2 * NVMe over Fabrics RDMA target.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
32 #include <linux/nvme-rdma.h>
36 * We allow up to a page of inline data to go with the SQE
38 #define NVMET_RDMA_INLINE_DATA_SIZE PAGE_SIZE
40 struct nvmet_rdma_cmd {
44 struct scatterlist inline_sg;
45 struct page *inline_page;
46 struct nvme_command *nvme_cmd;
47 struct nvmet_rdma_queue *queue;
51 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
52 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1),
55 struct nvmet_rdma_rsp {
56 struct ib_sge send_sge;
57 struct ib_cqe send_cqe;
58 struct ib_send_wr send_wr;
60 struct nvmet_rdma_cmd *cmd;
61 struct nvmet_rdma_queue *queue;
63 struct ib_cqe read_cqe;
64 struct rdma_rw_ctx rw;
72 struct list_head wait_list;
73 struct list_head free_list;
76 enum nvmet_rdma_queue_state {
77 NVMET_RDMA_Q_CONNECTING,
79 NVMET_RDMA_Q_DISCONNECTING,
82 struct nvmet_rdma_queue {
83 struct rdma_cm_id *cm_id;
84 struct nvmet_port *port;
87 struct nvmet_rdma_device *dev;
88 spinlock_t state_lock;
89 enum nvmet_rdma_queue_state state;
90 struct nvmet_cq nvme_cq;
91 struct nvmet_sq nvme_sq;
93 struct nvmet_rdma_rsp *rsps;
94 struct list_head free_rsps;
96 struct nvmet_rdma_cmd *cmds;
98 struct work_struct release_work;
99 struct list_head rsp_wait_list;
100 struct list_head rsp_wr_wait_list;
101 spinlock_t rsp_wr_wait_lock;
108 struct list_head queue_list;
111 struct nvmet_rdma_device {
112 struct ib_device *device;
115 struct nvmet_rdma_cmd *srq_cmds;
118 struct list_head entry;
121 static bool nvmet_rdma_use_srq;
122 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
123 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
125 static DEFINE_IDA(nvmet_rdma_queue_ida);
126 static LIST_HEAD(nvmet_rdma_queue_list);
127 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
129 static LIST_HEAD(device_list);
130 static DEFINE_MUTEX(device_list_mutex);
132 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
133 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
134 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
135 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
136 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
137 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
139 static struct nvmet_fabrics_ops nvmet_rdma_ops;
141 /* XXX: really should move to a generic header sooner or later.. */
142 static inline u32 get_unaligned_le24(const u8 *p)
144 return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
147 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
149 return nvme_is_write(rsp->req.cmd) &&
151 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
154 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
156 return !nvme_is_write(rsp->req.cmd) &&
158 !rsp->req.rsp->status &&
159 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
162 static inline struct nvmet_rdma_rsp *
163 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
165 struct nvmet_rdma_rsp *rsp;
168 spin_lock_irqsave(&queue->rsps_lock, flags);
169 rsp = list_first_entry(&queue->free_rsps,
170 struct nvmet_rdma_rsp, free_list);
171 list_del(&rsp->free_list);
172 spin_unlock_irqrestore(&queue->rsps_lock, flags);
178 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
182 spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
183 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
184 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
187 static void nvmet_rdma_free_sgl(struct scatterlist *sgl, unsigned int nents)
189 struct scatterlist *sg;
195 for_each_sg(sgl, sg, nents, count)
196 __free_page(sg_page(sg));
200 static int nvmet_rdma_alloc_sgl(struct scatterlist **sgl, unsigned int *nents,
203 struct scatterlist *sg;
208 nent = DIV_ROUND_UP(length, PAGE_SIZE);
209 sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL);
213 sg_init_table(sg, nent);
216 u32 page_len = min_t(u32, length, PAGE_SIZE);
218 page = alloc_page(GFP_KERNEL);
222 sg_set_page(&sg[i], page, page_len, 0);
233 __free_page(sg_page(&sg[i]));
237 return NVME_SC_INTERNAL;
240 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
241 struct nvmet_rdma_cmd *c, bool admin)
243 /* NVMe command / RDMA RECV */
244 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
