Merge tag 'drm-msm-fixes-2023-03-09' of https://gitlab.freedesktop.org/drm/msm into...
[platform/kernel/linux-starfive.git] / drivers / nvmem / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23         struct module           *owner;
24         struct device           dev;
25         int                     stride;
26         int                     word_size;
27         int                     id;
28         struct kref             refcnt;
29         size_t                  size;
30         bool                    read_only;
31         bool                    root_only;
32         int                     flags;
33         enum nvmem_type         type;
34         struct bin_attribute    eeprom;
35         struct device           *base_dev;
36         struct list_head        cells;
37         const struct nvmem_keepout *keepout;
38         unsigned int            nkeepout;
39         nvmem_reg_read_t        reg_read;
40         nvmem_reg_write_t       reg_write;
41         nvmem_cell_post_process_t cell_post_process;
42         struct gpio_desc        *wp_gpio;
43         void *priv;
44 };
45
46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
47
48 #define FLAG_COMPAT             BIT(0)
49 struct nvmem_cell_entry {
50         const char              *name;
51         int                     offset;
52         int                     bytes;
53         int                     bit_offset;
54         int                     nbits;
55         struct device_node      *np;
56         struct nvmem_device     *nvmem;
57         struct list_head        node;
58 };
59
60 struct nvmem_cell {
61         struct nvmem_cell_entry *entry;
62         const char              *id;
63         int                     index;
64 };
65
66 static DEFINE_MUTEX(nvmem_mutex);
67 static DEFINE_IDA(nvmem_ida);
68
69 static DEFINE_MUTEX(nvmem_cell_mutex);
70 static LIST_HEAD(nvmem_cell_tables);
71
72 static DEFINE_MUTEX(nvmem_lookup_mutex);
73 static LIST_HEAD(nvmem_lookup_list);
74
75 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
76
77 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
78                             void *val, size_t bytes)
79 {
80         if (nvmem->reg_read)
81                 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
82
83         return -EINVAL;
84 }
85
86 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
87                              void *val, size_t bytes)
88 {
89         int ret;
90
91         if (nvmem->reg_write) {
92                 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
93                 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
94                 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
95                 return ret;
96         }
97
98         return -EINVAL;
99 }
100
101 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
102                                       unsigned int offset, void *val,
103                                       size_t bytes, int write)
104 {
105
106         unsigned int end = offset + bytes;
107         unsigned int kend, ksize;
108         const struct nvmem_keepout *keepout = nvmem->keepout;
109         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
110         int rc;
111
112         /*
113          * Skip all keepouts before the range being accessed.
114          * Keepouts are sorted.
115          */
116         while ((keepout < keepoutend) && (keepout->end <= offset))
117                 keepout++;
118
119         while ((offset < end) && (keepout < keepoutend)) {
120                 /* Access the valid portion before the keepout. */
121                 if (offset < keepout->start) {
122                         kend = min(end, keepout->start);
123                         ksize = kend - offset;
124                         if (write)
125                                 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
126                         else
127                                 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
128
129                         if (rc)
130                                 return rc;
131
132                         offset += ksize;
133                         val += ksize;
134                 }
135
136                 /*
137                  * Now we're aligned to the start of this keepout zone. Go
138                  * through it.
139                  */
140                 kend = min(end, keepout->end);
141                 ksize = kend - offset;
142                 if (!write)
143                         memset(val, keepout->value, ksize);
144
145                 val += ksize;
146                 offset += ksize;
147                 keepout++;
148         }
149
150         /*
151          * If we ran out of keepouts but there's still stuff to do, send it
152          * down directly
153          */
154         if (offset < end) {
155                 ksize = end - offset;
156                 if (write)
157                         return __nvmem_reg_write(nvmem, offset, val, ksize);
158                 else
159                         return __nvmem_reg_read(nvmem, offset, val, ksize);
160         }
161
162         return 0;
163 }
164
165 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
166                           void *val, size_t bytes)
167 {
168         if (!nvmem->nkeepout)
169                 return __nvmem_reg_read(nvmem, offset, val, bytes);
170
171         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
172 }
173
174 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
175                            void *val, size_t bytes)
176 {
177         if (!nvmem->nkeepout)
178                 return __nvmem_reg_write(nvmem, offset, val, bytes);
179
180         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
181 }
182
183 #ifdef CONFIG_NVMEM_SYSFS
184 static const char * const nvmem_type_str[] = {
185         [NVMEM_TYPE_UNKNOWN] = "Unknown",
186         [NVMEM_TYPE_EEPROM] = "EEPROM",
187         [NVMEM_TYPE_OTP] = "OTP",
188         [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
189         [NVMEM_TYPE_FRAM] = "FRAM",
190 };
191
192 #ifdef CONFIG_DEBUG_LOCK_ALLOC
193 static struct lock_class_key eeprom_lock_key;
194 #endif
195
196 static ssize_t type_show(struct device *dev,
197                          struct device_attribute *attr, char *buf)
198 {
199         struct nvmem_device *nvmem = to_nvmem_device(dev);
200
201         return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
202 }
203
204 static DEVICE_ATTR_RO(type);
205
206 static struct attribute *nvmem_attrs[] = {
207         &dev_attr_type.attr,
208         NULL,
209 };
210
211 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
212                                    struct bin_attribute *attr, char *buf,
213                                    loff_t pos, size_t count)
214 {
215         struct device *dev;
216         struct nvmem_device *nvmem;
217         int rc;
218
219         if (attr->private)
220                 dev = attr->private;
221         else
222                 dev = kobj_to_dev(kobj);
223         nvmem = to_nvmem_device(dev);
224
225         /* Stop the user from reading */
226         if (pos >= nvmem->size)
227                 return 0;
228
229         if (!IS_ALIGNED(pos, nvmem->stride))
230                 return -EINVAL;
231
232         if (count < nvmem->word_size)
233                 return -EINVAL;
234
235         if (pos + count > nvmem->size)
236                 count = nvmem->size - pos;
237
238         count = round_down(count, nvmem->word_size);
239
240         if (!nvmem->reg_read)
241                 return -EPERM;
242
243         rc = nvmem_reg_read(nvmem, pos, buf, count);
244
245         if (rc)
246                 return rc;
247
248         return count;
249 }
250
251 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
252                                     struct bin_attribute *attr, char *buf,
