imx8mm-cl-iot-gate-optee: align config with Kconfig
[platform/kernel/u-boot.git] / drivers / nvme / nvme.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 NXP Semiconductors
4  * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
5  */
6
7 #include <common.h>
8 #include <blk.h>
9 #include <cpu_func.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <log.h>
13 #include <malloc.h>
14 #include <memalign.h>
15 #include <pci.h>
16 #include <time.h>
17 #include <dm/device-internal.h>
18 #include <linux/compat.h>
19 #include "nvme.h"
20
21 #define NVME_Q_DEPTH            2
22 #define NVME_AQ_DEPTH           2
23 #define NVME_SQ_SIZE(depth)     (depth * sizeof(struct nvme_command))
24 #define NVME_CQ_SIZE(depth)     (depth * sizeof(struct nvme_completion))
25 #define NVME_CQ_ALLOCATION      ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \
26                                       ARCH_DMA_MINALIGN)
27 #define ADMIN_TIMEOUT           60
28 #define IO_TIMEOUT              30
29 #define MAX_PRP_POOL            512
30
31 enum nvme_queue_id {
32         NVME_ADMIN_Q,
33         NVME_IO_Q,
34         NVME_Q_NUM,
35 };
36
37 /*
38  * An NVM Express queue. Each device has at least two (one for admin
39  * commands and one for I/O commands).
40  */
41 struct nvme_queue {
42         struct nvme_dev *dev;
43         struct nvme_command *sq_cmds;
44         struct nvme_completion *cqes;
45         wait_queue_head_t sq_full;
46         u32 __iomem *q_db;
47         u16 q_depth;
48         s16 cq_vector;
49         u16 sq_head;
50         u16 sq_tail;
51         u16 cq_head;
52         u16 qid;
53         u8 cq_phase;
54         u8 cqe_seen;
55         unsigned long cmdid_data[];
56 };
57
58 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
59 {
60         u32 bit = enabled ? NVME_CSTS_RDY : 0;
61         int timeout;
62         ulong start;
63
64         /* Timeout field in the CAP register is in 500 millisecond units */
65         timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
66
67         start = get_timer(0);
68         while (get_timer(start) < timeout) {
69                 if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
70                         return 0;
71         }
72
73         return -ETIME;
74 }
75
76 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
77                            int total_len, u64 dma_addr)
78 {
79         u32 page_size = dev->page_size;
80         int offset = dma_addr & (page_size - 1);
81         u64 *prp_pool;
82         int length = total_len;
83         int i, nprps;
84         u32 prps_per_page = page_size >> 3;
85         u32 num_pages;
86
87         length -= (page_size - offset);
88
89         if (length <= 0) {
90                 *prp2 = 0;
91                 return 0;
92         }
93
94         if (length)
95                 dma_addr += (page_size - offset);
96
97         if (length <= page_size) {
98                 *prp2 = dma_addr;
99                 return 0;
100         }
101
102         nprps = DIV_ROUND_UP(length, page_size);
103         num_pages = DIV_ROUND_UP(nprps, prps_per_page);
104
105         if (nprps > dev->prp_entry_num) {
106                 free(dev->prp_pool);
107                 /*
108                  * Always increase in increments of pages.  It doesn't waste
109                  * much memory and reduces the number of allocations.