248 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
249 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
250 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
253 c->sge[0].length = sizeof(*c->nvme_cmd);
254 c->sge[0].lkey = ndev->pd->local_dma_lkey;
257 c->inline_page = alloc_pages(GFP_KERNEL,
258 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
261 c->sge[1].addr = ib_dma_map_page(ndev->device,
262 c->inline_page, 0, NVMET_RDMA_INLINE_DATA_SIZE,
264 if (ib_dma_mapping_error(ndev->device, c->sge[1].addr))
265 goto out_free_inline_page;
266 c->sge[1].length = NVMET_RDMA_INLINE_DATA_SIZE;
267 c->sge[1].lkey = ndev->pd->local_dma_lkey;
270 c->cqe.done = nvmet_rdma_recv_done;
272 c->wr.wr_cqe = &c->cqe;
273 c->wr.sg_list = c->sge;
274 c->wr.num_sge = admin ? 1 : 2;
278 out_free_inline_page:
280 __free_pages(c->inline_page,
281 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
284 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
285 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
293 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
294 struct nvmet_rdma_cmd *c, bool admin)
297 ib_dma_unmap_page(ndev->device, c->sge[1].addr,
298 NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE);
299 __free_pages(c->inline_page,
300 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
302 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
303 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
307 static struct nvmet_rdma_cmd *
308 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
309 int nr_cmds, bool admin)
311 struct nvmet_rdma_cmd *cmds;
312 int ret = -EINVAL, i;
314 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
318 for (i = 0; i < nr_cmds; i++) {
319 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
328 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
334 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
335 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
339 for (i = 0; i < nr_cmds; i++)
340 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
344 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
345 struct nvmet_rdma_rsp *r)
347 /* NVMe CQE / RDMA SEND */
348 r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
352 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
353 sizeof(*r->req.rsp), DMA_TO_DEVICE);
354 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
357 r->send_sge.length = sizeof(*r->req.rsp);
358 r->send_sge.lkey = ndev->pd->local_dma_lkey;
360 r->send_cqe.done = nvmet_rdma_send_done;
362 r->send_wr.wr_cqe = &r->send_cqe;
363 r->send_wr.sg_list = &r->send_sge;
364 r->send_wr.num_sge = 1;
365 r->send_wr.send_flags = IB_SEND_SIGNALED;
367 /* Data In / RDMA READ */
368 r->read_cqe.done = nvmet_rdma_read_data_done;
377 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
378 struct nvmet_rdma_rsp *r)
380 ib_dma_unmap_single(ndev->device, r->send_sge.addr,
381 sizeof(*r->req.rsp), DMA_TO_DEVICE);
386 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
388 struct nvmet_rdma_device *ndev = queue->dev;
389 int nr_rsps = queue->recv_queue_size * 2;
390 int ret = -EINVAL, i;
392 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
397 for (i = 0; i < nr_rsps; i++) {
398 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
400 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
404 list_add_tail(&rsp->free_list, &queue->free_rsps);
411 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
413 list_del(&rsp->free_list);
414 nvmet_rdma_free_rsp(ndev, rsp);
421 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
423 struct nvmet_rdma_device *ndev = queue->dev;
424 int i, nr_rsps = queue->recv_queue_size * 2;
426 for (i = 0; i < nr_rsps; i++) {
427 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
429 list_del(&rsp->free_list);
430 nvmet_rdma_free_rsp(ndev, rsp);
435 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
436 struct nvmet_rdma_cmd *cmd)
438 struct ib_recv_wr *bad_wr;
441 return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr);
442 return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr);
445 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
447 spin_lock(&queue->rsp_wr_wait_lock);
448 while (!list_empty(&queue->rsp_wr_wait_list)) {