253                                     loff_t pos, size_t count)
254 {
255         struct device *dev;
256         struct nvmem_device *nvmem;
257         int rc;
258
259         if (attr->private)
260                 dev = attr->private;
261         else
262                 dev = kobj_to_dev(kobj);
263         nvmem = to_nvmem_device(dev);
264
265         /* Stop the user from writing */
266         if (pos >= nvmem->size)
267                 return -EFBIG;
268
269         if (!IS_ALIGNED(pos, nvmem->stride))
270                 return -EINVAL;
271
272         if (count < nvmem->word_size)
273                 return -EINVAL;
274
275         if (pos + count > nvmem->size)
276                 count = nvmem->size - pos;
277
278         count = round_down(count, nvmem->word_size);
279
280         if (!nvmem->reg_write)
281                 return -EPERM;
282
283         rc = nvmem_reg_write(nvmem, pos, buf, count);
284
285         if (rc)
286                 return rc;
287
288         return count;
289 }
290
291 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
292 {
293         umode_t mode = 0400;
294
295         if (!nvmem->root_only)
296                 mode |= 0044;
297
298         if (!nvmem->read_only)
299                 mode |= 0200;
300
301         if (!nvmem->reg_write)
302                 mode &= ~0200;
303
304         if (!nvmem->reg_read)
305                 mode &= ~0444;
306
307         return mode;
308 }
309
310 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
311                                          struct bin_attribute *attr, int i)
312 {
313         struct device *dev = kobj_to_dev(kobj);
314         struct nvmem_device *nvmem = to_nvmem_device(dev);
315
316         attr->size = nvmem->size;
317
318         return nvmem_bin_attr_get_umode(nvmem);
319 }
320
321 /* default read/write permissions */
322 static struct bin_attribute bin_attr_rw_nvmem = {
323         .attr   = {
324                 .name   = "nvmem",
325                 .mode   = 0644,
326         },
327         .read   = bin_attr_nvmem_read,
328         .write  = bin_attr_nvmem_write,
329 };
330
331 static struct bin_attribute *nvmem_bin_attributes[] = {
332         &bin_attr_rw_nvmem,
333         NULL,
334 };
335
336 static const struct attribute_group nvmem_bin_group = {
337         .bin_attrs      = nvmem_bin_attributes,
338         .attrs          = nvmem_attrs,
339         .is_bin_visible = nvmem_bin_attr_is_visible,
340 };
341
342 static const struct attribute_group *nvmem_dev_groups[] = {
343         &nvmem_bin_group,
344         NULL,
345 };
346
347 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
348         .attr   = {
349                 .name   = "eeprom",
350         },
351         .read   = bin_attr_nvmem_read,
352         .write  = bin_attr_nvmem_write,
353 };
354
355 /*
356  * nvmem_setup_compat() - Create an additional binary entry in
357  * drivers sys directory, to be backwards compatible with the older
358  * drivers/misc/eeprom drivers.
359  */
360 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
361                                     const struct nvmem_config *config)
362 {
363         int rval;
364
365         if (!config->compat)
366                 return 0;
367
368         if (!config->base_dev)
369                 return -EINVAL;
370
371         if (config->type == NVMEM_TYPE_FRAM)
372                 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
373
374         nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
375         nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
376         nvmem->eeprom.size = nvmem->size;
377 #ifdef CONFIG_DEBUG_LOCK_ALLOC
378         nvmem->eeprom.attr.key = &eeprom_lock_key;
379 #endif
380         nvmem->eeprom.private = &nvmem->dev;
381         nvmem->base_dev = config->base_dev;
382
383         rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
384         if (rval) {
385                 dev_err(&nvmem->dev,
386                         "Failed to create eeprom binary file %d\n", rval);
387                 return rval;
388         }
389
390         nvmem->flags |= FLAG_COMPAT;
391
392         return 0;
393 }
394
395 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
396                               const struct nvmem_config *config)
397 {
398         if (config->compat)
399                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
400 }
401
402 #else /* CONFIG_NVMEM_SYSFS */
403
404 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
405                                     const struct nvmem_config *config)
406 {
407         return -ENOSYS;
408 }
409 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
410                                       const struct nvmem_config *config)
411 {
412 }
413
414 #endif /* CONFIG_NVMEM_SYSFS */
415
416 static void nvmem_release(struct device *dev)
417 {
418         struct nvmem_device *nvmem = to_nvmem_device(dev);
419
420         ida_free(&nvmem_ida, nvmem->id);
421         gpiod_put(nvmem->wp_gpio);
422         kfree(nvmem);
423 }
424
425 static const struct device_type nvmem_provider_type = {
426         .release        = nvmem_release,
427 };
428
429 static struct bus_type nvmem_bus_type = {
430         .name           = "nvmem",
431 };
432
433 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
434 {
435         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
436         mutex_lock(&nvmem_mutex);
437         list_del(&cell->node);
438         mutex_unlock(&nvmem_mutex);
439         of_node_put(cell->np);
440         kfree_const(cell->name);
441         kfree(cell);
442 }
443
444 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
445 {
446         struct nvmem_cell_entry *cell, *p;
447
448         list_for_each_entry_safe(cell, p, &nvmem->cells, node)
449                 nvmem_cell_entry_drop(cell);
450 }
451
452 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
453 {
454         mutex_lock(&nvmem_mutex);
455         list_add_tail(&cell->node, &cell->nvmem->cells);
456         mutex_unlock(&nvmem_mutex);
457         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
458 }
459
460 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
461                                                      const struct nvmem_cell_info *info,
462                                                      struct nvmem_cell_entry *cell)
463 {
464         cell->nvmem = nvmem;
465         cell->offset = info->offset;
466         cell->bytes = info->bytes;
467         cell->name = info->name;
468
469         cell->bit_offset = info->bit_offset;
470         cell->nbits = info->nbits;
471         cell->np = info->np;
472
473         if (cell->nbits)
474                 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
475                                            BITS_PER_BYTE);
476
477         if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
478                 dev_err(&nvmem->dev,
479                         "cell %s unaligned to nvmem stride %d\n",
480                         cell->name ?: "<unknown>", nvmem->stride);
481                 return -EINVAL;
482         }
483
484         return 0;
485 }
486
487 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
488                                                const struct nvmem_cell_info *info,
489                                                struct nvmem_cell_entry *cell)
490 {
491         int err;
492
493         err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
494         if (err)
495                 return err;
496
497         cell->name = kstrdup_const(info->name, GFP_KERNEL);
498         if (!cell->name)
499                 return -ENOMEM;
500
501         return 0;
502 }
503
504 /**
505  * nvmem_add_one_cell() - Add one cell information to an nvmem device
506  *
507  * @nvmem: nvmem device to add cells to.
508  * @info: nvmem cell info to add to the device
509  *
510  * Return: 0 or negative error code on failure.
511  */
512 int nvmem_add_one_cell(struct nvmem_device *nvmem,
513                        const struct nvmem_cell_info *info)
514 {
515         struct nvmem_cell_entry *cell;
516         int rval;
517
518         cell = kzalloc(sizeof(*cell), GFP_KERNEL);
519         if (!cell)
520                 return -ENOMEM;
521
522         rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
523         if (rval) {
524                 kfree(cell);
525                 return rval;
526         }
527
528         nvmem_cell_entry_add(cell);
529
530         return 0;
531 }
532 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
533
534 /**
535  * nvmem_add_cells() - Add cell information to an nvmem device
536  *
537  * @nvmem: nvmem device to add cells to.
538  * @info: nvmem cell info to add to the device
539  * @ncells: number of cells in info
540  *
541  * Return: 0 or negative error code on failure.
542  */
543 static int nvmem_add_cells(struct nvmem_device *nvmem,
544                     const struct nvmem_cell_info *info,
545                     int ncells)
546 {
547         int i, rval;
548
549         for (i = 0; i < ncells; i++) {
550                 rval = nvmem_add_one_cell(nvmem, &info[i]);
551                 if (rval)
552                         return rval;
553         }
554
555         return 0;
556 }
557
558 /**
559  * nvmem_register_notifier() - Register a notifier block for nvmem events.
560  *
561  * @nb: notifier block to be called on nvmem events.
562  *
563  * Return: 0 on success, negative error number on failure.
564  */
565 int nvmem_register_notifier(struct notifier_block *nb)
566 {
567         return blocking_notifier_chain_register(&nvmem_notifier, nb);
568 }
569 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
570
571 /**
572  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
573  *
574  * @nb: notifier block to be unregistered.
575  *
576  * Return: 0 on success, negative error number on failure.
577  */
578 int nvmem_unregister_notifier(struct notifier_block *nb)
579 {
580         return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
581 }
582 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
583
584 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
585 {
586         const struct nvmem_cell_info *info;
587         struct nvmem_cell_table *table;
588         struct nvmem_cell_entry *cell;
589         int rval = 0, i;
590
591         mutex_lock(&nvmem_cell_mutex);
592         list_for_each_entry(table, &nvmem_cell_tables, node) {
593                 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
594                         for (i = 0; i < table->ncells; i++) {
595                                 info = &table->cells[i];
596
597                                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
598                                 if (!cell) {
599                                         rval = -ENOMEM;
600                                         goto out;
601                                 }
602
603                                 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
604                                 if (rval) {
605                                         kfree(cell);
606                                         goto out;
607                                 }
608
609                                 nvmem_cell_entry_add(cell);
610                         }
611                 }
612         }
613
614 out:
615         mutex_unlock(&nvmem_cell_mutex);
616         return rval;
617 }
618
619 static struct nvmem_cell_entry *
620 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
621 {
622         struct nvmem_cell_entry *iter, *cell = NULL;
623
624         mutex_lock(&nvmem_mutex);
625         list_for_each_entry(iter, &nvmem->cells, node) {
626                 if (strcmp(cell_id, iter->name) == 0) {
627                         cell = iter;
628                         break;
629                 }
630         }
631         mutex_unlock(&nvmem_mutex);
632
633         return cell;
634 }
635
636 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
637 {
638         unsigned int cur = 0;
639         const struct nvmem_keepout *keepout = nvmem->keepout;
640         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
641
642         while (keepout < keepoutend) {
643                 /* Ensure keepouts are sorted and don't overlap. */
644                 if (keepout->start < cur) {
645                         dev_err(&nvmem->dev,
646                                 "Keepout regions aren't sorted or overlap.\n");
647
648                         return -ERANGE;
649                 }
650
651                 if (keepout->end < keepout->start) {
652                         dev_err(&nvmem->dev,
653                                 "Invalid keepout region.\n");
654
655                         return -EINVAL;
656                 }
657
658                 /*
659                  * Validate keepouts (and holes between) don't violate
660                  * word_size constraints.
661                  */
662                 if ((keepout->end - keepout->start < nvmem->word_size) ||
663                     ((keepout->start != cur) &&
664                      (keepout->start - cur < nvmem->word_size))) {
665
666                         dev_err(&nvmem->dev,
667                                 "Keepout regions violate word_size constraints.\n");
668
669                         return -ERANGE;
670                 }
671
672                 /* Validate keepouts don't violate stride (alignment). */
673                 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
674                     !IS_ALIGNED(keepout->end, nvmem->stride)) {
675
676                         dev_err(&nvmem->dev,
677                                 "Keepout regions violate stride.\n");
678
679                         return -EINVAL;
680                 }
681
682                 cur = keepout->end;
683                 keepout++;
684         }
685
686         return 0;
687 }
688
689 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
690 {
691         struct device *dev = &nvmem->dev;
692         struct device_node *child;
693         const __be32 *addr;
694         int len, ret;
695
696         for_each_child_of_node(dev->of_node, child) {
697                 struct nvmem_cell_info info = {0};
698
699                 addr = of_get_property(child, "reg", &len);
700                 if (!addr)
701                         continue;
702                 if (len < 2 * sizeof(u32)) {
703                         dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
704                         of_node_put(child);
705                         return -EINVAL;
706                 }
707
708                 info.offset = be32_to_cpup(addr++);
709                 info.bytes = be32_to_cpup(addr);
710                 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
711
712                 addr = of_get_property(child, "bits", &len);
713                 if (addr && len == (2 * sizeof(u32))) {
714                         info.bit_offset = be32_to_cpup(addr++);
715                         info.nbits = be32_to_cpup(addr);
716                 }
717
718                 info.np = of_node_get(child);
719
720                 ret = nvmem_add_one_cell(nvmem, &info);
721                 kfree(info.name);
722                 if (ret) {
723                         of_node_put(child);
724                         return ret;
725                 }
726         }
727
728         return 0;
729 }
730
731 /**
732  * nvmem_register() - Register a nvmem device for given nvmem_config.
733  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
734  *
735  * @config: nvmem device configuration with which nvmem device is created.
736  *
737  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
738  * on success.
739  */
740
741 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
742 {
743         struct nvmem_device *nvmem;
744         int rval;
745
746         if (!config->dev)
747                 return ERR_PTR(-EINVAL);
748
749         if (!config->reg_read && !config->reg_write)
750                 return ERR_PTR(-EINVAL);
751
752         nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
753         if (!nvmem)
754                 return ERR_PTR(-ENOMEM);
755
756         rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
757         if (rval < 0) {
758                 kfree(nvmem);
759                 return ERR_PTR(rval);
760         }
761
762         nvmem->id = rval;
763
764         nvmem->dev.type = &nvmem_provider_type;
765         nvmem->dev.bus = &nvmem_bus_type;
766         nvmem->dev.parent = config->dev;
767
768         device_initialize(&nvmem->dev);
769
770         if (!config->ignore_wp)
771                 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
772                                                     GPIOD_OUT_HIGH);
773         if (IS_ERR(nvmem->wp_gpio)) {
774                 rval = PTR_ERR(nvmem->wp_gpio);
775                 nvmem->wp_gpio = NULL;
776                 goto err_put_device;
777         }
778
779         kref_init(&nvmem->refcnt);
780         INIT_LIST_HEAD(&nvmem->cells);
781
782         nvmem->owner = config->owner;
783         if (!nvmem->owner && config->dev->driver)
784                 nvmem->owner = config->dev->driver->owner;
785         nvmem->stride = config->stride ?: 1;
786         nvmem->word_size = config->word_size ?: 1;
787         nvmem->size = config->size;
788         nvmem->root_only = config->root_only;
789         nvmem->priv = config->priv;
790         nvmem->type = config->type;
791         nvmem->reg_read = config->reg_read;
792         nvmem->reg_write = config->reg_write;
793         nvmem->cell_post_process = config->cell_post_process;
794         nvmem->keepout = config->keepout;
795         nvmem->nkeepout = config->nkeepout;
796         if (config->of_node)
797                 nvmem->dev.of_node = config->of_node;
798         else if (!config->no_of_node)
799                 nvmem->dev.of_node = config->dev->of_node;
800
801         switch (config->id) {
802         case NVMEM_DEVID_NONE:
803                 rval = dev_set_name(&nvmem->dev, "%s", config->name);
804                 break;
805         case NVMEM_DEVID_AUTO:
806                 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
807                 break;
808         default:
809                 rval = dev_set_name(&nvmem->dev, "%s%d",
810                              config->name ? : "nvmem",
811                              config->name ? config->id : nvmem->id);
812                 break;
813         }
814
815         if (rval)
816                 goto err_put_device;
817
818         nvmem->read_only = device_property_present(config->dev, "read-only") ||
819                            config->read_only || !nvmem->reg_write;
820
821 #ifdef CONFIG_NVMEM_SYSFS
822         nvmem->dev.groups = nvmem_dev_groups;
823 #endif
824
825         if (nvmem->nkeepout) {
826                 rval = nvmem_validate_keepouts(nvmem);
827                 if (rval)
828                         goto err_put_device;
829         }
830
831         if (config->compat) {
832                 rval = nvmem_sysfs_setup_compat(nvmem, config);
833                 if (rval)
834                         goto err_put_device;
835         }
836
837         if (config->cells) {
838                 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
839                 if (rval)
840                         goto err_remove_cells;
841         }
842
843         rval = nvmem_add_cells_from_table(nvmem);
844         if (rval)
845                 goto err_remove_cells;
846
847         rval = nvmem_add_cells_from_of(nvmem);
848         if (rval)
849                 goto err_remove_cells;
850
851         dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
852
853         rval = device_add(&nvmem->dev);
854         if (rval)
855                 goto err_remove_cells;
856
857         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
858
859         return nvmem;
860
861 err_remove_cells:
862         nvmem_device_remove_all_cells(nvmem);
863         if (config->compat)
864                 nvmem_sysfs_remove_compat(nvmem, config);
865 err_put_device:
866         put_device(&nvmem->dev);
867
868         return ERR_PTR(rval);
869 }
870 EXPORT_SYMBOL_GPL(nvmem_register);
871
872 static void nvmem_device_release(struct kref *kref)
873 {
874         struct nvmem_device *nvmem;
875
876         nvmem = container_of(kref, struct nvmem_device, refcnt);
877
878         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
879
880         if (nvmem->flags & FLAG_COMPAT)
881                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
882
883         nvmem_device_remove_all_cells(nvmem);
884         device_unregister(&nvmem->dev);
885 }
886
887 /**
888  * nvmem_unregister() - Unregister previously registered nvmem device
889  *
890  * @nvmem: Pointer to previously registered nvmem device.
891  */
892 void nvmem_unregister(struct nvmem_device *nvmem)
893 {
894         if (nvmem)
895                 kref_put(&nvmem->refcnt, nvmem_device_release);
896 }
897 EXPORT_SYMBOL_GPL(nvmem_unregister);
898
899 static void devm_nvmem_unregister(void *nvmem)
900 {
901         nvmem_unregister(nvmem);
902 }
903
904 /**
905  * devm_nvmem_register() - Register a managed nvmem device for given
906  * nvmem_config.
907  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
908  *
909  * @dev: Device that uses the nvmem device.
910  * @config: nvmem device configuration with which nvmem device is created.
911  *
912  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
913  * on success.
914  */
915 struct nvmem_device *devm_nvmem_register(struct device *dev,
916                                          const struct nvmem_config *config)
917 {
918         struct nvmem_device *nvmem;
919         int ret;
920
921         nvmem = nvmem_register(config);
922         if (IS_ERR(nvmem))
923                 return nvmem;
924
925         ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
926         if (ret)
927                 return ERR_PTR(ret);
928
929         return nvmem;
930 }
931 EXPORT_SYMBOL_GPL(devm_nvmem_register);
932
933 static struct nvmem_device *__nvmem_device_get(void *data,
934                         int (*match)(struct device *dev, const void *data))
935 {
936         struct nvmem_device *nvmem = NULL;
937         struct device *dev;
938
939         mutex_lock(&nvmem_mutex);
940         dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
941         if (dev)
942                 nvmem = to_nvmem_device(dev);
943         mutex_unlock(&nvmem_mutex);
944         if (!nvmem)
945                 return ERR_PTR(-EPROBE_DEFER);
946
947         if (!try_module_get(nvmem->owner)) {
948                 dev_err(&nvmem->dev,
949                         "could not increase module refcount for cell %s\n",
950                         nvmem_dev_name(nvmem));
951
952                 put_device(&nvmem->dev);
953                 return ERR_PTR(-EINVAL);
954         }
955
956         kref_get(&nvmem->refcnt);
957
958         return nvmem;
959 }
960
961 static void __nvmem_device_put(struct nvmem_device *nvmem)
962 {
963         put_device(&nvmem->dev);
964         module_put(nvmem->owner);
965         kref_put(&nvmem->refcnt, nvmem_device_release);
966 }
967
968 #if IS_ENABLED(CONFIG_OF)
969 /**
970  * of_nvmem_device_get() - Get nvmem device from a given id
971  *
972  * @np: Device tree node that uses the nvmem device.
973  * @id: nvmem name from nvmem-names property.
974  *
975  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
976  * on success.
977  */
978 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
979 {
980
981         struct device_node *nvmem_np;
982         struct nvmem_device *nvmem;
983         int index = 0;
984
985         if (id)
986                 index = of_property_match_string(np, "nvmem-names", id);
987
988         nvmem_np = of_parse_phandle(np, "nvmem", index);
989         if (!nvmem_np)
990                 return ERR_PTR(-ENOENT);
991
992         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
993         of_node_put(nvmem_np);
994         return nvmem;
995 }
996 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
997 #endif
998
999 /**
1000  * nvmem_device_get() - Get nvmem device from a given id
1001  *
1002  * @dev: Device that uses the nvmem device.
