Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[platform/kernel/linux-rpi.git] / drivers / nvmem / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23         struct module           *owner;
24         struct device           dev;
25         int                     stride;
26         int                     word_size;
27         int                     id;
28         struct kref             refcnt;
29         size_t                  size;
30         bool                    read_only;
31         bool                    root_only;
32         int                     flags;
33         enum nvmem_type         type;
34         struct bin_attribute    eeprom;
35         struct device           *base_dev;
36         struct list_head        cells;
37         const struct nvmem_keepout *keepout;
38         unsigned int            nkeepout;
39         nvmem_reg_read_t        reg_read;
40         nvmem_reg_write_t       reg_write;
41         struct gpio_desc        *wp_gpio;
42         void *priv;
43 };
44
45 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
46
47 #define FLAG_COMPAT             BIT(0)
48
49 struct nvmem_cell {
50         const char              *name;
51         int                     offset;
52         int                     bytes;
53         int                     bit_offset;
54         int                     nbits;
55         struct device_node      *np;
56         struct nvmem_device     *nvmem;
57         struct list_head        node;
58 };
59
60 static DEFINE_MUTEX(nvmem_mutex);
61 static DEFINE_IDA(nvmem_ida);
62
63 static DEFINE_MUTEX(nvmem_cell_mutex);
64 static LIST_HEAD(nvmem_cell_tables);
65
66 static DEFINE_MUTEX(nvmem_lookup_mutex);
67 static LIST_HEAD(nvmem_lookup_list);
68
69 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
70
71 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
72                             void *val, size_t bytes)
73 {
74         if (nvmem->reg_read)
75                 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
76
77         return -EINVAL;
78 }
79
80 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
81                              void *val, size_t bytes)
82 {
83         int ret;
84
85         if (nvmem->reg_write) {
86                 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
87                 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
88                 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
89                 return ret;
90         }
91
92         return -EINVAL;
93 }
94
95 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
96                                       unsigned int offset, void *val,
97                                       size_t bytes, int write)
98 {
99
100         unsigned int end = offset + bytes;
101         unsigned int kend, ksize;
102         const struct nvmem_keepout *keepout = nvmem->keepout;
103         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
104         int rc;
105
106         /*
107          * Skip all keepouts before the range being accessed.
108          * Keepouts are sorted.
109          */
110         while ((keepout < keepoutend) && (keepout->end <= offset))
111                 keepout++;
112
113         while ((offset < end) && (keepout < keepoutend)) {
114                 /* Access the valid portion before the keepout. */
115                 if (offset < keepout->start) {
116                         kend = min(end, keepout->start);
117                         ksize = kend - offset;
118                         if (write)
119                                 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
120                         else
121                                 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
122
123                         if (rc)
124                                 return rc;
125
126                         offset += ksize;
127                         val += ksize;
128                 }
129
130                 /*
131                  * Now we're aligned to the start of this keepout zone. Go
132                  * through it.
133                  */
134                 kend = min(end, keepout->end);
135                 ksize = kend - offset;
136                 if (!write)
137                         memset(val, keepout->value, ksize);
138
139                 val += ksize;
140                 offset += ksize;
141                 keepout++;
142         }
143
144         /*
145          * If we ran out of keepouts but there's still stuff to do, send it
146          * down directly
147          */
148         if (offset < end) {
149                 ksize = end - offset;
150                 if (write)
151                         return __nvmem_reg_write(nvmem, offset, val, ksize);
152                 else
153                         return __nvmem_reg_read(nvmem, offset, val, ksize);
154         }
155
156         return 0;
157 }
158
159 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
160                           void *val, size_t bytes)
161 {
162         if (!nvmem->nkeepout)
163                 return __nvmem_reg_read(nvmem, offset, val, bytes);
164
165         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
166 }
167
168 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
169                            void *val, size_t bytes)
170 {
171         if (!nvmem->nkeepout)
172                 return __nvmem_reg_write(nvmem, offset, val, bytes);
173
174         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
175 }
176
177 #ifdef CONFIG_NVMEM_SYSFS
178 static const char * const nvmem_type_str[] = {
179         [NVMEM_TYPE_UNKNOWN] = "Unknown",
180         [NVMEM_TYPE_EEPROM] = "EEPROM",
181         [NVMEM_TYPE_OTP] = "OTP",
182         [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
183         [NVMEM_TYPE_FRAM] = "FRAM",
184 };
185
186 #ifdef CONFIG_DEBUG_LOCK_ALLOC
187 static struct lock_class_key eeprom_lock_key;
188 #endif
189
190 static ssize_t type_show(struct device *dev,
191                          struct device_attribute *attr, char *buf)
192 {
193         struct nvmem_device *nvmem = to_nvmem_device(dev);
194
195         return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
196 }
197
198 static DEVICE_ATTR_RO(type);
199
200 static struct attribute *nvmem_attrs[] = {
201         &dev_attr_type.attr,
202         NULL,
203 };
204
205 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
206                                    struct bin_attribute *attr, char *buf,
207                                    loff_t pos, size_t count)
208 {
209         struct device *dev;
210         struct nvmem_device *nvmem;
211         int rc;
212
213         if (attr->private)
214                 dev = attr->private;
215         else
216                 dev = kobj_to_dev(kobj);
217         nvmem = to_nvmem_device(dev);
218
219         /* Stop the user from reading */
220         if (pos >= nvmem->size)
221                 return 0;
222
223         if (!IS_ALIGNED(pos, nvmem->stride))
224                 return -EINVAL;
225
226         if (count < nvmem->word_size)
227                 return -EINVAL;
228
229         if (pos + count > nvmem->size)
230                 count = nvmem->size - pos;
231
232         count = round_down(count, nvmem->word_size);
233
234         if (!nvmem->reg_read)
235                 return -EPERM;
236
237         rc = nvmem_reg_read(nvmem, pos, buf, count);
238
239         if (rc)
240                 return rc;
241
242         return count;
243 }
244
245 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
246                                     struct bin_attribute *attr, char *buf,
247                                     loff_t pos, size_t count)
248 {