110                  */
111                 dev->prp_pool = memalign(page_size, num_pages * page_size);
112                 if (!dev->prp_pool) {
113                         printf("Error: malloc prp_pool fail\n");
114                         return -ENOMEM;
115                 }
116                 dev->prp_entry_num = prps_per_page * num_pages;
117         }
118
119         prp_pool = dev->prp_pool;
120         i = 0;
121         while (nprps) {
122                 if (i == ((page_size >> 3) - 1)) {
123                         *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
124                                         page_size);
125                         i = 0;
126                         prp_pool += page_size;
127                 }
128                 *(prp_pool + i++) = cpu_to_le64(dma_addr);
129                 dma_addr += page_size;
130                 nprps--;
131         }
132         *prp2 = (ulong)dev->prp_pool;
133
134         flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
135                            dev->prp_entry_num * sizeof(u64));
136
137         return 0;
138 }
139
140 static __le16 nvme_get_cmd_id(void)
141 {
142         static unsigned short cmdid;
143
144         return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
145 }
146
147 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
148 {
149         /*
150          * Single CQ entries are always smaller than a cache line, so we
151          * can't invalidate them individually. However CQ entries are
152          * read only by the CPU, so it's safe to always invalidate all of them,
153          * as the cache line should never become dirty.
154          */
155         ulong start = (ulong)&nvmeq->cqes[0];
156         ulong stop = start + NVME_CQ_ALLOCATION;
157
158         invalidate_dcache_range(start, stop);
159
160         return readw(&(nvmeq->cqes[index].status));
161 }
162
163 /**
164  * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
165  *
166  * @nvmeq:      The queue to use
167  * @cmd:        The command to send
168  */
169 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
170 {
171         u16 tail = nvmeq->sq_tail;
172
173         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
174         flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
175                            (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
176
177         if (++tail == nvmeq->q_depth)
178                 tail = 0;
179         writel(tail, nvmeq->q_db);
180         nvmeq->sq_tail = tail;
181 }
182
183 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
184                                 struct nvme_command *cmd,
185                                 u32 *result, unsigned timeout)
186 {
187         u16 head = nvmeq->cq_head;
188         u16 phase = nvmeq->cq_phase;
189         u16 status;
190         ulong start_time;
191         ulong timeout_us = timeout * 100000;
192
193         cmd->common.command_id = nvme_get_cmd_id();
194         nvme_submit_cmd(nvmeq, cmd);
195
196         start_time = timer_get_us();
197
198         for (;;) {
199                 status = nvme_read_completion_status(nvmeq, head);
200                 if ((status & 0x01) == phase)
201                         break;
202                 if (timeout_us > 0 && (timer_get_us() - start_time)
203                     >= timeout_us)
204                         return -ETIMEDOUT;
205         }
206
207         status >>= 1;
208         if (status) {
209                 printf("ERROR: status = %x, phase = %d, head = %d\n",
210                        status, phase, head);
211                 status = 0;
212                 if (++head == nvmeq->q_depth) {
213                         head = 0;
214                         phase = !phase;
215                 }
216                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
217                 nvmeq->cq_head = head;
218                 nvmeq->cq_phase = phase;
219
220                 return -EIO;
221         }
222
223         if (result)
224                 *result = readl(&(nvmeq->cqes[head].result));
225
226         if (++head == nvmeq->q_depth) {
227                 head = 0;
228                 phase = !phase;
229         }
230         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
231         nvmeq->cq_head = head;
232         nvmeq->cq_phase = phase;
233
234         return status;
235 }
236
237 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
238                                  u32 *result)
239 {
240         return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
241                                     result, ADMIN_TIMEOUT);
242 }
243
244 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
245                                            int qid, int depth)
246 {
247         struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
248         if (!nvmeq)
249                 return NULL;
250         memset(nvmeq, 0, sizeof(*nvmeq));
251
252         nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION);
253         if (!nvmeq->cqes)
254                 goto free_nvmeq;
255         memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
256
257         nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
258         if (!nvmeq->sq_cmds)
259                 goto free_queue;
260         memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
261
262         nvmeq->dev = dev;
263
264         nvmeq->cq_head = 0;
265         nvmeq->cq_phase = 1;
266         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
267         nvmeq->q_depth = depth;
268         nvmeq->qid = qid;
269         dev->queue_count++;
270         dev->queues[qid] = nvmeq;
271
272         return nvmeq;
273
274  free_queue:
275         free((void *)nvmeq->cqes);
276  free_nvmeq:
277         free(nvmeq);
278
279         return NULL;
280 }
281
282 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
283 {
284         struct nvme_command c;
285
286         memset(&c, 0, sizeof(c));
287         c.delete_queue.opcode = opcode;
288         c.delete_queue.qid = cpu_to_le16(id);
289
290         return nvme_submit_admin_cmd(dev, &c, NULL);
291 }
292
293 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
294 {
295         return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
296 }
297
298 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
299 {
300         return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
301 }
302
303 static int nvme_enable_ctrl(struct nvme_dev *dev)
304 {
305         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
306         dev->ctrl_config |= NVME_CC_ENABLE;
307         writel(dev->ctrl_config, &dev->bar->cc);
308
309         return nvme_wait_ready(dev, true);
310 }
311
312 static int nvme_disable_ctrl(struct nvme_dev *dev)
313 {
314         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
315         dev->ctrl_config &= ~NVME_CC_ENABLE;
316         writel(dev->ctrl_config, &dev->bar->cc);
317
318         return nvme_wait_ready(dev, false);
319 }
320
321 static void nvme_free_queue(struct nvme_queue *nvmeq)
322 {
323         free((void *)nvmeq->cqes);
324         free(nvmeq->sq_cmds);
325         free(nvmeq);
326 }
327
328 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
329 {
330         int i;
331
332         for (i = dev->queue_count - 1; i >= lowest; i--) {
333                 struct nvme_queue *nvmeq = dev->queues[i];
334                 dev->queue_count--;
335                 dev->queues[i] = NULL;
336                 nvme_free_queue(nvmeq);
337         }
338 }
339
340 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
341 {
342         struct nvme_dev *dev = nvmeq->dev;
343
344         nvmeq->sq_tail = 0;
345         nvmeq->cq_head = 0;
346         nvmeq->cq_phase = 1;
347         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
348         memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
349         flush_dcache_range((ulong)nvmeq->cqes,
350                            (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION);
351         dev->online_queues++;
352 }
353
354 static int nvme_configure_admin_queue(struct nvme_dev *dev)
355 {
356         int result;
357         u32 aqa;
358         u64 cap = dev->cap;
359         struct nvme_queue *nvmeq;
360         /* most architectures use 4KB as the page size */
361         unsigned page_shift = 12;
362         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
363         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
364
365         if (page_shift < dev_page_min) {
366                 debug("Device minimum page size (%u) too large for host (%u)\n",
367                       1 << dev_page_min, 1 << page_shift);
368                 return -ENODEV;
369         }
370
371         if (page_shift > dev_page_max) {
372                 debug("Device maximum page size (%u) smaller than host (%u)\n",
373                       1 << dev_page_max, 1 << page_shift);
374                 page_shift = dev_page_max;
375         }
376
377         result = nvme_disable_ctrl(dev);
378         if (result < 0)
379                 return result;
380
381         nvmeq = dev->queues[NVME_ADMIN_Q];
382         if (!nvmeq) {
383                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
384                 if (!nvmeq)
385                         return -ENOMEM;
386         }
387
388         aqa = nvmeq->q_depth - 1;
389         aqa |= aqa << 16;
390
391         dev->page_size = 1 << page_shift;
392
393         dev->ctrl_config = NVME_CC_CSS_NVM;
394         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
395         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
396         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
397
398         writel(aqa, &dev->bar->aqa);
399         nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
400         nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
401
402         result = nvme_enable_ctrl(dev);
403         if (result)
404                 goto free_nvmeq;
405
406         nvmeq->cq_vector = 0;
407
408         nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
409
410         return result;
411
412  free_nvmeq:
413         nvme_free_queues(dev, 0);
414
415         return result;
416 }
417
418 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
419                             struct nvme_queue *nvmeq)
420 {
421         struct nvme_command c;
422         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
423
424         memset(&c, 0, sizeof(c));
425         c.create_cq.opcode = nvme_admin_create_cq;
426         c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
427         c.create_cq.cqid = cpu_to_le16(qid);
428         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
429         c.create_cq.cq_flags = cpu_to_le16(flags);
430         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
431
432         return nvme_submit_admin_cmd(dev, &c, NULL);
433 }
434
435 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
436                             struct nvme_queue *nvmeq)
437 {
438         struct nvme_command c;
439         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
440
441         memset(&c, 0, sizeof(c));
442         c.create_sq.opcode = nvme_admin_create_sq;
443         c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
444         c.create_sq.sqid = cpu_to_le16(qid);
445         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
446         c.create_sq.sq_flags = cpu_to_le16(flags);
447         c.create_sq.cqid = cpu_to_le16(qid);
448
449         return nvme_submit_admin_cmd(dev, &c, NULL);
450 }
451
452 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
453                   unsigned cns, dma_addr_t dma_addr)
454 {
455         struct nvme_command c;
456         u32 page_size = dev->page_size;
457         int offset = dma_addr & (page_size - 1);
458         int length = sizeof(struct nvme_id_ctrl);
459         int ret;
460
461         memset(&c, 0, sizeof(c));
462         c.identify.opcode = nvme_admin_identify;
463         c.identify.nsid = cpu_to_le32(nsid);
464         c.identify.prp1 = cpu_to_le64(dma_addr);
465
466         length -= (page_size - offset);
467         if (length <= 0) {
468                 c.identify.prp2 = 0;
469         } else {
470                 dma_addr += (page_size - offset);
471                 c.identify.prp2 = cpu_to_le64(dma_addr);
472         }
473
474         c.identify.cns = cpu_to_le32(cns);
475
476         invalidate_dcache_range(dma_addr,
477                                 dma_addr + sizeof(struct nvme_id_ctrl));
478
479         ret = nvme_submit_admin_cmd(dev, &c, NULL);
480         if (!ret)
481                 invalidate_dcache_range(dma_addr,
482                                         dma_addr + sizeof(struct nvme_id_ctrl));
483
484         return ret;
485 }
486
487 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
488                       dma_addr_t dma_addr, u32 *result)
489 {
490         struct nvme_command c;
491         int ret;
492
493         memset(&c, 0, sizeof(c));
494         c.features.opcode = nvme_admin_get_features;
495         c.features.nsid = cpu_to_le32(nsid);
496         c.features.prp1 = cpu_to_le64(dma_addr);
497         c.features.fid = cpu_to_le32(fid);
498
499         ret = nvme_submit_admin_cmd(dev, &c, result);
500
501         /*
502          * TODO: Add some cache invalidation when a DMA buffer is involved
503          * in the request, here and before the command gets submitted. The
504          * buffer size varies by feature, also some features use a different
505          * field in the command packet to hold the buffer address.
506          * Section 5.21.1 (Set Features command) in the NVMe specification
507          * details the buffer requirements for each feature.
508          *
509          * At the moment there is no user of this function.
510          */
511
512         return ret;
513 }
514
515 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
516                       dma_addr_t dma_addr, u32 *result)
517 {
518         struct nvme_command c;
519
520         memset(&c, 0, sizeof(c));
521         c.features.opcode = nvme_admin_set_features;
522         c.features.prp1 = cpu_to_le64(dma_addr);
523         c.features.fid = cpu_to_le32(fid);
524         c.features.dword11 = cpu_to_le32(dword11);
525
526         /*
527          * TODO: Add a cache clean (aka flush) operation when a DMA buffer is
528          * involved in the request. The buffer size varies by feature, also
529          * some features use a different field in the command packet to hold
530          * the buffer address. Section 5.21.1 (Set Features command) in the
531          * NVMe specification details the buffer requirements for each
532          * feature.
533          * At the moment the only user of this function is not using
534          * any DMA buffer at all.
535          */
536
537         return nvme_submit_admin_cmd(dev, &c, result);
538 }
539
540 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
541 {
542         struct nvme_dev *dev = nvmeq->dev;
543         int result;
544
545         nvmeq->cq_vector = qid - 1;
546         result = nvme_alloc_cq(dev, qid, nvmeq);
547         if (result < 0)
548                 goto release_cq;
549
550         result = nvme_alloc_sq(dev, qid, nvmeq);
551         if (result < 0)
552                 goto release_sq;
553
554         nvme_init_queue(nvmeq, qid);
555
556         return result;
557
558  release_sq:
559         nvme_delete_sq(dev, qid);
560  release_cq:
561         nvme_delete_cq(dev, qid);
562
563         return result;
564 }
565
566 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
567 {
568         int status;
569         u32 result;
570         u32 q_count = (count - 1) | ((count - 1) << 16);
571
572         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
573                         q_count, 0, &result);
574
575         if (status < 0)
576                 return status;
577         if (status > 1)
578                 return 0;
579
580         return min(result & 0xffff, result >> 16) + 1;
581 }
582
583 static void nvme_create_io_queues(struct nvme_dev *dev)
584 {
585         unsigned int i;
586
587         for (i = dev->queue_count; i <= dev->max_qid; i++)
588                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
589                         break;
590
591         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
592                 if (nvme_create_queue(dev->queues[i], i))
593                         break;
594 }
595
596 static int nvme_setup_io_queues(struct nvme_dev *dev)
597 {
598         int nr_io_queues;
599         int result;
600
601         nr_io_queues = 1;
602         result = nvme_set_queue_count(dev, nr_io_queues);
603         if (result <= 0)
604                 return result;
605
606         dev->max_qid = nr_io_queues;
607
608         /* Free previously allocated queues */
609         nvme_free_queues(dev, nr_io_queues + 1);
610         nvme_create_io_queues(dev);
611
612         return 0;
613 }
614
615 static int nvme_get_info_from_identify(struct nvme_dev *dev)
616 {
617         struct nvme_id_ctrl *ctrl;
618         int ret;
619         int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
620
621         ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
622         if (!ctrl)
623                 return -ENOMEM;
624
625         ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
626         if (ret) {
627                 free(ctrl);
628                 return -EIO;
629         }
630
631         dev->nn = le32_to_cpu(ctrl->nn);
632         dev->vwc = ctrl->vwc;
633         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
634         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
635         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
636         if (ctrl->mdts)
637                 dev->max_transfer_shift = (ctrl->mdts + shift);
638         else {
639                 /*
640                  * Maximum Data Transfer Size (MDTS) field indicates the maximum
641                  * data transfer size between the host and the controller. The
642                  * host should not submit a command that exceeds this transfer
643                  * size. The value is in units of the minimum memory page size
644                  * and is reported as a power of two (2^n).
645                  *
646                  * The spec also says: a value of 0h indicates no restrictions
647                  * on transfer size. But in nvme_blk_read/write() below we have
648                  * the following algorithm for maximum number of logic blocks
649                  * per transfer:
650                  *
651                  * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
652                  *
653                  * In order for lbas not to overflow, the maximum number is 15
654                  * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
655                  * Let's use 20 which provides 1MB size.
656                  */
657                 dev->max_transfer_shift = 20;
658         }
659
660         free(ctrl);
661         return 0;
662 }
663
664 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
665 {
666         struct nvme_ns *ns = dev_get_priv(udev);
667
668         if (ns_id)
669                 *ns_id = ns->ns_id;
670         if (eui64)
671                 memcpy(eui64, ns->eui64, sizeof(ns->eui64));
672
673         return 0;
674 }
675
676 int nvme_scan_namespace(void)
677 {
678         struct uclass *uc;
679         struct udevice *dev;
680         int ret;
681
682         ret = uclass_get(UCLASS_NVME, &uc);
683         if (ret)
684                 return ret;
685
686         uclass_foreach_dev(dev, uc) {
687                 ret = device_probe(dev);
688                 if (ret)
689                         return ret;
690         }
691
692         return 0;
693 }
694
695 static int nvme_blk_probe(struct udevice *udev)
696 {
697         struct nvme_dev *ndev = dev_get_priv(udev->parent);
698         struct blk_desc *desc = dev_get_uclass_plat(udev);
699         struct nvme_ns *ns = dev_get_priv(udev);
700         u8 flbas;
701         struct pci_child_plat *pplat;
702         struct nvme_id_ns *id;
703
704         id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
705         if (!id)
706                 return -ENOMEM;
707
708         ns->dev = ndev;
709         /* extract the namespace id from the block device name */
710         ns->ns_id = trailing_strtol(udev->name);
711         if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
712                 free(id);
713                 return -EIO;
714         }
715
716         memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
717         flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
718         ns->flbas = flbas;
719         ns->lba_shift = id->lbaf[flbas].ds;
720         list_add(&ns->list, &ndev->namespaces);
721
722         desc->lba = le64_to_cpu(id->nsze);
723         desc->log2blksz = ns->lba_shift;
724         desc->blksz = 1 << ns->lba_shift;
725         desc->bdev = udev;
726         pplat = dev_get_parent_plat(udev->parent);
727         sprintf(desc->vendor, "0x%.4x", pplat->vendor);
728         memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
729         memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
730
731         free(id);
732         return 0;
733 }
734
735 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
736                          lbaint_t blkcnt, void *buffer, bool read)
737 {
738         struct nvme_ns *ns = dev_get_priv(udev);
739         struct nvme_dev *dev = ns->dev;
740         struct nvme_command c;
741         struct blk_desc *desc = dev_get_uclass_plat(udev);
742         int status;
743         u64 prp2;
744         u64 total_len = blkcnt << desc->log2blksz;
745         u64 temp_len = total_len;
746
747         u64 slba = blknr;
748         u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
749         u64 total_lbas = blkcnt;
750
751         flush_dcache_range((unsigned long)buffer,
752                            (unsigned long)buffer + total_len);
753
754         c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
755         c.rw.flags = 0;
756         c.rw.nsid = cpu_to_le32(ns->ns_id);
757         c.rw.control = 0;
758         c.rw.dsmgmt = 0;
759         c.rw.reftag = 0;
760         c.rw.apptag = 0;
761         c.rw.appmask = 0;
762         c.rw.metadata = 0;
763
764         while (total_lbas) {
765                 if (total_lbas < lbas) {
766                         lbas = (u16)total_lbas;
767                         total_lbas = 0;
768                 } else {
769                         total_lbas -= lbas;
770                 }
771
772                 if (nvme_setup_prps(dev, &prp2,
773                                     lbas << ns->lba_shift, (ulong)buffer))
774                         return -EIO;
775                 c.rw.slba = cpu_to_le64(slba);
776                 slba += lbas;
777                 c.rw.length = cpu_to_le16(lbas - 1);
778                 c.rw.prp1 = cpu_to_le64((ulong)buffer);
779                 c.rw.prp2 = cpu_to_le64(prp2);
780                 status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
781                                 &c, NULL, IO_TIMEOUT);
782                 if (status)
783                         break;
784                 temp_len -= (u32)lbas << ns->lba_shift;
785                 buffer += lbas << ns->lba_shift;
786         }
787
788         if (read)
789                 invalidate_dcache_range((unsigned long)buffer,
790                                         (unsigned long)buffer + total_len);
791
792         return (total_len - temp_len) >> desc->log2blksz;
