *rmem = &reserved_mem[i];
255                 unsigned long node = rmem->fdt_node;
256                 int len;
257                 const __be32 *prop;
258                 int err = 0;
259                 bool nomap;
260
261                 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
262                 prop = of_get_flat_dt_prop(node, "phandle", &len);
263                 if (!prop)
264                         prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
265                 if (prop)
266                         rmem->phandle = of_read_number(prop, len/4);
267
268                 if (rmem->size == 0)
269                         err = __reserved_mem_alloc_size(node, rmem->name,
270                                                  &rmem->base, &rmem->size);
271                 if (err == 0) {
272                         err = __reserved_mem_init_node(rmem);
273                         if (err != 0 && err != -ENOENT) {
274                                 pr_info("node %s compatible matching fail\n",
275                                         rmem->name);
276                                 memblock_free(rmem->base, rmem->size);
277                                 if (nomap)
278                                         memblock_add(rmem->base, rmem->size);
279                         }
280                 }
281         }
282 }
283
284 static inline struct reserved_mem *__find_rmem(struct device_node *node)
285 {
286         unsigned int i;
287
288         if (!node->phandle)
289                 return NULL;
290
291         for (i = 0; i < reserved_mem_count; i++)
292                 if (reserved_mem[i].phandle == node->phandle)
293                         return &reserved_mem[i];
294         return NULL;
295 }
296
297 struct rmem_assigned_device {
298         struct device *dev;
299         struct reserved_mem *rmem;
300         struct list_head list;
301 };
302
303 static LIST_HEAD(of_rmem_assigned_device_list);
304 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
305
306 /**
307  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
308  *                                        given device
309  * @dev:        Pointer to the device to configure
310  * @np:         Pointer to the device_node with 'reserved-memory' property
311  * @idx:        Index of selected region
312  *
313  * This function assigns respective DMA-mapping operations based on reserved
314  * memory region specified by 'memory-region' property in @np node to the @dev
315  * device. When driver needs to use more than one reserved memory region, it
316  * should allocate child devices and initialize regions by name for each of
317  * child device.
318  *
319  * Returns error code or zero on success.
320  */
321 int of_reserved_mem_device_init_by_idx(struct device *dev,
322                                        struct device_node *np, int idx)
323 {
324         struct rmem_assigned_device *rd;
325         struct device_node *target;
326         struct reserved_mem *rmem;
327         int ret;
328
329         if (!np || !dev)
330                 return -EINVAL;
331
332         target = of_parse_phandle(np, "memory-region", idx);
333         if (!target)
334                 return -ENODEV;
335
336         if (!of_device_is_available(target)) {
337                 of_node_put(target);
338                 return 0;
339         }
340
341         rmem = __find_rmem(target);
342         of_node_put(target);
343
344         if (!rmem || !rmem->ops || !rmem->ops->device_init)
345                 return -EINVAL;
346
347         rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
348         if (!rd)
349                 return -ENOMEM;
350
351         ret = rmem->ops->device_init(rmem, dev);
352         if (ret == 0) {
353                 rd->dev = dev;
354                 rd->rmem = rmem;
355
356                 mutex_lock(&of_rmem_assigned_device_mutex);
357                 list_add(&rd->list, &of_rmem_assigned_device_list);
358                 mutex_unlock(&of_rmem_assigned_device_mutex);
359
360                 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
361         } else {
362                 kfree(rd);
363         }
364
365         return ret;
366 }
367 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
368
369 /**
370  * of_reserved_mem_device_init_by_name() - assign named reserved memory region
371  *                                         to given device
372  * @dev: pointer to the device to configure
373  * @np: pointer to the device node with 'memory-region' property
374  * @name: name of the selected memory region
375  *
376  * Returns: 0 on success or a negative error-code on failure.
377  */
378 int of_reserved_mem_device_init_by_name(struct device *dev,
379                                         struct device_node *np,
380                                         const char *name)
381 {
382         int idx = of_property_match_string(np, "memory-region-names", name);
383
384         return of_reserved_mem_device_init_by_idx(dev, np, idx);
385 }
386 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
387
388 /**
389  * of_reserved_mem_device_release() - release reserved memory device structures
390  * @dev:        Pointer to the device to deconfigure
391  *
392  * This function releases structures allocated for memory region handling for
393  * the given device.
394  */
395 void of_reserved_mem_device_release(struct device *dev)
396 {
397         struct rmem_assigned_device *rd, *tmp;
398         LIST_HEAD(release_list);
399
400         mutex_lock(&of_rmem_assigned_device_mutex);
401         list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
402                 if (rd->dev == dev)
403                         list_move_tail(&rd->list, &release_list);
404         }
405         mutex_unlock(&of_rmem_assigned_device_mutex);
406
407         list_for_each_entry_safe(rd, tmp, &release_list, list) {
408                 if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
409                         rd->rmem->ops->device_release(rd->rmem, dev);
410
411                 kfree(rd);
412         }
413 }
414 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
415
416 /**
417  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
418  * @np:         node pointer of the desired reserved-memory region
419  *
420  * This function allows drivers to acquire a reference to the reserved_mem
421  * struct based on a device node handle.
422  *
423  * Returns a reserved_mem reference, or NULL on error.
424  */
425 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
426 {
427         const char *name;
428         int i;
429
430         if (!np->full_name)
431                 return NULL;
432
433         name = kbasename(np->full_name);
434         for (i = 0; i < reserved_mem_count; i++)
435                 if (!strcmp(reserved_mem[i].name, name))
436                         return &reserved_mem[i];
437
438         return NULL;
439 }
440 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);