249         struct device *dev;
250         struct nvmem_device *nvmem;
251         int rc;
252
253         if (attr->private)
254                 dev = attr->private;
255         else
256                 dev = kobj_to_dev(kobj);
257         nvmem = to_nvmem_device(dev);
258
259         /* Stop the user from writing */
260         if (pos >= nvmem->size)
261                 return -EFBIG;
262
263         if (!IS_ALIGNED(pos, nvmem->stride))
264                 return -EINVAL;
265
266         if (count < nvmem->word_size)
267                 return -EINVAL;
268
269         if (pos + count > nvmem->size)
270                 count = nvmem->size - pos;
271
272         count = round_down(count, nvmem->word_size);
273
274         if (!nvmem->reg_write)
275                 return -EPERM;
276
277         rc = nvmem_reg_write(nvmem, pos, buf, count);
278
279         if (rc)
280                 return rc;
281
282         return count;
283 }
284
285 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
286 {
287         umode_t mode = 0400;
288
289         if (!nvmem->root_only)
290                 mode |= 0044;
291
292         if (!nvmem->read_only)
293                 mode |= 0200;
294
295         if (!nvmem->reg_write)
296                 mode &= ~0200;
297
298         if (!nvmem->reg_read)
299                 mode &= ~0444;
300
301         return mode;
302 }
303
304 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
305                                          struct bin_attribute *attr, int i)
306 {
307         struct device *dev = kobj_to_dev(kobj);
308         struct nvmem_device *nvmem = to_nvmem_device(dev);
309
310         return nvmem_bin_attr_get_umode(nvmem);
311 }
312
313 /* default read/write permissions */
314 static struct bin_attribute bin_attr_rw_nvmem = {
315         .attr   = {
316                 .name   = "nvmem",
317                 .mode   = 0644,
318         },
319         .read   = bin_attr_nvmem_read,
320         .write  = bin_attr_nvmem_write,
321 };
322
323 static struct bin_attribute *nvmem_bin_attributes[] = {
324         &bin_attr_rw_nvmem,
325         NULL,
326 };
327
328 static const struct attribute_group nvmem_bin_group = {
329         .bin_attrs      = nvmem_bin_attributes,
330         .attrs          = nvmem_attrs,
331         .is_bin_visible = nvmem_bin_attr_is_visible,
332 };
333
334 static const struct attribute_group *nvmem_dev_groups[] = {
335         &nvmem_bin_group,
336         NULL,
337 };
338
339 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
340         .attr   = {
341                 .name   = "eeprom",
342         },
343         .read   = bin_attr_nvmem_read,
344         .write  = bin_attr_nvmem_write,
345 };
346
347 /*
348  * nvmem_setup_compat() - Create an additional binary entry in
349  * drivers sys directory, to be backwards compatible with the older
350  * drivers/misc/eeprom drivers.
351  */
352 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
353                                     const struct nvmem_config *config)
354 {
355         int rval;
356
357         if (!config->compat)
358                 return 0;
359
360         if (!config->base_dev)
361                 return -EINVAL;
362
363         if (config->type == NVMEM_TYPE_FRAM)
364                 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
365
366         nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
367         nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
368         nvmem->eeprom.size = nvmem->size;
369 #ifdef CONFIG_DEBUG_LOCK_ALLOC
370         nvmem->eeprom.attr.key = &eeprom_lock_key;
371 #endif
372         nvmem->eeprom.private = &nvmem->dev;
373         nvmem->base_dev = config->base_dev;
374
375         rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
376         if (rval) {
377                 dev_err(&nvmem->dev,
378                         "Failed to create eeprom binary file %d\n", rval);
379                 return rval;
380         }
381
382         nvmem->flags |= FLAG_COMPAT;
383
384         return 0;
385 }
386
387 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
388                               const struct nvmem_config *config)
389 {
390         if (config->compat)
391                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
392 }
393
394 #else /* CONFIG_NVMEM_SYSFS */
395
396 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
397                                     const struct nvmem_config *config)
398 {
399         return -ENOSYS;
400 }
401 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
402                                       const struct nvmem_config *config)
403 {
404 }
405
406 #endif /* CONFIG_NVMEM_SYSFS */
407
408 static void nvmem_release(struct device *dev)
409 {
410         struct nvmem_device *nvmem = to_nvmem_device(dev);
411
412         ida_free(&nvmem_ida, nvmem->id);
413         gpiod_put(nvmem->wp_gpio);
414         kfree(nvmem);
415 }
416
417 static const struct device_type nvmem_provider_type = {
418         .release        = nvmem_release,
419 };
420
421 static struct bus_type nvmem_bus_type = {
422         .name           = "nvmem",
423 };
424
425 static void nvmem_cell_drop(struct nvmem_cell *cell)
426 {
427         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
428         mutex_lock(&nvmem_mutex);
429         list_del(&cell->node);
430         mutex_unlock(&nvmem_mutex);
431         of_node_put(cell->np);
432         kfree_const(cell->name);
433         kfree(cell);
434 }
435
436 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
437 {
438         struct nvmem_cell *cell, *p;
439
440         list_for_each_entry_safe(cell, p, &nvmem->cells, node)
441                 nvmem_cell_drop(cell);
442 }
443
444 static void nvmem_cell_add(struct nvmem_cell *cell)
445 {
446         mutex_lock(&nvmem_mutex);
447         list_add_tail(&cell->node, &cell->nvmem->cells);
448         mutex_unlock(&nvmem_mutex);
449         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
450 }
451
452 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
453                                         const struct nvmem_cell_info *info,
454                                         struct nvmem_cell *cell)
455 {
456         cell->nvmem = nvmem;
457         cell->offset = info->offset;
458         cell->bytes = info->bytes;
459         cell->name = info->name;
460
461         cell->bit_offset = info->bit_offset;
462         cell->nbits = info->nbits;
463
464         if (cell->nbits)
465                 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
466                                            BITS_PER_BYTE);
467
468         if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
469                 dev_err(&nvmem->dev,
470                         "cell %s unaligned to nvmem stride %d\n",
471                         cell->name ?: "<unknown>", nvmem->stride);
472                 return -EINVAL;
473         }
474
475         return 0;
476 }
477
478 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
479                                 const struct nvmem_cell_info *info,
480                                 struct nvmem_cell *cell)
481 {
482         int err;
483
484         err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
485         if (err)
486                 return err;
487
488         cell->name = kstrdup_const(info->name, GFP_KERNEL);
489         if (!cell->name)
490                 return -ENOMEM;
491
492         return 0;
493 }
494
495 /**
496  * nvmem_add_cells() - Add cell information to an nvmem device
497  *
498  * @nvmem: nvmem device to add cells to.
499  * @info: nvmem cell info to add to the device
500  * @ncells: number of cells in info
501  *
502  * Return: 0 or negative error code on failure.
