net: stmmac: enable all safety features by default
[platform/kernel/linux-rpi.git] / drivers / nvmem / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23         struct module           *owner;
24         struct device           dev;
25         int                     stride;
26         int                     word_size;
27         int                     id;
28         struct kref             refcnt;
29         size_t                  size;
30         bool                    read_only;
31         bool                    root_only;
32         int                     flags;
33         enum nvmem_type         type;
34         struct bin_attribute    eeprom;
35         struct device           *base_dev;
36         struct list_head        cells;
37         const struct nvmem_keepout *keepout;
38         unsigned int            nkeepout;
39         nvmem_reg_read_t        reg_read;
40         nvmem_reg_write_t       reg_write;
41         struct gpio_desc        *wp_gpio;
42         void *priv;
43 };
44
45 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
46
47 #define FLAG_COMPAT             BIT(0)
48
49 struct nvmem_cell {
50         const char              *name;
51         int                     offset;
52         int                     bytes;
53         int                     bit_offset;
54         int                     nbits;
55         struct device_node      *np;
56         struct nvmem_device     *nvmem;
57         struct list_head        node;
58 };
59
60 static DEFINE_MUTEX(nvmem_mutex);
61 static DEFINE_IDA(nvmem_ida);
62
63 static DEFINE_MUTEX(nvmem_cell_mutex);
64 static LIST_HEAD(nvmem_cell_tables);
65
66 static DEFINE_MUTEX(nvmem_lookup_mutex);
67 static LIST_HEAD(nvmem_lookup_list);
68
69 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
70
71 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
72                             void *val, size_t bytes)
73 {
74         if (nvmem->reg_read)
75                 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
76
77         return -EINVAL;
78 }
79
80 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
81                              void *val, size_t bytes)
82 {
83         int ret;
84
85         if (nvmem->reg_write) {
86                 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
87                 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
88                 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
89                 return ret;
90         }
91
92         return -EINVAL;
93 }
94
95 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
96                                       unsigned int offset, void *val,
97                                       size_t bytes, int write)
98 {
99
100         unsigned int end = offset + bytes;
101         unsigned int kend, ksize;
102         const struct nvmem_keepout *keepout = nvmem->keepout;
103         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
104         int rc;
105
106         /*
107          * Skip all keepouts before the range being accessed.
108          * Keepouts are sorted.
109          */
110         while ((keepout < keepoutend) && (keepout->end <= offset))
111                 keepout++;
112
113         while ((offset < end) && (keepout < keepoutend)) {
114                 /* Access the valid portion before the keepout. */
115                 if (offset < keepout->start) {
116                         kend = min(end, keepout->start);
117                         ksize = kend - offset;
118                         if (write)
119                                 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
120                         else
121                                 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
122
123                         if (rc)
124                                 return rc;
125
126                         offset += ksize;
127                         val += ksize;
128                 }
129
130                 /*
131                  * Now we're aligned to the start of this keepout zone. Go
132                  * through it.
133                  */
134                 kend = min(end, keepout->end);
135                 ksize = kend - offset;
136                 if (!write)
137                         memset(val, keepout->value, ksize);
138
139                 val += ksize;
140                 offset += ksize;
141                 keepout++;
142         }
143
144         /*
145          * If we ran out of keepouts but there's still stuff to do, send it
146          * down directly
147          */
148         if (offset < end) {
149                 ksize = end - offset;
150                 if (write)
151                         return __nvmem_reg_write(nvmem, offset, val, ksize);
152                 else
153                         return __nvmem_reg_read(nvmem, offset, val, ksize);
154         }
155
156         return 0;
157 }
158
159 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
160                           void *val, size_t bytes)
161 {
162         if (!nvmem->nkeepout)
163                 return __nvmem_reg_read(nvmem, offset, val, bytes);
164
165         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
166 }
167
168 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
169                            void *val, size_t bytes)
170 {
171         if (!nvmem->nkeepout)
172                 return __nvmem_reg_write(nvmem, offset, val, bytes);
173
174         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
175 }
176
177 #ifdef CONFIG_NVMEM_SYSFS
178 static const char * const nvmem_type_str[] = {
179         [NVMEM_TYPE_UNKNOWN] = "Unknown",
180         [NVMEM_TYPE_EEPROM] = "EEPROM",
181         [NVMEM_TYPE_OTP] = "OTP",
182         [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
183         [NVMEM_TYPE_FRAM] = "FRAM",
184 };
185
186 #ifdef CONFIG_DEBUG_LOCK_ALLOC
187 static struct lock_class_key eeprom_lock_key;
188 #endif
189
190 static ssize_t type_show(struct device *dev,
191                          struct device_attribute *attr, char *buf)
192 {
193         struct nvmem_device *nvmem = to_nvmem_device(dev);
194
195         return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
196 }
197
198 static DEVICE_ATTR_RO(type);
199
200 static struct attribute *nvmem_attrs[] = {
201         &dev_attr_type.attr,
202         NULL,
203 };
204
205 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
206                                    struct bin_attribute *attr, char *buf,
207                                    loff_t pos, size_t count)
208 {
209         struct device *dev;
210         struct nvmem_device *nvmem;
211         int rc;
212
213         if (attr->private)
214                 dev = attr->private;
215         else
216                 dev = kobj_to_dev(kobj);
217         nvmem = to_nvmem_device(dev);
218
219         /* Stop the user from reading */
220         if (pos >= nvmem->size)
221                 return 0;
222
223         if (!IS_ALIGNED(pos, nvmem->stride))
224                 return -EINVAL;
225
226         if (count < nvmem->word_size)
227                 return -EINVAL;
228
229         if (pos + count > nvmem->size)
230                 count = nvmem->size - pos;
231
232         count = round_down(count, nvmem->word_size);
233
234         if (!nvmem->reg_read)
235                 return -EPERM;
236
237         rc = nvmem_reg_read(nvmem, pos, buf, count);
238
239         if (rc)
240                 return rc;
241
242         return count;
243 }
244
245 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
246                                     struct bin_attribute *attr, char *buf,
247                                     loff_t pos, size_t count)
248 {
249         struct device *dev;
