Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-starfive.git] / drivers / nvmem / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23         struct module           *owner;
24         struct device           dev;
25         int                     stride;
26         int                     word_size;
27         int                     id;
28         struct kref             refcnt;
29         size_t                  size;
30         bool                    read_only;
31         bool                    root_only;
32         int                     flags;
33         enum nvmem_type         type;
34         struct bin_attribute    eeprom;
35         struct device           *base_dev;
36         struct list_head        cells;
37         const struct nvmem_keepout *keepout;
38         unsigned int            nkeepout;
39         nvmem_reg_read_t        reg_read;
40         nvmem_reg_write_t       reg_write;
41         struct gpio_desc        *wp_gpio;
42         struct nvmem_layout     *layout;
43         void *priv;
44 };
45
46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
47
48 #define FLAG_COMPAT             BIT(0)
49 struct nvmem_cell_entry {
50         const char              *name;
51         int                     offset;
52         size_t                  raw_len;
53         int                     bytes;
54         int                     bit_offset;
55         int                     nbits;
56         nvmem_cell_post_process_t read_post_process;
57         void                    *priv;
58         struct device_node      *np;
59         struct nvmem_device     *nvmem;
60         struct list_head        node;
61 };
62
63 struct nvmem_cell {
64         struct nvmem_cell_entry *entry;
65         const char              *id;
66         int                     index;
67 };
68
69 static DEFINE_MUTEX(nvmem_mutex);
70 static DEFINE_IDA(nvmem_ida);
71
72 static DEFINE_MUTEX(nvmem_cell_mutex);
73 static LIST_HEAD(nvmem_cell_tables);
74
75 static DEFINE_MUTEX(nvmem_lookup_mutex);
76 static LIST_HEAD(nvmem_lookup_list);
77
78 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
79
80 static DEFINE_SPINLOCK(nvmem_layout_lock);
81 static LIST_HEAD(nvmem_layouts);
82
83 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
84                             void *val, size_t bytes)
85 {
86         if (nvmem->reg_read)
87                 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
88
89         return -EINVAL;
90 }
91
92 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
93                              void *val, size_t bytes)
94 {
95         int ret;
96
97         if (nvmem->reg_write) {
98                 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
99                 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
100                 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
101                 return ret;
102         }
103
104         return -EINVAL;
105 }
106
107 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
108                                       unsigned int offset, void *val,
109                                       size_t bytes, int write)
110 {
111
112         unsigned int end = offset + bytes;
113         unsigned int kend, ksize;
114         const struct nvmem_keepout *keepout = nvmem->keepout;
115         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
116         int rc;
117
118         /*
119          * Skip all keepouts before the range being accessed.
120          * Keepouts are sorted.
121          */
122         while ((keepout < keepoutend) && (keepout->end <= offset))
123                 keepout++;
124
125         while ((offset < end) && (keepout < keepoutend)) {
126                 /* Access the valid portion before the keepout. */
127                 if (offset < keepout->start) {
128                         kend = min(end, keepout->start);
129                         ksize = kend - offset;
130                         if (write)
131                                 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
132                         else
133                                 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
134
135                         if (rc)
136                                 return rc;
137
138                         offset += ksize;
139                         val += ksize;
140                 }
141
142                 /*
143                  * Now we're aligned to the start of this keepout zone. Go
144                  * through it.
145                  */
146                 kend = min(end, keepout->end);
147                 ksize = kend - offset;
148                 if (!write)
149                         memset(val, keepout->value, ksize);
150
151                 val += ksize;
152                 offset += ksize;
153                 keepout++;
154         }
155
156         /*
157          * If we ran out of keepouts but there's still stuff to do, send it
158          * down directly
159          */
160         if (offset < end) {
161                 ksize = end - offset;
162                 if (write)
163                         return __nvmem_reg_write(nvmem, offset, val, ksize);
164                 else
165                         return __nvmem_reg_read(nvmem, offset, val, ksize);
166         }
167
168         return 0;
169 }
170
171 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
172                           void *val, size_t bytes)
173 {
174         if (!nvmem->nkeepout)
175                 return __nvmem_reg_read(nvmem, offset, val, bytes);
176
177         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
178 }
179
180 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
181                            void *val, size_t bytes)
182 {
183         if (!nvmem->nkeepout)
184                 return __nvmem_reg_write(nvmem, offset, val, bytes);
185
186         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
187 }
188
189 #ifdef CONFIG_NVMEM_SYSFS
190 static const char * const nvmem_type_str[] = {
191         [NVMEM_TYPE_UNKNOWN] = "Unknown",
192         [NVMEM_TYPE_EEPROM] = "EEPROM",
193         [NVMEM_TYPE_OTP] = "OTP",
194         [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
195         [NVMEM_TYPE_FRAM] = "FRAM",
196 };
197
198 #ifdef CONFIG_DEBUG_LOCK_ALLOC
199 static struct lock_class_key eeprom_lock_key;
200 #endif
201
202 static ssize_t type_show(struct device *dev,
203                          struct device_attribute *attr, char *buf)
204 {
205         struct nvmem_device *nvmem = to_nvmem_device(dev);
206
207         return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
208 }
209
210 static DEVICE_ATTR_RO(type);
211
212 static struct attribute *nvmem_attrs[] = {
213         &dev_attr_type.attr,
214         NULL,
215 };
216
217 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
218                                    struct bin_attribute *attr, char *buf,
219                                    loff_t pos, size_t count)
220 {
221         struct device *dev;
222         struct nvmem_device *nvmem;
223         int rc;
224
225         if (attr->private)
226                 dev = attr->private;
227         else
228                 dev = kobj_to_dev(kobj);
229         nvmem = to_nvmem_device(dev);
230
231         /* Stop the user from reading */
232         if (pos >= nvmem->size)
233                 return 0;
234
235         if (!IS_ALIGNED(pos, nvmem->stride))
236                 return -EINVAL;
237
238         if (count < nvmem->word_size)
239                 return -EINVAL;
240
241         if (pos + count > nvmem->size)
242                 count = nvmem->size - pos;
243
244         count = round_down(count, nvmem->word_size);
245
246         if (!nvmem->reg_read)
247                 return -EPERM;
248
249         rc = nvmem_reg_read(nvmem, pos, buf, count);
250
251         if (rc)
252                 return rc;
253
254         return count;
255 }
256
257 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
258                                     struct bin_attribute *attr, char *buf,
259                                     loff_t pos, size_t count)
260 {
261         struct device *dev;
262         struct nvmem_device *nvmem;
263         int rc;
264
265         if (attr->private)
266                 dev = attr->private;
267         else
268                 dev = kobj_to_dev(kobj);
269         nvmem = to_nvmem_device(dev);
270
271         /* Stop the user from writing */
272         if (pos >= nvmem->size)
273                 return -EFBIG;
274
275         if (!IS_ALIGNED(pos, nvmem->stride))
276                 return -EINVAL;
277
278         if (count < nvmem->word_size)
279                 return -EINVAL;
280
281         if (pos + count > nvmem->size)
282                 count = nvmem->size - pos;
283
284         count = round_down(count, nvmem->word_size);
285
286         if (!nvmem->reg_write)
287                 return -EPERM;
288
289         rc = nvmem_reg_write(nvmem, pos, buf, count);
290
291         if (rc)
292                 return rc;
293
294         return count;
295 }
296
297 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
298 {
299         umode_t mode = 0400;
300
301         if (!nvmem->root_only)
302                 mode |= 0044;
303
304         if (!nvmem->read_only)
305                 mode |= 0200;
306
307         if (!nvmem->reg_write)
308                 mode &= ~0200;
309
310         if (!nvmem->reg_read)
311                 mode &= ~0444;
312
313         return mode;
314 }
315
316 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
317                                          struct bin_attribute *attr, int i)
318 {
319         struct device *dev = kobj_to_dev(kobj);
320         struct nvmem_device *nvmem = to_nvmem_device(dev);
321
322         attr->size = nvmem->size;
323
324         return nvmem_bin_attr_get_umode(nvmem);
325 }
326
327 /* default read/write permissions */
328 static struct bin_attribute bin_attr_rw_nvmem = {
329         .attr   = {
330                 .name   = "nvmem",
331                 .mode   = 0644,
332         },
333         .read   = bin_attr_nvmem_read,
334         .write  = bin_attr_nvmem_write,
335 };
336
337 static struct bin_attribute *nvmem_bin_attributes[] = {
338         &bin_attr_rw_nvmem,
339         NULL,
340 };
341
342 static const struct attribute_group nvmem_bin_group = {
343         .bin_attrs      = nvmem_bin_attributes,
344         .attrs          = nvmem_attrs,
345         .is_bin_visible = nvmem_bin_attr_is_visible,
346 };
347
348 static const struct attribute_group *nvmem_dev_groups[] = {
349         &nvmem_bin_group,
350         NULL,
351 };
352
353 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
354         .attr   = {
355                 .name   = "eeprom",
356         },
357         .read   = bin_attr_nvmem_read,
358         .write  = bin_attr_nvmem_write,
359 };
360
361 /*
362  * nvmem_setup_compat() - Create an additional binary entry in
363  * drivers sys directory, to be backwards compatible with the older
364  * drivers/misc/eeprom drivers.