449 struct nvmet_rdma_rsp *rsp;
452 rsp = list_entry(queue->rsp_wr_wait_list.next,
453 struct nvmet_rdma_rsp, wait_list);
454 list_del(&rsp->wait_list);
456 spin_unlock(&queue->rsp_wr_wait_lock);
457 ret = nvmet_rdma_execute_command(rsp);
458 spin_lock(&queue->rsp_wr_wait_lock);
461 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
465 spin_unlock(&queue->rsp_wr_wait_lock);
469 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
471 struct nvmet_rdma_queue *queue = rsp->queue;
473 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
476 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
477 queue->cm_id->port_num, rsp->req.sg,
478 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
481 if (rsp->req.sg != &rsp->cmd->inline_sg)
482 nvmet_rdma_free_sgl(rsp->req.sg, rsp->req.sg_cnt);
484 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
485 nvmet_rdma_process_wr_wait_list(queue);
487 nvmet_rdma_put_rsp(rsp);
490 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
492 if (queue->nvme_sq.ctrl) {
493 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
496 * we didn't setup the controller yet in case
497 * of admin connect error, just disconnect and
500 nvmet_rdma_queue_disconnect(queue);
504 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
506 struct nvmet_rdma_rsp *rsp =
507 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
509 nvmet_rdma_release_rsp(rsp);
511 if (unlikely(wc->status != IB_WC_SUCCESS &&
512 wc->status != IB_WC_WR_FLUSH_ERR)) {
513 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
514 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
515 nvmet_rdma_error_comp(rsp->queue);
519 static void nvmet_rdma_queue_response(struct nvmet_req *req)
521 struct nvmet_rdma_rsp *rsp =
522 container_of(req, struct nvmet_rdma_rsp, req);
523 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
524 struct ib_send_wr *first_wr, *bad_wr;
526 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
527 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
528 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
530 rsp->send_wr.opcode = IB_WR_SEND;
533 if (nvmet_rdma_need_data_out(rsp))
534 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
535 cm_id->port_num, NULL, &rsp->send_wr);
537 first_wr = &rsp->send_wr;
539 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
540 if (ib_post_send(cm_id->qp, first_wr, &bad_wr)) {
541 pr_err("sending cmd response failed\n");
542 nvmet_rdma_release_rsp(rsp);
546 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
548 struct nvmet_rdma_rsp *rsp =
549 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
550 struct nvmet_rdma_queue *queue = cq->cq_context;
552 WARN_ON(rsp->n_rdma <= 0);
553 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
554 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
555 queue->cm_id->port_num, rsp->req.sg,
556 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
559 if (unlikely(wc->status != IB_WC_SUCCESS)) {
560 nvmet_rdma_release_rsp(rsp);
561 if (wc->status != IB_WC_WR_FLUSH_ERR) {
562 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
563 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
564 nvmet_rdma_error_comp(queue);
569 rsp->req.execute(&rsp->req);
572 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
575 sg_init_table(&rsp->cmd->inline_sg, 1);
576 sg_set_page(&rsp->cmd->inline_sg, rsp->cmd->inline_page, len, off);
577 rsp->req.sg = &rsp->cmd->inline_sg;
581 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
583 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
584 u64 off = le64_to_cpu(sgl->addr);
585 u32 len = le32_to_cpu(sgl->length);
587 if (!nvme_is_write(rsp->req.cmd))
588 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
590 if (off + len > NVMET_RDMA_INLINE_DATA_SIZE) {
591 pr_err("invalid inline data offset!\n");
592 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
595 /* no data command? */
599 nvmet_rdma_use_inline_sg(rsp, len, off);
600 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
604 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
605 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
607 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
608 u64 addr = le64_to_cpu(sgl->addr);