503  */
504 static int nvmem_add_cells(struct nvmem_device *nvmem,
505                     const struct nvmem_cell_info *info,
506                     int ncells)
507 {
508         struct nvmem_cell **cells;
509         int i, rval;
510
511         cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
512         if (!cells)
513                 return -ENOMEM;
514
515         for (i = 0; i < ncells; i++) {
516                 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
517                 if (!cells[i]) {
518                         rval = -ENOMEM;
519                         goto err;
520                 }
521
522                 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
523                 if (rval) {
524                         kfree(cells[i]);
525                         goto err;
526                 }
527
528                 nvmem_cell_add(cells[i]);
529         }
530
531         /* remove tmp array */
532         kfree(cells);
533
534         return 0;
535 err:
536         while (i--)
537                 nvmem_cell_drop(cells[i]);
538
539         kfree(cells);
540
541         return rval;
542 }
543
544 /**
545  * nvmem_register_notifier() - Register a notifier block for nvmem events.
546  *
547  * @nb: notifier block to be called on nvmem events.
548  *
549  * Return: 0 on success, negative error number on failure.
550  */
551 int nvmem_register_notifier(struct notifier_block *nb)
552 {
553         return blocking_notifier_chain_register(&nvmem_notifier, nb);
554 }
555 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
556
557 /**
558  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
559  *
560  * @nb: notifier block to be unregistered.
561  *
562  * Return: 0 on success, negative error number on failure.
563  */
564 int nvmem_unregister_notifier(struct notifier_block *nb)
565 {
566         return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
567 }
568 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
569
570 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
571 {
572         const struct nvmem_cell_info *info;
573         struct nvmem_cell_table *table;
574         struct nvmem_cell *cell;
575         int rval = 0, i;
576
577         mutex_lock(&nvmem_cell_mutex);
578         list_for_each_entry(table, &nvmem_cell_tables, node) {
579                 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
580                         for (i = 0; i < table->ncells; i++) {
581                                 info = &table->cells[i];
582
583                                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
584                                 if (!cell) {
585                                         rval = -ENOMEM;
586                                         goto out;
587                                 }
588
589                                 rval = nvmem_cell_info_to_nvmem_cell(nvmem,
590                                                                      info,
591                                                                      cell);
592                                 if (rval) {
593                                         kfree(cell);
594                                         goto out;
595                                 }
596
597                                 nvmem_cell_add(cell);
598                         }
599                 }
600         }
601
602 out:
603         mutex_unlock(&nvmem_cell_mutex);
604         return rval;
605 }
606
607 static struct nvmem_cell *
608 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
609 {
610         struct nvmem_cell *iter, *cell = NULL;
611
612         mutex_lock(&nvmem_mutex);
613         list_for_each_entry(iter, &nvmem->cells, node) {
614                 if (strcmp(cell_id, iter->name) == 0) {
615                         cell = iter;
616                         break;
617                 }
618         }
619         mutex_unlock(&nvmem_mutex);
620
621         return cell;
622 }
623
624 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
625 {
626         unsigned int cur = 0;
627         const struct nvmem_keepout *keepout = nvmem->keepout;
628         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
629
630         while (keepout < keepoutend) {
631                 /* Ensure keepouts are sorted and don't overlap. */
632                 if (keepout->start < cur) {
633                         dev_err(&nvmem->dev,
634                                 "Keepout regions aren't sorted or overlap.\n");
635
636                         return -ERANGE;
637                 }
638
639                 if (keepout->end < keepout->start) {
640                         dev_err(&nvmem->dev,
641                                 "Invalid keepout region.\n");
642
643                         return -EINVAL;
644                 }
645
646                 /*
647                  * Validate keepouts (and holes between) don't violate
648                  * word_size constraints.
649                  */
650                 if ((keepout->end - keepout->start < nvmem->word_size) ||
651                     ((keepout->start != cur) &&
652                      (keepout->start - cur < nvmem->word_size))) {
653
654                         dev_err(&nvmem->dev,
655                                 "Keepout regions violate word_size constraints.\n");
656
657                         return -ERANGE;
658                 }
659
660                 /* Validate keepouts don't violate stride (alignment). */
661                 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
662                     !IS_ALIGNED(keepout->end, nvmem->stride)) {
663
664                         dev_err(&nvmem->dev,
665                                 "Keepout regions violate stride.\n");
666
667                         return -EINVAL;
668                 }
669
670                 cur = keepout->end;
671                 keepout++;
672         }
673
674         return 0;
675 }
676
677 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
678 {
679         struct device_node *parent, *child;
680         struct device *dev = &nvmem->dev;
681         struct nvmem_cell *cell;
682         const __be32 *addr;
683         int len;
684
685         parent = dev->of_node;
686
687         for_each_child_of_node(parent, child) {
688                 addr = of_get_property(child, "reg", &len);
689                 if (!addr)
690                         continue;
691                 if (len < 2 * sizeof(u32)) {
692                         dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
693                         of_node_put(child);
694                         return -EINVAL;
695                 }
696
697                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
698                 if (!cell) {
699                         of_node_put(child);
700                         return -ENOMEM;
701                 }
702
703                 cell->nvmem = nvmem;
704                 cell->offset = be32_to_cpup(addr++);
705                 cell->bytes = be32_to_cpup(addr);
706                 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
707
708                 addr = of_get_property(child, "bits", &len);
709                 if (addr && len == (2 * sizeof(u32))) {
710                         cell->bit_offset = be32_to_cpup(addr++);
711                         cell->nbits = be32_to_cpup(addr);
712                 }
713
714                 if (cell->nbits)
715                         cell->bytes = DIV_ROUND_UP(
716                                         cell->nbits + cell->bit_offset,
717                                         BITS_PER_BYTE);
718
719                 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
720                         dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
721                                 cell->name, nvmem->stride);
722                         /* Cells already added will be freed later. */
723                         kfree_const(cell->name);
724                         kfree(cell);
725                         of_node_put(child);
726                         return -EINVAL;
727                 }
728
729                 cell->np = of_node_get(child);
730                 nvmem_cell_add(cell);
731         }
732
733         return 0;
734 }
735
736 /**
737  * nvmem_register() - Register a nvmem device for given nvmem_config.
738  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
739  *
740  * @config: nvmem device configuration with which nvmem device is created.
741  *
742  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
743  * on success.