1003  * @dev_name: name of the requested nvmem device.
1004  *
1005  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1006  * on success.
1007  */
1008 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1009 {
1010         if (dev->of_node) { /* try dt first */
1011                 struct nvmem_device *nvmem;
1012
1013                 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1014
1015                 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1016                         return nvmem;
1017
1018         }
1019
1020         return __nvmem_device_get((void *)dev_name, device_match_name);
1021 }
1022 EXPORT_SYMBOL_GPL(nvmem_device_get);
1023
1024 /**
1025  * nvmem_device_find() - Find nvmem device with matching function
1026  *
1027  * @data: Data to pass to match function
1028  * @match: Callback function to check device
1029  *
1030  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1031  * on success.
1032  */
1033 struct nvmem_device *nvmem_device_find(void *data,
1034                         int (*match)(struct device *dev, const void *data))
1035 {
1036         return __nvmem_device_get(data, match);
1037 }
1038 EXPORT_SYMBOL_GPL(nvmem_device_find);
1039
1040 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1041 {
1042         struct nvmem_device **nvmem = res;
1043
1044         if (WARN_ON(!nvmem || !*nvmem))
1045                 return 0;
1046
1047         return *nvmem == data;
1048 }
1049
1050 static void devm_nvmem_device_release(struct device *dev, void *res)
1051 {
1052         nvmem_device_put(*(struct nvmem_device **)res);
1053 }
1054
1055 /**
1056  * devm_nvmem_device_put() - put alredy got nvmem device
1057  *
1058  * @dev: Device that uses the nvmem device.
1059  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1060  * that needs to be released.
1061  */
1062 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1063 {
1064         int ret;
1065
1066         ret = devres_release(dev, devm_nvmem_device_release,
1067                              devm_nvmem_device_match, nvmem);
1068
1069         WARN_ON(ret);
1070 }
1071 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1072
1073 /**
1074  * nvmem_device_put() - put alredy got nvmem device
1075  *
1076  * @nvmem: pointer to nvmem device that needs to be released.
1077  */
1078 void nvmem_device_put(struct nvmem_device *nvmem)
1079 {
1080         __nvmem_device_put(nvmem);
1081 }
1082 EXPORT_SYMBOL_GPL(nvmem_device_put);
1083
1084 /**
1085  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1086  *
1087  * @dev: Device that requests the nvmem device.
1088  * @id: name id for the requested nvmem device.
1089  *
1090  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1091  * on success.  The nvmem_cell will be freed by the automatically once the
1092  * device is freed.
1093  */
1094 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1095 {
1096         struct nvmem_device **ptr, *nvmem;
1097
1098         ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1099         if (!ptr)
1100                 return ERR_PTR(-ENOMEM);
1101
1102         nvmem = nvmem_device_get(dev, id);
1103         if (!IS_ERR(nvmem)) {
1104                 *ptr = nvmem;
1105                 devres_add(dev, ptr);
1106         } else {
1107                 devres_free(ptr);
1108         }
1109
1110         return nvmem;
1111 }
1112 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1113
1114 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1115                                             const char *id, int index)
1116 {
1117         struct nvmem_cell *cell;
1118         const char *name = NULL;
1119
1120         cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1121         if (!cell)
1122                 return ERR_PTR(-ENOMEM);
1123
1124         if (id) {
1125                 name = kstrdup_const(id, GFP_KERNEL);
1126                 if (!name) {
1127                         kfree(cell);
1128                         return ERR_PTR(-ENOMEM);
1129                 }
1130         }
1131
1132         cell->id = name;
1133         cell->entry = entry;
1134         cell->index = index;
1135
1136         return cell;
1137 }
1138
1139 static struct nvmem_cell *
1140 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1141 {
1142         struct nvmem_cell_entry *cell_entry;
1143         struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1144         struct nvmem_cell_lookup *lookup;
1145         struct nvmem_device *nvmem;
1146         const char *dev_id;
1147
1148         if (!dev)
1149                 return ERR_PTR(-EINVAL);
1150
1151         dev_id = dev_name(dev);
1152
1153         mutex_lock(&nvmem_lookup_mutex);
1154
1155         list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1156                 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1157                     (strcmp(lookup->con_id, con_id) == 0)) {
1158                         /* This is the right entry. */
1159                         nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1160                                                    device_match_name);
1161                         if (IS_ERR(nvmem)) {
1162                                 /* Provider may not be registered yet. */
1163                                 cell = ERR_CAST(nvmem);
1164                                 break;
1165                         }
1166
1167                         cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1168                                                                    lookup->cell_name);
1169                         if (!cell_entry) {
1170                                 __nvmem_device_put(nvmem);
1171                                 cell = ERR_PTR(-ENOENT);
1172                         } else {
1173                                 cell = nvmem_create_cell(cell_entry, con_id, 0);
1174                                 if (IS_ERR(cell))
1175                                         __nvmem_device_put(nvmem);
1176                         }
1177                         break;
1178                 }
1179         }
1180
1181         mutex_unlock(&nvmem_lookup_mutex);
1182         return cell;
1183 }
1184
1185 #if IS_ENABLED(CONFIG_OF)
1186 static struct nvmem_cell_entry *
1187 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1188 {
1189         struct nvmem_cell_entry *iter, *cell = NULL;
1190
1191         mutex_lock(&nvmem_mutex);
1192         list_for_each_entry(iter, &nvmem->cells, node) {
1193                 if (np == iter->np) {
1194                         cell = iter;
1195                         break;
1196                 }
1197         }
1198         mutex_unlock(&nvmem_mutex);
1199
1200         return cell;
1201 }
1202
1203 /**
1204  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1205  *
1206  * @np: Device tree node that uses the nvmem cell.
1207  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1208  *      for the cell at index 0 (the lone cell with no accompanying
1209  *      nvmem-cell-names property).
1210  *
1211  * Return: Will be an ERR_PTR() on error or a valid pointer
1212  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1213  * nvmem_cell_put().
1214  */
1215 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1216 {
1217         struct device_node *cell_np, *nvmem_np;
1218         struct nvmem_device *nvmem;
1219         struct nvmem_cell_entry *cell_entry;
1220         struct nvmem_cell *cell;
1221         struct of_phandle_args cell_spec;
1222         int index = 0;
1223         int cell_index = 0;
1224         int ret;
1225
1226         /* if cell name exists, find index to the name */
1227         if (id)
1228                 index = of_property_match_string(np, "nvmem-cell-names", id);
1229
1230         ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1231                                                   "#nvmem-cell-cells",
1232                                                   index, &cell_spec);
1233         if (ret)
1234                 return ERR_PTR(ret);
1235
1236         if (cell_spec.args_count > 1)
1237                 return ERR_PTR(-EINVAL);
1238
1239         cell_np = cell_spec.np;
1240         if (cell_spec.args_count)
1241                 cell_index = cell_spec.args[0];
1242
1243         nvmem_np = of_get_parent(cell_np);
1244         if (!nvmem_np) {
1245                 of_node_put(cell_np);
1246                 return ERR_PTR(-EINVAL);
1247         }
1248
1249         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1250         of_node_put(nvmem_np);
1251         if (IS_ERR(nvmem)) {
1252                 of_node_put(cell_np);
1253                 return ERR_CAST(nvmem);
1254         }
1255
1256         cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1257         of_node_put(cell_np);
1258         if (!cell_entry) {
1259                 __nvmem_device_put(nvmem);
1260                 return ERR_PTR(-ENOENT);
1261         }
1262
1263         cell = nvmem_create_cell(cell_entry, id, cell_index);
1264         if (IS_ERR(cell))
1265                 __nvmem_device_put(nvmem);
1266
1267         return cell;
1268 }
1269 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1270 #endif
1271
1272 /**
1273  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1274  *
1275  * @dev: Device that requests the nvmem cell.
1276  * @id: nvmem cell name to get (this corresponds with the name from the
1277  *      nvmem-cell-names property for DT systems and with the con_id from
1278  *      the lookup entry for non-DT systems).
1279  *
1280  * Return: Will be an ERR_PTR() on error or a valid pointer
1281  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1282  * nvmem_cell_put().
1283  */
1284 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1285 {
1286         struct nvmem_cell *cell;
1287
1288         if (dev->of_node) { /* try dt first */
1289                 cell = of_nvmem_cell_get(dev->of_node, id);
1290                 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1291                         return cell;
1292         }
1293
1294         /* NULL cell id only allowed for device tree; invalid otherwise */
1295         if (!id)
1296                 return ERR_PTR(-EINVAL);
1297
1298         return nvmem_cell_get_from_lookup(dev, id);
1299 }
1300 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1301
1302 static void devm_nvmem_cell_release(struct device *dev, void *res)
1303 {
1304         nvmem_cell_put(*(struct nvmem_cell **)res);
1305 }
1306
1307 /**
1308  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1309  *
1310  * @dev: Device that requests the nvmem cell.
1311  * @id: nvmem cell name id to get.
1312  *
1313  * Return: Will be an ERR_PTR() on error or a valid pointer
1314  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1315  * automatically once the device is freed.
1316  */
1317 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1318 {
1319         struct nvmem_cell **ptr, *cell;
1320
1321         ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1322         if (!ptr)
1323                 return ERR_PTR(-ENOMEM);
1324
1325         cell = nvmem_cell_get(dev, id);
1326         if (!IS_ERR(cell)) {
1327                 *ptr = cell;
1328                 devres_add(dev, ptr);
1329         } else {
1330                 devres_free(ptr);
1331         }
1332
1333         return cell;
1334 }
1335 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1336
1337 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1338 {
1339         struct nvmem_cell **c = res;
1340
1341         if (WARN_ON(!c || !*c))
1342                 return 0;
1343
1344         return *c == data;
1345 }
1346
1347 /**
1348  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1349  * from devm_nvmem_cell_get.
1350  *
1351  * @dev: Device that requests the nvmem cell.
1352  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1353  */
1354 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1355 {
1356         int ret;
1357
1358         ret = devres_release(dev, devm_nvmem_cell_release,
1359                                 devm_nvmem_cell_match, cell);
1360
1361         WARN_ON(ret);
1362 }
1363 EXPORT_SYMBOL(devm_nvmem_cell_put);
1364
1365 /**
1366  * nvmem_cell_put() - Release previously allocated nvmem cell.
1367  *
1368  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1369  */
1370 void nvmem_cell_put(struct nvmem_cell *cell)
1371 {
1372         struct nvmem_device *nvmem = cell->entry->nvmem;
1373
1374         if (cell->id)
1375                 kfree_const(cell->id);
1376
1377         kfree(cell);
1378         __nvmem_device_put(nvmem);
1379 }
1380 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1381
1382 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1383 {
1384         u8 *p, *b;
1385         int i, extra, bit_offset = cell->bit_offset;
1386
1387         p = b = buf;
1388         if (bit_offset) {
1389                 /* First shift */
1390                 *b++ >>= bit_offset;
1391
1392                 /* setup rest of the bytes if any */
1393                 for (i = 1; i < cell->bytes; i++) {
1394                         /* Get bits from next byte and shift them towards msb */
1395                         *p |= *b << (BITS_PER_BYTE - bit_offset);
1396
1397                         p = b;
1398                         *b++ >>= bit_offset;
1399                 }
1400         } else {
1401                 /* point to the msb */
1402                 p += cell->bytes - 1;
1403         }
1404
1405         /* result fits in less bytes */
1406         extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1407         while (--extra >= 0)
1408                 *p-- = 0;
1409
1410         /* clear msb bits if any leftover in the last byte */
1411         if (cell->nbits % BITS_PER_BYTE)
1412                 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1413 }
1414
1415 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1416                              struct nvmem_cell_entry *cell,
1417                              void *buf, size_t *len, const char *id, int index)
1418 {
1419         int rc;
1420
1421         rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1422
1423         if (rc)
1424                 return rc;
1425
1426         /* shift bits in-place */
1427         if (cell->bit_offset || cell->nbits)
1428                 nvmem_shift_read_buffer_in_place(cell, buf);
1429
1430         if (nvmem->cell_post_process) {
1431                 rc = nvmem->cell_post_process(nvmem->priv, id, index,
1432                                               cell->offset, buf, cell->bytes);
1433                 if (rc)
1434                         return rc;
1435         }
1436
1437         if (len)
1438                 *len = cell->bytes;
1439
1440         return 0;
1441 }
1442
1443 /**
1444  * nvmem_cell_read() - Read a given nvmem cell
1445  *
1446  * @cell: nvmem cell to be read.
1447  * @len: pointer to length of cell which will be populated on successful read;
1448  *       can be NULL.
1449  *
1450  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1451  * buffer should be freed by the consumer with a kfree().
1452  */
1453 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1454 {
1455         struct nvmem_device *nvmem = cell->entry->nvmem;
1456         u8 *buf;
1457         int rc;
1458
1459         if (!nvmem)
1460                 return ERR_PTR(-EINVAL);
1461
1462         buf = kzalloc(cell->entry->bytes, GFP_KERNEL);
1463         if (!buf)
1464                 return ERR_PTR(-ENOMEM);
1465
1466         rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1467         if (rc) {
1468                 kfree(buf);
1469                 return ERR_PTR(rc);
1470         }
1471
1472         return buf;
1473 }
1474 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1475
1476 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1477                                              u8 *_buf, int len)
1478 {
1479         struct nvmem_device *nvmem = cell->nvmem;
1480         int i, rc, nbits, bit_offset = cell->bit_offset;
1481         u8 v, *p, *buf, *b, pbyte, pbits;
1482
1483         nbits = cell->nbits;
1484         buf = kzalloc(cell->bytes, GFP_KERNEL);
1485         if (!buf)
1486                 return ERR_PTR(-ENOMEM);
1487
1488         memcpy(buf, _buf, len);
1489         p = b = buf;
1490
1491         if (bit_offset) {
1492                 pbyte = *b;
1493                 *b <<= bit_offset;
1494
1495                 /* setup the first byte with lsb bits from nvmem */
1496                 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1497                 if (rc)
1498                         goto err;
1499                 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1500
1501                 /* setup rest of the byte if any */
1502                 for (i = 1; i < cell->bytes; i++) {
1503                         /* Get last byte bits and shift them towards lsb */
1504                         pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1505                         pbyte = *b;
1506                         p = b;
1507                         *b <<= bit_offset;
1508                         *b++ |= pbits;
1509                 }
1510         }
1511
1512         /* if it's not end on byte boundary */
1513         if ((nbits + bit_offset) % BITS_PER_BYTE) {
1514                 /* setup the last byte with msb bits from nvmem */
1515                 rc = nvmem_reg_read(nvmem,
1516                                     cell->offset + cell->bytes - 1, &v, 1);
1517                 if (rc)
1518                         goto err;
1519                 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1520
1521         }
1522
1523         return buf;
1524 err:
1525         kfree(buf);
1526         return ERR_PTR(rc);
1527 }
1528
1529 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1530 {
1531         struct nvmem_device *nvmem = cell->nvmem;
1532         int rc;
1533
1534         if (!nvmem || nvmem->read_only ||
1535             (cell->bit_offset == 0 && len != cell->bytes))
1536                 return -EINVAL;
1537
1538         if (cell->bit_offset || cell->nbits) {
1539                 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1540                 if (IS_ERR(buf))
1541                         return PTR_ERR(buf);
1542         }
1543
1544         rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1545
1546         /* free the tmp buffer */
1547         if (cell->bit_offset || cell->nbits)
1548                 kfree(buf);
1549
1550         if (rc)
1551                 return rc;
1552
1553         return len;
1554 }
1555
1556 /**
1557  * nvmem_cell_write() - Write to a given nvmem cell
1558  *
1559  * @cell: nvmem cell to be written.
1560  * @buf: Buffer to be written.
1561  * @len: length of buffer to be written to nvmem cell.
1562  *
1563  * Return: length of bytes written or negative on failure.
1564  */
1565 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1566 {
1567         return __nvmem_cell_entry_write(cell->entry, buf, len);
1568 }
1569
1570 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1571
1572 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1573                                   void *val, size_t count)
1574 {
1575         struct nvmem_cell *cell;
1576         void *buf;
1577         size_t len;
1578
1579         cell = nvmem_cell_get(dev, cell_id);
1580         if (IS_ERR(cell))
1581                 return PTR_ERR(cell);
1582
1583         buf = nvmem_cell_read(cell, &len);
1584         if (IS_ERR(buf)) {
1585                 nvmem_cell_put(cell);
1586                 return PTR_ERR(buf);
1587         }
1588         if (len != count) {
1589                 kfree(buf);
1590                 nvmem_cell_put(cell);
1591                 return -EINVAL;
1592         }
1593         memcpy(val, buf, count);
1594         kfree(buf);
1595         nvmem_cell_put(cell);
1596
1597         return 0;
1598 }
1599
1600 /**
1601  * nvmem_cell_read_u8() - Read a cell value as a u8
1602  *
1603  * @dev: Device that requests the nvmem cell.
1604  * @cell_id: Name of nvmem cell to read.
1605  * @val: pointer to output value.
1606  *
1607  * Return: 0 on success or negative errno.
1608  */
1609 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1610 {
1611         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1612 }
1613 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1614
1615 /**
1616  * nvmem_cell_read_u16() - Read a cell value as a u16
1617  *
1618  * @dev: Device that requests the nvmem cell.
1619  * @cell_id: Name of nvmem cell to read.
1620  * @val: pointer to output value.
1621  *
1622  * Return: 0 on success or negative errno.
1623  */
1624 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1625 {
1626         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1627 }
1628 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1629
1630 /**
1631  * nvmem_cell_read_u32() - Read a cell value as a u32
1632  *
1633  * @dev: Device that requests the nvmem cell.
1634  * @cell_id: Name of nvmem cell to read.
1635  * @val: pointer to output value.
1636  *
1637  * Return: 0 on success or negative errno.
1638  */
1639 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1640 {
1641         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1642 }
1643 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1644
1645 /**
1646  * nvmem_cell_read_u64() - Read a cell value as a u64
1647  *
1648  * @dev: Device that requests the nvmem cell.
1649  * @cell_id: Name of nvmem cell to read.
1650  * @val: pointer to output value.
1651  *
1652  * Return: 0 on success or negative errno.
1653  */
1654 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1655 {
1656         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1657 }
1658 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1659
1660 static const void *nvmem_cell_read_variable_common(struct device *dev,
1661                                                    const char *cell_id,
1662                                                    size_t max_len, size_t *len)
1663 {
1664         struct nvmem_cell *cell;
1665         int nbits;
1666         void *buf;
1667
1668         cell = nvmem_cell_get(dev, cell_id);
1669         if (IS_ERR(cell))
1670                 return cell;
1671
1672         nbits = cell->entry->nbits;
1673         buf = nvmem_cell_read(cell, len);
1674         nvmem_cell_put(cell);
1675         if (IS_ERR(buf))
1676                 return buf;
1677
1678         /*
1679          * If nbits is set then nvmem_cell_read() can significantly exaggerate
1680          * the length of the real data. Throw away the extra junk.
1681          */
1682         if (nbits)
1683                 *len = DIV_ROUND_UP(nbits, 8);
1684
1685         if (*len > max_len) {
1686                 kfree(buf);
1687                 return ERR_PTR(-ERANGE);
1688         }
1689
1690         return buf;
1691 }
1692
1693 /**
1694  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1695  *
1696  * @dev: Device that requests the nvmem cell.
1697  * @cell_id: Name of nvmem cell to read.
1698  * @val: pointer to output value.
1699  *
1700  * Return: 0 on success or negative errno.
1701  */
1702 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1703                                     u32 *val)
1704 {
1705         size_t len;
1706         const u8 *buf;
1707         int i;
1708
1709         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1710         if (IS_ERR(buf))
1711                 return PTR_ERR(buf);
1712
1713         /* Copy w/ implicit endian conversion */
1714         *val = 0;
1715         for (i = 0; i < len; i++)
1716                 *val |= buf[i] << (8 * i);
1717
1718         kfree(buf);
1719
1720         return 0;
1721 }
1722 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1723
1724 /**
1725  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1726  *
1727  * @dev: Device that requests the nvmem cell.
1728  * @cell_id: Name of nvmem cell to read.
1729  * @val: pointer to output value.
1730  *
1731  * Return: 0 on success or negative errno.
1732  */
1733 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1734                                     u64 *val)
1735 {
1736         size_t len;
1737         const u8 *buf;
1738         int i;
1739
1740         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1741         if (IS_ERR(buf))
1742                 return PTR_ERR(buf);
1743
1744         /* Copy w/ implicit endian conversion */
1745         *val = 0;
1746         for (i = 0; i < len; i++)
1747                 *val |= (uint64_t)buf[i] << (8 * i);
1748
1749         kfree(buf);
1750
1751         return 0;
1752 }
1753 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1754
1755 /**
1756  * nvmem_device_cell_read() - Read a given nvmem device and cell
1757  *
1758  * @nvmem: nvmem device to read from.
1759  * @info: nvmem cell info to be read.
1760  * @buf: buffer pointer which will be populated on successful read.
1761  *
1762  * Return: length of successful bytes read on success and negative
1763  * error code on error.
1764  */
1765 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1766                            struct nvmem_cell_info *info, void *buf)
1767 {
1768         struct nvmem_cell_entry cell;
1769         int rc;
1770         ssize_t len;
1771
1772         if (!nvmem)
1773                 return -EINVAL;
1774
1775         rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1776         if (rc)
1777                 return rc;
1778
1779         rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1780         if (rc)
1781                 return rc;
1782
1783         return len;
1784 }
1785 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1786
1787 /**
1788  * nvmem_device_cell_write() - Write cell to a given nvmem device
1789  *
1790  * @nvmem: nvmem device to be written to.
1791  * @info: nvmem cell info to be written.
1792  * @buf: buffer to be written to cell.
1793  *
1794  * Return: length of bytes written or negative error code on failure.
1795  */
1796 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1797                             struct nvmem_cell_info *info, void *buf)
1798 {
1799         struct nvmem_cell_entry cell;
1800         int rc;
1801
1802         if (!nvmem)
1803                 return -EINVAL;
1804
1805         rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1806         if (rc)
1807                 return rc;
1808
1809         return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1810 }
1811 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1812
1813 /**
1814  * nvmem_device_read() - Read from a given nvmem device
1815  *
1816  * @nvmem: nvmem device to read from.
1817  * @offset: offset in nvmem device.
1818  * @bytes: number of bytes to read.
1819  * @buf: buffer pointer which will be populated on successful read.
1820  *
1821  * Return: length of successful bytes read on success and negative
1822  * error code on error.
1823  */
1824 int nvmem_device_read(struct nvmem_device *nvmem,
1825                       unsigned int offset,
1826                       size_t bytes, void *buf)
1827 {
1828         int rc;
1829
1830         if (!nvmem)
1831                 return -EINVAL;
1832
1833         rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1834
1835         if (rc)
1836                 return rc;
1837
1838         return bytes;
1839 }
1840 EXPORT_SYMBOL_GPL(nvmem_device_read);
1841
1842 /**
1843  * nvmem_device_write() - Write cell to a given nvmem device
1844  *
1845  * @nvmem: nvmem device to be written to.
1846  * @offset: offset in nvmem device.
1847  * @bytes: number of bytes to write.
1848  * @buf: buffer to be written.
1849  *
1850  * Return: length of bytes written or negative error code on failure.
1851  */
1852 int nvmem_device_write(struct nvmem_device *nvmem,
1853                        unsigned int offset,
1854                        size_t bytes, void *buf)
1855 {
1856         int rc;
1857
1858         if (!nvmem)
1859                 return -EINVAL;
1860
1861         rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1862
1863         if (rc)
1864                 return rc;
1865
1866
1867         return bytes;
1868 }
1869 EXPORT_SYMBOL_GPL(nvmem_device_write);
1870
1871 /**
1872  * nvmem_add_cell_table() - register a table of cell info entries
1873  *
1874  * @table: table of cell info entries
1875  */
1876 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1877 {
1878         mutex_lock(&nvmem_cell_mutex);
1879         list_add_tail(&table->node, &nvmem_cell_tables);
1880         mutex_unlock(&nvmem_cell_mutex);
1881 }
1882 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1883
1884 /**
1885  * nvmem_del_cell_table() - remove a previously registered cell info table
1886  *
1887  * @table: table of cell info entries
1888  */
1889 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1890 {
1891         mutex_lock(&nvmem_cell_mutex);
1892         list_del(&table->node);
1893         mutex_unlock(&nvmem_cell_mutex);
1894 }
1895 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1896
1897 /**
1898  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1899  *
1900  * @entries: array of cell lookup entries
1901  * @nentries: number of cell lookup entries in the array
1902  */
1903 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1904 {
1905         int i;
1906
1907         mutex_lock(&nvmem_lookup_mutex);
1908         for (i = 0; i < nentries; i++)
1909                 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1910         mutex_unlock(&nvmem_lookup_mutex);
1911 }
1912 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1913
1914 /**
1915  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1916  *                            entries
1917  *
1918  * @entries: array of cell lookup entries
1919  * @nentries: number of cell lookup entries in the array
1920  */
1921 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1922 {
1923         int i;
1924
1925         mutex_lock(&nvmem_lookup_mutex);
1926         for (i = 0; i < nentries; i++)
1927                 list_del(&entries[i].node);
1928         mutex_unlock(&nvmem_lookup_mutex);
1929 }
1930 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1931
1932 /**
1933  * nvmem_dev_name() - Get the name of a given nvmem device.
1934  *
1935  * @nvmem: nvmem device.
1936  *
1937  * Return: name of the nvmem device.
1938  */
1939 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1940 {
1941         return dev_name(&nvmem->dev);
1942 }
1943 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1944
1945 static int __init nvmem_init(void)
1946 {
1947         return bus_register(&nvmem_bus_type);
1948 }
1949
1950 static void __exit nvmem_exit(void)
1951 {
1952         bus_unregister(&nvmem_bus_type);
1953 }
1954
1955 subsys_initcall(nvmem_init);
1956 module_exit(nvmem_exit);
1957
1958 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1959 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1960 MODULE_DESCRIPTION("nvmem Driver Core");
1961 MODULE_LICENSE("GPL v2");