609 u32 len = get_unaligned_le24(sgl->length);
610 u32 key = get_unaligned_le32(sgl->key);
614 /* no data command? */
618 /* use the already allocated data buffer if possible */
619 if (len <= NVMET_RDMA_INLINE_DATA_SIZE && rsp->queue->host_qid) {
620 nvmet_rdma_use_inline_sg(rsp, len, 0);
622 status = nvmet_rdma_alloc_sgl(&rsp->req.sg, &rsp->req.sg_cnt,
628 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
629 rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
630 nvmet_data_dir(&rsp->req));
632 return NVME_SC_INTERNAL;
636 rsp->invalidate_rkey = key;
637 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
643 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
645 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
647 switch (sgl->type >> 4) {
648 case NVME_SGL_FMT_DATA_DESC:
649 switch (sgl->type & 0xf) {
650 case NVME_SGL_FMT_OFFSET:
651 return nvmet_rdma_map_sgl_inline(rsp);
653 pr_err("invalid SGL subtype: %#x\n", sgl->type);
654 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
656 case NVME_KEY_SGL_FMT_DATA_DESC:
657 switch (sgl->type & 0xf) {
658 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
659 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
660 case NVME_SGL_FMT_ADDRESS:
661 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
663 pr_err("invalid SGL subtype: %#x\n", sgl->type);
664 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
667 pr_err("invalid SGL type: %#x\n", sgl->type);
668 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
672 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
674 struct nvmet_rdma_queue *queue = rsp->queue;
676 if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
677 &queue->sq_wr_avail) < 0)) {
678 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
679 1 + rsp->n_rdma, queue->idx,
680 queue->nvme_sq.ctrl->cntlid);
681 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
685 if (nvmet_rdma_need_data_in(rsp)) {
686 if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
687 queue->cm_id->port_num, &rsp->read_cqe, NULL))
688 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
690 rsp->req.execute(&rsp->req);
696 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
697 struct nvmet_rdma_rsp *cmd)
703 cmd->req.port = queue->port;
705 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
706 &queue->nvme_sq, &nvmet_rdma_ops))
709 status = nvmet_rdma_map_sgl(cmd);
713 if (unlikely(!nvmet_rdma_execute_command(cmd))) {
714 spin_lock(&queue->rsp_wr_wait_lock);
715 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
716 spin_unlock(&queue->rsp_wr_wait_lock);
722 nvmet_req_complete(&cmd->req, status);
725 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
727 struct nvmet_rdma_cmd *cmd =
728 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
729 struct nvmet_rdma_queue *queue = cq->cq_context;
730 struct nvmet_rdma_rsp *rsp;
732 if (unlikely(wc->status != IB_WC_SUCCESS)) {
733 if (wc->status != IB_WC_WR_FLUSH_ERR) {
734 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
735 wc->wr_cqe, ib_wc_status_msg(wc->status),
737 nvmet_rdma_error_comp(queue);
742 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
743 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
744 nvmet_rdma_error_comp(queue);
749 rsp = nvmet_rdma_get_rsp(queue);
752 rsp->req.cmd = cmd->nvme_cmd;
754 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
757 spin_lock_irqsave(&queue->state_lock, flags);
758 if (queue->state == NVMET_RDMA_Q_CONNECTING)
759 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
761 nvmet_rdma_put_rsp(rsp);
762 spin_unlock_irqrestore(&queue->state_lock, flags);
766 nvmet_rdma_handle_command(queue, rsp);
769 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
774 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
775 ib_destroy_srq(ndev->srq);
778 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
780 struct ib_srq_init_attr srq_attr = { NULL, };
785 srq_size = 4095; /* XXX: tune */
787 srq_attr.attr.max_wr = srq_size;
788 srq_attr.attr.max_sge = 2;
789 srq_attr.attr.srq_limit = 0;
790 srq_attr.srq_type = IB_SRQT_BASIC;
791 srq = ib_create_srq(ndev->pd, &srq_attr);
794 * If SRQs aren't supported we just go ahead and use normal
795 * non-shared receive queues.