250         struct nvmem_device *nvmem;
251         int rc;
252
253         if (attr->private)
254                 dev = attr->private;
255         else
256                 dev = kobj_to_dev(kobj);
257         nvmem = to_nvmem_device(dev);
258
259         /* Stop the user from writing */
260         if (pos >= nvmem->size)
261                 return -EFBIG;
262
263         if (!IS_ALIGNED(pos, nvmem->stride))
264                 return -EINVAL;
265
266         if (count < nvmem->word_size)
267                 return -EINVAL;
268
269         if (pos + count > nvmem->size)
270                 count = nvmem->size - pos;
271
272         count = round_down(count, nvmem->word_size);
273
274         if (!nvmem->reg_write)
275                 return -EPERM;
276
277         rc = nvmem_reg_write(nvmem, pos, buf, count);
278
279         if (rc)
280                 return rc;
281
282         return count;
283 }
284
285 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
286 {
287         umode_t mode = 0400;
288
289         if (!nvmem->root_only)
290                 mode |= 0044;
291
292         if (!nvmem->read_only)
293                 mode |= 0200;
294
295         if (!nvmem->reg_write)
296                 mode &= ~0200;
297
298         if (!nvmem->reg_read)
299                 mode &= ~0444;
300
301         return mode;
302 }
303
304 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
305                                          struct bin_attribute *attr, int i)
306 {
307         struct device *dev = kobj_to_dev(kobj);
308         struct nvmem_device *nvmem = to_nvmem_device(dev);
309
310         attr->size = nvmem->size;
311
312         return nvmem_bin_attr_get_umode(nvmem);
313 }
314
315 /* default read/write permissions */
316 static struct bin_attribute bin_attr_rw_nvmem = {
317         .attr   = {
318                 .name   = "nvmem",
319                 .mode   = 0644,
320         },
321         .read   = bin_attr_nvmem_read,
322         .write  = bin_attr_nvmem_write,
323 };
324
325 static struct bin_attribute *nvmem_bin_attributes[] = {
326         &bin_attr_rw_nvmem,
327         NULL,
328 };
329
330 static const struct attribute_group nvmem_bin_group = {
331         .bin_attrs      = nvmem_bin_attributes,
332         .attrs          = nvmem_attrs,
333         .is_bin_visible = nvmem_bin_attr_is_visible,
334 };
335
336 static const struct attribute_group *nvmem_dev_groups[] = {
337         &nvmem_bin_group,
338         NULL,
339 };
340
341 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
342         .attr   = {
343                 .name   = "eeprom",
344         },
345         .read   = bin_attr_nvmem_read,
346         .write  = bin_attr_nvmem_write,
347 };
348
349 /*
350  * nvmem_setup_compat() - Create an additional binary entry in
351  * drivers sys directory, to be backwards compatible with the older
352  * drivers/misc/eeprom drivers.
353  */
354 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
355                                     const struct nvmem_config *config)
356 {
357         int rval;
358
359         if (!config->compat)
360                 return 0;
361
362         if (!config->base_dev)
363                 return -EINVAL;
364
365         if (config->type == NVMEM_TYPE_FRAM)
366                 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
367
368         nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
369         nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
370         nvmem->eeprom.size = nvmem->size;
371 #ifdef CONFIG_DEBUG_LOCK_ALLOC
372         nvmem->eeprom.attr.key = &eeprom_lock_key;
373 #endif
374         nvmem->eeprom.private = &nvmem->dev;
375         nvmem->base_dev = config->base_dev;
376
377         rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
378         if (rval) {
379                 dev_err(&nvmem->dev,
380                         "Failed to create eeprom binary file %d\n", rval);
381                 return rval;
382         }
383
384         nvmem->flags |= FLAG_COMPAT;
385
386         return 0;
387 }
388
389 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
390                               const struct nvmem_config *config)
391 {
392         if (config->compat)
393                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
394 }
395
396 #else /* CONFIG_NVMEM_SYSFS */
397
398 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
399                                     const struct nvmem_config *config)
400 {
401         return -ENOSYS;
402 }
403 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
404                                       const struct nvmem_config *config)
405 {
406 }
407
408 #endif /* CONFIG_NVMEM_SYSFS */
409
410 static void nvmem_release(struct device *dev)
411 {
412         struct nvmem_device *nvmem = to_nvmem_device(dev);
413
414         ida_free(&nvmem_ida, nvmem->id);
415         gpiod_put(nvmem->wp_gpio);
416         kfree(nvmem);
417 }
418
419 static const struct device_type nvmem_provider_type = {
420         .release        = nvmem_release,
421 };
422
423 static struct bus_type nvmem_bus_type = {
424         .name           = "nvmem",
425 };
426
427 static void nvmem_cell_drop(struct nvmem_cell *cell)
428 {
429         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
430         mutex_lock(&nvmem_mutex);
431         list_del(&cell->node);
432         mutex_unlock(&nvmem_mutex);
433         of_node_put(cell->np);
434         kfree_const(cell->name);
435         kfree(cell);
436 }
437
438 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
439 {
440         struct nvmem_cell *cell, *p;
441
442         list_for_each_entry_safe(cell, p, &nvmem->cells, node)
443                 nvmem_cell_drop(cell);
444 }
445
446 static void nvmem_cell_add(struct nvmem_cell *cell)
447 {
448         mutex_lock(&nvmem_mutex);
449         list_add_tail(&cell->node, &cell->nvmem->cells);
450         mutex_unlock(&nvmem_mutex);
451         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
452 }
453
454 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
455                                         const struct nvmem_cell_info *info,
456                                         struct nvmem_cell *cell)
457 {
458         cell->nvmem = nvmem;
459         cell->offset = info->offset;
460         cell->bytes = info->bytes;
461         cell->name = info->name;
462
463         cell->bit_offset = info->bit_offset;
464         cell->nbits = info->nbits;
465
466         if (cell->nbits)
467                 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
468                                            BITS_PER_BYTE);
469
470         if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
471                 dev_err(&nvmem->dev,
472                         "cell %s unaligned to nvmem stride %d\n",
473                         cell->name ?: "<unknown>", nvmem->stride);
474                 return -EINVAL;
475         }
476
477         return 0;
478 }
479
480 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
481                                 const struct nvmem_cell_info *info,
482                                 struct nvmem_cell *cell)
483 {
484         int err;
485
486         err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
487         if (err)
488                 return err;
489
490         cell->name = kstrdup_const(info->name, GFP_KERNEL);
491         if (!cell->name)
492                 return -ENOMEM;
493
494         return 0;
495 }
496
497 /**
498  * nvmem_add_cells() - Add cell information to an nvmem device
499  *
500  * @nvmem: nvmem device to add cells to.
501  * @info: nvmem cell info to add to the device
502  * @ncells: number of cells in info
503  *
504  * Return: 0 or negative error code on failure.