365  */
366 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
367                                     const struct nvmem_config *config)
368 {
369         int rval;
370
371         if (!config->compat)
372                 return 0;
373
374         if (!config->base_dev)
375                 return -EINVAL;
376
377         if (config->type == NVMEM_TYPE_FRAM)
378                 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
379
380         nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
381         nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
382         nvmem->eeprom.size = nvmem->size;
383 #ifdef CONFIG_DEBUG_LOCK_ALLOC
384         nvmem->eeprom.attr.key = &eeprom_lock_key;
385 #endif
386         nvmem->eeprom.private = &nvmem->dev;
387         nvmem->base_dev = config->base_dev;
388
389         rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
390         if (rval) {
391                 dev_err(&nvmem->dev,
392                         "Failed to create eeprom binary file %d\n", rval);
393                 return rval;
394         }
395
396         nvmem->flags |= FLAG_COMPAT;
397
398         return 0;
399 }
400
401 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
402                               const struct nvmem_config *config)
403 {
404         if (config->compat)
405                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
406 }
407
408 #else /* CONFIG_NVMEM_SYSFS */
409
410 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
411                                     const struct nvmem_config *config)
412 {
413         return -ENOSYS;
414 }
415 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
416                                       const struct nvmem_config *config)
417 {
418 }
419
420 #endif /* CONFIG_NVMEM_SYSFS */
421
422 static void nvmem_release(struct device *dev)
423 {
424         struct nvmem_device *nvmem = to_nvmem_device(dev);
425
426         ida_free(&nvmem_ida, nvmem->id);
427         gpiod_put(nvmem->wp_gpio);
428         kfree(nvmem);
429 }
430
431 static const struct device_type nvmem_provider_type = {
432         .release        = nvmem_release,
433 };
434
435 static struct bus_type nvmem_bus_type = {
436         .name           = "nvmem",
437 };
438
439 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
440 {
441         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
442         mutex_lock(&nvmem_mutex);
443         list_del(&cell->node);
444         mutex_unlock(&nvmem_mutex);
445         of_node_put(cell->np);
446         kfree_const(cell->name);
447         kfree(cell);
448 }
449
450 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
451 {
452         struct nvmem_cell_entry *cell, *p;
453
454         list_for_each_entry_safe(cell, p, &nvmem->cells, node)
455                 nvmem_cell_entry_drop(cell);
456 }
457
458 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
459 {
460         mutex_lock(&nvmem_mutex);
461         list_add_tail(&cell->node, &cell->nvmem->cells);
462         mutex_unlock(&nvmem_mutex);
463         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
464 }
465
466 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
467                                                      const struct nvmem_cell_info *info,
468                                                      struct nvmem_cell_entry *cell)
469 {
470         cell->nvmem = nvmem;
471         cell->offset = info->offset;
472         cell->raw_len = info->raw_len ?: info->bytes;
473         cell->bytes = info->bytes;
474         cell->name = info->name;
475         cell->read_post_process = info->read_post_process;
476         cell->priv = info->priv;
477
478         cell->bit_offset = info->bit_offset;
479         cell->nbits = info->nbits;
480         cell->np = info->np;
481
482         if (cell->nbits)
483                 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
484                                            BITS_PER_BYTE);
485
486         if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
487                 dev_err(&nvmem->dev,
488                         "cell %s unaligned to nvmem stride %d\n",
489                         cell->name ?: "<unknown>", nvmem->stride);
490                 return -EINVAL;
491         }
492
493         return 0;
494 }
495
496 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
497                                                const struct nvmem_cell_info *info,
498                                                struct nvmem_cell_entry *cell)
499 {
500         int err;
501
502         err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
503         if (err)
504                 return err;
505
506         cell->name = kstrdup_const(info->name, GFP_KERNEL);
507         if (!cell->name)
508                 return -ENOMEM;
509
510         return 0;
511 }
512
513 /**
514  * nvmem_add_one_cell() - Add one cell information to an nvmem device
515  *
516  * @nvmem: nvmem device to add cells to.
517  * @info: nvmem cell info to add to the device
518  *
519  * Return: 0 or negative error code on failure.
520  */
521 int nvmem_add_one_cell(struct nvmem_device *nvmem,
522                        const struct nvmem_cell_info *info)
523 {
524         struct nvmem_cell_entry *cell;
525         int rval;
526
527         cell = kzalloc(sizeof(*cell), GFP_KERNEL);
528         if (!cell)
529                 return -ENOMEM;
530
531         rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
532         if (rval) {
533                 kfree(cell);
534                 return rval;
535         }
536
537         nvmem_cell_entry_add(cell);
538
539         return 0;
540 }
541 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
542
543 /**
544  * nvmem_add_cells() - Add cell information to an nvmem device
545  *
546  * @nvmem: nvmem device to add cells to.
547  * @info: nvmem cell info to add to the device
548  * @ncells: number of cells in info
549  *
550  * Return: 0 or negative error code on failure.
551  */
552 static int nvmem_add_cells(struct nvmem_device *nvmem,
553                     const struct nvmem_cell_info *info,
554                     int ncells)
555 {
556         int i, rval;
557
558         for (i = 0; i < ncells; i++) {
559                 rval = nvmem_add_one_cell(nvmem, &info[i]);
560                 if (rval)
561                         return rval;
562         }
563
564         return 0;
565 }
566
567 /**
568  * nvmem_register_notifier() - Register a notifier block for nvmem events.
569  *
570  * @nb: notifier block to be called on nvmem events.
571  *
572  * Return: 0 on success, negative error number on failure.