797 pr_info("SRQ requested but not supported.\n");
801 ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
802 if (IS_ERR(ndev->srq_cmds)) {
803 ret = PTR_ERR(ndev->srq_cmds);
804 goto out_destroy_srq;
808 ndev->srq_size = srq_size;
810 for (i = 0; i < srq_size; i++)
811 nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
820 static void nvmet_rdma_free_dev(struct kref *ref)
822 struct nvmet_rdma_device *ndev =
823 container_of(ref, struct nvmet_rdma_device, ref);
825 mutex_lock(&device_list_mutex);
826 list_del(&ndev->entry);
827 mutex_unlock(&device_list_mutex);
829 nvmet_rdma_destroy_srq(ndev);
830 ib_dealloc_pd(ndev->pd);
835 static struct nvmet_rdma_device *
836 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
838 struct nvmet_rdma_device *ndev;
841 mutex_lock(&device_list_mutex);
842 list_for_each_entry(ndev, &device_list, entry) {
843 if (ndev->device->node_guid == cm_id->device->node_guid &&
844 kref_get_unless_zero(&ndev->ref))
848 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
852 ndev->device = cm_id->device;
853 kref_init(&ndev->ref);
855 ndev->pd = ib_alloc_pd(ndev->device);
856 if (IS_ERR(ndev->pd))
859 if (nvmet_rdma_use_srq) {
860 ret = nvmet_rdma_init_srq(ndev);
865 list_add(&ndev->entry, &device_list);
867 mutex_unlock(&device_list_mutex);
868 pr_debug("added %s.\n", ndev->device->name);
872 ib_dealloc_pd(ndev->pd);
876 mutex_unlock(&device_list_mutex);
880 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
882 struct ib_qp_init_attr qp_attr;
883 struct nvmet_rdma_device *ndev = queue->dev;
884 int comp_vector, nr_cqe, ret, i;
887 * Spread the io queues across completion vectors,
888 * but still keep all admin queues on vector 0.
890 comp_vector = !queue->host_qid ? 0 :
891 queue->idx % ndev->device->num_comp_vectors;
894 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
896 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
898 queue->cq = ib_alloc_cq(ndev->device, queue,
899 nr_cqe + 1, comp_vector,
901 if (IS_ERR(queue->cq)) {
902 ret = PTR_ERR(queue->cq);
903 pr_err("failed to create CQ cqe= %d ret= %d\n",
908 memset(&qp_attr, 0, sizeof(qp_attr));
909 qp_attr.qp_context = queue;
910 qp_attr.event_handler = nvmet_rdma_qp_event;
911 qp_attr.send_cq = queue->cq;
912 qp_attr.recv_cq = queue->cq;
913 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
914 qp_attr.qp_type = IB_QPT_RC;
916 qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
917 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
918 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
919 ndev->device->attrs.max_sge);
922 qp_attr.srq = ndev->srq;
925 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
926 qp_attr.cap.max_recv_sge = 2;
929 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
931 pr_err("failed to create_qp ret= %d\n", ret);
935 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
937 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
938 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
939 qp_attr.cap.max_send_wr, queue->cm_id);
942 for (i = 0; i < queue->recv_queue_size; i++) {
943 queue->cmds[i].queue = queue;
944 nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
952 ib_free_cq(queue->cq);
956 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
958 rdma_destroy_qp(queue->cm_id);
959 ib_free_cq(queue->cq);
962 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
964 pr_info("freeing queue %d\n", queue->idx);
966 nvmet_sq_destroy(&queue->nvme_sq);
968 nvmet_rdma_destroy_queue_ib(queue);
969 if (!queue->dev->srq) {
970 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
971 queue->recv_queue_size,
974 nvmet_rdma_free_rsps(queue);
975 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
979 static void nvmet_rdma_release_queue_work(struct work_struct *w)
981 struct nvmet_rdma_queue *queue =