505  */
506 static int nvmem_add_cells(struct nvmem_device *nvmem,
507                     const struct nvmem_cell_info *info,
508                     int ncells)
509 {
510         struct nvmem_cell **cells;
511         int i, rval;
512
513         cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
514         if (!cells)
515                 return -ENOMEM;
516
517         for (i = 0; i < ncells; i++) {
518                 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
519                 if (!cells[i]) {
520                         rval = -ENOMEM;
521                         goto err;
522                 }
523
524                 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
525                 if (rval) {
526                         kfree(cells[i]);
527                         goto err;
528                 }
529
530                 nvmem_cell_add(cells[i]);
531         }
532
533         /* remove tmp array */
534         kfree(cells);
535
536         return 0;
537 err:
538         while (i--)
539                 nvmem_cell_drop(cells[i]);
540
541         kfree(cells);
542
543         return rval;
544 }
545
546 /**
547  * nvmem_register_notifier() - Register a notifier block for nvmem events.
548  *
549  * @nb: notifier block to be called on nvmem events.
550  *
551  * Return: 0 on success, negative error number on failure.
552  */
553 int nvmem_register_notifier(struct notifier_block *nb)
554 {
555         return blocking_notifier_chain_register(&nvmem_notifier, nb);
556 }
557 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
558
559 /**
560  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
561  *
562  * @nb: notifier block to be unregistered.
563  *
564  * Return: 0 on success, negative error number on failure.
565  */
566 int nvmem_unregister_notifier(struct notifier_block *nb)
567 {
568         return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
569 }
570 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
571
572 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
573 {
574         const struct nvmem_cell_info *info;
575         struct nvmem_cell_table *table;
576         struct nvmem_cell *cell;
577         int rval = 0, i;
578
579         mutex_lock(&nvmem_cell_mutex);
580         list_for_each_entry(table, &nvmem_cell_tables, node) {
581                 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
582                         for (i = 0; i < table->ncells; i++) {
583                                 info = &table->cells[i];
584
585                                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
586                                 if (!cell) {
587                                         rval = -ENOMEM;
588                                         goto out;
589                                 }
590
591                                 rval = nvmem_cell_info_to_nvmem_cell(nvmem,
592                                                                      info,
593                                                                      cell);
594                                 if (rval) {
595                                         kfree(cell);
596                                         goto out;
597                                 }
598
599                                 nvmem_cell_add(cell);
600                         }
601                 }
602         }
603
604 out:
605         mutex_unlock(&nvmem_cell_mutex);
606         return rval;
607 }
608
609 static struct nvmem_cell *
610 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
611 {
612         struct nvmem_cell *iter, *cell = NULL;
613
614         mutex_lock(&nvmem_mutex);
615         list_for_each_entry(iter, &nvmem->cells, node) {
616                 if (strcmp(cell_id, iter->name) == 0) {
617                         cell = iter;
618                         break;
619                 }
620         }
621         mutex_unlock(&nvmem_mutex);
622
623         return cell;
624 }
625
626 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
627 {
628         unsigned int cur = 0;
629         const struct nvmem_keepout *keepout = nvmem->keepout;
630         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
631
632         while (keepout < keepoutend) {
633                 /* Ensure keepouts are sorted and don't overlap. */
634                 if (keepout->start < cur) {
635                         dev_err(&nvmem->dev,
636                                 "Keepout regions aren't sorted or overlap.\n");
637
638                         return -ERANGE;
639                 }
640
641                 if (keepout->end < keepout->start) {
642                         dev_err(&nvmem->dev,
643                                 "Invalid keepout region.\n");
644
645                         return -EINVAL;
646                 }
647
648                 /*
649                  * Validate keepouts (and holes between) don't violate
650                  * word_size constraints.
651                  */
652                 if ((keepout->end - keepout->start < nvmem->word_size) ||
653                     ((keepout->start != cur) &&
654                      (keepout->start - cur < nvmem->word_size))) {
655
656                         dev_err(&nvmem->dev,
657                                 "Keepout regions violate word_size constraints.\n");
658
659                         return -ERANGE;
660                 }
661
662                 /* Validate keepouts don't violate stride (alignment). */
663                 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
664                     !IS_ALIGNED(keepout->end, nvmem->stride)) {
665
666                         dev_err(&nvmem->dev,
667                                 "Keepout regions violate stride.\n");
668
669                         return -EINVAL;
670                 }
671
672                 cur = keepout->end;
673                 keepout++;
674         }
675
676         return 0;
677 }
678
679 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
680 {
681         struct device_node *parent, *child;
682         struct device *dev = &nvmem->dev;
683         struct nvmem_cell *cell;
684         const __be32 *addr;
685         int len;
686
687         parent = dev->of_node;
688
689         for_each_child_of_node(parent, child) {
690                 addr = of_get_property(child, "reg", &len);
691                 if (!addr)
692                         continue;
693                 if (len < 2 * sizeof(u32)) {
694                         dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
695                         of_node_put(child);
696                         return -EINVAL;
697                 }
698
699                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
700                 if (!cell) {
701                         of_node_put(child);
702                         return -ENOMEM;
703                 }
704
705                 cell->nvmem = nvmem;
706                 cell->offset = be32_to_cpup(addr++);
707                 cell->bytes = be32_to_cpup(addr);
708                 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
709
710                 addr = of_get_property(child, "bits", &len);
711                 if (addr && len == (2 * sizeof(u32))) {
712                         cell->bit_offset = be32_to_cpup(addr++);
713                         cell->nbits = be32_to_cpup(addr);
714                 }
715
716                 if (cell->nbits)
717                         cell->bytes = DIV_ROUND_UP(
718                                         cell->nbits + cell->bit_offset,
719                                         BITS_PER_BYTE);
720
721                 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
722                         dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
723                                 cell->name, nvmem->stride);
724                         /* Cells already added will be freed later. */
725                         kfree_const(cell->name);
726                         kfree(cell);
727                         of_node_put(child);
728                         return -EINVAL;
729                 }
730
731                 cell->np = of_node_get(child);
732                 nvmem_cell_add(cell);
733         }
734
735         return 0;
736 }
737
738 /**
739  * nvmem_register() - Register a nvmem device for given nvmem_config.
740  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
741  *
742  * @config: nvmem device configuration with which nvmem device is created.
743  *
744  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
745  * on success.
746  */
747
748 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
749 {
750         struct nvmem_device *nvmem;
751         int rval;
752
753         if (!config->dev)
754                 return ERR_PTR(-EINVAL);
755
756         if (!config->reg_read && !config->reg_write)
757                 return ERR_PTR(-EINVAL);
758
759         nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
760         if (!nvmem)
761                 return ERR_PTR(-ENOMEM);
762
763         rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
764         if (rval < 0) {
765                 kfree(nvmem);
766                 return ERR_PTR(rval);
767         }
768
769         if (config->wp_gpio)
770                 nvmem->wp_gpio = config->wp_gpio;
771         else if (!config->ignore_wp)
772                 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
773                                                     GPIOD_OUT_HIGH);
774         if (IS_ERR(nvmem->wp_gpio)) {
775                 ida_free(&nvmem_ida, nvmem->id);
776                 rval = PTR_ERR(nvmem->wp_gpio);
777                 kfree(nvmem);
778                 return ERR_PTR(rval);
779         }
780
781         kref_init(&nvmem->refcnt);
782         INIT_LIST_HEAD(&nvmem->cells);
783
784         nvmem->id = rval;
785         nvmem->owner = config->owner;
786         if (!nvmem->owner && config->dev->driver)
787                 nvmem->owner = config->dev->driver->owner;
788         nvmem->stride = config->stride ?: 1;
789         nvmem->word_size = config->word_size ?: 1;
790         nvmem->size = config->size;
791         nvmem->dev.type = &nvmem_provider_type;
792         nvmem->dev.bus = &nvmem_bus_type;
793         nvmem->dev.parent = config->dev;
794         nvmem->root_only = config->root_only;
795         nvmem->priv = config->priv;
796         nvmem->type = config->type;
797         nvmem->reg_read = config->reg_read;
798         nvmem->reg_write = config->reg_write;
799         nvmem->keepout = config->keepout;
800         nvmem->nkeepout = config->nkeepout;
801         if (config->of_node)
802                 nvmem->dev.of_node = config->of_node;
803         else if (!config->no_of_node)
804                 nvmem->dev.of_node = config->dev->of_node;
805
806         switch (config->id) {
807         case NVMEM_DEVID_NONE:
808                 dev_set_name(&nvmem->dev, "%s", config->name);
809                 break;
810         case NVMEM_DEVID_AUTO:
811                 dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
812                 break;
813         default:
814                 dev_set_name(&nvmem->dev, "%s%d",
815                              config->name ? : "nvmem",
816                              config->name ? config->id : nvmem->id);
817                 break;
818         }
819
820         nvmem->read_only = device_property_present(config->dev, "read-only") ||
821                            config->read_only || !nvmem->reg_write;
822
823 #ifdef CONFIG_NVMEM_SYSFS
824         nvmem->dev.groups = nvmem_dev_groups;
825 #endif
826
827         dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
828
829         rval = device_register(&nvmem->dev);
830         if (rval)
831                 goto err_put_device;
832
833         if (nvmem->nkeepout) {
834                 rval = nvmem_validate_keepouts(nvmem);
835                 if (rval)
836                         goto err_device_del;
837         }
838
839         if (config->compat) {
840                 rval = nvmem_sysfs_setup_compat(nvmem, config);
841                 if (rval)
842                         goto err_device_del;
843         }
844
845         if (config->cells) {
846                 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
847                 if (rval)
848                         goto err_teardown_compat;
849         }
850
851         rval = nvmem_add_cells_from_table(nvmem);
852         if (rval)
853                 goto err_remove_cells;
854
855         rval = nvmem_add_cells_from_of(nvmem);
856         if (rval)
857                 goto err_remove_cells;
858
859         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
860
861         return nvmem;
862
863 err_remove_cells:
864         nvmem_device_remove_all_cells(nvmem);
865 err_teardown_compat:
866         if (config->compat)
867                 nvmem_sysfs_remove_compat(nvmem, config);
868 err_device_del:
869         device_del(&nvmem->dev);
870 err_put_device:
871         put_device(&nvmem->dev);
872
873         return ERR_PTR(rval);
874 }
875 EXPORT_SYMBOL_GPL(nvmem_register);
876
877 static void nvmem_device_release(struct kref *kref)
878 {
879         struct nvmem_device *nvmem;
880
881         nvmem = container_of(kref, struct nvmem_device, refcnt);
882
883         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
884
885         if (nvmem->flags & FLAG_COMPAT)
886                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
887
888         nvmem_device_remove_all_cells(nvmem);
889         device_unregister(&nvmem->dev);
890 }
891
892 /**
893  * nvmem_unregister() - Unregister previously registered nvmem device
894  *
895  * @nvmem: Pointer to previously registered nvmem device.
896  */
897 void nvmem_unregister(struct nvmem_device *nvmem)
898 {
899         kref_put(&nvmem->refcnt, nvmem_device_release);
900 }
901 EXPORT_SYMBOL_GPL(nvmem_unregister);
902
903 static void devm_nvmem_release(struct device *dev, void *res)
904 {
905         nvmem_unregister(*(struct nvmem_device **)res);
906 }
907
908 /**
909  * devm_nvmem_register() - Register a managed nvmem device for given
910  * nvmem_config.
911  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
912  *
913  * @dev: Device that uses the nvmem device.
914  * @config: nvmem device configuration with which nvmem device is created.
915  *
916  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
917  * on success.
918  */
919 struct nvmem_device *devm_nvmem_register(struct device *dev,
920                                          const struct nvmem_config *config)
921 {
922         struct nvmem_device **ptr, *nvmem;
923
924         ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
925         if (!ptr)
926                 return ERR_PTR(-ENOMEM);
927
928         nvmem = nvmem_register(config);
929
930         if (!IS_ERR(nvmem)) {
931                 *ptr = nvmem;
932                 devres_add(dev, ptr);
933         } else {
934                 devres_free(ptr);
935         }
936
937         return nvmem;
938 }
939 EXPORT_SYMBOL_GPL(devm_nvmem_register);
940
941 static int devm_nvmem_match(struct device *dev, void *res, void *data)
942 {
943         struct nvmem_device **r = res;
944
945         return *r == data;
946 }
947
948 /**
949  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
950  * device.
951  *
952  * @dev: Device that uses the nvmem device.
953  * @nvmem: Pointer to previously registered nvmem device.
954  *
955  * Return: Will be negative on error or zero on success.
956  */
957 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
958 {
959         return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
960 }
961 EXPORT_SYMBOL(devm_nvmem_unregister);
962
963 static struct nvmem_device *__nvmem_device_get(void *data,
964                         int (*match)(struct device *dev, const void *data))
965 {
966         struct nvmem_device *nvmem = NULL;
967         struct device *dev;
968
969         mutex_lock(&nvmem_mutex);
970         dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
971         if (dev)
972                 nvmem = to_nvmem_device(dev);
973         mutex_unlock(&nvmem_mutex);
974         if (!nvmem)
975                 return ERR_PTR(-EPROBE_DEFER);
976
977         if (!try_module_get(nvmem->owner)) {
978                 dev_err(&nvmem->dev,
979                         "could not increase module refcount for cell %s\n",
980                         nvmem_dev_name(nvmem));
981
982                 put_device(&nvmem->dev);
983                 return ERR_PTR(-EINVAL);
984         }
985
986         kref_get(&nvmem->refcnt);
987
988         return nvmem;
989 }
990
991 static void __nvmem_device_put(struct nvmem_device *nvmem)
992 {
993         put_device(&nvmem->dev);
994         module_put(nvmem->owner);
995         kref_put(&nvmem->refcnt, nvmem_device_release);
996 }
997
998 #if IS_ENABLED(CONFIG_OF)
999 /**
1000  * of_nvmem_device_get() - Get nvmem device from a given id
1001  *
1002  * @np: Device tree node that uses the nvmem device.
1003  * @id: nvmem name from nvmem-names property.
1004  *
1005  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1006  * on success.
1007  */
1008 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1009 {
1010
1011         struct device_node *nvmem_np;
1012         struct nvmem_device *nvmem;
1013         int index = 0;
1014
1015         if (id)
1016                 index = of_property_match_string(np, "nvmem-names", id);
1017
1018         nvmem_np = of_parse_phandle(np, "nvmem", index);
1019         if (!nvmem_np)
1020                 return ERR_PTR(-ENOENT);
1021
1022         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1023         of_node_put(nvmem_np);
1024         return nvmem;
1025 }
1026 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1027 #endif
1028
1029 /**
1030  * nvmem_device_get() - Get nvmem device from a given id
1031  *
1032  * @dev: Device that uses the nvmem device.
1033  * @dev_name: name of the requested nvmem device.
1034  *
1035  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1036  * on success.
1037  */
1038 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1039 {
1040         if (dev->of_node) { /* try dt first */
1041                 struct nvmem_device *nvmem;
1042
1043                 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1044
1045                 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1046                         return nvmem;
1047
1048         }
1049
1050         return __nvmem_device_get((void *)dev_name, device_match_name);
1051 }
1052 EXPORT_SYMBOL_GPL(nvmem_device_get);
1053
1054 /**
1055  * nvmem_device_find() - Find nvmem device with matching function
1056  *
1057  * @data: Data to pass to match function
1058  * @match: Callback function to check device
1059  *
1060  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1061  * on success.
1062  */
1063 struct nvmem_device *nvmem_device_find(void *data,
1064                         int (*match)(struct device *dev, const void *data))
1065 {
1066         return __nvmem_device_get(data, match);
1067 }
1068 EXPORT_SYMBOL_GPL(nvmem_device_find);
1069
1070 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1071 {
1072         struct nvmem_device **nvmem = res;
1073
1074         if (WARN_ON(!nvmem || !*nvmem))
1075                 return 0;
1076
1077         return *nvmem == data;
1078 }
1079
1080 static void devm_nvmem_device_release(struct device *dev, void *res)
1081 {
1082         nvmem_device_put(*(struct nvmem_device **)res);
1083 }
1084
1085 /**
1086  * devm_nvmem_device_put() - put alredy got nvmem device
1087  *
1088  * @dev: Device that uses the nvmem device.
1089  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1090  * that needs to be released.
1091  */
1092 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1093 {
1094         int ret;
1095
1096         ret = devres_release(dev, devm_nvmem_device_release,
1097                              devm_nvmem_device_match, nvmem);
1098
1099         WARN_ON(ret);
1100 }
1101 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1102
1103 /**
1104  * nvmem_device_put() - put alredy got nvmem device
1105  *
1106  * @nvmem: pointer to nvmem device that needs to be released.
1107  */
1108 void nvmem_device_put(struct nvmem_device *nvmem)
1109 {
1110         __nvmem_device_put(nvmem);
1111 }
1112 EXPORT_SYMBOL_GPL(nvmem_device_put);
1113
1114 /**
1115  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1116  *
1117  * @dev: Device that requests the nvmem device.
1118  * @id: name id for the requested nvmem device.
1119  *
1120  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1121  * on success.  The nvmem_cell will be freed by the automatically once the
1122  * device is freed.
1123  */
1124 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1125 {
1126         struct nvmem_device **ptr, *nvmem;
1127
1128         ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1129         if (!ptr)
1130                 return ERR_PTR(-ENOMEM);
1131
1132         nvmem = nvmem_device_get(dev, id);
1133         if (!IS_ERR(nvmem)) {
1134                 *ptr = nvmem;
1135                 devres_add(dev, ptr);
1136         } else {
1137                 devres_free(ptr);
1138         }
1139
1140         return nvmem;
1141 }
1142 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1143
1144 static struct nvmem_cell *
1145 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1146 {
1147         struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1148         struct nvmem_cell_lookup *lookup;
1149         struct nvmem_device *nvmem;
1150         const char *dev_id;
1151
1152         if (!dev)
1153                 return ERR_PTR(-EINVAL);
1154
1155         dev_id = dev_name(dev);
1156
1157         mutex_lock(&nvmem_lookup_mutex);
1158
1159         list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1160                 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1161                     (strcmp(lookup->con_id, con_id) == 0)) {
1162                         /* This is the right entry. */
1163                         nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1164                                                    device_match_name);
1165                         if (IS_ERR(nvmem)) {
1166                                 /* Provider may not be registered yet. */
1167                                 cell = ERR_CAST(nvmem);
1168                                 break;
1169                         }
1170
1171                         cell = nvmem_find_cell_by_name(nvmem,
1172                                                        lookup->cell_name);
1173                         if (!cell) {
1174                                 __nvmem_device_put(nvmem);
1175                                 cell = ERR_PTR(-ENOENT);
1176                         }
1177                         break;
1178                 }
1179         }
1180
1181         mutex_unlock(&nvmem_lookup_mutex);
1182         return cell;
1183 }
1184
1185 #if IS_ENABLED(CONFIG_OF)
1186 static struct nvmem_cell *
1187 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1188 {
1189         struct nvmem_cell *iter, *cell = NULL;
1190
1191         mutex_lock(&nvmem_mutex);
1192         list_for_each_entry(iter, &nvmem->cells, node) {
1193                 if (np == iter->np) {
1194                         cell = iter;
1195                         break;
1196                 }
1197         }
1198         mutex_unlock(&nvmem_mutex);
1199
1200         return cell;
1201 }
1202
1203 /**
1204  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1205  *
1206  * @np: Device tree node that uses the nvmem cell.
1207  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1208  *      for the cell at index 0 (the lone cell with no accompanying
1209  *      nvmem-cell-names property).
1210  *
1211  * Return: Will be an ERR_PTR() on error or a valid pointer
1212  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1213  * nvmem_cell_put().
1214  */
1215 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1216 {
1217         struct device_node *cell_np, *nvmem_np;
1218         struct nvmem_device *nvmem;
1219         struct nvmem_cell *cell;
1220         int index = 0;
1221
1222         /* if cell name exists, find index to the name */
1223         if (id)
1224                 index = of_property_match_string(np, "nvmem-cell-names", id);
1225
1226         cell_np = of_parse_phandle(np, "nvmem-cells", index);
1227         if (!cell_np)
1228                 return ERR_PTR(-ENOENT);
1229
1230         nvmem_np = of_get_next_parent(cell_np);
1231         if (!nvmem_np)
1232                 return ERR_PTR(-EINVAL);
1233
1234         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1235         of_node_put(nvmem_np);
1236         if (IS_ERR(nvmem))
1237                 return ERR_CAST(nvmem);
1238
1239         cell = nvmem_find_cell_by_node(nvmem, cell_np);
1240         if (!cell) {
1241                 __nvmem_device_put(nvmem);
1242                 return ERR_PTR(-ENOENT);
1243         }
1244
1245         return cell;
1246 }
1247 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1248 #endif
1249
1250 /**
1251  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1252  *
1253  * @dev: Device that requests the nvmem cell.
1254  * @id: nvmem cell name to get (this corresponds with the name from the
1255  *      nvmem-cell-names property for DT systems and with the con_id from
1256  *      the lookup entry for non-DT systems).
1257  *
1258  * Return: Will be an ERR_PTR() on error or a valid pointer
1259  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1260  * nvmem_cell_put().
1261  */
1262 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1263 {
1264         struct nvmem_cell *cell;
1265
1266         if (dev->of_node) { /* try dt first */
1267                 cell = of_nvmem_cell_get(dev->of_node, id);
1268                 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1269                         return cell;
1270         }
1271
1272         /* NULL cell id only allowed for device tree; invalid otherwise */
1273         if (!id)
1274                 return ERR_PTR(-EINVAL);
1275
1276         return nvmem_cell_get_from_lookup(dev, id);
1277 }
1278 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1279
1280 static void devm_nvmem_cell_release(struct device *dev, void *res)
1281 {
1282         nvmem_cell_put(*(struct nvmem_cell **)res);
1283 }
1284
1285 /**
1286  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1287  *
1288  * @dev: Device that requests the nvmem cell.
1289  * @id: nvmem cell name id to get.
1290  *
1291  * Return: Will be an ERR_PTR() on error or a valid pointer
1292  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1293  * automatically once the device is freed.
1294  */
1295 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1296 {
1297         struct nvmem_cell **ptr, *cell;
1298
1299         ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1300         if (!ptr)
1301                 return ERR_PTR(-ENOMEM);
1302
1303         cell = nvmem_cell_get(dev, id);
1304         if (!IS_ERR(cell)) {
1305                 *ptr = cell;
1306                 devres_add(dev, ptr);
1307         } else {
1308                 devres_free(ptr);
1309         }
1310
1311         return cell;
1312 }
1313 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1314
1315 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1316 {
1317         struct nvmem_cell **c = res;
1318
1319         if (WARN_ON(!c || !*c))
1320                 return 0;
1321
1322         return *c == data;
1323 }
1324
1325 /**
1326  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1327  * from devm_nvmem_cell_get.
1328  *
1329  * @dev: Device that requests the nvmem cell.
1330  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1331  */
1332 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1333 {
1334         int ret;
1335
1336         ret = devres_release(dev, devm_nvmem_cell_release,
1337                                 devm_nvmem_cell_match, cell);
1338
1339         WARN_ON(ret);
1340 }
1341 EXPORT_SYMBOL(devm_nvmem_cell_put);
1342
1343 /**
1344  * nvmem_cell_put() - Release previously allocated nvmem cell.
1345  *
1346  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1347  */
1348 void nvmem_cell_put(struct nvmem_cell *cell)
1349 {
1350         struct nvmem_device *nvmem = cell->nvmem;
1351
1352         __nvmem_device_put(nvmem);
1353 }
1354 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1355
1356 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1357 {
1358         u8 *p, *b;
1359         int i, extra, bit_offset = cell->bit_offset;
1360
1361         p = b = buf;
1362         if (bit_offset) {
1363                 /* First shift */
1364                 *b++ >>= bit_offset;
1365
1366                 /* setup rest of the bytes if any */
1367                 for (i = 1; i < cell->bytes; i++) {
1368                         /* Get bits from next byte and shift them towards msb */
1369                         *p |= *b << (BITS_PER_BYTE - bit_offset);
1370
1371                         p = b;
1372                         *b++ >>= bit_offset;
1373                 }
1374         } else {
1375                 /* point to the msb */
1376                 p += cell->bytes - 1;
1377         }
1378
1379         /* result fits in less bytes */
1380         extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1381         while (--extra >= 0)
1382                 *p-- = 0;
1383
1384         /* clear msb bits if any leftover in the last byte */
1385         if (cell->nbits % BITS_PER_BYTE)
1386                 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1387 }
1388
1389 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1390                       struct nvmem_cell *cell,
1391                       void *buf, size_t *len)
1392 {
1393         int rc;
1394
1395         rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1396
1397         if (rc)
1398                 return rc;
1399
1400         /* shift bits in-place */
1401         if (cell->bit_offset || cell->nbits)
1402                 nvmem_shift_read_buffer_in_place(cell, buf);
1403
1404         if (len)
1405                 *len = cell->bytes;
1406
1407         return 0;
1408 }
1409
1410 /**
1411  * nvmem_cell_read() - Read a given nvmem cell
1412  *
1413  * @cell: nvmem cell to be read.
1414  * @len: pointer to length of cell which will be populated on successful read;
1415  *       can be NULL.
1416  *
1417  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1418  * buffer should be freed by the consumer with a kfree().