744  */
745
746 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
747 {
748         struct nvmem_device *nvmem;
749         int rval;
750
751         if (!config->dev)
752                 return ERR_PTR(-EINVAL);
753
754         if (!config->reg_read && !config->reg_write)
755                 return ERR_PTR(-EINVAL);
756
757         nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
758         if (!nvmem)
759                 return ERR_PTR(-ENOMEM);
760
761         rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
762         if (rval < 0) {
763                 kfree(nvmem);
764                 return ERR_PTR(rval);
765         }
766
767         if (config->wp_gpio)
768                 nvmem->wp_gpio = config->wp_gpio;
769         else
770                 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
771                                                     GPIOD_OUT_HIGH);
772         if (IS_ERR(nvmem->wp_gpio)) {
773                 ida_free(&nvmem_ida, nvmem->id);
774                 rval = PTR_ERR(nvmem->wp_gpio);
775                 kfree(nvmem);
776                 return ERR_PTR(rval);
777         }
778
779         kref_init(&nvmem->refcnt);
780         INIT_LIST_HEAD(&nvmem->cells);
781
782         nvmem->id = rval;
783         nvmem->owner = config->owner;
784         if (!nvmem->owner && config->dev->driver)
785                 nvmem->owner = config->dev->driver->owner;
786         nvmem->stride = config->stride ?: 1;
787         nvmem->word_size = config->word_size ?: 1;
788         nvmem->size = config->size;
789         nvmem->dev.type = &nvmem_provider_type;
790         nvmem->dev.bus = &nvmem_bus_type;
791         nvmem->dev.parent = config->dev;
792         nvmem->root_only = config->root_only;
793         nvmem->priv = config->priv;
794         nvmem->type = config->type;
795         nvmem->reg_read = config->reg_read;
796         nvmem->reg_write = config->reg_write;
797         nvmem->keepout = config->keepout;
798         nvmem->nkeepout = config->nkeepout;
799         if (config->of_node)
800                 nvmem->dev.of_node = config->of_node;
801         else if (!config->no_of_node)
802                 nvmem->dev.of_node = config->dev->of_node;
803
804         switch (config->id) {
805         case NVMEM_DEVID_NONE:
806                 dev_set_name(&nvmem->dev, "%s", config->name);
807                 break;
808         case NVMEM_DEVID_AUTO:
809                 dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
810                 break;
811         default:
812                 dev_set_name(&nvmem->dev, "%s%d",
813                              config->name ? : "nvmem",
814                              config->name ? config->id : nvmem->id);
815                 break;
816         }
817
818         nvmem->read_only = device_property_present(config->dev, "read-only") ||
819                            config->read_only || !nvmem->reg_write;
820
821 #ifdef CONFIG_NVMEM_SYSFS
822         nvmem->dev.groups = nvmem_dev_groups;
823 #endif
824
825         if (nvmem->nkeepout) {
826                 rval = nvmem_validate_keepouts(nvmem);
827                 if (rval) {
828                         ida_free(&nvmem_ida, nvmem->id);
829                         kfree(nvmem);
830                         return ERR_PTR(rval);
831                 }
832         }
833
834         dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
835
836         rval = device_register(&nvmem->dev);
837         if (rval)
838                 goto err_put_device;
839
840         if (config->compat) {
841                 rval = nvmem_sysfs_setup_compat(nvmem, config);
842                 if (rval)
843                         goto err_device_del;
844         }
845
846         if (config->cells) {
847                 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
848                 if (rval)
849                         goto err_teardown_compat;
850         }
851
852         rval = nvmem_add_cells_from_table(nvmem);
853         if (rval)
854                 goto err_remove_cells;
855
856         rval = nvmem_add_cells_from_of(nvmem);
857         if (rval)
858                 goto err_remove_cells;
859
860         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
861
862         return nvmem;
863
864 err_remove_cells:
865         nvmem_device_remove_all_cells(nvmem);
866 err_teardown_compat:
867         if (config->compat)
868                 nvmem_sysfs_remove_compat(nvmem, config);
869 err_device_del:
870         device_del(&nvmem->dev);
871 err_put_device:
872         put_device(&nvmem->dev);
873
874         return ERR_PTR(rval);
875 }
876 EXPORT_SYMBOL_GPL(nvmem_register);
877
878 static void nvmem_device_release(struct kref *kref)
879 {
880         struct nvmem_device *nvmem;
881
882         nvmem = container_of(kref, struct nvmem_device, refcnt);
883
884         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
885
886         if (nvmem->flags & FLAG_COMPAT)
887                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
888
889         nvmem_device_remove_all_cells(nvmem);
890         device_unregister(&nvmem->dev);
891 }
892
893 /**
894  * nvmem_unregister() - Unregister previously registered nvmem device
895  *
896  * @nvmem: Pointer to previously registered nvmem device.
897  */
898 void nvmem_unregister(struct nvmem_device *nvmem)
899 {
900         kref_put(&nvmem->refcnt, nvmem_device_release);
901 }
902 EXPORT_SYMBOL_GPL(nvmem_unregister);
903
904 static void devm_nvmem_release(struct device *dev, void *res)
905 {
906         nvmem_unregister(*(struct nvmem_device **)res);
907 }
908
909 /**
910  * devm_nvmem_register() - Register a managed nvmem device for given
911  * nvmem_config.
912  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
913  *
914  * @dev: Device that uses the nvmem device.
915  * @config: nvmem device configuration with which nvmem device is created.
916  *
917  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
918  * on success.
919  */
920 struct nvmem_device *devm_nvmem_register(struct device *dev,
921                                          const struct nvmem_config *config)
922 {
923         struct nvmem_device **ptr, *nvmem;
924
925         ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
926         if (!ptr)
927                 return ERR_PTR(-ENOMEM);
928
929         nvmem = nvmem_register(config);
930
931         if (!IS_ERR(nvmem)) {
932                 *ptr = nvmem;
933                 devres_add(dev, ptr);
934         } else {
935                 devres_free(ptr);
936         }
937
938         return nvmem;
939 }
940 EXPORT_SYMBOL_GPL(devm_nvmem_register);
941
942 static int devm_nvmem_match(struct device *dev, void *res, void *data)
943 {
944         struct nvmem_device **r = res;
945
946         return *r == data;
947 }
948
949 /**
950  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
951  * device.
952  *
953  * @dev: Device that uses the nvmem device.
954  * @nvmem: Pointer to previously registered nvmem device.
955  *
956  * Return: Will be negative on error or zero on success.