982 container_of(w, struct nvmet_rdma_queue, release_work);
983 struct rdma_cm_id *cm_id = queue->cm_id;
984 struct nvmet_rdma_device *dev = queue->dev;
986 nvmet_rdma_free_queue(queue);
987 rdma_destroy_id(cm_id);
988 kref_put(&dev->ref, nvmet_rdma_free_dev);
992 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
993 struct nvmet_rdma_queue *queue)
995 struct nvme_rdma_cm_req *req;
997 req = (struct nvme_rdma_cm_req *)conn->private_data;
998 if (!req || conn->private_data_len == 0)
999 return NVME_RDMA_CM_INVALID_LEN;
1001 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1002 return NVME_RDMA_CM_INVALID_RECFMT;
1004 queue->host_qid = le16_to_cpu(req->qid);
1007 * req->hsqsize corresponds to our recv queue size
1008 * req->hrqsize corresponds to our send queue size
1010 queue->recv_queue_size = le16_to_cpu(req->hsqsize);
1011 queue->send_queue_size = le16_to_cpu(req->hrqsize);
1013 if (!queue->host_qid && queue->recv_queue_size > NVMF_AQ_DEPTH)
1014 return NVME_RDMA_CM_INVALID_HSQSIZE;
1016 /* XXX: Should we enforce some kind of max for IO queues? */
1021 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1022 enum nvme_rdma_cm_status status)
1024 struct nvme_rdma_cm_rej rej;
1026 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1027 rej.sts = cpu_to_le16(status);
1029 return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1032 static struct nvmet_rdma_queue *
1033 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1034 struct rdma_cm_id *cm_id,
1035 struct rdma_cm_event *event)
1037 struct nvmet_rdma_queue *queue;
1040 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1042 ret = NVME_RDMA_CM_NO_RSC;
1046 ret = nvmet_sq_init(&queue->nvme_sq);
1048 goto out_free_queue;
1050 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1052 goto out_destroy_sq;
1055 * Schedules the actual release because calling rdma_destroy_id from
1056 * inside a CM callback would trigger a deadlock. (great API design..)
1058 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1060 queue->cm_id = cm_id;
1062 spin_lock_init(&queue->state_lock);
1063 queue->state = NVMET_RDMA_Q_CONNECTING;
1064 INIT_LIST_HEAD(&queue->rsp_wait_list);
1065 INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1066 spin_lock_init(&queue->rsp_wr_wait_lock);
1067 INIT_LIST_HEAD(&queue->free_rsps);
1068 spin_lock_init(&queue->rsps_lock);
1070 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1071 if (queue->idx < 0) {
1072 ret = NVME_RDMA_CM_NO_RSC;
1073 goto out_free_queue;
1076 ret = nvmet_rdma_alloc_rsps(queue);
1078 ret = NVME_RDMA_CM_NO_RSC;
1079 goto out_ida_remove;
1083 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1084 queue->recv_queue_size,
1086 if (IS_ERR(queue->cmds)) {
1087 ret = NVME_RDMA_CM_NO_RSC;
1088 goto out_free_responses;
1092 ret = nvmet_rdma_create_queue_ib(queue);
1094 pr_err("%s: creating RDMA queue failed (%d).\n",
1096 ret = NVME_RDMA_CM_NO_RSC;
1104 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1105 queue->recv_queue_size,
1109 nvmet_rdma_free_rsps(queue);
1111 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1113 nvmet_sq_destroy(&queue->nvme_sq);
1117 nvmet_rdma_cm_reject(cm_id, ret);
1121 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1123 struct nvmet_rdma_queue *queue = priv;
1125 switch (event->event) {
1126 case IB_EVENT_COMM_EST:
1127 rdma_notify(queue->cm_id, event->event);
1130 pr_err("received unrecognized IB QP event %d\n", event->event);
1135 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1136 struct nvmet_rdma_queue *queue,
1137 struct rdma_conn_param *p)
1139 struct rdma_conn_param param = { };
1140 struct nvme_rdma_cm_rep priv = { };
1143 param.rnr_retry_count = 7;
1144 param.flow_control = 1;
1145 param.initiator_depth = min_t(u8, p->initiator_depth,
1146 queue->dev->device->attrs.max_qp_init_rd_atom);