1419  */
1420 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1421 {
1422         struct nvmem_device *nvmem = cell->nvmem;
1423         u8 *buf;
1424         int rc;
1425
1426         if (!nvmem)
1427                 return ERR_PTR(-EINVAL);
1428
1429         buf = kzalloc(cell->bytes, GFP_KERNEL);
1430         if (!buf)
1431                 return ERR_PTR(-ENOMEM);
1432
1433         rc = __nvmem_cell_read(nvmem, cell, buf, len);
1434         if (rc) {
1435                 kfree(buf);
1436                 return ERR_PTR(rc);
1437         }
1438
1439         return buf;
1440 }
1441 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1442
1443 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1444                                              u8 *_buf, int len)
1445 {
1446         struct nvmem_device *nvmem = cell->nvmem;
1447         int i, rc, nbits, bit_offset = cell->bit_offset;
1448         u8 v, *p, *buf, *b, pbyte, pbits;
1449
1450         nbits = cell->nbits;
1451         buf = kzalloc(cell->bytes, GFP_KERNEL);
1452         if (!buf)
1453                 return ERR_PTR(-ENOMEM);
1454
1455         memcpy(buf, _buf, len);
1456         p = b = buf;
1457
1458         if (bit_offset) {
1459                 pbyte = *b;
1460                 *b <<= bit_offset;
1461
1462                 /* setup the first byte with lsb bits from nvmem */
1463                 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1464                 if (rc)
1465                         goto err;
1466                 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1467
1468                 /* setup rest of the byte if any */
1469                 for (i = 1; i < cell->bytes; i++) {
1470                         /* Get last byte bits and shift them towards lsb */
1471                         pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1472                         pbyte = *b;
1473                         p = b;
1474                         *b <<= bit_offset;
1475                         *b++ |= pbits;
1476                 }
1477         }
1478
1479         /* if it's not end on byte boundary */
1480         if ((nbits + bit_offset) % BITS_PER_BYTE) {
1481                 /* setup the last byte with msb bits from nvmem */
1482                 rc = nvmem_reg_read(nvmem,
1483                                     cell->offset + cell->bytes - 1, &v, 1);
1484                 if (rc)
1485                         goto err;
1486                 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1487
1488         }
1489
1490         return buf;
1491 err:
1492         kfree(buf);
1493         return ERR_PTR(rc);
1494 }
1495
1496 /**
1497  * nvmem_cell_write() - Write to a given nvmem cell
1498  *
1499  * @cell: nvmem cell to be written.
1500  * @buf: Buffer to be written.
1501  * @len: length of buffer to be written to nvmem cell.
1502  *
1503  * Return: length of bytes written or negative on failure.
1504  */
1505 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1506 {
1507         struct nvmem_device *nvmem = cell->nvmem;
1508         int rc;
1509
1510         if (!nvmem || nvmem->read_only ||
1511             (cell->bit_offset == 0 && len != cell->bytes))
1512                 return -EINVAL;
1513
1514         if (cell->bit_offset || cell->nbits) {
1515                 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1516                 if (IS_ERR(buf))
1517                         return PTR_ERR(buf);
1518         }
1519
1520         rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1521
1522         /* free the tmp buffer */
1523         if (cell->bit_offset || cell->nbits)
1524                 kfree(buf);
1525
1526         if (rc)
1527                 return rc;
1528
1529         return len;
1530 }
1531 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1532
1533 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1534                                   void *val, size_t count)
1535 {
1536         struct nvmem_cell *cell;
1537         void *buf;
1538         size_t len;
1539
1540         cell = nvmem_cell_get(dev, cell_id);
1541         if (IS_ERR(cell))
1542                 return PTR_ERR(cell);
1543
1544         buf = nvmem_cell_read(cell, &len);
1545         if (IS_ERR(buf)) {
1546                 nvmem_cell_put(cell);
1547                 return PTR_ERR(buf);
1548         }
1549         if (len != count) {
1550                 kfree(buf);
1551                 nvmem_cell_put(cell);
1552                 return -EINVAL;
1553         }
1554         memcpy(val, buf, count);
1555         kfree(buf);
1556         nvmem_cell_put(cell);
1557
1558         return 0;
1559 }
1560
1561 /**
1562  * nvmem_cell_read_u8() - Read a cell value as a u8
1563  *
1564  * @dev: Device that requests the nvmem cell.
1565  * @cell_id: Name of nvmem cell to read.
1566  * @val: pointer to output value.
1567  *
1568  * Return: 0 on success or negative errno.
1569  */
1570 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1571 {
1572         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1573 }
1574 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1575
1576 /**
1577  * nvmem_cell_read_u16() - Read a cell value as a u16
1578  *
1579  * @dev: Device that requests the nvmem cell.
1580  * @cell_id: Name of nvmem cell to read.
1581  * @val: pointer to output value.
1582  *
1583  * Return: 0 on success or negative errno.
1584  */
1585 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1586 {
1587         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1588 }
1589 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1590
1591 /**
1592  * nvmem_cell_read_u32() - Read a cell value as a u32
1593  *
1594  * @dev: Device that requests the nvmem cell.
1595  * @cell_id: Name of nvmem cell to read.
1596  * @val: pointer to output value.
1597  *
1598  * Return: 0 on success or negative errno.
1599  */
1600 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1601 {
1602         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1603 }
1604 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1605
1606 /**
1607  * nvmem_cell_read_u64() - Read a cell value as a u64
1608  *
1609  * @dev: Device that requests the nvmem cell.
1610  * @cell_id: Name of nvmem cell to read.
1611  * @val: pointer to output value.
1612  *
1613  * Return: 0 on success or negative errno.
1614  */
1615 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1616 {
1617         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1618 }
1619 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1620
1621 static const void *nvmem_cell_read_variable_common(struct device *dev,
1622                                                    const char *cell_id,
1623                                                    size_t max_len, size_t *len)
1624 {
1625         struct nvmem_cell *cell;
1626         int nbits;
1627         void *buf;
1628
1629         cell = nvmem_cell_get(dev, cell_id);
1630         if (IS_ERR(cell))
1631                 return cell;
1632
1633         nbits = cell->nbits;
1634         buf = nvmem_cell_read(cell, len);
1635         nvmem_cell_put(cell);
1636         if (IS_ERR(buf))
1637                 return buf;
1638
1639         /*
1640          * If nbits is set then nvmem_cell_read() can significantly exaggerate
1641          * the length of the real data. Throw away the extra junk.
1642          */
1643         if (nbits)
1644                 *len = DIV_ROUND_UP(nbits, 8);
1645
1646         if (*len > max_len) {
1647                 kfree(buf);
1648                 return ERR_PTR(-ERANGE);
1649         }
1650
1651         return buf;
1652 }
1653
1654 /**
1655  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1656  *
1657  * @dev: Device that requests the nvmem cell.
1658  * @cell_id: Name of nvmem cell to read.
1659  * @val: pointer to output value.
1660  *
1661  * Return: 0 on success or negative errno.
1662  */
1663 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1664                                     u32 *val)
1665 {
1666         size_t len;
1667         const u8 *buf;
1668         int i;
1669
1670         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1671         if (IS_ERR(buf))
1672                 return PTR_ERR(buf);
1673
1674         /* Copy w/ implicit endian conversion */
1675         *val = 0;
1676         for (i = 0; i < len; i++)
1677                 *val |= buf[i] << (8 * i);
1678
1679         kfree(buf);
1680
1681         return 0;
1682 }
1683 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1684
1685 /**
1686  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1687  *
1688  * @dev: Device that requests the nvmem cell.
1689  * @cell_id: Name of nvmem cell to read.
1690  * @val: pointer to output value.
1691  *
1692  * Return: 0 on success or negative errno.
1693  */
1694 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1695                                     u64 *val)
1696 {
1697         size_t len;
1698         const u8 *buf;
1699         int i;
1700
1701         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1702         if (IS_ERR(buf))
1703                 return PTR_ERR(buf);
1704
1705         /* Copy w/ implicit endian conversion */
1706         *val = 0;
1707         for (i = 0; i < len; i++)
1708                 *val |= (uint64_t)buf[i] << (8 * i);
1709
1710         kfree(buf);
1711
1712         return 0;
1713 }
1714 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1715
1716 /**
1717  * nvmem_device_cell_read() - Read a given nvmem device and cell
1718  *
1719  * @nvmem: nvmem device to read from.
1720  * @info: nvmem cell info to be read.
1721  * @buf: buffer pointer which will be populated on successful read.
1722  *
1723  * Return: length of successful bytes read on success and negative
1724  * error code on error.
1725  */
1726 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1727                            struct nvmem_cell_info *info, void *buf)
1728 {
1729         struct nvmem_cell cell;
1730         int rc;
1731         ssize_t len;
1732
1733         if (!nvmem)
1734                 return -EINVAL;
1735
1736         rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1737         if (rc)
1738                 return rc;
1739
1740         rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1741         if (rc)
1742                 return rc;
1743
1744         return len;
1745 }
1746 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1747
1748 /**
1749  * nvmem_device_cell_write() - Write cell to a given nvmem device
1750  *
1751  * @nvmem: nvmem device to be written to.
1752  * @info: nvmem cell info to be written.
1753  * @buf: buffer to be written to cell.
1754  *
1755  * Return: length of bytes written or negative error code on failure.
1756  */
1757 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1758                             struct nvmem_cell_info *info, void *buf)
1759 {
1760         struct nvmem_cell cell;
1761         int rc;
1762
1763         if (!nvmem)
1764                 return -EINVAL;
1765
1766         rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1767         if (rc)
1768                 return rc;
1769
1770         return nvmem_cell_write(&cell, buf, cell.bytes);
1771 }
1772 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1773
1774 /**
1775  * nvmem_device_read() - Read from a given nvmem device
1776  *
1777  * @nvmem: nvmem device to read from.
1778  * @offset: offset in nvmem device.
1779  * @bytes: number of bytes to read.
1780  * @buf: buffer pointer which will be populated on successful read.
1781  *
1782  * Return: length of successful bytes read on success and negative
1783  * error code on error.
1784  */
1785 int nvmem_device_read(struct nvmem_device *nvmem,
1786                       unsigned int offset,
1787                       size_t bytes, void *buf)
1788 {
1789         int rc;
1790
1791         if (!nvmem)
1792                 return -EINVAL;
1793
1794         rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1795
1796         if (rc)
1797                 return rc;
1798
1799         return bytes;
1800 }
1801 EXPORT_SYMBOL_GPL(nvmem_device_read);
1802
1803 /**
1804  * nvmem_device_write() - Write cell to a given nvmem device
1805  *
1806  * @nvmem: nvmem device to be written to.
1807  * @offset: offset in nvmem device.
1808  * @bytes: number of bytes to write.
1809  * @buf: buffer to be written.
1810  *
1811  * Return: length of bytes written or negative error code on failure.
1812  */
1813 int nvmem_device_write(struct nvmem_device *nvmem,
1814                        unsigned int offset,
1815                        size_t bytes, void *buf)
1816 {
1817         int rc;
1818
1819         if (!nvmem)
1820                 return -EINVAL;
1821
1822         rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1823
1824         if (rc)
1825                 return rc;
1826
1827
1828         return bytes;
1829 }
1830 EXPORT_SYMBOL_GPL(nvmem_device_write);
1831
1832 /**
1833  * nvmem_add_cell_table() - register a table of cell info entries
1834  *
1835  * @table: table of cell info entries
1836  */
1837 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1838 {
1839         mutex_lock(&nvmem_cell_mutex);
1840         list_add_tail(&table->node, &nvmem_cell_tables);
1841         mutex_unlock(&nvmem_cell_mutex);
1842 }
1843 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1844
1845 /**
1846  * nvmem_del_cell_table() - remove a previously registered cell info table
1847  *
1848  * @table: table of cell info entries
1849  */
1850 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1851 {
1852         mutex_lock(&nvmem_cell_mutex);
1853         list_del(&table->node);
1854         mutex_unlock(&nvmem_cell_mutex);
1855 }
1856 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1857
1858 /**
1859  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1860  *
1861  * @entries: array of cell lookup entries
1862  * @nentries: number of cell lookup entries in the array
1863  */
1864 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1865 {
1866         int i;
1867
1868         mutex_lock(&nvmem_lookup_mutex);
1869         for (i = 0; i < nentries; i++)
1870                 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1871         mutex_unlock(&nvmem_lookup_mutex);
1872 }
1873 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1874
1875 /**
1876  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1877  *                            entries
1878  *
1879  * @entries: array of cell lookup entries
1880  * @nentries: number of cell lookup entries in the array
1881  */
1882 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1883 {
1884         int i;
1885
1886         mutex_lock(&nvmem_lookup_mutex);
1887         for (i = 0; i < nentries; i++)
1888                 list_del(&entries[i].node);
1889         mutex_unlock(&nvmem_lookup_mutex);
1890 }
1891 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1892
1893 /**
1894  * nvmem_dev_name() - Get the name of a given nvmem device.
1895  *
1896  * @nvmem: nvmem device.
1897  *
1898  * Return: name of the nvmem device.
1899  */
1900 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1901 {
1902         return dev_name(&nvmem->dev);
1903 }
1904 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1905
1906 static int __init nvmem_init(void)
1907 {
1908         return bus_register(&nvmem_bus_type);
1909 }
1910
1911 static void __exit nvmem_exit(void)
1912 {
1913         bus_unregister(&nvmem_bus_type);
1914 }
1915
1916 subsys_initcall(nvmem_init);
1917 module_exit(nvmem_exit);
1918
1919 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1920 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1921 MODULE_DESCRIPTION("nvmem Driver Core");
1922 MODULE_LICENSE("GPL v2");