573  */
574 int nvmem_register_notifier(struct notifier_block *nb)
575 {
576         return blocking_notifier_chain_register(&nvmem_notifier, nb);
577 }
578 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
579
580 /**
581  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
582  *
583  * @nb: notifier block to be unregistered.
584  *
585  * Return: 0 on success, negative error number on failure.
586  */
587 int nvmem_unregister_notifier(struct notifier_block *nb)
588 {
589         return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
590 }
591 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
592
593 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
594 {
595         const struct nvmem_cell_info *info;
596         struct nvmem_cell_table *table;
597         struct nvmem_cell_entry *cell;
598         int rval = 0, i;
599
600         mutex_lock(&nvmem_cell_mutex);
601         list_for_each_entry(table, &nvmem_cell_tables, node) {
602                 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
603                         for (i = 0; i < table->ncells; i++) {
604                                 info = &table->cells[i];
605
606                                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
607                                 if (!cell) {
608                                         rval = -ENOMEM;
609                                         goto out;
610                                 }
611
612                                 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
613                                 if (rval) {
614                                         kfree(cell);
615                                         goto out;
616                                 }
617
618                                 nvmem_cell_entry_add(cell);
619                         }
620                 }
621         }
622
623 out:
624         mutex_unlock(&nvmem_cell_mutex);
625         return rval;
626 }
627
628 static struct nvmem_cell_entry *
629 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
630 {
631         struct nvmem_cell_entry *iter, *cell = NULL;
632
633         mutex_lock(&nvmem_mutex);
634         list_for_each_entry(iter, &nvmem->cells, node) {
635                 if (strcmp(cell_id, iter->name) == 0) {
636                         cell = iter;
637                         break;
638                 }
639         }
640         mutex_unlock(&nvmem_mutex);
641
642         return cell;
643 }
644
645 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
646 {
647         unsigned int cur = 0;
648         const struct nvmem_keepout *keepout = nvmem->keepout;
649         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
650
651         while (keepout < keepoutend) {
652                 /* Ensure keepouts are sorted and don't overlap. */
653                 if (keepout->start < cur) {
654                         dev_err(&nvmem->dev,
655                                 "Keepout regions aren't sorted or overlap.\n");
656
657                         return -ERANGE;
658                 }
659
660                 if (keepout->end < keepout->start) {
661                         dev_err(&nvmem->dev,
662                                 "Invalid keepout region.\n");
663
664                         return -EINVAL;
665                 }
666
667                 /*
668                  * Validate keepouts (and holes between) don't violate
669                  * word_size constraints.
670                  */
671                 if ((keepout->end - keepout->start < nvmem->word_size) ||
672                     ((keepout->start != cur) &&
673                      (keepout->start - cur < nvmem->word_size))) {
674
675                         dev_err(&nvmem->dev,
676                                 "Keepout regions violate word_size constraints.\n");
677
678                         return -ERANGE;
679                 }
680
681                 /* Validate keepouts don't violate stride (alignment). */
682                 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
683                     !IS_ALIGNED(keepout->end, nvmem->stride)) {
684
685                         dev_err(&nvmem->dev,
686                                 "Keepout regions violate stride.\n");
687
688                         return -EINVAL;
689                 }
690
691                 cur = keepout->end;
692                 keepout++;
693         }
694
695         return 0;
696 }
697
698 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
699 {
700         struct nvmem_layout *layout = nvmem->layout;
701         struct device *dev = &nvmem->dev;
702         struct device_node *child;
703         const __be32 *addr;
704         int len, ret;
705
706         for_each_child_of_node(np, child) {
707                 struct nvmem_cell_info info = {0};
708
709                 addr = of_get_property(child, "reg", &len);
710                 if (!addr)
711                         continue;
712                 if (len < 2 * sizeof(u32)) {
713                         dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
714                         of_node_put(child);
715                         return -EINVAL;
716                 }
717
718                 info.offset = be32_to_cpup(addr++);
719                 info.bytes = be32_to_cpup(addr);
720                 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
721
722                 addr = of_get_property(child, "bits", &len);
723                 if (addr && len == (2 * sizeof(u32))) {
724                         info.bit_offset = be32_to_cpup(addr++);
725                         info.nbits = be32_to_cpup(addr);
726                 }
727
728                 info.np = of_node_get(child);
729
730                 if (layout && layout->fixup_cell_info)
731                         layout->fixup_cell_info(nvmem, layout, &info);
732
733                 ret = nvmem_add_one_cell(nvmem, &info);
734                 kfree(info.name);
735                 if (ret) {
736                         of_node_put(child);
737                         return ret;
738                 }
739         }
740
741         return 0;
742 }
743
744 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
745 {
746         return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
747 }
748
749 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
750 {
751         struct device_node *layout_np;
752         int err = 0;
753
754         layout_np = of_nvmem_layout_get_container(nvmem);
755         if (!layout_np)
756                 return 0;
757
758         if (of_device_is_compatible(layout_np, "fixed-layout"))
759                 err = nvmem_add_cells_from_dt(nvmem, layout_np);
760
761         of_node_put(layout_np);
762
763         return err;
764 }
765
766 int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)
767 {
768         layout->owner = owner;
769
770         spin_lock(&nvmem_layout_lock);
771         list_add(&layout->node, &nvmem_layouts);
772         spin_unlock(&nvmem_layout_lock);
773
774         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_ADD, layout);
775
776         return 0;
777 }
778 EXPORT_SYMBOL_GPL(__nvmem_layout_register);
779
780 void nvmem_layout_unregister(struct nvmem_layout *layout)
781 {
782         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_REMOVE, layout);
783
784         spin_lock(&nvmem_layout_lock);
785         list_del(&layout->node);
786         spin_unlock(&nvmem_layout_lock);
787 }
788 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
789
790 static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem)
791 {
792         struct device_node *layout_np;
793         struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER);
794
795         layout_np = of_nvmem_layout_get_container(nvmem);
796         if (!layout_np)
797                 return NULL;
798
799         /*
800          * In case the nvmem device was built-in while the layout was built as a
801          * module, we shall manually request the layout driver loading otherwise
802          * we'll never have any match.
803          */
804         of_request_module(layout_np);
805
806         spin_lock(&nvmem_layout_lock);
807
808         list_for_each_entry(l, &nvmem_layouts, node) {
809                 if (of_match_node(l->of_match_table, layout_np)) {
810                         if (try_module_get(l->owner))
811                                 layout = l;
812
813                         break;
814                 }
815         }
816
817         spin_unlock(&nvmem_layout_lock);
818         of_node_put(layout_np);
819
820         return layout;
821 }
822
823 static void nvmem_layout_put(struct nvmem_layout *layout)
824 {
825         if (layout)
826                 module_put(layout->owner);
827 }
828
829 static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem)
830 {
831         struct nvmem_layout *layout = nvmem->layout;
832         int ret;
833
834         if (layout && layout->add_cells) {
835                 ret = layout->add_cells(&nvmem->dev, nvmem, layout);
836                 if (ret)
837                         return ret;
838         }
839
840         return 0;
841 }
842
843 #if IS_ENABLED(CONFIG_OF)
844 /**
845  * of_nvmem_layout_get_container() - Get OF node to layout container.
846  *
847  * @nvmem: nvmem device.
848  *
849  * Return: a node pointer with refcount incremented or NULL if no
850  * container exists. Use of_node_put() on it when done.
851  */
852 struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem)
853 {
854         return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout");
855 }
856 EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container);
857 #endif
858
859 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
860                                         struct nvmem_layout *layout)
861 {
862         struct device_node __maybe_unused *layout_np;
863         const struct of_device_id *match;
864
865         layout_np = of_nvmem_layout_get_container(nvmem);
866         match = of_match_node(layout->of_match_table, layout_np);
867
868         return match ? match->data : NULL;
869 }
870 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
871
872 /**
873  * nvmem_register() - Register a nvmem device for given nvmem_config.
874  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
875  *
876  * @config: nvmem device configuration with which nvmem device is created.
877  *
878  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
879  * on success.
880  */
881
882 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
883 {
884         struct nvmem_device *nvmem;
885         int rval;
886
887         if (!config->dev)
888                 return ERR_PTR(-EINVAL);
889
890         if (!config->reg_read && !config->reg_write)
891                 return ERR_PTR(-EINVAL);
892
893         nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
894         if (!nvmem)
895                 return ERR_PTR(-ENOMEM);
896
897         rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
898         if (rval < 0) {
899                 kfree(nvmem);
900                 return ERR_PTR(rval);
901         }
902
903         nvmem->id = rval;
904
905         nvmem->dev.type = &nvmem_provider_type;
906         nvmem->dev.bus = &nvmem_bus_type;
907         nvmem->dev.parent = config->dev;
908
909         device_initialize(&nvmem->dev);
910
911         if (!config->ignore_wp)
912                 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
913                                                     GPIOD_OUT_HIGH);
914         if (IS_ERR(nvmem->wp_gpio)) {
915                 rval = PTR_ERR(nvmem->wp_gpio);
916                 nvmem->wp_gpio = NULL;
917                 goto err_put_device;
918         }
919
920         kref_init(&nvmem->refcnt);
921         INIT_LIST_HEAD(&nvmem->cells);
922
923         nvmem->owner = config->owner;
924         if (!nvmem->owner && config->dev->driver)
925                 nvmem->owner = config->dev->driver->owner;
926         nvmem->stride = config->stride ?: 1;
927         nvmem->word_size = config->word_size ?: 1;
928         nvmem->size = config->size;
929         nvmem->root_only = config->root_only;
930         nvmem->priv = config->priv;
931         nvmem->type = config->type;
932         nvmem->reg_read = config->reg_read;
933         nvmem->reg_write = config->reg_write;
934         nvmem->keepout = config->keepout;
935         nvmem->nkeepout = config->nkeepout;
936         if (config->of_node)
937                 nvmem->dev.of_node = config->of_node;
938         else if (!config->no_of_node)
939                 nvmem->dev.of_node = config->dev->of_node;
940
941         switch (config->id) {
942         case NVMEM_DEVID_NONE:
943                 rval = dev_set_name(&nvmem->dev, "%s", config->name);
944                 break;
945         case NVMEM_DEVID_AUTO:
946                 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
947                 break;
948         default:
949                 rval = dev_set_name(&nvmem->dev, "%s%d",
950                              config->name ? : "nvmem",
951                              config->name ? config->id : nvmem->id);
952                 break;
953         }
954
955         if (rval)
956                 goto err_put_device;
957
958         nvmem->read_only = device_property_present(config->dev, "read-only") ||
959                            config->read_only || !nvmem->reg_write;
960
961 #ifdef CONFIG_NVMEM_SYSFS
962         nvmem->dev.groups = nvmem_dev_groups;
963 #endif
964
965         if (nvmem->nkeepout) {
966                 rval = nvmem_validate_keepouts(nvmem);
967                 if (rval)
968                         goto err_put_device;
969         }
970
971         if (config->compat) {
972                 rval = nvmem_sysfs_setup_compat(nvmem, config);
973                 if (rval)
974                         goto err_put_device;
975         }
976
977         /*
978          * If the driver supplied a layout by config->layout, the module
979          * pointer will be NULL and nvmem_layout_put() will be a noop.
980          */
981         nvmem->layout = config->layout ?: nvmem_layout_get(nvmem);
982         if (IS_ERR(nvmem->layout)) {
983                 rval = PTR_ERR(nvmem->layout);
984                 nvmem->layout = NULL;
985
986                 if (rval == -EPROBE_DEFER)
987                         goto err_teardown_compat;
988         }
989
990         if (config->cells) {
991                 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
992                 if (rval)
993                         goto err_remove_cells;
994         }
995
996         rval = nvmem_add_cells_from_table(nvmem);
997         if (rval)
998                 goto err_remove_cells;
999
1000         rval = nvmem_add_cells_from_legacy_of(nvmem);
1001         if (rval)
1002                 goto err_remove_cells;
1003
1004         rval = nvmem_add_cells_from_fixed_layout(nvmem);
1005         if (rval)
1006                 goto err_remove_cells;
1007
1008         rval = nvmem_add_cells_from_layout(nvmem);
1009         if (rval)
1010                 goto err_remove_cells;
1011
1012         dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1013
1014         rval = device_add(&nvmem->dev);
1015         if (rval)
1016                 goto err_remove_cells;
1017
1018         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1019
1020         return nvmem;
1021
1022 err_remove_cells:
1023         nvmem_device_remove_all_cells(nvmem);
1024         nvmem_layout_put(nvmem->layout);
1025 err_teardown_compat:
1026         if (config->compat)
1027                 nvmem_sysfs_remove_compat(nvmem, config);
1028 err_put_device:
1029         put_device(&nvmem->dev);
1030
1031         return ERR_PTR(rval);
1032 }
1033 EXPORT_SYMBOL_GPL(nvmem_register);
1034
1035 static void nvmem_device_release(struct kref *kref)
1036 {
1037         struct nvmem_device *nvmem;
1038
1039         nvmem = container_of(kref, struct nvmem_device, refcnt);
1040
1041         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1042
1043         if (nvmem->flags & FLAG_COMPAT)
1044                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1045
1046         nvmem_device_remove_all_cells(nvmem);
1047         nvmem_layout_put(nvmem->layout);
1048         device_unregister(&nvmem->dev);
1049 }
1050
1051 /**
1052  * nvmem_unregister() - Unregister previously registered nvmem device
1053  *
1054  * @nvmem: Pointer to previously registered nvmem device.
1055  */
1056 void nvmem_unregister(struct nvmem_device *nvmem)
1057 {
1058         if (nvmem)
1059                 kref_put(&nvmem->refcnt, nvmem_device_release);
1060 }
1061 EXPORT_SYMBOL_GPL(nvmem_unregister);
1062
1063 static void devm_nvmem_unregister(void *nvmem)
1064 {
1065         nvmem_unregister(nvmem);
1066 }
1067
1068 /**
1069  * devm_nvmem_register() - Register a managed nvmem device for given
1070  * nvmem_config.
1071  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1072  *
1073  * @dev: Device that uses the nvmem device.
1074  * @config: nvmem device configuration with which nvmem device is created.
1075  *
1076  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1077  * on success.
1078  */
1079 struct nvmem_device *devm_nvmem_register(struct device *dev,
1080                                          const struct nvmem_config *config)
1081 {
1082         struct nvmem_device *nvmem;
1083         int ret;
1084
1085         nvmem = nvmem_register(config);
1086         if (IS_ERR(nvmem))
1087                 return nvmem;
1088
1089         ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1090         if (ret)
1091                 return ERR_PTR(ret);
1092
1093         return nvmem;
1094 }
1095 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1096
1097 static struct nvmem_device *__nvmem_device_get(void *data,
1098                         int (*match)(struct device *dev, const void *data))
1099 {
1100         struct nvmem_device *nvmem = NULL;
1101         struct device *dev;
1102
1103         mutex_lock(&nvmem_mutex);
1104         dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1105         if (dev)
1106                 nvmem = to_nvmem_device(dev);
1107         mutex_unlock(&nvmem_mutex);
1108         if (!nvmem)
1109                 return ERR_PTR(-EPROBE_DEFER);
1110
1111         if (!try_module_get(nvmem->owner)) {
1112                 dev_err(&nvmem->dev,
1113                         "could not increase module refcount for cell %s\n",
1114                         nvmem_dev_name(nvmem));
1115
1116                 put_device(&nvmem->dev);
1117                 return ERR_PTR(-EINVAL);
1118         }
1119
1120         kref_get(&nvmem->refcnt);
1121
1122         return nvmem;
1123 }
1124
1125 static void __nvmem_device_put(struct nvmem_device *nvmem)
1126 {
1127         put_device(&nvmem->dev);
1128         module_put(nvmem->owner);
1129         kref_put(&nvmem->refcnt, nvmem_device_release);
1130 }
1131
1132 #if IS_ENABLED(CONFIG_OF)
1133 /**
1134  * of_nvmem_device_get() - Get nvmem device from a given id
1135  *
1136  * @np: Device tree node that uses the nvmem device.
1137  * @id: nvmem name from nvmem-names property.
1138  *
1139  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1140  * on success.
1141  */
1142 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1143 {
1144
1145         struct device_node *nvmem_np;
1146         struct nvmem_device *nvmem;
1147         int index = 0;
1148
1149         if (id)
1150                 index = of_property_match_string(np, "nvmem-names", id);
1151
1152         nvmem_np = of_parse_phandle(np, "nvmem", index);
1153         if (!nvmem_np)
1154                 return ERR_PTR(-ENOENT);
1155
1156         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1157         of_node_put(nvmem_np);
1158         return nvmem;
1159 }
1160 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1161 #endif
1162
1163 /**
1164  * nvmem_device_get() - Get nvmem device from a given id
1165  *
1166  * @dev: Device that uses the nvmem device.
1167  * @dev_name: name of the requested nvmem device.
1168  *
1169  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1170  * on success.
1171  */
1172 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1173 {
1174         if (dev->of_node) { /* try dt first */
1175                 struct nvmem_device *nvmem;
1176
1177                 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1178
1179                 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1180                         return nvmem;
1181
1182         }
1183
1184         return __nvmem_device_get((void *)dev_name, device_match_name);
1185 }
1186 EXPORT_SYMBOL_GPL(nvmem_device_get);
1187
1188 /**
1189  * nvmem_device_find() - Find nvmem device with matching function
1190  *
1191  * @data: Data to pass to match function
1192  * @match: Callback function to check device
1193  *
1194  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1195  * on success.
1196  */
1197 struct nvmem_device *nvmem_device_find(void *data,
1198                         int (*match)(struct device *dev, const void *data))
1199 {
1200         return __nvmem_device_get(data, match);
1201 }
1202 EXPORT_SYMBOL_GPL(nvmem_device_find);
1203
1204 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1205 {
1206         struct nvmem_device **nvmem = res;
1207
1208         if (WARN_ON(!nvmem || !*nvmem))
1209                 return 0;
1210
1211         return *nvmem == data;
1212 }
1213
1214 static void devm_nvmem_device_release(struct device *dev, void *res)
1215 {
1216         nvmem_device_put(*(struct nvmem_device **)res);
1217 }
1218
1219 /**
1220  * devm_nvmem_device_put() - put alredy got nvmem device
1221  *
1222  * @dev: Device that uses the nvmem device.
1223  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1224  * that needs to be released.
1225  */
1226 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1227 {
1228         int ret;
1229
1230         ret = devres_release(dev, devm_nvmem_device_release,
1231                              devm_nvmem_device_match, nvmem);
1232
1233         WARN_ON(ret);
1234 }
1235 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1236
1237 /**
1238  * nvmem_device_put() - put alredy got nvmem device
1239  *
1240  * @nvmem: pointer to nvmem device that needs to be released.
1241  */
1242 void nvmem_device_put(struct nvmem_device *nvmem)
1243 {
1244         __nvmem_device_put(nvmem);
1245 }
1246 EXPORT_SYMBOL_GPL(nvmem_device_put);
1247
1248 /**
1249  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1250  *
1251  * @dev: Device that requests the nvmem device.
1252  * @id: name id for the requested nvmem device.
1253  *
1254  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1255  * on success.  The nvmem_cell will be freed by the automatically once the
1256  * device is freed.
1257  */
1258 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1259 {
1260         struct nvmem_device **ptr, *nvmem;
1261
1262         ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1263         if (!ptr)
1264                 return ERR_PTR(-ENOMEM);
1265
1266         nvmem = nvmem_device_get(dev, id);
1267         if (!IS_ERR(nvmem)) {
1268                 *ptr = nvmem;
1269                 devres_add(dev, ptr);
1270         } else {
1271                 devres_free(ptr);
1272         }
1273
1274         return nvmem;
1275 }
1276 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1277
1278 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1279                                             const char *id, int index)
1280 {
1281         struct nvmem_cell *cell;
1282         const char *name = NULL;
1283
1284         cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1285         if (!cell)
1286                 return ERR_PTR(-ENOMEM);
1287
1288         if (id) {
1289                 name = kstrdup_const(id, GFP_KERNEL);
1290                 if (!name) {
1291                         kfree(cell);
1292                         return ERR_PTR(-ENOMEM);
1293                 }
1294         }
1295
1296         cell->id = name;
1297         cell->entry = entry;
1298         cell->index = index;
1299
1300         return cell;
1301 }
1302
1303 static struct nvmem_cell *
1304 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1305 {
1306         struct nvmem_cell_entry *cell_entry;
1307         struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1308         struct nvmem_cell_lookup *lookup;
1309         struct nvmem_device *nvmem;
1310         const char *dev_id;
1311
1312         if (!dev)
1313                 return ERR_PTR(-EINVAL);
1314
1315         dev_id = dev_name(dev);
1316
1317         mutex_lock(&nvmem_lookup_mutex);
1318
1319         list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1320                 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1321                     (strcmp(lookup->con_id, con_id) == 0)) {
1322                         /* This is the right entry. */
1323                         nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1324                                                    device_match_name);
1325                         if (IS_ERR(nvmem)) {
1326                                 /* Provider may not be registered yet. */
1327                                 cell = ERR_CAST(nvmem);
1328                                 break;
1329                         }
1330
1331                         cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1332                                                                    lookup->cell_name);
1333                         if (!cell_entry) {
1334                                 __nvmem_device_put(nvmem);
1335                                 cell = ERR_PTR(-ENOENT);
1336                         } else {
1337                                 cell = nvmem_create_cell(cell_entry, con_id, 0);
1338                                 if (IS_ERR(cell))
1339                                         __nvmem_device_put(nvmem);
1340                         }
1341                         break;
1342                 }
1343         }
1344
1345         mutex_unlock(&nvmem_lookup_mutex);
1346         return cell;
1347 }
1348
1349 #if IS_ENABLED(CONFIG_OF)
1350 static struct nvmem_cell_entry *
1351 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1352 {
1353         struct nvmem_cell_entry *iter, *cell = NULL;
1354
1355         mutex_lock(&nvmem_mutex);
1356         list_for_each_entry(iter, &nvmem->cells, node) {
1357                 if (np == iter->np) {
1358                         cell = iter;
1359                         break;
1360                 }
1361         }
1362         mutex_unlock(&nvmem_mutex);
1363
1364         return cell;
1365 }
1366
1367 /**
1368  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1369  *
1370  * @np: Device tree node that uses the nvmem cell.
1371  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1372  *      for the cell at index 0 (the lone cell with no accompanying
1373  *      nvmem-cell-names property).
1374  *
1375  * Return: Will be an ERR_PTR() on error or a valid pointer
1376  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1377  * nvmem_cell_put().
1378  */
1379 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1380 {
1381         struct device_node *cell_np, *nvmem_np;
1382         struct nvmem_device *nvmem;
1383         struct nvmem_cell_entry *cell_entry;
1384         struct nvmem_cell *cell;
1385         struct of_phandle_args cell_spec;
1386         int index = 0;
1387         int cell_index = 0;
1388         int ret;
1389
1390         /* if cell name exists, find index to the name */
1391         if (id)
1392                 index = of_property_match_string(np, "nvmem-cell-names", id);
1393
1394         ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1395                                                   "#nvmem-cell-cells",
1396                                                   index, &cell_spec);
1397         if (ret)
1398                 return ERR_PTR(-ENOENT);
1399
1400         if (cell_spec.args_count > 1)
1401                 return ERR_PTR(-EINVAL);
1402
1403         cell_np = cell_spec.np;
1404         if (cell_spec.args_count)
1405                 cell_index = cell_spec.args[0];
1406
1407         nvmem_np = of_get_parent(cell_np);
1408         if (!nvmem_np) {
1409                 of_node_put(cell_np);
1410                 return ERR_PTR(-EINVAL);
1411         }
1412
1413         /* nvmem layouts produce cells within the nvmem-layout container */
1414         if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1415                 nvmem_np = of_get_next_parent(nvmem_np);
1416                 if (!nvmem_np) {
1417                         of_node_put(cell_np);
1418                         return ERR_PTR(-EINVAL);
1419                 }
1420         }
1421
1422         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1423         of_node_put(nvmem_np);
1424         if (IS_ERR(nvmem)) {
1425                 of_node_put(cell_np);
1426                 return ERR_CAST(nvmem);
1427         }
1428
1429         cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1430         of_node_put(cell_np);
1431         if (!cell_entry) {
1432                 __nvmem_device_put(nvmem);
1433                 return ERR_PTR(-ENOENT);
1434         }
1435
1436         cell = nvmem_create_cell(cell_entry, id, cell_index);
1437         if (IS_ERR(cell))
1438                 __nvmem_device_put(nvmem);
1439
1440         return cell;
1441 }
1442 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1443 #endif
1444
1445 /**
1446  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1447  *
1448  * @dev: Device that requests the nvmem cell.
1449  * @id: nvmem cell name to get (this corresponds with the name from the
1450  *      nvmem-cell-names property for DT systems and with the con_id from
1451  *      the lookup entry for non-DT systems).
1452  *
1453  * Return: Will be an ERR_PTR() on error or a valid pointer
1454  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1455  * nvmem_cell_put().
1456  */
1457 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1458 {
1459         struct nvmem_cell *cell;
1460
1461         if (dev->of_node) { /* try dt first */
1462                 cell = of_nvmem_cell_get(dev->of_node, id);
1463                 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1464                         return cell;
1465         }
1466
1467         /* NULL cell id only allowed for device tree; invalid otherwise */
1468         if (!id)
1469                 return ERR_PTR(-EINVAL);
1470
1471         return nvmem_cell_get_from_lookup(dev, id);
1472 }
1473 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1474
1475 static void devm_nvmem_cell_release(struct device *dev, void *res)
1476 {
1477         nvmem_cell_put(*(struct nvmem_cell **)res);
1478 }
1479
1480 /**
1481  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1482  *
1483  * @dev: Device that requests the nvmem cell.
1484  * @id: nvmem cell name id to get.
1485  *
1486  * Return: Will be an ERR_PTR() on error or a valid pointer
1487  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1488  * automatically once the device is freed.
1489  */
1490 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1491 {
1492         struct nvmem_cell **ptr, *cell;
1493
1494         ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1495         if (!ptr)
1496                 return ERR_PTR(-ENOMEM);
1497
1498         cell = nvmem_cell_get(dev, id);
1499         if (!IS_ERR(cell)) {
1500                 *ptr = cell;
1501                 devres_add(dev, ptr);
1502         } else {
1503                 devres_free(ptr);
1504         }
1505
1506         return cell;
1507 }
1508 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1509
1510 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1511 {
1512         struct nvmem_cell **c = res;
1513
1514         if (WARN_ON(!c || !*c))
1515                 return 0;
1516
1517         return *c == data;
1518 }
1519
1520 /**
1521  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1522  * from devm_nvmem_cell_get.
1523  *
1524  * @dev: Device that requests the nvmem cell.
1525  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1526  */
1527 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1528 {
1529         int ret;
1530
1531         ret = devres_release(dev, devm_nvmem_cell_release,
1532                                 devm_nvmem_cell_match, cell);
1533
1534         WARN_ON(ret);
1535 }
1536 EXPORT_SYMBOL(devm_nvmem_cell_put);
1537
1538 /**
1539  * nvmem_cell_put() - Release previously allocated nvmem cell.
1540  *
1541  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1542  */
1543 void nvmem_cell_put(struct nvmem_cell *cell)
1544 {
1545         struct nvmem_device *nvmem = cell->entry->nvmem;
1546
1547         if (cell->id)
1548                 kfree_const(cell->id);
1549
1550         kfree(cell);
1551         __nvmem_device_put(nvmem);
1552 }
1553 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1554
1555 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1556 {
1557         u8 *p, *b;
1558         int i, extra, bit_offset = cell->bit_offset;
1559
1560         p = b = buf;
1561         if (bit_offset) {
1562                 /* First shift */
1563                 *b++ >>= bit_offset;
1564
1565                 /* setup rest of the bytes if any */
1566                 for (i = 1; i < cell->bytes; i++) {
1567                         /* Get bits from next byte and shift them towards msb */
1568                         *p |= *b << (BITS_PER_BYTE - bit_offset);
1569
1570                         p = b;
1571                         *b++ >>= bit_offset;
1572                 }
1573         } else {
1574                 /* point to the msb */
1575                 p += cell->bytes - 1;
1576         }
1577
1578         /* result fits in less bytes */
1579         extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1580         while (--extra >= 0)
1581                 *p-- = 0;
1582
1583         /* clear msb bits if any leftover in the last byte */
1584         if (cell->nbits % BITS_PER_BYTE)
1585                 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1586 }
1587
1588 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1589                              struct nvmem_cell_entry *cell,
1590                              void *buf, size_t *len, const char *id, int index)
1591 {
1592         int rc;
1593
1594         rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1595
1596         if (rc)
1597                 return rc;
1598
1599         /* shift bits in-place */
1600         if (cell->bit_offset || cell->nbits)
1601                 nvmem_shift_read_buffer_in_place(cell, buf);
1602
1603         if (cell->read_post_process) {
1604                 rc = cell->read_post_process(cell->priv, id, index,
1605                                              cell->offset, buf, cell->raw_len);
1606                 if (rc)
1607                         return rc;
1608         }
1609
1610         if (len)
1611                 *len = cell->bytes;
1612
1613         return 0;
1614 }
1615
1616 /**
1617  * nvmem_cell_read() - Read a given nvmem cell
1618  *
1619  * @cell: nvmem cell to be read.
1620  * @len: pointer to length of cell which will be populated on successful read;
1621  *       can be NULL.
1622  *
1623  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1624  * buffer should be freed by the consumer with a kfree().
1625  */
1626 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1627 {
1628         struct nvmem_cell_entry *entry = cell->entry;
1629         struct nvmem_device *nvmem = entry->nvmem;
1630         u8 *buf;
1631         int rc;
1632
1633         if (!nvmem)
1634                 return ERR_PTR(-EINVAL);
1635
1636         buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1637         if (!buf)
1638                 return ERR_PTR(-ENOMEM);
1639
1640         rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1641         if (rc) {
1642                 kfree(buf);
1643                 return ERR_PTR(rc);
1644         }
1645
1646         return buf;
1647 }
1648 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1649
1650 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1651                                              u8 *_buf, int len)
1652 {
1653         struct nvmem_device *nvmem = cell->nvmem;
1654         int i, rc, nbits, bit_offset = cell->bit_offset;
1655         u8 v, *p, *buf, *b, pbyte, pbits;
1656
1657         nbits = cell->nbits;
1658         buf = kzalloc(cell->bytes, GFP_KERNEL);
1659         if (!buf)
1660                 return ERR_PTR(-ENOMEM);
1661
1662         memcpy(buf, _buf, len);
1663         p = b = buf;
1664
1665         if (bit_offset) {
1666                 pbyte = *b;
1667                 *b <<= bit_offset;
1668
1669                 /* setup the first byte with lsb bits from nvmem */
1670                 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1671                 if (rc)
1672                         goto err;
1673                 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1674
1675                 /* setup rest of the byte if any */
1676                 for (i = 1; i < cell->bytes; i++) {
1677                         /* Get last byte bits and shift them towards lsb */
1678                         pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1679                         pbyte = *b;
1680                         p = b;
1681                         *b <<= bit_offset;
1682                         *b++ |= pbits;
1683                 }
1684         }
1685
1686         /* if it's not end on byte boundary */
1687         if ((nbits + bit_offset) % BITS_PER_BYTE) {
1688                 /* setup the last byte with msb bits from nvmem */
1689                 rc = nvmem_reg_read(nvmem,
1690                                     cell->offset + cell->bytes - 1, &v, 1);
1691                 if (rc)
1692                         goto err;
1693                 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1694
1695         }
1696
1697         return buf;
1698 err:
1699         kfree(buf);
1700         return ERR_PTR(rc);
1701 }
1702
1703 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1704 {
1705         struct nvmem_device *nvmem = cell->nvmem;
1706         int rc;
1707
1708         if (!nvmem || nvmem->read_only ||
1709             (cell->bit_offset == 0 && len != cell->bytes))
1710                 return -EINVAL;
1711
1712         /*
1713          * Any cells which have a read_post_process hook are read-only because
1714          * we cannot reverse the operation and it might affect other cells,
1715          * too.
1716          */
1717         if (cell->read_post_process)
1718                 return -EINVAL;
1719
1720         if (cell->bit_offset || cell->nbits) {
1721                 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1722                 if (IS_ERR(buf))
1723                         return PTR_ERR(buf);
1724         }
1725
1726         rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1727
1728         /* free the tmp buffer */
1729         if (cell->bit_offset || cell->nbits)
1730                 kfree(buf);
1731
1732         if (rc)
1733                 return rc;
1734
1735         return len;
1736 }
1737
1738 /**
1739  * nvmem_cell_write() - Write to a given nvmem cell
1740  *
1741  * @cell: nvmem cell to be written.
1742  * @buf: Buffer to be written.
1743  * @len: length of buffer to be written to nvmem cell.
1744  *
1745  * Return: length of bytes written or negative on failure.
1746  */
1747 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1748 {
1749         return __nvmem_cell_entry_write(cell->entry, buf, len);
1750 }
1751
1752 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1753
1754 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1755                                   void *val, size_t count)
1756 {
1757         struct nvmem_cell *cell;
1758         void *buf;
1759         size_t len;
1760
1761         cell = nvmem_cell_get(dev, cell_id);
1762         if (IS_ERR(cell))
1763                 return PTR_ERR(cell);
1764
1765         buf = nvmem_cell_read(cell, &len);
1766         if (IS_ERR(buf)) {
1767                 nvmem_cell_put(cell);
1768                 return PTR_ERR(buf);
1769         }
1770         if (len != count) {
1771                 kfree(buf);
1772                 nvmem_cell_put(cell);
1773                 return -EINVAL;
1774         }
1775         memcpy(val, buf, count);
1776         kfree(buf);
1777         nvmem_cell_put(cell);
1778
1779         return 0;
1780 }
1781
1782 /**
1783  * nvmem_cell_read_u8() - Read a cell value as a u8
1784  *
1785  * @dev: Device that requests the nvmem cell.
1786  * @cell_id: Name of nvmem cell to read.
1787  * @val: pointer to output value.
1788  *
1789  * Return: 0 on success or negative errno.
1790  */
1791 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1792 {
1793         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1794 }
1795 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1796
1797 /**
1798  * nvmem_cell_read_u16() - Read a cell value as a u16
1799  *
1800  * @dev: Device that requests the nvmem cell.
1801  * @cell_id: Name of nvmem cell to read.
1802  * @val: pointer to output value.
1803  *
1804  * Return: 0 on success or negative errno.
1805  */
1806 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1807 {
1808         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1809 }
1810 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1811
1812 /**
1813  * nvmem_cell_read_u32() - Read a cell value as a u32
1814  *
1815  * @dev: Device that requests the nvmem cell.
1816  * @cell_id: Name of nvmem cell to read.
1817  * @val: pointer to output value.
1818  *
1819  * Return: 0 on success or negative errno.
1820  */
1821 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1822 {
1823         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1824 }
1825 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1826
1827 /**
1828  * nvmem_cell_read_u64() - Read a cell value as a u64
1829  *
1830  * @dev: Device that requests the nvmem cell.
1831  * @cell_id: Name of nvmem cell to read.
1832  * @val: pointer to output value.
1833  *
1834  * Return: 0 on success or negative errno.
1835  */
1836 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1837 {
1838         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1839 }
1840 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1841
1842 static const void *nvmem_cell_read_variable_common(struct device *dev,
1843                                                    const char *cell_id,
1844                                                    size_t max_len, size_t *len)
1845 {
1846         struct nvmem_cell *cell;
1847         int nbits;
1848         void *buf;
1849
1850         cell = nvmem_cell_get(dev, cell_id);
1851         if (IS_ERR(cell))
1852                 return cell;
1853
1854         nbits = cell->entry->nbits;
1855         buf = nvmem_cell_read(cell, len);
1856         nvmem_cell_put(cell);
1857         if (IS_ERR(buf))
1858                 return buf;
1859
1860         /*
1861          * If nbits is set then nvmem_cell_read() can significantly exaggerate
1862          * the length of the real data. Throw away the extra junk.
1863          */
1864         if (nbits)
1865                 *len = DIV_ROUND_UP(nbits, 8);
1866
1867         if (*len > max_len) {
1868                 kfree(buf);
1869                 return ERR_PTR(-ERANGE);
1870         }
1871
1872         return buf;
1873 }
1874
1875 /**
1876  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1877  *
1878  * @dev: Device that requests the nvmem cell.
1879  * @cell_id: Name of nvmem cell to read.
1880  * @val: pointer to output value.
1881  *
1882  * Return: 0 on success or negative errno.
1883  */
1884 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1885                                     u32 *val)
1886 {
1887         size_t len;
1888         const u8 *buf;
1889         int i;
1890
1891         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1892         if (IS_ERR(buf))
1893                 return PTR_ERR(buf);
1894
1895         /* Copy w/ implicit endian conversion */
1896         *val = 0;
1897         for (i = 0; i < len; i++)
1898                 *val |= buf[i] << (8 * i);
1899
1900         kfree(buf);
1901
1902         return 0;
1903 }
1904 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1905
1906 /**
1907  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1908  *
1909  * @dev: Device that requests the nvmem cell.
1910  * @cell_id: Name of nvmem cell to read.
1911  * @val: pointer to output value.
1912  *
1913  * Return: 0 on success or negative errno.
1914  */
1915 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1916                                     u64 *val)
1917 {
1918         size_t len;
1919         const u8 *buf;
1920         int i;
1921
1922         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1923         if (IS_ERR(buf))
1924                 return PTR_ERR(buf);
1925
1926         /* Copy w/ implicit endian conversion */
1927         *val = 0;
1928         for (i = 0; i < len; i++)
1929                 *val |= (uint64_t)buf[i] << (8 * i);
1930
1931         kfree(buf);
1932
1933         return 0;
1934 }
1935 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1936
1937 /**
1938  * nvmem_device_cell_read() - Read a given nvmem device and cell
1939  *
1940  * @nvmem: nvmem device to read from.
1941  * @info: nvmem cell info to be read.
1942  * @buf: buffer pointer which will be populated on successful read.
1943  *
1944  * Return: length of successful bytes read on success and negative
1945  * error code on error.
1946  */
1947 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1948                            struct nvmem_cell_info *info, void *buf)
1949 {
1950         struct nvmem_cell_entry cell;
1951         int rc;
1952         ssize_t len;
1953
1954         if (!nvmem)
1955                 return -EINVAL;
1956
1957         rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1958         if (rc)
1959                 return rc;
1960
1961         rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1962         if (rc)
1963                 return rc;
1964
1965         return len;
1966 }
1967 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1968
1969 /**
1970  * nvmem_device_cell_write() - Write cell to a given nvmem device
1971  *
1972  * @nvmem: nvmem device to be written to.
1973  * @info: nvmem cell info to be written.
1974  * @buf: buffer to be written to cell.
1975  *
1976  * Return: length of bytes written or negative error code on failure.
1977  */
1978 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1979                             struct nvmem_cell_info *info, void *buf)
1980 {
1981         struct nvmem_cell_entry cell;
1982         int rc;
1983
1984         if (!nvmem)
1985                 return -EINVAL;
1986
1987         rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1988         if (rc)
1989                 return rc;
1990
1991         return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1992 }
1993 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1994
1995 /**
1996  * nvmem_device_read() - Read from a given nvmem device
1997  *
1998  * @nvmem: nvmem device to read from.
1999  * @offset: offset in nvmem device.
2000  * @bytes: number of bytes to read.
2001  * @buf: buffer pointer which will be populated on successful read.
2002  *
2003  * Return: length of successful bytes read on success and negative
2004  * error code on error.
2005  */
2006 int nvmem_device_read(struct nvmem_device *nvmem,
2007                       unsigned int offset,
2008                       size_t bytes, void *buf)
2009 {
2010         int rc;
2011
2012         if (!nvmem)
2013                 return -EINVAL;
2014
2015         rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2016
2017         if (rc)
2018                 return rc;
2019
2020         return bytes;
2021 }
2022 EXPORT_SYMBOL_GPL(nvmem_device_read);
2023
2024 /**
2025  * nvmem_device_write() - Write cell to a given nvmem device
2026  *
2027  * @nvmem: nvmem device to be written to.
2028  * @offset: offset in nvmem device.
2029  * @bytes: number of bytes to write.
2030  * @buf: buffer to be written.
2031  *
2032  * Return: length of bytes written or negative error code on failure.
2033  */
2034 int nvmem_device_write(struct nvmem_device *nvmem,
2035                        unsigned int offset,
2036                        size_t bytes, void *buf)
2037 {
2038         int rc;
2039
2040         if (!nvmem)
2041                 return -EINVAL;
2042
2043         rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2044
2045         if (rc)
2046                 return rc;
2047
2048
2049         return bytes;
2050 }
2051 EXPORT_SYMBOL_GPL(nvmem_device_write);
2052
2053 /**
2054  * nvmem_add_cell_table() - register a table of cell info entries
2055  *
2056  * @table: table of cell info entries
2057  */
2058 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2059 {
2060         mutex_lock(&nvmem_cell_mutex);
2061         list_add_tail(&table->node, &nvmem_cell_tables);
2062         mutex_unlock(&nvmem_cell_mutex);
2063 }
2064 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2065
2066 /**
2067  * nvmem_del_cell_table() - remove a previously registered cell info table
2068  *
2069  * @table: table of cell info entries
2070  */
2071 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2072 {
2073         mutex_lock(&nvmem_cell_mutex);
2074         list_del(&table->node);
2075         mutex_unlock(&nvmem_cell_mutex);
2076 }
2077 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2078
2079 /**
2080  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2081  *
2082  * @entries: array of cell lookup entries
2083  * @nentries: number of cell lookup entries in the array
2084  */
2085 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2086 {
2087         int i;
2088
2089         mutex_lock(&nvmem_lookup_mutex);
2090         for (i = 0; i < nentries; i++)
2091                 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2092         mutex_unlock(&nvmem_lookup_mutex);
2093 }
2094 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2095
2096 /**
2097  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2098  *                            entries
2099  *
2100  * @entries: array of cell lookup entries
2101  * @nentries: number of cell lookup entries in the array
2102  */
2103 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2104 {
2105         int i;
2106
2107         mutex_lock(&nvmem_lookup_mutex);
2108         for (i = 0; i < nentries; i++)
2109                 list_del(&entries[i].node);
2110         mutex_unlock(&nvmem_lookup_mutex);
2111 }
2112 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2113
2114 /**
2115  * nvmem_dev_name() - Get the name of a given nvmem device.
2116  *
2117  * @nvmem: nvmem device.
2118  *
2119  * Return: name of the nvmem device.
2120  */
2121 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2122 {
2123         return dev_name(&nvmem->dev);
2124 }
2125 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2126
2127 static int __init nvmem_init(void)
2128 {
2129         return bus_register(&nvmem_bus_type);
2130 }
2131
2132 static void __exit nvmem_exit(void)
2133 {
2134         bus_unregister(&nvmem_bus_type);
2135 }
2136
2137 subsys_initcall(nvmem_init);
2138 module_exit(nvmem_exit);
2139
2140 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2141 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2142 MODULE_DESCRIPTION("nvmem Driver Core");