1147 param.private_data = &priv;
1148 param.private_data_len = sizeof(priv);
1149 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1150 priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1152 ret = rdma_accept(cm_id, ¶m);
1154 pr_err("rdma_accept failed (error code = %d)\n", ret);
1159 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1160 struct rdma_cm_event *event)
1162 struct nvmet_rdma_device *ndev;
1163 struct nvmet_rdma_queue *queue;
1166 ndev = nvmet_rdma_find_get_device(cm_id);
1168 pr_err("no client data!\n");
1169 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1170 return -ECONNREFUSED;
1173 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1178 queue->port = cm_id->context;
1180 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1184 mutex_lock(&nvmet_rdma_queue_mutex);
1185 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1186 mutex_unlock(&nvmet_rdma_queue_mutex);
1191 nvmet_rdma_free_queue(queue);
1193 kref_put(&ndev->ref, nvmet_rdma_free_dev);
1198 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1200 unsigned long flags;
1202 spin_lock_irqsave(&queue->state_lock, flags);
1203 if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1204 pr_warn("trying to establish a connected queue\n");
1207 queue->state = NVMET_RDMA_Q_LIVE;
1209 while (!list_empty(&queue->rsp_wait_list)) {
1210 struct nvmet_rdma_rsp *cmd;
1212 cmd = list_first_entry(&queue->rsp_wait_list,
1213 struct nvmet_rdma_rsp, wait_list);
1214 list_del(&cmd->wait_list);
1216 spin_unlock_irqrestore(&queue->state_lock, flags);
1217 nvmet_rdma_handle_command(queue, cmd);
1218 spin_lock_irqsave(&queue->state_lock, flags);
1222 spin_unlock_irqrestore(&queue->state_lock, flags);
1225 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1227 bool disconnect = false;
1228 unsigned long flags;
1230 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1232 spin_lock_irqsave(&queue->state_lock, flags);
1233 switch (queue->state) {
1234 case NVMET_RDMA_Q_CONNECTING:
1235 case NVMET_RDMA_Q_LIVE:
1237 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1239 case NVMET_RDMA_Q_DISCONNECTING:
1242 spin_unlock_irqrestore(&queue->state_lock, flags);
1245 rdma_disconnect(queue->cm_id);
1246 ib_drain_qp(queue->cm_id->qp);
1247 schedule_work(&queue->release_work);
1251 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1253 bool disconnect = false;
1255 mutex_lock(&nvmet_rdma_queue_mutex);
1256 if (!list_empty(&queue->queue_list)) {
1257 list_del_init(&queue->queue_list);
1260 mutex_unlock(&nvmet_rdma_queue_mutex);
1263 __nvmet_rdma_queue_disconnect(queue);
1266 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1267 struct nvmet_rdma_queue *queue)
1269 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1271 pr_err("failed to connect queue\n");
1272 schedule_work(&queue->release_work);
1275 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1276 struct rdma_cm_event *event)
1278 struct nvmet_rdma_queue *queue = NULL;
1282 queue = cm_id->qp->qp_context;
1284 pr_debug("%s (%d): status %d id %p\n",
1285 rdma_event_msg(event->event), event->event,
1286 event->status, cm_id);
1288 switch (event->event) {
1289 case RDMA_CM_EVENT_CONNECT_REQUEST:
1290 ret = nvmet_rdma_queue_connect(cm_id, event);
1292 case RDMA_CM_EVENT_ESTABLISHED:
1293 nvmet_rdma_queue_established(queue);
1295 case RDMA_CM_EVENT_ADDR_CHANGE:
1296 case RDMA_CM_EVENT_DISCONNECTED:
1297 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1298 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1300 * We can get the device removal callback even for a
1301 * CM ID that we aren't actually using. In that case
1302 * the context pointer is NULL, so we shouldn't try
1303 * to disconnect a non-existing queue. But we also
1304 * need to return 1 so that the core will destroy
1305 * it's own ID. What a great API design..