793 }
794
795 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
796                            lbaint_t blkcnt, void *buffer)
797 {
798         return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
799 }
800
801 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
802                             lbaint_t blkcnt, const void *buffer)
803 {
804         return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
805 }
806
807 static const struct blk_ops nvme_blk_ops = {
808         .read   = nvme_blk_read,
809         .write  = nvme_blk_write,
810 };
811
812 U_BOOT_DRIVER(nvme_blk) = {
813         .name   = "nvme-blk",
814         .id     = UCLASS_BLK,
815         .probe  = nvme_blk_probe,
816         .ops    = &nvme_blk_ops,
817         .priv_auto      = sizeof(struct nvme_ns),
818 };
819
820 static int nvme_bind(struct udevice *udev)
821 {
822         static int ndev_num;
823         char name[20];
824
825         sprintf(name, "nvme#%d", ndev_num++);
826
827         return device_set_name(udev, name);
828 }
829
830 static int nvme_probe(struct udevice *udev)
831 {
832         int ret;
833         struct nvme_dev *ndev = dev_get_priv(udev);
834         struct nvme_id_ns *id;
835
836         ndev->instance = trailing_strtol(udev->name);
837
838         INIT_LIST_HEAD(&ndev->namespaces);
839         ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
840                         PCI_REGION_MEM);
841         if (readl(&ndev->bar->csts) == -1) {
842                 ret = -ENODEV;
843                 printf("Error: %s: Out of memory!\n", udev->name);
844                 goto free_nvme;
845         }
846
847         ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
848         if (!ndev->queues) {
849                 ret = -ENOMEM;
850                 printf("Error: %s: Out of memory!\n", udev->name);
851                 goto free_nvme;
852         }
853         memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
854
855         ndev->cap = nvme_readq(&ndev->bar->cap);
856         ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
857         ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
858         ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
859
860         ret = nvme_configure_admin_queue(ndev);
861         if (ret)
862                 goto free_queue;
863
864         /* Allocate after the page size is known */
865         ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
866         if (!ndev->prp_pool) {
867                 ret = -ENOMEM;
868                 printf("Error: %s: Out of memory!\n", udev->name);
869                 goto free_nvme;
870         }
871         ndev->prp_entry_num = MAX_PRP_POOL >> 3;
872
873         ret = nvme_setup_io_queues(ndev);
874         if (ret)
875                 goto free_queue;
876
877         nvme_get_info_from_identify(ndev);
878
879         /* Create a blk device for each namespace */
880
881         id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
882         if (!id) {
883                 ret = -ENOMEM;
884                 goto free_queue;
885         }
886
887         for (int i = 1; i <= ndev->nn; i++) {
888                 struct udevice *ns_udev;
889                 char name[20];
890
891                 memset(id, 0, sizeof(*id));
892                 if (nvme_identify(ndev, i, 0, (dma_addr_t)(long)id)) {
893                         ret = -EIO;
894                         goto free_id;
895                 }
896
897                 /* skip inactive namespace */
898                 if (!id->nsze)
899                         continue;
900
901                 /*
902                  * Encode the namespace id to the device name so that
903                  * we can extract it when doing the probe.
904                  */
905                 sprintf(name, "blk#%d", i);
906
907                 /* The real blksz and size will be set by nvme_blk_probe() */
908                 ret = blk_create_devicef(udev, "nvme-blk", name, IF_TYPE_NVME,
909                                          -1, 512, 0, &ns_udev);
910                 if (ret)
911                         goto free_id;
912         }
913
914         free(id);
915         return 0;
916
917 free_id:
918         free(id);
919 free_queue:
920         free((void *)ndev->queues);
921 free_nvme:
922         return ret;
923 }
924
925 U_BOOT_DRIVER(nvme) = {
926         .name   = "nvme",
927         .id     = UCLASS_NVME,
928         .bind   = nvme_bind,
929         .probe  = nvme_probe,
930         .priv_auto      = sizeof(struct nvme_dev),
931 };
932
933 struct pci_device_id nvme_supported[] = {
934         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
935         {}
936 };
937
938 U_BOOT_PCI_DEVICE(nvme, nvme_supported);