957  */
958 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
959 {
960         return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
961 }
962 EXPORT_SYMBOL(devm_nvmem_unregister);
963
964 static struct nvmem_device *__nvmem_device_get(void *data,
965                         int (*match)(struct device *dev, const void *data))
966 {
967         struct nvmem_device *nvmem = NULL;
968         struct device *dev;
969
970         mutex_lock(&nvmem_mutex);
971         dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
972         if (dev)
973                 nvmem = to_nvmem_device(dev);
974         mutex_unlock(&nvmem_mutex);
975         if (!nvmem)
976                 return ERR_PTR(-EPROBE_DEFER);
977
978         if (!try_module_get(nvmem->owner)) {
979                 dev_err(&nvmem->dev,
980                         "could not increase module refcount for cell %s\n",
981                         nvmem_dev_name(nvmem));
982
983                 put_device(&nvmem->dev);
984                 return ERR_PTR(-EINVAL);
985         }
986
987         kref_get(&nvmem->refcnt);
988
989         return nvmem;
990 }
991
992 static void __nvmem_device_put(struct nvmem_device *nvmem)
993 {
994         put_device(&nvmem->dev);
995         module_put(nvmem->owner);
996         kref_put(&nvmem->refcnt, nvmem_device_release);
997 }
998
999 #if IS_ENABLED(CONFIG_OF)
1000 /**
1001  * of_nvmem_device_get() - Get nvmem device from a given id
1002  *
1003  * @np: Device tree node that uses the nvmem device.
1004  * @id: nvmem name from nvmem-names property.
1005  *
1006  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1007  * on success.
1008  */
1009 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1010 {
1011
1012         struct device_node *nvmem_np;
1013         struct nvmem_device *nvmem;
1014         int index = 0;
1015
1016         if (id)
1017                 index = of_property_match_string(np, "nvmem-names", id);
1018
1019         nvmem_np = of_parse_phandle(np, "nvmem", index);
1020         if (!nvmem_np)
1021                 return ERR_PTR(-ENOENT);
1022
1023         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1024         of_node_put(nvmem_np);
1025         return nvmem;
1026 }
1027 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1028 #endif
1029
1030 /**
1031  * nvmem_device_get() - Get nvmem device from a given id
1032  *
1033  * @dev: Device that uses the nvmem device.
1034  * @dev_name: name of the requested nvmem device.
1035  *
1036  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1037  * on success.
1038  */
1039 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1040 {
1041         if (dev->of_node) { /* try dt first */
1042                 struct nvmem_device *nvmem;
1043
1044                 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1045
1046                 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1047                         return nvmem;
1048
1049         }
1050
1051         return __nvmem_device_get((void *)dev_name, device_match_name);
1052 }
1053 EXPORT_SYMBOL_GPL(nvmem_device_get);
1054
1055 /**
1056  * nvmem_device_find() - Find nvmem device with matching function
1057  *
1058  * @data: Data to pass to match function
1059  * @match: Callback function to check device
1060  *
1061  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1062  * on success.
1063  */
1064 struct nvmem_device *nvmem_device_find(void *data,
1065                         int (*match)(struct device *dev, const void *data))
1066 {
1067         return __nvmem_device_get(data, match);
1068 }
1069 EXPORT_SYMBOL_GPL(nvmem_device_find);
1070
1071 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1072 {
1073         struct nvmem_device **nvmem = res;
1074
1075         if (WARN_ON(!nvmem || !*nvmem))
1076                 return 0;
1077
1078         return *nvmem == data;
1079 }
1080
1081 static void devm_nvmem_device_release(struct device *dev, void *res)
1082 {
1083         nvmem_device_put(*(struct nvmem_device **)res);
1084 }
1085
1086 /**
1087  * devm_nvmem_device_put() - put alredy got nvmem device
1088  *
1089  * @dev: Device that uses the nvmem device.
1090  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1091  * that needs to be released.
1092  */
1093 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1094 {
1095         int ret;
1096
1097         ret = devres_release(dev, devm_nvmem_device_release,
1098                              devm_nvmem_device_match, nvmem);
1099
1100         WARN_ON(ret);
1101 }
1102 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1103
1104 /**
1105  * nvmem_device_put() - put alredy got nvmem device
1106  *
1107  * @nvmem: pointer to nvmem device that needs to be released.
1108  */
1109 void nvmem_device_put(struct nvmem_device *nvmem)
1110 {
1111         __nvmem_device_put(nvmem);
1112 }
1113 EXPORT_SYMBOL_GPL(nvmem_device_put);
1114
1115 /**
1116  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1117  *
1118  * @dev: Device that requests the nvmem device.
1119  * @id: name id for the requested nvmem device.
1120  *
1121  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1122  * on success.  The nvmem_cell will be freed by the automatically once the
1123  * device is freed.
1124  */
1125 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1126 {
1127         struct nvmem_device **ptr, *nvmem;
1128
1129         ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1130         if (!ptr)
1131                 return ERR_PTR(-ENOMEM);
1132
1133         nvmem = nvmem_device_get(dev, id);
1134         if (!IS_ERR(nvmem)) {
1135                 *ptr = nvmem;
1136                 devres_add(dev, ptr);
1137         } else {
1138                 devres_free(ptr);
1139         }
1140
1141         return nvmem;
1142 }
1143 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1144
1145 static struct nvmem_cell *
1146 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1147 {
1148         struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1149         struct nvmem_cell_lookup *lookup;
1150         struct nvmem_device *nvmem;
1151         const char *dev_id;
1152
1153         if (!dev)
1154                 return ERR_PTR(-EINVAL);
1155
1156         dev_id = dev_name(dev);
1157
1158         mutex_lock(&nvmem_lookup_mutex);
1159
1160         list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1161                 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1162                     (strcmp(lookup->con_id, con_id) == 0)) {
1163                         /* This is the right entry. */
1164                         nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1165                                                    device_match_name);
1166                         if (IS_ERR(nvmem)) {
1167                                 /* Provider may not be registered yet. */
1168                                 cell = ERR_CAST(nvmem);
1169                                 break;
1170                         }
1171
1172                         cell = nvmem_find_cell_by_name(nvmem,
1173                                                        lookup->cell_name);
1174                         if (!cell) {
1175                                 __nvmem_device_put(nvmem);
1176                                 cell = ERR_PTR(-ENOENT);
1177                         }
1178                         break;
1179                 }
1180         }
1181
1182         mutex_unlock(&nvmem_lookup_mutex);
1183         return cell;
1184 }
1185
1186 #if IS_ENABLED(CONFIG_OF)
1187 static struct nvmem_cell *
1188 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1189 {
1190         struct nvmem_cell *iter, *cell = NULL;
1191
1192         mutex_lock(&nvmem_mutex);
1193         list_for_each_entry(iter, &nvmem->cells, node) {
1194                 if (np == iter->np) {
1195                         cell = iter;
1196                         break;
1197                 }
1198         }
1199         mutex_unlock(&nvmem_mutex);
1200
1201         return cell;
1202 }
1203
1204 /**
1205  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1206  *
1207  * @np: Device tree node that uses the nvmem cell.
1208  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1209  *      for the cell at index 0 (the lone cell with no accompanying
1210  *      nvmem-cell-names property).