1308 nvmet_rdma_queue_disconnect(queue);
1312 case RDMA_CM_EVENT_REJECTED:
1313 case RDMA_CM_EVENT_UNREACHABLE:
1314 case RDMA_CM_EVENT_CONNECT_ERROR:
1315 nvmet_rdma_queue_connect_fail(cm_id, queue);
1318 pr_err("received unrecognized RDMA CM event %d\n",
1326 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1328 struct nvmet_rdma_queue *queue;
1331 mutex_lock(&nvmet_rdma_queue_mutex);
1332 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1333 if (queue->nvme_sq.ctrl == ctrl) {
1334 list_del_init(&queue->queue_list);
1335 mutex_unlock(&nvmet_rdma_queue_mutex);
1337 __nvmet_rdma_queue_disconnect(queue);
1341 mutex_unlock(&nvmet_rdma_queue_mutex);
1344 static int nvmet_rdma_add_port(struct nvmet_port *port)
1346 struct rdma_cm_id *cm_id;
1347 struct sockaddr_in addr_in;
1351 switch (port->disc_addr.adrfam) {
1352 case NVMF_ADDR_FAMILY_IP4:
1355 pr_err("address family %d not supported\n",
1356 port->disc_addr.adrfam);
1360 ret = kstrtou16(port->disc_addr.trsvcid, 0, &port_in);
1364 addr_in.sin_family = AF_INET;
1365 addr_in.sin_addr.s_addr = in_aton(port->disc_addr.traddr);
1366 addr_in.sin_port = htons(port_in);
1368 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1369 RDMA_PS_TCP, IB_QPT_RC);
1370 if (IS_ERR(cm_id)) {
1371 pr_err("CM ID creation failed\n");
1372 return PTR_ERR(cm_id);
1375 ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr_in);
1377 pr_err("binding CM ID to %pISpc failed (%d)\n", &addr_in, ret);
1378 goto out_destroy_id;
1381 ret = rdma_listen(cm_id, 128);
1383 pr_err("listening to %pISpc failed (%d)\n", &addr_in, ret);
1384 goto out_destroy_id;
1387 pr_info("enabling port %d (%pISpc)\n",
1388 le16_to_cpu(port->disc_addr.portid), &addr_in);
1393 rdma_destroy_id(cm_id);
1397 static void nvmet_rdma_remove_port(struct nvmet_port *port)
1399 struct rdma_cm_id *cm_id = port->priv;
1401 rdma_destroy_id(cm_id);
1404 static struct nvmet_fabrics_ops nvmet_rdma_ops = {
1405 .owner = THIS_MODULE,
1406 .type = NVMF_TRTYPE_RDMA,
1407 .sqe_inline_size = NVMET_RDMA_INLINE_DATA_SIZE,
1409 .has_keyed_sgls = 1,
1410 .add_port = nvmet_rdma_add_port,
1411 .remove_port = nvmet_rdma_remove_port,
1412 .queue_response = nvmet_rdma_queue_response,
1413 .delete_ctrl = nvmet_rdma_delete_ctrl,
1416 static int __init nvmet_rdma_init(void)
1418 return nvmet_register_transport(&nvmet_rdma_ops);
1421 static void __exit nvmet_rdma_exit(void)
1423 struct nvmet_rdma_queue *queue;
1425 nvmet_unregister_transport(&nvmet_rdma_ops);
1427 flush_scheduled_work();
1429 mutex_lock(&nvmet_rdma_queue_mutex);
1430 while ((queue = list_first_entry_or_null(&nvmet_rdma_queue_list,
1431 struct nvmet_rdma_queue, queue_list))) {
1432 list_del_init(&queue->queue_list);
1434 mutex_unlock(&nvmet_rdma_queue_mutex);
1435 __nvmet_rdma_queue_disconnect(queue);
1436 mutex_lock(&nvmet_rdma_queue_mutex);
1438 mutex_unlock(&nvmet_rdma_queue_mutex);
1440 flush_scheduled_work();
1441 ida_destroy(&nvmet_rdma_queue_ida);
1444 module_init(nvmet_rdma_init);
1445 module_exit(nvmet_rdma_exit);
1447 MODULE_LICENSE("GPL v2");
1448 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */