1 // SPDX-License-Identifier: GPL-2.0
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
21 struct nvme_tcp_queue;
23 /* Define the socket priority to use for connections were it is desirable
24 * that the NIC consider performing optimized packet processing or filtering.
25 * A non-zero value being sufficient to indicate general consideration of any
26 * possible optimization. Making it a module param allows for alternative
27 * values that may be unique for some NIC implementations.
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
33 enum nvme_tcp_send_state {
34 NVME_TCP_SEND_CMD_PDU = 0,
35 NVME_TCP_SEND_H2C_PDU,
40 struct nvme_tcp_request {
41 struct nvme_request req;
43 struct nvme_tcp_queue *queue;
48 struct list_head entry;
49 struct llist_node lentry;
58 enum nvme_tcp_send_state state;
61 enum nvme_tcp_queue_flags {
62 NVME_TCP_Q_ALLOCATED = 0,
64 NVME_TCP_Q_POLLING = 2,
67 enum nvme_tcp_recv_state {
68 NVME_TCP_RECV_PDU = 0,
74 struct nvme_tcp_queue {
76 struct work_struct io_work;
79 struct mutex queue_lock;
80 struct mutex send_mutex;
81 struct llist_head req_list;
82 struct list_head send_list;
89 size_t data_remaining;
90 size_t ddgst_remaining;
94 struct nvme_tcp_request *request;
97 size_t cmnd_capsule_len;
98 struct nvme_tcp_ctrl *ctrl;
104 struct ahash_request *rcv_hash;
105 struct ahash_request *snd_hash;
109 struct page_frag_cache pf_cache;
111 void (*state_change)(struct sock *);
112 void (*data_ready)(struct sock *);
113 void (*write_space)(struct sock *);
116 struct nvme_tcp_ctrl {
117 /* read only in the hot path */
118 struct nvme_tcp_queue *queues;
119 struct blk_mq_tag_set tag_set;
121 /* other member variables */
122 struct list_head list;
123 struct blk_mq_tag_set admin_tag_set;
124 struct sockaddr_storage addr;
125 struct sockaddr_storage src_addr;
126 struct nvme_ctrl ctrl;
128 struct work_struct err_work;
129 struct delayed_work connect_work;
130 struct nvme_tcp_request async_req;
131 u32 io_queues[HCTX_MAX_TYPES];
134 static LIST_HEAD(nvme_tcp_ctrl_list);
135 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
136 static struct workqueue_struct *nvme_tcp_wq;
137 static const struct blk_mq_ops nvme_tcp_mq_ops;
138 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
139 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
141 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
143 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
146 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
148 return queue - queue->ctrl->queues;
151 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
153 u32 queue_idx = nvme_tcp_queue_id(queue);
156 return queue->ctrl->admin_tag_set.tags[queue_idx];
157 return queue->ctrl->tag_set.tags[queue_idx - 1];
160 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
162 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
165 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
167 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
170 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
172 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
175 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
177 return req == &req->queue->ctrl->async_req;
180 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
184 if (unlikely(nvme_tcp_async_req(req)))
185 return false; /* async events don't have a request */
187 rq = blk_mq_rq_from_pdu(req);
189 return rq_data_dir(rq) == WRITE && req->data_len &&
190 req->data_len <= nvme_tcp_inline_data_size(req->queue);
193 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
195 return req->iter.bvec->bv_page;
198 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
200 return req->iter.bvec->bv_offset + req->iter.iov_offset;
203 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
205 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
206 req->pdu_len - req->pdu_sent);
209 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
211 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
212 req->pdu_len - req->pdu_sent : 0;
215 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
218 return nvme_tcp_pdu_data_left(req) <= len;
221 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
224 struct request *rq = blk_mq_rq_from_pdu(req);
230 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
231 vec = &rq->special_vec;
233 size = blk_rq_payload_bytes(rq);
236 struct bio *bio = req->curr_bio;
240 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
242 bio_for_each_bvec(bv, bio, bi) {
245 size = bio->bi_iter.bi_size;
246 offset = bio->bi_iter.bi_bvec_done;
249 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
250 req->iter.iov_offset = offset;
253 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
256 req->data_sent += len;
257 req->pdu_sent += len;
258 iov_iter_advance(&req->iter, len);
259 if (!iov_iter_count(&req->iter) &&
260 req->data_sent < req->data_len) {
261 req->curr_bio = req->curr_bio->bi_next;
262 nvme_tcp_init_iter(req, WRITE);
266 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
270 /* drain the send queue as much as we can... */
272 ret = nvme_tcp_try_send(queue);
276 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
277 bool sync, bool last)
279 struct nvme_tcp_queue *queue = req->queue;
282 empty = llist_add(&req->lentry, &queue->req_list) &&
283 list_empty(&queue->send_list) && !queue->request;
286 * if we're the first on the send_list and we can try to send
287 * directly, otherwise queue io_work. Also, only do that if we
288 * are on the same cpu, so we don't introduce contention.
290 if (queue->io_cpu == raw_smp_processor_id() &&
291 sync && empty && mutex_trylock(&queue->send_mutex)) {
292 queue->more_requests = !last;
293 nvme_tcp_send_all(queue);
294 queue->more_requests = false;
295 mutex_unlock(&queue->send_mutex);
297 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
301 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
303 struct nvme_tcp_request *req;
304 struct llist_node *node;
306 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
307 req = llist_entry(node, struct nvme_tcp_request, lentry);
308 list_add(&req->entry, &queue->send_list);
312 static inline struct nvme_tcp_request *
313 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
315 struct nvme_tcp_request *req;
317 req = list_first_entry_or_null(&queue->send_list,
318 struct nvme_tcp_request, entry);
320 nvme_tcp_process_req_list(queue);
321 req = list_first_entry_or_null(&queue->send_list,
322 struct nvme_tcp_request, entry);
327 list_del(&req->entry);
331 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
334 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
335 crypto_ahash_final(hash);
338 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
339 struct page *page, off_t off, size_t len)
341 struct scatterlist sg;
343 sg_init_marker(&sg, 1);
344 sg_set_page(&sg, page, len, off);
345 ahash_request_set_crypt(hash, &sg, NULL, len);
346 crypto_ahash_update(hash);
349 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
350 void *pdu, size_t len)
352 struct scatterlist sg;
354 sg_init_one(&sg, pdu, len);
355 ahash_request_set_crypt(hash, &sg, pdu + len, len);
356 crypto_ahash_digest(hash);
359 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
360 void *pdu, size_t pdu_len)
362 struct nvme_tcp_hdr *hdr = pdu;
366 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
367 dev_err(queue->ctrl->ctrl.device,
368 "queue %d: header digest flag is cleared\n",
369 nvme_tcp_queue_id(queue));
373 recv_digest = *(__le32 *)(pdu + hdr->hlen);
374 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
375 exp_digest = *(__le32 *)(pdu + hdr->hlen);
376 if (recv_digest != exp_digest) {
377 dev_err(queue->ctrl->ctrl.device,
378 "header digest error: recv %#x expected %#x\n",
379 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
386 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
388 struct nvme_tcp_hdr *hdr = pdu;
389 u8 digest_len = nvme_tcp_hdgst_len(queue);
392 len = le32_to_cpu(hdr->plen) - hdr->hlen -
393 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
395 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
396 dev_err(queue->ctrl->ctrl.device,
397 "queue %d: data digest flag is cleared\n",
398 nvme_tcp_queue_id(queue));
401 crypto_ahash_init(queue->rcv_hash);
406 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
407 struct request *rq, unsigned int hctx_idx)
409 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
411 page_frag_free(req->pdu);
414 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
415 struct request *rq, unsigned int hctx_idx,
416 unsigned int numa_node)
418 struct nvme_tcp_ctrl *ctrl = set->driver_data;
419 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
420 struct nvme_tcp_cmd_pdu *pdu;
421 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
422 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
423 u8 hdgst = nvme_tcp_hdgst_len(queue);
425 req->pdu = page_frag_alloc(&queue->pf_cache,
426 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
427 GFP_KERNEL | __GFP_ZERO);
433 nvme_req(rq)->ctrl = &ctrl->ctrl;
434 nvme_req(rq)->cmd = &pdu->cmd;
439 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
440 unsigned int hctx_idx)
442 struct nvme_tcp_ctrl *ctrl = data;
443 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
445 hctx->driver_data = queue;
449 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
450 unsigned int hctx_idx)
452 struct nvme_tcp_ctrl *ctrl = data;
453 struct nvme_tcp_queue *queue = &ctrl->queues[0];
455 hctx->driver_data = queue;
459 static enum nvme_tcp_recv_state
460 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
462 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
463 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
467 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
469 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
470 nvme_tcp_hdgst_len(queue);
471 queue->pdu_offset = 0;
472 queue->data_remaining = -1;
473 queue->ddgst_remaining = 0;
476 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
478 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
481 dev_warn(ctrl->device, "starting error recovery\n");
482 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
485 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
486 struct nvme_completion *cqe)
490 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
492 dev_err(queue->ctrl->ctrl.device,
493 "queue %d tag 0x%x not found\n",
494 nvme_tcp_queue_id(queue), cqe->command_id);
495 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
499 if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
500 nvme_complete_rq(rq);
506 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
507 struct nvme_tcp_data_pdu *pdu)
511 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
513 dev_err(queue->ctrl->ctrl.device,
514 "queue %d tag %#x not found\n",
515 nvme_tcp_queue_id(queue), pdu->command_id);
519 if (!blk_rq_payload_bytes(rq)) {
520 dev_err(queue->ctrl->ctrl.device,
521 "queue %d tag %#x unexpected data\n",
522 nvme_tcp_queue_id(queue), rq->tag);
526 queue->data_remaining = le32_to_cpu(pdu->data_length);
528 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
529 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
530 dev_err(queue->ctrl->ctrl.device,
531 "queue %d tag %#x SUCCESS set but not last PDU\n",
532 nvme_tcp_queue_id(queue), rq->tag);
533 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
540 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
541 struct nvme_tcp_rsp_pdu *pdu)
543 struct nvme_completion *cqe = &pdu->cqe;
547 * AEN requests are special as they don't time out and can
548 * survive any kind of queue freeze and often don't respond to
549 * aborts. We don't even bother to allocate a struct request
550 * for them but rather special case them here.
552 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
554 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
557 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
562 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
563 struct nvme_tcp_r2t_pdu *pdu)
565 struct nvme_tcp_data_pdu *data = req->pdu;
566 struct nvme_tcp_queue *queue = req->queue;
567 struct request *rq = blk_mq_rq_from_pdu(req);
568 u8 hdgst = nvme_tcp_hdgst_len(queue);
569 u8 ddgst = nvme_tcp_ddgst_len(queue);
571 req->pdu_len = le32_to_cpu(pdu->r2t_length);
574 if (unlikely(!req->pdu_len)) {
575 dev_err(queue->ctrl->ctrl.device,
576 "req %d r2t len is %u, probably a bug...\n",
577 rq->tag, req->pdu_len);
581 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
582 dev_err(queue->ctrl->ctrl.device,
583 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
584 rq->tag, req->pdu_len, req->data_len,
589 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
590 dev_err(queue->ctrl->ctrl.device,
591 "req %d unexpected r2t offset %u (expected %zu)\n",
592 rq->tag, le32_to_cpu(pdu->r2t_offset),
597 memset(data, 0, sizeof(*data));
598 data->hdr.type = nvme_tcp_h2c_data;
599 data->hdr.flags = NVME_TCP_F_DATA_LAST;
600 if (queue->hdr_digest)
601 data->hdr.flags |= NVME_TCP_F_HDGST;
602 if (queue->data_digest)
603 data->hdr.flags |= NVME_TCP_F_DDGST;
604 data->hdr.hlen = sizeof(*data);
605 data->hdr.pdo = data->hdr.hlen + hdgst;
607 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
608 data->ttag = pdu->ttag;
609 data->command_id = rq->tag;
610 data->data_offset = cpu_to_le32(req->data_sent);
611 data->data_length = cpu_to_le32(req->pdu_len);
615 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
616 struct nvme_tcp_r2t_pdu *pdu)
618 struct nvme_tcp_request *req;
622 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
624 dev_err(queue->ctrl->ctrl.device,
625 "queue %d tag %#x not found\n",
626 nvme_tcp_queue_id(queue), pdu->command_id);
629 req = blk_mq_rq_to_pdu(rq);
631 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
635 req->state = NVME_TCP_SEND_H2C_PDU;
638 nvme_tcp_queue_request(req, false, true);
643 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
644 unsigned int *offset, size_t *len)
646 struct nvme_tcp_hdr *hdr;
647 char *pdu = queue->pdu;
648 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
651 ret = skb_copy_bits(skb, *offset,
652 &pdu[queue->pdu_offset], rcv_len);
656 queue->pdu_remaining -= rcv_len;
657 queue->pdu_offset += rcv_len;
660 if (queue->pdu_remaining)
664 if (queue->hdr_digest) {
665 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
671 if (queue->data_digest) {
672 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
678 case nvme_tcp_c2h_data:
679 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
681 nvme_tcp_init_recv_ctx(queue);
682 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
684 nvme_tcp_init_recv_ctx(queue);
685 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
687 dev_err(queue->ctrl->ctrl.device,
688 "unsupported pdu type (%d)\n", hdr->type);
693 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
695 union nvme_result res = {};
697 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
698 nvme_complete_rq(rq);
701 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
702 unsigned int *offset, size_t *len)
704 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
705 struct nvme_tcp_request *req;
708 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
710 dev_err(queue->ctrl->ctrl.device,
711 "queue %d tag %#x not found\n",
712 nvme_tcp_queue_id(queue), pdu->command_id);
715 req = blk_mq_rq_to_pdu(rq);
720 recv_len = min_t(size_t, *len, queue->data_remaining);
724 if (!iov_iter_count(&req->iter)) {
725 req->curr_bio = req->curr_bio->bi_next;
728 * If we don`t have any bios it means that controller
729 * sent more data than we requested, hence error
731 if (!req->curr_bio) {
732 dev_err(queue->ctrl->ctrl.device,
733 "queue %d no space in request %#x",
734 nvme_tcp_queue_id(queue), rq->tag);
735 nvme_tcp_init_recv_ctx(queue);
738 nvme_tcp_init_iter(req, READ);
741 /* we can read only from what is left in this bio */
742 recv_len = min_t(size_t, recv_len,
743 iov_iter_count(&req->iter));
745 if (queue->data_digest)
746 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
747 &req->iter, recv_len, queue->rcv_hash);
749 ret = skb_copy_datagram_iter(skb, *offset,
750 &req->iter, recv_len);
752 dev_err(queue->ctrl->ctrl.device,
753 "queue %d failed to copy request %#x data",
754 nvme_tcp_queue_id(queue), rq->tag);
760 queue->data_remaining -= recv_len;
763 if (!queue->data_remaining) {
764 if (queue->data_digest) {
765 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
766 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
768 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
769 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
772 nvme_tcp_init_recv_ctx(queue);
779 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
780 struct sk_buff *skb, unsigned int *offset, size_t *len)
782 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
783 char *ddgst = (char *)&queue->recv_ddgst;
784 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
785 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
788 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
792 queue->ddgst_remaining -= recv_len;
795 if (queue->ddgst_remaining)
798 if (queue->recv_ddgst != queue->exp_ddgst) {
799 dev_err(queue->ctrl->ctrl.device,
800 "data digest error: recv %#x expected %#x\n",
801 le32_to_cpu(queue->recv_ddgst),
802 le32_to_cpu(queue->exp_ddgst));
806 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
807 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
810 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
814 nvme_tcp_init_recv_ctx(queue);
818 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
819 unsigned int offset, size_t len)
821 struct nvme_tcp_queue *queue = desc->arg.data;
822 size_t consumed = len;
826 switch (nvme_tcp_recv_state(queue)) {
827 case NVME_TCP_RECV_PDU:
828 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
830 case NVME_TCP_RECV_DATA:
831 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
833 case NVME_TCP_RECV_DDGST:
834 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
840 dev_err(queue->ctrl->ctrl.device,
841 "receive failed: %d\n", result);
842 queue->rd_enabled = false;
843 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
851 static void nvme_tcp_data_ready(struct sock *sk)
853 struct nvme_tcp_queue *queue;
855 read_lock_bh(&sk->sk_callback_lock);
856 queue = sk->sk_user_data;
857 if (likely(queue && queue->rd_enabled) &&
858 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
859 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
860 read_unlock_bh(&sk->sk_callback_lock);
863 static void nvme_tcp_write_space(struct sock *sk)
865 struct nvme_tcp_queue *queue;
867 read_lock_bh(&sk->sk_callback_lock);
868 queue = sk->sk_user_data;
869 if (likely(queue && sk_stream_is_writeable(sk))) {
870 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
871 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
873 read_unlock_bh(&sk->sk_callback_lock);
876 static void nvme_tcp_state_change(struct sock *sk)
878 struct nvme_tcp_queue *queue;
880 read_lock_bh(&sk->sk_callback_lock);
881 queue = sk->sk_user_data;
885 switch (sk->sk_state) {
891 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
894 dev_info(queue->ctrl->ctrl.device,
895 "queue %d socket state %d\n",
896 nvme_tcp_queue_id(queue), sk->sk_state);
899 queue->state_change(sk);
901 read_unlock_bh(&sk->sk_callback_lock);
904 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
906 return !list_empty(&queue->send_list) ||
907 !llist_empty(&queue->req_list) || queue->more_requests;
910 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
912 queue->request = NULL;
915 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
917 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
920 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
922 struct nvme_tcp_queue *queue = req->queue;
925 struct page *page = nvme_tcp_req_cur_page(req);
926 size_t offset = nvme_tcp_req_cur_offset(req);
927 size_t len = nvme_tcp_req_cur_length(req);
928 bool last = nvme_tcp_pdu_last_send(req, len);
929 int ret, flags = MSG_DONTWAIT;
931 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
934 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
936 if (sendpage_ok(page)) {
937 ret = kernel_sendpage(queue->sock, page, offset, len,
940 ret = sock_no_sendpage(queue->sock, page, offset, len,
946 if (queue->data_digest)
947 nvme_tcp_ddgst_update(queue->snd_hash, page,
950 /* fully successful last write*/
951 if (last && ret == len) {
952 if (queue->data_digest) {
953 nvme_tcp_ddgst_final(queue->snd_hash,
955 req->state = NVME_TCP_SEND_DDGST;
958 nvme_tcp_done_send_req(queue);
962 nvme_tcp_advance_req(req, ret);
967 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
969 struct nvme_tcp_queue *queue = req->queue;
970 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
971 bool inline_data = nvme_tcp_has_inline_data(req);
972 u8 hdgst = nvme_tcp_hdgst_len(queue);
973 int len = sizeof(*pdu) + hdgst - req->offset;
974 int flags = MSG_DONTWAIT;
977 if (inline_data || nvme_tcp_queue_more(queue))
978 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
982 if (queue->hdr_digest && !req->offset)
983 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
985 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
986 offset_in_page(pdu) + req->offset, len, flags);
987 if (unlikely(ret <= 0))
993 req->state = NVME_TCP_SEND_DATA;
994 if (queue->data_digest)
995 crypto_ahash_init(queue->snd_hash);
997 nvme_tcp_done_send_req(queue);
1006 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1008 struct nvme_tcp_queue *queue = req->queue;
1009 struct nvme_tcp_data_pdu *pdu = req->pdu;
1010 u8 hdgst = nvme_tcp_hdgst_len(queue);
1011 int len = sizeof(*pdu) - req->offset + hdgst;
1014 if (queue->hdr_digest && !req->offset)
1015 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1017 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1018 offset_in_page(pdu) + req->offset, len,
1019 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1020 if (unlikely(ret <= 0))
1025 req->state = NVME_TCP_SEND_DATA;
1026 if (queue->data_digest)
1027 crypto_ahash_init(queue->snd_hash);
1035 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1037 struct nvme_tcp_queue *queue = req->queue;
1039 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1041 .iov_base = &req->ddgst + req->offset,
1042 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1045 if (nvme_tcp_queue_more(queue))
1046 msg.msg_flags |= MSG_MORE;
1048 msg.msg_flags |= MSG_EOR;
1050 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1051 if (unlikely(ret <= 0))
1054 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1055 nvme_tcp_done_send_req(queue);
1063 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1065 struct nvme_tcp_request *req;
1068 if (!queue->request) {
1069 queue->request = nvme_tcp_fetch_request(queue);
1070 if (!queue->request)
1073 req = queue->request;
1075 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1076 ret = nvme_tcp_try_send_cmd_pdu(req);
1079 if (!nvme_tcp_has_inline_data(req))
1083 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1084 ret = nvme_tcp_try_send_data_pdu(req);
1089 if (req->state == NVME_TCP_SEND_DATA) {
1090 ret = nvme_tcp_try_send_data(req);
1095 if (req->state == NVME_TCP_SEND_DDGST)
1096 ret = nvme_tcp_try_send_ddgst(req);
1098 if (ret == -EAGAIN) {
1100 } else if (ret < 0) {
1101 dev_err(queue->ctrl->ctrl.device,
1102 "failed to send request %d\n", ret);
1103 if (ret != -EPIPE && ret != -ECONNRESET)
1104 nvme_tcp_fail_request(queue->request);
1105 nvme_tcp_done_send_req(queue);
1110 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1112 struct socket *sock = queue->sock;
1113 struct sock *sk = sock->sk;
1114 read_descriptor_t rd_desc;
1117 rd_desc.arg.data = queue;
1121 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1126 static void nvme_tcp_io_work(struct work_struct *w)
1128 struct nvme_tcp_queue *queue =
1129 container_of(w, struct nvme_tcp_queue, io_work);
1130 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1133 bool pending = false;
1136 if (mutex_trylock(&queue->send_mutex)) {
1137 result = nvme_tcp_try_send(queue);
1138 mutex_unlock(&queue->send_mutex);
1141 else if (unlikely(result < 0))
1144 pending = !llist_empty(&queue->req_list);
1146 result = nvme_tcp_try_recv(queue);
1149 else if (unlikely(result < 0))
1155 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1157 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1160 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1162 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1164 ahash_request_free(queue->rcv_hash);
1165 ahash_request_free(queue->snd_hash);
1166 crypto_free_ahash(tfm);
1169 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1171 struct crypto_ahash *tfm;
1173 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1175 return PTR_ERR(tfm);
1177 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1178 if (!queue->snd_hash)
1180 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1182 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1183 if (!queue->rcv_hash)
1185 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1189 ahash_request_free(queue->snd_hash);
1191 crypto_free_ahash(tfm);
1195 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1197 struct nvme_tcp_request *async = &ctrl->async_req;
1199 page_frag_free(async->pdu);
1202 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1204 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1205 struct nvme_tcp_request *async = &ctrl->async_req;
1206 u8 hdgst = nvme_tcp_hdgst_len(queue);
1208 async->pdu = page_frag_alloc(&queue->pf_cache,
1209 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1210 GFP_KERNEL | __GFP_ZERO);
1214 async->queue = &ctrl->queues[0];
1218 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1220 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1221 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1223 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1226 if (queue->hdr_digest || queue->data_digest)
1227 nvme_tcp_free_crypto(queue);
1229 sock_release(queue->sock);
1231 mutex_destroy(&queue->queue_lock);
1234 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1236 struct nvme_tcp_icreq_pdu *icreq;
1237 struct nvme_tcp_icresp_pdu *icresp;
1238 struct msghdr msg = {};
1240 bool ctrl_hdgst, ctrl_ddgst;
1243 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1247 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1253 icreq->hdr.type = nvme_tcp_icreq;
1254 icreq->hdr.hlen = sizeof(*icreq);
1256 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1257 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1258 icreq->maxr2t = 0; /* single inflight r2t supported */
1259 icreq->hpda = 0; /* no alignment constraint */
1260 if (queue->hdr_digest)
1261 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1262 if (queue->data_digest)
1263 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1265 iov.iov_base = icreq;
1266 iov.iov_len = sizeof(*icreq);
1267 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1271 memset(&msg, 0, sizeof(msg));
1272 iov.iov_base = icresp;
1273 iov.iov_len = sizeof(*icresp);
1274 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1275 iov.iov_len, msg.msg_flags);
1280 if (icresp->hdr.type != nvme_tcp_icresp) {
1281 pr_err("queue %d: bad type returned %d\n",
1282 nvme_tcp_queue_id(queue), icresp->hdr.type);
1286 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1287 pr_err("queue %d: bad pdu length returned %d\n",
1288 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1292 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1293 pr_err("queue %d: bad pfv returned %d\n",
1294 nvme_tcp_queue_id(queue), icresp->pfv);
1298 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1299 if ((queue->data_digest && !ctrl_ddgst) ||
1300 (!queue->data_digest && ctrl_ddgst)) {
1301 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1302 nvme_tcp_queue_id(queue),
1303 queue->data_digest ? "enabled" : "disabled",
1304 ctrl_ddgst ? "enabled" : "disabled");
1308 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1309 if ((queue->hdr_digest && !ctrl_hdgst) ||
1310 (!queue->hdr_digest && ctrl_hdgst)) {
1311 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1312 nvme_tcp_queue_id(queue),
1313 queue->hdr_digest ? "enabled" : "disabled",
1314 ctrl_hdgst ? "enabled" : "disabled");
1318 if (icresp->cpda != 0) {
1319 pr_err("queue %d: unsupported cpda returned %d\n",
1320 nvme_tcp_queue_id(queue), icresp->cpda);
1332 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1334 return nvme_tcp_queue_id(queue) == 0;
1337 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1339 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1340 int qid = nvme_tcp_queue_id(queue);
1342 return !nvme_tcp_admin_queue(queue) &&
1343 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1346 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1348 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1349 int qid = nvme_tcp_queue_id(queue);
1351 return !nvme_tcp_admin_queue(queue) &&
1352 !nvme_tcp_default_queue(queue) &&
1353 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1354 ctrl->io_queues[HCTX_TYPE_READ];
1357 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1359 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1360 int qid = nvme_tcp_queue_id(queue);
1362 return !nvme_tcp_admin_queue(queue) &&
1363 !nvme_tcp_default_queue(queue) &&
1364 !nvme_tcp_read_queue(queue) &&
1365 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1366 ctrl->io_queues[HCTX_TYPE_READ] +
1367 ctrl->io_queues[HCTX_TYPE_POLL];
1370 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1372 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1373 int qid = nvme_tcp_queue_id(queue);
1376 if (nvme_tcp_default_queue(queue))
1378 else if (nvme_tcp_read_queue(queue))
1379 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1380 else if (nvme_tcp_poll_queue(queue))
1381 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1382 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1383 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1386 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1387 int qid, size_t queue_size)
1389 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1390 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1391 int ret, rcv_pdu_size;
1393 mutex_init(&queue->queue_lock);
1395 init_llist_head(&queue->req_list);
1396 INIT_LIST_HEAD(&queue->send_list);
1397 mutex_init(&queue->send_mutex);
1398 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1399 queue->queue_size = queue_size;
1402 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1404 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1405 NVME_TCP_ADMIN_CCSZ;
1407 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1408 IPPROTO_TCP, &queue->sock);
1410 dev_err(nctrl->device,
1411 "failed to create socket: %d\n", ret);
1412 goto err_destroy_mutex;
1415 /* Single syn retry */
1416 tcp_sock_set_syncnt(queue->sock->sk, 1);
1418 /* Set TCP no delay */
1419 tcp_sock_set_nodelay(queue->sock->sk);
1422 * Cleanup whatever is sitting in the TCP transmit queue on socket
1423 * close. This is done to prevent stale data from being sent should
1424 * the network connection be restored before TCP times out.
1426 sock_no_linger(queue->sock->sk);
1428 if (so_priority > 0)
1429 sock_set_priority(queue->sock->sk, so_priority);
1431 /* Set socket type of service */
1432 if (nctrl->opts->tos >= 0)
1433 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1435 /* Set 10 seconds timeout for icresp recvmsg */
1436 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1438 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1439 nvme_tcp_set_queue_io_cpu(queue);
1440 queue->request = NULL;
1441 queue->data_remaining = 0;
1442 queue->ddgst_remaining = 0;
1443 queue->pdu_remaining = 0;
1444 queue->pdu_offset = 0;
1445 sk_set_memalloc(queue->sock->sk);
1447 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1448 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1449 sizeof(ctrl->src_addr));
1451 dev_err(nctrl->device,
1452 "failed to bind queue %d socket %d\n",
1458 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1459 char *iface = nctrl->opts->host_iface;
1460 sockptr_t optval = KERNEL_SOCKPTR(iface);
1462 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1463 optval, strlen(iface));
1465 dev_err(nctrl->device,
1466 "failed to bind to interface %s queue %d err %d\n",
1472 queue->hdr_digest = nctrl->opts->hdr_digest;
1473 queue->data_digest = nctrl->opts->data_digest;
1474 if (queue->hdr_digest || queue->data_digest) {
1475 ret = nvme_tcp_alloc_crypto(queue);
1477 dev_err(nctrl->device,
1478 "failed to allocate queue %d crypto\n", qid);
1483 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1484 nvme_tcp_hdgst_len(queue);
1485 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1491 dev_dbg(nctrl->device, "connecting queue %d\n",
1492 nvme_tcp_queue_id(queue));
1494 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1495 sizeof(ctrl->addr), 0);
1497 dev_err(nctrl->device,
1498 "failed to connect socket: %d\n", ret);
1502 ret = nvme_tcp_init_connection(queue);
1504 goto err_init_connect;
1506 queue->rd_enabled = true;
1507 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1508 nvme_tcp_init_recv_ctx(queue);
1510 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1511 queue->sock->sk->sk_user_data = queue;
1512 queue->state_change = queue->sock->sk->sk_state_change;
1513 queue->data_ready = queue->sock->sk->sk_data_ready;
1514 queue->write_space = queue->sock->sk->sk_write_space;
1515 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1516 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1517 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1518 #ifdef CONFIG_NET_RX_BUSY_POLL
1519 queue->sock->sk->sk_ll_usec = 1;
1521 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1526 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1530 if (queue->hdr_digest || queue->data_digest)
1531 nvme_tcp_free_crypto(queue);
1533 sock_release(queue->sock);
1536 mutex_destroy(&queue->queue_lock);
1540 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1542 struct socket *sock = queue->sock;
1544 write_lock_bh(&sock->sk->sk_callback_lock);
1545 sock->sk->sk_user_data = NULL;
1546 sock->sk->sk_data_ready = queue->data_ready;
1547 sock->sk->sk_state_change = queue->state_change;
1548 sock->sk->sk_write_space = queue->write_space;
1549 write_unlock_bh(&sock->sk->sk_callback_lock);
1552 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1554 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1555 nvme_tcp_restore_sock_calls(queue);
1556 cancel_work_sync(&queue->io_work);
1559 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1561 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1562 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1564 mutex_lock(&queue->queue_lock);
1565 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1566 __nvme_tcp_stop_queue(queue);
1567 mutex_unlock(&queue->queue_lock);
1570 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1572 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1576 ret = nvmf_connect_io_queue(nctrl, idx);
1578 ret = nvmf_connect_admin_queue(nctrl);
1581 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1583 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1584 __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1585 dev_err(nctrl->device,
1586 "failed to connect queue: %d ret=%d\n", idx, ret);
1591 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1594 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1595 struct blk_mq_tag_set *set;
1599 set = &ctrl->admin_tag_set;
1600 memset(set, 0, sizeof(*set));
1601 set->ops = &nvme_tcp_admin_mq_ops;
1602 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1603 set->reserved_tags = NVMF_RESERVED_TAGS;
1604 set->numa_node = nctrl->numa_node;
1605 set->flags = BLK_MQ_F_BLOCKING;
1606 set->cmd_size = sizeof(struct nvme_tcp_request);
1607 set->driver_data = ctrl;
1608 set->nr_hw_queues = 1;
1609 set->timeout = NVME_ADMIN_TIMEOUT;
1611 set = &ctrl->tag_set;
1612 memset(set, 0, sizeof(*set));
1613 set->ops = &nvme_tcp_mq_ops;
1614 set->queue_depth = nctrl->sqsize + 1;
1615 set->reserved_tags = NVMF_RESERVED_TAGS;
1616 set->numa_node = nctrl->numa_node;
1617 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1618 set->cmd_size = sizeof(struct nvme_tcp_request);
1619 set->driver_data = ctrl;
1620 set->nr_hw_queues = nctrl->queue_count - 1;
1621 set->timeout = NVME_IO_TIMEOUT;
1622 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1625 ret = blk_mq_alloc_tag_set(set);
1627 return ERR_PTR(ret);
1632 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1634 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1635 cancel_work_sync(&ctrl->async_event_work);
1636 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1637 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1640 nvme_tcp_free_queue(ctrl, 0);
1643 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1647 for (i = 1; i < ctrl->queue_count; i++)
1648 nvme_tcp_free_queue(ctrl, i);
1651 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1655 for (i = 1; i < ctrl->queue_count; i++)
1656 nvme_tcp_stop_queue(ctrl, i);
1659 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1663 for (i = 1; i < ctrl->queue_count; i++) {
1664 ret = nvme_tcp_start_queue(ctrl, i);
1666 goto out_stop_queues;
1672 for (i--; i >= 1; i--)
1673 nvme_tcp_stop_queue(ctrl, i);
1677 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1681 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1685 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1687 goto out_free_queue;
1692 nvme_tcp_free_queue(ctrl, 0);
1696 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1700 for (i = 1; i < ctrl->queue_count; i++) {
1701 ret = nvme_tcp_alloc_queue(ctrl, i,
1704 goto out_free_queues;
1710 for (i--; i >= 1; i--)
1711 nvme_tcp_free_queue(ctrl, i);
1716 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1718 unsigned int nr_io_queues;
1720 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1721 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1722 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1724 return nr_io_queues;
1727 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1728 unsigned int nr_io_queues)
1730 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1731 struct nvmf_ctrl_options *opts = nctrl->opts;
1733 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1735 * separate read/write queues
1736 * hand out dedicated default queues only after we have
1737 * sufficient read queues.
1739 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1740 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1741 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1742 min(opts->nr_write_queues, nr_io_queues);
1743 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1746 * shared read/write queues
1747 * either no write queues were requested, or we don't have
1748 * sufficient queue count to have dedicated default queues.
1750 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1751 min(opts->nr_io_queues, nr_io_queues);
1752 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1755 if (opts->nr_poll_queues && nr_io_queues) {
1756 /* map dedicated poll queues only if we have queues left */
1757 ctrl->io_queues[HCTX_TYPE_POLL] =
1758 min(opts->nr_poll_queues, nr_io_queues);
1762 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1764 unsigned int nr_io_queues;
1767 nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1768 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1772 ctrl->queue_count = nr_io_queues + 1;
1773 if (ctrl->queue_count < 2) {
1774 dev_err(ctrl->device,
1775 "unable to set any I/O queues\n");
1779 dev_info(ctrl->device,
1780 "creating %d I/O queues.\n", nr_io_queues);
1782 nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1784 return __nvme_tcp_alloc_io_queues(ctrl);
1787 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1789 nvme_tcp_stop_io_queues(ctrl);
1791 blk_cleanup_queue(ctrl->connect_q);
1792 blk_mq_free_tag_set(ctrl->tagset);
1794 nvme_tcp_free_io_queues(ctrl);
1797 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1801 ret = nvme_tcp_alloc_io_queues(ctrl);
1806 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1807 if (IS_ERR(ctrl->tagset)) {
1808 ret = PTR_ERR(ctrl->tagset);
1809 goto out_free_io_queues;
1812 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1813 if (IS_ERR(ctrl->connect_q)) {
1814 ret = PTR_ERR(ctrl->connect_q);
1815 goto out_free_tag_set;
1819 ret = nvme_tcp_start_io_queues(ctrl);
1821 goto out_cleanup_connect_q;
1824 nvme_start_queues(ctrl);
1825 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1827 * If we timed out waiting for freeze we are likely to
1828 * be stuck. Fail the controller initialization just
1832 goto out_wait_freeze_timed_out;
1834 blk_mq_update_nr_hw_queues(ctrl->tagset,
1835 ctrl->queue_count - 1);
1836 nvme_unfreeze(ctrl);
1841 out_wait_freeze_timed_out:
1842 nvme_stop_queues(ctrl);
1843 nvme_sync_io_queues(ctrl);
1844 nvme_tcp_stop_io_queues(ctrl);
1845 out_cleanup_connect_q:
1846 nvme_cancel_tagset(ctrl);
1848 blk_cleanup_queue(ctrl->connect_q);
1851 blk_mq_free_tag_set(ctrl->tagset);
1853 nvme_tcp_free_io_queues(ctrl);
1857 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1859 nvme_tcp_stop_queue(ctrl, 0);
1861 blk_cleanup_queue(ctrl->admin_q);
1862 blk_cleanup_queue(ctrl->fabrics_q);
1863 blk_mq_free_tag_set(ctrl->admin_tagset);
1865 nvme_tcp_free_admin_queue(ctrl);
1868 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1872 error = nvme_tcp_alloc_admin_queue(ctrl);
1877 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1878 if (IS_ERR(ctrl->admin_tagset)) {
1879 error = PTR_ERR(ctrl->admin_tagset);
1880 goto out_free_queue;
1883 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1884 if (IS_ERR(ctrl->fabrics_q)) {
1885 error = PTR_ERR(ctrl->fabrics_q);
1886 goto out_free_tagset;
1889 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1890 if (IS_ERR(ctrl->admin_q)) {
1891 error = PTR_ERR(ctrl->admin_q);
1892 goto out_cleanup_fabrics_q;
1896 error = nvme_tcp_start_queue(ctrl, 0);
1898 goto out_cleanup_queue;
1900 error = nvme_enable_ctrl(ctrl);
1902 goto out_stop_queue;
1904 blk_mq_unquiesce_queue(ctrl->admin_q);
1906 error = nvme_init_ctrl_finish(ctrl);
1908 goto out_quiesce_queue;
1913 blk_mq_quiesce_queue(ctrl->admin_q);
1914 blk_sync_queue(ctrl->admin_q);
1916 nvme_tcp_stop_queue(ctrl, 0);
1917 nvme_cancel_admin_tagset(ctrl);
1920 blk_cleanup_queue(ctrl->admin_q);
1921 out_cleanup_fabrics_q:
1923 blk_cleanup_queue(ctrl->fabrics_q);
1926 blk_mq_free_tag_set(ctrl->admin_tagset);
1928 nvme_tcp_free_admin_queue(ctrl);
1932 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1935 blk_mq_quiesce_queue(ctrl->admin_q);
1936 blk_sync_queue(ctrl->admin_q);
1937 nvme_tcp_stop_queue(ctrl, 0);
1938 nvme_cancel_admin_tagset(ctrl);
1940 blk_mq_unquiesce_queue(ctrl->admin_q);
1941 nvme_tcp_destroy_admin_queue(ctrl, remove);
1944 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1947 if (ctrl->queue_count <= 1)
1949 blk_mq_quiesce_queue(ctrl->admin_q);
1950 nvme_start_freeze(ctrl);
1951 nvme_stop_queues(ctrl);
1952 nvme_sync_io_queues(ctrl);
1953 nvme_tcp_stop_io_queues(ctrl);
1954 nvme_cancel_tagset(ctrl);
1956 nvme_start_queues(ctrl);
1957 nvme_tcp_destroy_io_queues(ctrl, remove);
1960 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1962 /* If we are resetting/deleting then do nothing */
1963 if (ctrl->state != NVME_CTRL_CONNECTING) {
1964 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1965 ctrl->state == NVME_CTRL_LIVE);
1969 if (nvmf_should_reconnect(ctrl)) {
1970 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1971 ctrl->opts->reconnect_delay);
1972 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1973 ctrl->opts->reconnect_delay * HZ);
1975 dev_info(ctrl->device, "Removing controller...\n");
1976 nvme_delete_ctrl(ctrl);
1980 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1982 struct nvmf_ctrl_options *opts = ctrl->opts;
1985 ret = nvme_tcp_configure_admin_queue(ctrl, new);
1991 dev_err(ctrl->device, "icdoff is not supported!\n");
1995 if (!nvme_ctrl_sgl_supported(ctrl)) {
1997 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2001 if (opts->queue_size > ctrl->sqsize + 1)
2002 dev_warn(ctrl->device,
2003 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2004 opts->queue_size, ctrl->sqsize + 1);
2006 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2007 dev_warn(ctrl->device,
2008 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2009 ctrl->sqsize + 1, ctrl->maxcmd);
2010 ctrl->sqsize = ctrl->maxcmd - 1;
2013 if (ctrl->queue_count > 1) {
2014 ret = nvme_tcp_configure_io_queues(ctrl, new);
2019 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2021 * state change failure is ok if we started ctrl delete,
2022 * unless we're during creation of a new controller to
2023 * avoid races with teardown flow.
2025 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2026 ctrl->state != NVME_CTRL_DELETING_NOIO);
2032 nvme_start_ctrl(ctrl);
2036 if (ctrl->queue_count > 1) {
2037 nvme_stop_queues(ctrl);
2038 nvme_sync_io_queues(ctrl);
2039 nvme_tcp_stop_io_queues(ctrl);
2040 nvme_cancel_tagset(ctrl);
2041 nvme_tcp_destroy_io_queues(ctrl, new);
2044 blk_mq_quiesce_queue(ctrl->admin_q);
2045 blk_sync_queue(ctrl->admin_q);
2046 nvme_tcp_stop_queue(ctrl, 0);
2047 nvme_cancel_admin_tagset(ctrl);
2048 nvme_tcp_destroy_admin_queue(ctrl, new);
2052 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2054 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2055 struct nvme_tcp_ctrl, connect_work);
2056 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2058 ++ctrl->nr_reconnects;
2060 if (nvme_tcp_setup_ctrl(ctrl, false))
2063 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2064 ctrl->nr_reconnects);
2066 ctrl->nr_reconnects = 0;
2071 dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2072 ctrl->nr_reconnects);
2073 nvme_tcp_reconnect_or_remove(ctrl);
2076 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2078 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2079 struct nvme_tcp_ctrl, err_work);
2080 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2082 nvme_stop_keep_alive(ctrl);
2083 nvme_tcp_teardown_io_queues(ctrl, false);
2084 /* unquiesce to fail fast pending requests */
2085 nvme_start_queues(ctrl);
2086 nvme_tcp_teardown_admin_queue(ctrl, false);
2087 blk_mq_unquiesce_queue(ctrl->admin_q);
2089 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2090 /* state change failure is ok if we started ctrl delete */
2091 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2092 ctrl->state != NVME_CTRL_DELETING_NOIO);
2096 nvme_tcp_reconnect_or_remove(ctrl);
2099 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2101 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2102 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2104 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2105 blk_mq_quiesce_queue(ctrl->admin_q);
2107 nvme_shutdown_ctrl(ctrl);
2109 nvme_disable_ctrl(ctrl);
2110 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2113 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2115 nvme_tcp_teardown_ctrl(ctrl, true);
2118 static void nvme_reset_ctrl_work(struct work_struct *work)
2120 struct nvme_ctrl *ctrl =
2121 container_of(work, struct nvme_ctrl, reset_work);
2123 nvme_stop_ctrl(ctrl);
2124 nvme_tcp_teardown_ctrl(ctrl, false);
2126 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2127 /* state change failure is ok if we started ctrl delete */
2128 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2129 ctrl->state != NVME_CTRL_DELETING_NOIO);
2133 if (nvme_tcp_setup_ctrl(ctrl, false))
2139 ++ctrl->nr_reconnects;
2140 nvme_tcp_reconnect_or_remove(ctrl);
2143 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2145 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2147 if (list_empty(&ctrl->list))
2150 mutex_lock(&nvme_tcp_ctrl_mutex);
2151 list_del(&ctrl->list);
2152 mutex_unlock(&nvme_tcp_ctrl_mutex);
2154 nvmf_free_options(nctrl->opts);
2156 kfree(ctrl->queues);
2160 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2162 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2166 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2167 NVME_SGL_FMT_TRANSPORT_A;
2170 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2171 struct nvme_command *c, u32 data_len)
2173 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2175 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2176 sg->length = cpu_to_le32(data_len);
2177 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2180 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2183 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2186 sg->length = cpu_to_le32(data_len);
2187 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2188 NVME_SGL_FMT_TRANSPORT_A;
2191 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2193 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2194 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2195 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2196 struct nvme_command *cmd = &pdu->cmd;
2197 u8 hdgst = nvme_tcp_hdgst_len(queue);
2199 memset(pdu, 0, sizeof(*pdu));
2200 pdu->hdr.type = nvme_tcp_cmd;
2201 if (queue->hdr_digest)
2202 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2203 pdu->hdr.hlen = sizeof(*pdu);
2204 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2206 cmd->common.opcode = nvme_admin_async_event;
2207 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2208 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2209 nvme_tcp_set_sg_null(cmd);
2211 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2212 ctrl->async_req.offset = 0;
2213 ctrl->async_req.curr_bio = NULL;
2214 ctrl->async_req.data_len = 0;
2216 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2219 static void nvme_tcp_complete_timed_out(struct request *rq)
2221 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2222 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2224 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2225 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2226 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2227 blk_mq_complete_request(rq);
2231 static enum blk_eh_timer_return
2232 nvme_tcp_timeout(struct request *rq, bool reserved)
2234 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2235 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2236 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2238 dev_warn(ctrl->device,
2239 "queue %d: timeout request %#x type %d\n",
2240 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2242 if (ctrl->state != NVME_CTRL_LIVE) {
2244 * If we are resetting, connecting or deleting we should
2245 * complete immediately because we may block controller
2246 * teardown or setup sequence
2247 * - ctrl disable/shutdown fabrics requests
2248 * - connect requests
2249 * - initialization admin requests
2250 * - I/O requests that entered after unquiescing and
2251 * the controller stopped responding
2253 * All other requests should be cancelled by the error
2254 * recovery work, so it's fine that we fail it here.
2256 nvme_tcp_complete_timed_out(rq);
2261 * LIVE state should trigger the normal error recovery which will
2262 * handle completing this request.
2264 nvme_tcp_error_recovery(ctrl);
2265 return BLK_EH_RESET_TIMER;
2268 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2271 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2272 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2273 struct nvme_command *c = &pdu->cmd;
2275 c->common.flags |= NVME_CMD_SGL_METABUF;
2277 if (!blk_rq_nr_phys_segments(rq))
2278 nvme_tcp_set_sg_null(c);
2279 else if (rq_data_dir(rq) == WRITE &&
2280 req->data_len <= nvme_tcp_inline_data_size(queue))
2281 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2283 nvme_tcp_set_sg_host_data(c, req->data_len);
2288 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2291 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2292 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2293 struct nvme_tcp_queue *queue = req->queue;
2294 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2297 ret = nvme_setup_cmd(ns, rq);
2301 req->state = NVME_TCP_SEND_CMD_PDU;
2306 req->data_len = blk_rq_nr_phys_segments(rq) ?
2307 blk_rq_payload_bytes(rq) : 0;
2308 req->curr_bio = rq->bio;
2309 if (req->curr_bio && req->data_len)
2310 nvme_tcp_init_iter(req, rq_data_dir(rq));
2312 if (rq_data_dir(rq) == WRITE &&
2313 req->data_len <= nvme_tcp_inline_data_size(queue))
2314 req->pdu_len = req->data_len;
2316 pdu->hdr.type = nvme_tcp_cmd;
2318 if (queue->hdr_digest)
2319 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2320 if (queue->data_digest && req->pdu_len) {
2321 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2322 ddgst = nvme_tcp_ddgst_len(queue);
2324 pdu->hdr.hlen = sizeof(*pdu);
2325 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2327 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2329 ret = nvme_tcp_map_data(queue, rq);
2330 if (unlikely(ret)) {
2331 nvme_cleanup_cmd(rq);
2332 dev_err(queue->ctrl->ctrl.device,
2333 "Failed to map data (%d)\n", ret);
2340 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2342 struct nvme_tcp_queue *queue = hctx->driver_data;
2344 if (!llist_empty(&queue->req_list))
2345 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2348 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2349 const struct blk_mq_queue_data *bd)
2351 struct nvme_ns *ns = hctx->queue->queuedata;
2352 struct nvme_tcp_queue *queue = hctx->driver_data;
2353 struct request *rq = bd->rq;
2354 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2355 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2358 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2359 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2361 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2365 blk_mq_start_request(rq);
2367 nvme_tcp_queue_request(req, true, bd->last);
2372 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2374 struct nvme_tcp_ctrl *ctrl = set->driver_data;
2375 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2377 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2378 /* separate read/write queues */
2379 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2380 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2381 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2382 set->map[HCTX_TYPE_READ].nr_queues =
2383 ctrl->io_queues[HCTX_TYPE_READ];
2384 set->map[HCTX_TYPE_READ].queue_offset =
2385 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2387 /* shared read/write queues */
2388 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2389 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2390 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2391 set->map[HCTX_TYPE_READ].nr_queues =
2392 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2393 set->map[HCTX_TYPE_READ].queue_offset = 0;
2395 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2396 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2398 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2399 /* map dedicated poll queues only if we have queues left */
2400 set->map[HCTX_TYPE_POLL].nr_queues =
2401 ctrl->io_queues[HCTX_TYPE_POLL];
2402 set->map[HCTX_TYPE_POLL].queue_offset =
2403 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2404 ctrl->io_queues[HCTX_TYPE_READ];
2405 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2408 dev_info(ctrl->ctrl.device,
2409 "mapped %d/%d/%d default/read/poll queues.\n",
2410 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2411 ctrl->io_queues[HCTX_TYPE_READ],
2412 ctrl->io_queues[HCTX_TYPE_POLL]);
2417 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2419 struct nvme_tcp_queue *queue = hctx->driver_data;
2420 struct sock *sk = queue->sock->sk;
2422 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2425 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2426 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2427 sk_busy_loop(sk, true);
2428 nvme_tcp_try_recv(queue);
2429 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2430 return queue->nr_cqe;
2433 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2434 .queue_rq = nvme_tcp_queue_rq,
2435 .commit_rqs = nvme_tcp_commit_rqs,
2436 .complete = nvme_complete_rq,
2437 .init_request = nvme_tcp_init_request,
2438 .exit_request = nvme_tcp_exit_request,
2439 .init_hctx = nvme_tcp_init_hctx,
2440 .timeout = nvme_tcp_timeout,
2441 .map_queues = nvme_tcp_map_queues,
2442 .poll = nvme_tcp_poll,
2445 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2446 .queue_rq = nvme_tcp_queue_rq,
2447 .complete = nvme_complete_rq,
2448 .init_request = nvme_tcp_init_request,
2449 .exit_request = nvme_tcp_exit_request,
2450 .init_hctx = nvme_tcp_init_admin_hctx,
2451 .timeout = nvme_tcp_timeout,
2454 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2456 .module = THIS_MODULE,
2457 .flags = NVME_F_FABRICS,
2458 .reg_read32 = nvmf_reg_read32,
2459 .reg_read64 = nvmf_reg_read64,
2460 .reg_write32 = nvmf_reg_write32,
2461 .free_ctrl = nvme_tcp_free_ctrl,
2462 .submit_async_event = nvme_tcp_submit_async_event,
2463 .delete_ctrl = nvme_tcp_delete_ctrl,
2464 .get_address = nvmf_get_address,
2468 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2470 struct nvme_tcp_ctrl *ctrl;
2473 mutex_lock(&nvme_tcp_ctrl_mutex);
2474 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2475 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2479 mutex_unlock(&nvme_tcp_ctrl_mutex);
2484 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2485 struct nvmf_ctrl_options *opts)
2487 struct nvme_tcp_ctrl *ctrl;
2490 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2492 return ERR_PTR(-ENOMEM);
2494 INIT_LIST_HEAD(&ctrl->list);
2495 ctrl->ctrl.opts = opts;
2496 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2497 opts->nr_poll_queues + 1;
2498 ctrl->ctrl.sqsize = opts->queue_size - 1;
2499 ctrl->ctrl.kato = opts->kato;
2501 INIT_DELAYED_WORK(&ctrl->connect_work,
2502 nvme_tcp_reconnect_ctrl_work);
2503 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2504 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2506 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2508 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2509 if (!opts->trsvcid) {
2513 opts->mask |= NVMF_OPT_TRSVCID;
2516 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2517 opts->traddr, opts->trsvcid, &ctrl->addr);
2519 pr_err("malformed address passed: %s:%s\n",
2520 opts->traddr, opts->trsvcid);
2524 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2525 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2526 opts->host_traddr, NULL, &ctrl->src_addr);
2528 pr_err("malformed src address passed: %s\n",
2534 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2535 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2536 pr_err("invalid interface passed: %s\n",
2543 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2548 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2550 if (!ctrl->queues) {
2555 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2557 goto out_kfree_queues;
2559 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2562 goto out_uninit_ctrl;
2565 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2567 goto out_uninit_ctrl;
2569 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2570 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2572 mutex_lock(&nvme_tcp_ctrl_mutex);
2573 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2574 mutex_unlock(&nvme_tcp_ctrl_mutex);
2579 nvme_uninit_ctrl(&ctrl->ctrl);
2580 nvme_put_ctrl(&ctrl->ctrl);
2583 return ERR_PTR(ret);
2585 kfree(ctrl->queues);
2588 return ERR_PTR(ret);
2591 static struct nvmf_transport_ops nvme_tcp_transport = {
2593 .module = THIS_MODULE,
2594 .required_opts = NVMF_OPT_TRADDR,
2595 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2596 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2597 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2598 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2599 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2600 .create_ctrl = nvme_tcp_create_ctrl,
2603 static int __init nvme_tcp_init_module(void)
2605 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2606 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2610 nvmf_register_transport(&nvme_tcp_transport);
2614 static void __exit nvme_tcp_cleanup_module(void)
2616 struct nvme_tcp_ctrl *ctrl;
2618 nvmf_unregister_transport(&nvme_tcp_transport);
2620 mutex_lock(&nvme_tcp_ctrl_mutex);
2621 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2622 nvme_delete_ctrl(&ctrl->ctrl);
2623 mutex_unlock(&nvme_tcp_ctrl_mutex);
2624 flush_workqueue(nvme_delete_wq);
2626 destroy_workqueue(nvme_tcp_wq);
2629 module_init(nvme_tcp_init_module);
2630 module_exit(nvme_tcp_cleanup_module);
2632 MODULE_LICENSE("GPL v2");