1211  *
1212  * Return: Will be an ERR_PTR() on error or a valid pointer
1213  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1214  * nvmem_cell_put().
1215  */
1216 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1217 {
1218         struct device_node *cell_np, *nvmem_np;
1219         struct nvmem_device *nvmem;
1220         struct nvmem_cell *cell;
1221         int index = 0;
1222
1223         /* if cell name exists, find index to the name */
1224         if (id)
1225                 index = of_property_match_string(np, "nvmem-cell-names", id);
1226
1227         cell_np = of_parse_phandle(np, "nvmem-cells", index);
1228         if (!cell_np)
1229                 return ERR_PTR(-ENOENT);
1230
1231         nvmem_np = of_get_next_parent(cell_np);
1232         if (!nvmem_np)
1233                 return ERR_PTR(-EINVAL);
1234
1235         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1236         of_node_put(nvmem_np);
1237         if (IS_ERR(nvmem))
1238                 return ERR_CAST(nvmem);
1239
1240         cell = nvmem_find_cell_by_node(nvmem, cell_np);
1241         if (!cell) {
1242                 __nvmem_device_put(nvmem);
1243                 return ERR_PTR(-ENOENT);
1244         }
1245
1246         return cell;
1247 }
1248 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1249 #endif
1250
1251 /**
1252  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1253  *
1254  * @dev: Device that requests the nvmem cell.
1255  * @id: nvmem cell name to get (this corresponds with the name from the
1256  *      nvmem-cell-names property for DT systems and with the con_id from
1257  *      the lookup entry for non-DT systems).
1258  *
1259  * Return: Will be an ERR_PTR() on error or a valid pointer
1260  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1261  * nvmem_cell_put().
1262  */
1263 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1264 {
1265         struct nvmem_cell *cell;
1266
1267         if (dev->of_node) { /* try dt first */
1268                 cell = of_nvmem_cell_get(dev->of_node, id);
1269                 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1270                         return cell;
1271         }
1272
1273         /* NULL cell id only allowed for device tree; invalid otherwise */
1274         if (!id)
1275                 return ERR_PTR(-EINVAL);
1276
1277         return nvmem_cell_get_from_lookup(dev, id);
1278 }
1279 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1280
1281 static void devm_nvmem_cell_release(struct device *dev, void *res)
1282 {
1283         nvmem_cell_put(*(struct nvmem_cell **)res);
1284 }
1285
1286 /**
1287  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1288  *
1289  * @dev: Device that requests the nvmem cell.
1290  * @id: nvmem cell name id to get.
1291  *
1292  * Return: Will be an ERR_PTR() on error or a valid pointer
1293  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1294  * automatically once the device is freed.
1295  */
1296 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1297 {
1298         struct nvmem_cell **ptr, *cell;
1299
1300         ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1301         if (!ptr)
1302                 return ERR_PTR(-ENOMEM);
1303
1304         cell = nvmem_cell_get(dev, id);
1305         if (!IS_ERR(cell)) {
1306                 *ptr = cell;
1307                 devres_add(dev, ptr);
1308         } else {
1309                 devres_free(ptr);
1310         }
1311
1312         return cell;
1313 }
1314 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1315
1316 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1317 {
1318         struct nvmem_cell **c = res;
1319
1320         if (WARN_ON(!c || !*c))
1321                 return 0;
1322
1323         return *c == data;
1324 }
1325
1326 /**
1327  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1328  * from devm_nvmem_cell_get.
1329  *
1330  * @dev: Device that requests the nvmem cell.
1331  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1332  */
1333 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1334 {
1335         int ret;
1336
1337         ret = devres_release(dev, devm_nvmem_cell_release,
1338                                 devm_nvmem_cell_match, cell);
1339
1340         WARN_ON(ret);
1341 }
1342 EXPORT_SYMBOL(devm_nvmem_cell_put);
1343
1344 /**
1345  * nvmem_cell_put() - Release previously allocated nvmem cell.
1346  *
1347  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1348  */
1349 void nvmem_cell_put(struct nvmem_cell *cell)
1350 {
1351         struct nvmem_device *nvmem = cell->nvmem;
1352
1353         __nvmem_device_put(nvmem);
1354 }
1355 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1356
1357 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1358 {
1359         u8 *p, *b;
1360         int i, extra, bit_offset = cell->bit_offset;
1361
1362         p = b = buf;
1363         if (bit_offset) {
1364                 /* First shift */
1365                 *b++ >>= bit_offset;
1366
1367                 /* setup rest of the bytes if any */
1368                 for (i = 1; i < cell->bytes; i++) {
1369                         /* Get bits from next byte and shift them towards msb */
1370                         *p |= *b << (BITS_PER_BYTE - bit_offset);
1371
1372                         p = b;
1373                         *b++ >>= bit_offset;
1374                 }
1375         } else {
1376                 /* point to the msb */
1377                 p += cell->bytes - 1;
1378         }
1379
1380         /* result fits in less bytes */
1381         extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1382         while (--extra >= 0)
1383                 *p-- = 0;
1384
1385         /* clear msb bits if any leftover in the last byte */
1386         *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1387 }
1388
1389 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1390                       struct nvmem_cell *cell,
1391                       void *buf, size_t *len)
1392 {
1393         int rc;
1394
1395         rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1396
1397         if (rc)
1398                 return rc;
1399
1400         /* shift bits in-place */
1401         if (cell->bit_offset || cell->nbits)
1402                 nvmem_shift_read_buffer_in_place(cell, buf);
1403
1404         if (len)
1405                 *len = cell->bytes;
1406
1407         return 0;
1408 }
1409
1410 /**
1411  * nvmem_cell_read() - Read a given nvmem cell
1412  *
1413  * @cell: nvmem cell to be read.
1414  * @len: pointer to length of cell which will be populated on successful read;
1415  *       can be NULL.
1416  *
1417  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1418  * buffer should be freed by the consumer with a kfree().
1419  */
1420 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1421 {
1422         struct nvmem_device *nvmem = cell->nvmem;
1423         u8 *buf;
1424         int rc;
1425
1426         if (!nvmem)
1427                 return ERR_PTR(-EINVAL);
1428
1429         buf = kzalloc(cell->bytes, GFP_KERNEL);
1430         if (!buf)
1431                 return ERR_PTR(-ENOMEM);
1432
1433         rc = __nvmem_cell_read(nvmem, cell, buf, len);
1434         if (rc) {
1435                 kfree(buf);
1436                 return ERR_PTR(rc);
1437         }
1438
1439         return buf;
1440 }
1441 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1442
1443 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1444                                              u8 *_buf, int len)
1445 {
1446         struct nvmem_device *nvmem = cell->nvmem;
1447         int i, rc, nbits, bit_offset = cell->bit_offset;
1448         u8 v, *p, *buf, *b, pbyte, pbits;
1449
1450         nbits = cell->nbits;
1451         buf = kzalloc(cell->bytes, GFP_KERNEL);
1452         if (!buf)
1453                 return ERR_PTR(-ENOMEM);
1454
1455         memcpy(buf, _buf, len);
1456         p = b = buf;
1457
1458         if (bit_offset) {
1459                 pbyte = *b;
1460                 *b <<= bit_offset;
1461
1462                 /* setup the first byte with lsb bits from nvmem */
1463                 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1464                 if (rc)
1465                         goto err;
1466                 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1467
1468                 /* setup rest of the byte if any */
1469                 for (i = 1; i < cell->bytes; i++) {
1470                         /* Get last byte bits and shift them towards lsb */
1471                         pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1472                         pbyte = *b;
1473                         p = b;
1474                         *b <<= bit_offset;
1475                         *b++ |= pbits;
1476                 }
1477         }
1478
1479         /* if it's not end on byte boundary */
1480         if ((nbits + bit_offset) % BITS_PER_BYTE) {
1481                 /* setup the last byte with msb bits from nvmem */
1482                 rc = nvmem_reg_read(nvmem,
1483                                     cell->offset + cell->bytes - 1, &v, 1);
1484                 if (rc)
1485                         goto err;
1486                 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1487
1488         }
1489
1490         return buf;
1491 err:
1492         kfree(buf);
1493         return ERR_PTR(rc);
1494 }
1495
1496 /**
1497  * nvmem_cell_write() - Write to a given nvmem cell
1498  *
1499  * @cell: nvmem cell to be written.
1500  * @buf: Buffer to be written.
1501  * @len: length of buffer to be written to nvmem cell.
1502  *
1503  * Return: length of bytes written or negative on failure.
1504  */
1505 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1506 {
1507         struct nvmem_device *nvmem = cell->nvmem;
1508         int rc;
1509
1510         if (!nvmem || nvmem->read_only ||
1511             (cell->bit_offset == 0 && len != cell->bytes))
1512                 return -EINVAL;
1513
1514         if (cell->bit_offset || cell->nbits) {
1515                 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1516                 if (IS_ERR(buf))
1517                         return PTR_ERR(buf);
1518         }
1519
1520         rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1521
1522         /* free the tmp buffer */
1523         if (cell->bit_offset || cell->nbits)
1524                 kfree(buf);
1525
1526         if (rc)
1527                 return rc;
1528
1529         return len;
1530 }
1531 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1532
1533 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1534                                   void *val, size_t count)
1535 {
1536         struct nvmem_cell *cell;
1537         void *buf;
1538         size_t len;
1539
1540         cell = nvmem_cell_get(dev, cell_id);
1541         if (IS_ERR(cell))
1542                 return PTR_ERR(cell);
1543
1544         buf = nvmem_cell_read(cell, &len);
1545         if (IS_ERR(buf)) {
1546                 nvmem_cell_put(cell);
1547                 return PTR_ERR(buf);
1548         }
1549         if (len != count) {
1550                 kfree(buf);
1551                 nvmem_cell_put(cell);
1552                 return -EINVAL;
1553         }
1554         memcpy(val, buf, count);
1555         kfree(buf);
1556         nvmem_cell_put(cell);
1557
1558         return 0;
1559 }
1560
1561 /**
1562  * nvmem_cell_read_u8() - Read a cell value as a u8
1563  *
1564  * @dev: Device that requests the nvmem cell.
1565  * @cell_id: Name of nvmem cell to read.
1566  * @val: pointer to output value.
1567  *
1568  * Return: 0 on success or negative errno.
1569  */
1570 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1571 {
1572         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1573 }
1574 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1575
1576 /**
1577  * nvmem_cell_read_u16() - Read a cell value as a u16
1578  *
1579  * @dev: Device that requests the nvmem cell.
1580  * @cell_id: Name of nvmem cell to read.
1581  * @val: pointer to output value.
1582  *
1583  * Return: 0 on success or negative errno.
1584  */
1585 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1586 {
1587         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1588 }
1589 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1590
1591 /**
1592  * nvmem_cell_read_u32() - Read a cell value as a u32
1593  *
1594  * @dev: Device that requests the nvmem cell.
1595  * @cell_id: Name of nvmem cell to read.
1596  * @val: pointer to output value.
1597  *
1598  * Return: 0 on success or negative errno.
1599  */
1600 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1601 {
1602         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1603 }
1604 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1605
1606 /**
1607  * nvmem_cell_read_u64() - Read a cell value as a u64
1608  *
1609  * @dev: Device that requests the nvmem cell.
1610  * @cell_id: Name of nvmem cell to read.
1611  * @val: pointer to output value.
1612  *
1613  * Return: 0 on success or negative errno.
1614  */
1615 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1616 {
1617         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1618 }
1619 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1620
1621 static const void *nvmem_cell_read_variable_common(struct device *dev,
1622                                                    const char *cell_id,
1623                                                    size_t max_len, size_t *len)
1624 {
1625         struct nvmem_cell *cell;
1626         int nbits;
1627         void *buf;
1628
1629         cell = nvmem_cell_get(dev, cell_id);
1630         if (IS_ERR(cell))
1631                 return cell;
1632
1633         nbits = cell->nbits;
1634         buf = nvmem_cell_read(cell, len);
1635         nvmem_cell_put(cell);
1636         if (IS_ERR(buf))
1637                 return buf;
1638
1639         /*
1640          * If nbits is set then nvmem_cell_read() can significantly exaggerate
1641          * the length of the real data. Throw away the extra junk.
1642          */
1643         if (nbits)
1644                 *len = DIV_ROUND_UP(nbits, 8);
1645
1646         if (*len > max_len) {
1647                 kfree(buf);
1648                 return ERR_PTR(-ERANGE);
1649         }
1650
1651         return buf;
1652 }
1653
1654 /**
1655  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1656  *
1657  * @dev: Device that requests the nvmem cell.
1658  * @cell_id: Name of nvmem cell to read.
1659  * @val: pointer to output value.
1660  *
1661  * Return: 0 on success or negative errno.
1662  */
1663 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1664                                     u32 *val)
1665 {
1666         size_t len;
1667         const u8 *buf;
1668         int i;
1669
1670         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1671         if (IS_ERR(buf))
1672                 return PTR_ERR(buf);
1673
1674         /* Copy w/ implicit endian conversion */
1675         *val = 0;
1676         for (i = 0; i < len; i++)
1677                 *val |= buf[i] << (8 * i);
1678
1679         kfree(buf);
1680
1681         return 0;
1682 }
1683 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1684
1685 /**
1686  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1687  *
1688  * @dev: Device that requests the nvmem cell.
1689  * @cell_id: Name of nvmem cell to read.
1690  * @val: pointer to output value.
1691  *
1692  * Return: 0 on success or negative errno.
1693  */
1694 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1695                                     u64 *val)
1696 {
1697         size_t len;
1698         const u8 *buf;
1699         int i;
1700
1701         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1702         if (IS_ERR(buf))
1703                 return PTR_ERR(buf);
1704
1705         /* Copy w/ implicit endian conversion */
1706         *val = 0;
1707         for (i = 0; i < len; i++)
1708                 *val |= (uint64_t)buf[i] << (8 * i);
1709
1710         kfree(buf);
1711
1712         return 0;
1713 }
1714 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1715
1716 /**
1717  * nvmem_device_cell_read() - Read a given nvmem device and cell
1718  *
1719  * @nvmem: nvmem device to read from.
1720  * @info: nvmem cell info to be read.
1721  * @buf: buffer pointer which will be populated on successful read.
1722  *
1723  * Return: length of successful bytes read on success and negative
1724  * error code on error.
1725  */
1726 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1727                            struct nvmem_cell_info *info, void *buf)
1728 {
1729         struct nvmem_cell cell;
1730         int rc;
1731         ssize_t len;
1732
1733         if (!nvmem)
1734                 return -EINVAL;
1735
1736         rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1737         if (rc)
1738                 return rc;
1739
1740         rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1741         if (rc)
1742                 return rc;
1743
1744         return len;
1745 }
1746 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1747
1748 /**
1749  * nvmem_device_cell_write() - Write cell to a given nvmem device
1750  *
1751  * @nvmem: nvmem device to be written to.
1752  * @info: nvmem cell info to be written.
1753  * @buf: buffer to be written to cell.
1754  *
1755  * Return: length of bytes written or negative error code on failure.
1756  */
1757 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1758                             struct nvmem_cell_info *info, void *buf)
1759 {
1760         struct nvmem_cell cell;
1761         int rc;
1762
1763         if (!nvmem)
1764                 return -EINVAL;
1765
1766         rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1767         if (rc)
1768                 return rc;
1769
1770         return nvmem_cell_write(&cell, buf, cell.bytes);
1771 }
1772 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1773
1774 /**
1775  * nvmem_device_read() - Read from a given nvmem device
1776  *
1777  * @nvmem: nvmem device to read from.
1778  * @offset: offset in nvmem device.
1779  * @bytes: number of bytes to read.
1780  * @buf: buffer pointer which will be populated on successful read.
1781  *
1782  * Return: length of successful bytes read on success and negative
1783  * error code on error.
1784  */
1785 int nvmem_device_read(struct nvmem_device *nvmem,
1786                       unsigned int offset,
1787                       size_t bytes, void *buf)
1788 {
1789         int rc;
1790
1791         if (!nvmem)
1792                 return -EINVAL;
1793
1794         rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1795
1796         if (rc)
1797                 return rc;
1798
1799         return bytes;
1800 }
1801 EXPORT_SYMBOL_GPL(nvmem_device_read);
1802
1803 /**
1804  * nvmem_device_write() - Write cell to a given nvmem device
1805  *
1806  * @nvmem: nvmem device to be written to.
1807  * @offset: offset in nvmem device.
1808  * @bytes: number of bytes to write.
1809  * @buf: buffer to be written.
1810  *
1811  * Return: length of bytes written or negative error code on failure.
1812  */
1813 int nvmem_device_write(struct nvmem_device *nvmem,
1814                        unsigned int offset,
1815                        size_t bytes, void *buf)
1816 {
1817         int rc;
1818
1819         if (!nvmem)
1820                 return -EINVAL;
1821
1822         rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1823
1824         if (rc)
1825                 return rc;
1826
1827
1828         return bytes;
1829 }
1830 EXPORT_SYMBOL_GPL(nvmem_device_write);
1831
1832 /**
1833  * nvmem_add_cell_table() - register a table of cell info entries
1834  *
1835  * @table: table of cell info entries
1836  */
1837 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1838 {
1839         mutex_lock(&nvmem_cell_mutex);
1840         list_add_tail(&table->node, &nvmem_cell_tables);
1841         mutex_unlock(&nvmem_cell_mutex);
1842 }
1843 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1844
1845 /**
1846  * nvmem_del_cell_table() - remove a previously registered cell info table
1847  *
1848  * @table: table of cell info entries
1849  */
1850 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1851 {
1852         mutex_lock(&nvmem_cell_mutex);
1853         list_del(&table->node);
1854         mutex_unlock(&nvmem_cell_mutex);
1855 }
1856 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1857
1858 /**
1859  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1860  *
1861  * @entries: array of cell lookup entries
1862  * @nentries: number of cell lookup entries in the array
1863  */
1864 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1865 {
1866         int i;
1867
1868         mutex_lock(&nvmem_lookup_mutex);
1869         for (i = 0; i < nentries; i++)
1870                 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1871         mutex_unlock(&nvmem_lookup_mutex);
1872 }
1873 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1874
1875 /**
1876  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1877  *                            entries
1878  *
1879  * @entries: array of cell lookup entries
1880  * @nentries: number of cell lookup entries in the array
1881  */
1882 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1883 {
1884         int i;
1885
1886         mutex_lock(&nvmem_lookup_mutex);
1887         for (i = 0; i < nentries; i++)
1888                 list_del(&entries[i].node);
1889         mutex_unlock(&nvmem_lookup_mutex);
1890 }
1891 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1892
1893 /**
1894  * nvmem_dev_name() - Get the name of a given nvmem device.
1895  *
1896  * @nvmem: nvmem device.
1897  *
1898  * Return: name of the nvmem device.
1899  */
1900 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1901 {
1902         return dev_name(&nvmem->dev);
1903 }
1904 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1905
1906 static int __init nvmem_init(void)
1907 {
1908         return bus_register(&nvmem_bus_type);
1909 }
1910
1911 static void __exit nvmem_exit(void)
1912 {
1913         bus_unregister(&nvmem_bus_type);
1914 }
1915
1916 subsys_initcall(nvmem_init);
1917 module_exit(nvmem_exit);
1918
1919 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1920 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1921 MODULE_DESCRIPTION("nvmem Driver Core");
1922 MODULE_LICENSE("GPL v2");