Merge branch 'for-5.15-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[platform/kernel/linux-rpi.git] / drivers / nvme / host / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17
18 #include "nvme.h"
19 #include "fabrics.h"
20
21 struct nvme_tcp_queue;
22
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32
33 enum nvme_tcp_send_state {
34         NVME_TCP_SEND_CMD_PDU = 0,
35         NVME_TCP_SEND_H2C_PDU,
36         NVME_TCP_SEND_DATA,
37         NVME_TCP_SEND_DDGST,
38 };
39
40 struct nvme_tcp_request {
41         struct nvme_request     req;
42         void                    *pdu;
43         struct nvme_tcp_queue   *queue;
44         u32                     data_len;
45         u32                     pdu_len;
46         u32                     pdu_sent;
47         u16                     ttag;
48         __le16                  status;
49         struct list_head        entry;
50         struct llist_node       lentry;
51         __le32                  ddgst;
52
53         struct bio              *curr_bio;
54         struct iov_iter         iter;
55
56         /* send state */
57         size_t                  offset;
58         size_t                  data_sent;
59         enum nvme_tcp_send_state state;
60 };
61
62 enum nvme_tcp_queue_flags {
63         NVME_TCP_Q_ALLOCATED    = 0,
64         NVME_TCP_Q_LIVE         = 1,
65         NVME_TCP_Q_POLLING      = 2,
66 };
67
68 enum nvme_tcp_recv_state {
69         NVME_TCP_RECV_PDU = 0,
70         NVME_TCP_RECV_DATA,
71         NVME_TCP_RECV_DDGST,
72 };
73
74 struct nvme_tcp_ctrl;
75 struct nvme_tcp_queue {
76         struct socket           *sock;
77         struct work_struct      io_work;
78         int                     io_cpu;
79
80         struct mutex            queue_lock;
81         struct mutex            send_mutex;
82         struct llist_head       req_list;
83         struct list_head        send_list;
84         bool                    more_requests;
85
86         /* recv state */
87         void                    *pdu;
88         int                     pdu_remaining;
89         int                     pdu_offset;
90         size_t                  data_remaining;
91         size_t                  ddgst_remaining;
92         unsigned int            nr_cqe;
93
94         /* send state */
95         struct nvme_tcp_request *request;
96
97         int                     queue_size;
98         size_t                  cmnd_capsule_len;
99         struct nvme_tcp_ctrl    *ctrl;
100         unsigned long           flags;
101         bool                    rd_enabled;
102
103         bool                    hdr_digest;
104         bool                    data_digest;
105         struct ahash_request    *rcv_hash;
106         struct ahash_request    *snd_hash;
107         __le32                  exp_ddgst;
108         __le32                  recv_ddgst;
109
110         struct page_frag_cache  pf_cache;
111
112         void (*state_change)(struct sock *);
113         void (*data_ready)(struct sock *);
114         void (*write_space)(struct sock *);
115 };
116
117 struct nvme_tcp_ctrl {
118         /* read only in the hot path */
119         struct nvme_tcp_queue   *queues;
120         struct blk_mq_tag_set   tag_set;
121
122         /* other member variables */
123         struct list_head        list;
124         struct blk_mq_tag_set   admin_tag_set;
125         struct sockaddr_storage addr;
126         struct sockaddr_storage src_addr;
127         struct nvme_ctrl        ctrl;
128
129         struct work_struct      err_work;
130         struct delayed_work     connect_work;
131         struct nvme_tcp_request async_req;
132         u32                     io_queues[HCTX_MAX_TYPES];
133 };
134
135 static LIST_HEAD(nvme_tcp_ctrl_list);
136 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
137 static struct workqueue_struct *nvme_tcp_wq;
138 static const struct blk_mq_ops nvme_tcp_mq_ops;
139 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
140 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
141
142 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
143 {
144         return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
145 }
146
147 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
148 {
149         return queue - queue->ctrl->queues;
150 }
151
152 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
153 {
154         u32 queue_idx = nvme_tcp_queue_id(queue);
155
156         if (queue_idx == 0)
157                 return queue->ctrl->admin_tag_set.tags[queue_idx];
158         return queue->ctrl->tag_set.tags[queue_idx - 1];
159 }
160
161 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
162 {
163         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
164 }
165
166 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
167 {
168         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
169 }
170
171 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
172 {
173         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
176 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
177 {
178         return req == &req->queue->ctrl->async_req;
179 }
180
181 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
182 {
183         struct request *rq;
184
185         if (unlikely(nvme_tcp_async_req(req)))
186                 return false; /* async events don't have a request */
187
188         rq = blk_mq_rq_from_pdu(req);
189
190         return rq_data_dir(rq) == WRITE && req->data_len &&
191                 req->data_len <= nvme_tcp_inline_data_size(req->queue);
192 }
193
194 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
195 {
196         return req->iter.bvec->bv_page;
197 }
198
199 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
200 {
201         return req->iter.bvec->bv_offset + req->iter.iov_offset;
202 }
203
204 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
205 {
206         return min_t(size_t, iov_iter_single_seg_count(&req->iter),
207                         req->pdu_len - req->pdu_sent);
208 }
209
210 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
211 {
212         return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
213                         req->pdu_len - req->pdu_sent : 0;
214 }
215
216 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
217                 int len)
218 {
219         return nvme_tcp_pdu_data_left(req) <= len;
220 }
221
222 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
223                 unsigned int dir)
224 {
225         struct request *rq = blk_mq_rq_from_pdu(req);
226         struct bio_vec *vec;
227         unsigned int size;
228         int nr_bvec;
229         size_t offset;
230
231         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
232                 vec = &rq->special_vec;
233                 nr_bvec = 1;
234                 size = blk_rq_payload_bytes(rq);
235                 offset = 0;
236         } else {
237                 struct bio *bio = req->curr_bio;
238                 struct bvec_iter bi;
239                 struct bio_vec bv;
240
241                 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
242                 nr_bvec = 0;
243                 bio_for_each_bvec(bv, bio, bi) {
244                         nr_bvec++;
245                 }
246                 size = bio->bi_iter.bi_size;
247                 offset = bio->bi_iter.bi_bvec_done;
248         }
249
250         iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
251         req->iter.iov_offset = offset;
252 }
253
254 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
255                 int len)
256 {
257         req->data_sent += len;
258         req->pdu_sent += len;
259         iov_iter_advance(&req->iter, len);
260         if (!iov_iter_count(&req->iter) &&
261             req->data_sent < req->data_len) {
262                 req->curr_bio = req->curr_bio->bi_next;
263                 nvme_tcp_init_iter(req, WRITE);
264         }
265 }
266
267 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
268 {
269         int ret;
270
271         /* drain the send queue as much as we can... */
272         do {
273                 ret = nvme_tcp_try_send(queue);
274         } while (ret > 0);
275 }
276
277 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
278 {
279         return !list_empty(&queue->send_list) ||
280                 !llist_empty(&queue->req_list) || queue->more_requests;
281 }
282
283 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
284                 bool sync, bool last)
285 {
286         struct nvme_tcp_queue *queue = req->queue;
287         bool empty;
288
289         empty = llist_add(&req->lentry, &queue->req_list) &&
290                 list_empty(&queue->send_list) && !queue->request;
291
292         /*
293          * if we're the first on the send_list and we can try to send
294          * directly, otherwise queue io_work. Also, only do that if we
295          * are on the same cpu, so we don't introduce contention.
296          */
297         if (queue->io_cpu == raw_smp_processor_id() &&
298             sync && empty && mutex_trylock(&queue->send_mutex)) {
299                 queue->more_requests = !last;
300                 nvme_tcp_send_all(queue);
301                 queue->more_requests = false;
302                 mutex_unlock(&queue->send_mutex);
303         }
304
305         if (last && nvme_tcp_queue_more(queue))
306                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
307 }
308
309 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
310 {
311         struct nvme_tcp_request *req;
312         struct llist_node *node;
313
314         for (node = llist_del_all(&queue->req_list); node; node = node->next) {
315                 req = llist_entry(node, struct nvme_tcp_request, lentry);
316                 list_add(&req->entry, &queue->send_list);
317         }
318 }
319
320 static inline struct nvme_tcp_request *
321 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
322 {
323         struct nvme_tcp_request *req;
324
325         req = list_first_entry_or_null(&queue->send_list,
326                         struct nvme_tcp_request, entry);
327         if (!req) {
328                 nvme_tcp_process_req_list(queue);
329                 req = list_first_entry_or_null(&queue->send_list,
330                                 struct nvme_tcp_request, entry);
331                 if (unlikely(!req))
332                         return NULL;
333         }
334
335         list_del(&req->entry);
336         return req;
337 }
338
339 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
340                 __le32 *dgst)
341 {
342         ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
343         crypto_ahash_final(hash);
344 }
345
346 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
347                 struct page *page, off_t off, size_t len)
348 {
349         struct scatterlist sg;
350
351         sg_init_marker(&sg, 1);
352         sg_set_page(&sg, page, len, off);
353         ahash_request_set_crypt(hash, &sg, NULL, len);
354         crypto_ahash_update(hash);
355 }
356
357 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
358                 void *pdu, size_t len)
359 {
360         struct scatterlist sg;
361
362         sg_init_one(&sg, pdu, len);
363         ahash_request_set_crypt(hash, &sg, pdu + len, len);
364         crypto_ahash_digest(hash);
365 }
366
367 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
368                 void *pdu, size_t pdu_len)
369 {
370         struct nvme_tcp_hdr *hdr = pdu;
371         __le32 recv_digest;
372         __le32 exp_digest;
373
374         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
375                 dev_err(queue->ctrl->ctrl.device,
376                         "queue %d: header digest flag is cleared\n",
377                         nvme_tcp_queue_id(queue));
378                 return -EPROTO;
379         }
380
381         recv_digest = *(__le32 *)(pdu + hdr->hlen);
382         nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
383         exp_digest = *(__le32 *)(pdu + hdr->hlen);
384         if (recv_digest != exp_digest) {
385                 dev_err(queue->ctrl->ctrl.device,
386                         "header digest error: recv %#x expected %#x\n",
387                         le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
388                 return -EIO;
389         }
390
391         return 0;
392 }
393
394 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
395 {
396         struct nvme_tcp_hdr *hdr = pdu;
397         u8 digest_len = nvme_tcp_hdgst_len(queue);
398         u32 len;
399
400         len = le32_to_cpu(hdr->plen) - hdr->hlen -
401                 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
402
403         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
404                 dev_err(queue->ctrl->ctrl.device,
405                         "queue %d: data digest flag is cleared\n",
406                 nvme_tcp_queue_id(queue));
407                 return -EPROTO;
408         }
409         crypto_ahash_init(queue->rcv_hash);
410
411         return 0;
412 }
413
414 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
415                 struct request *rq, unsigned int hctx_idx)
416 {
417         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
418
419         page_frag_free(req->pdu);
420 }
421
422 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
423                 struct request *rq, unsigned int hctx_idx,
424                 unsigned int numa_node)
425 {
426         struct nvme_tcp_ctrl *ctrl = set->driver_data;
427         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
428         struct nvme_tcp_cmd_pdu *pdu;
429         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
430         struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
431         u8 hdgst = nvme_tcp_hdgst_len(queue);
432
433         req->pdu = page_frag_alloc(&queue->pf_cache,
434                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
435                 GFP_KERNEL | __GFP_ZERO);
436         if (!req->pdu)
437                 return -ENOMEM;
438
439         pdu = req->pdu;
440         req->queue = queue;
441         nvme_req(rq)->ctrl = &ctrl->ctrl;
442         nvme_req(rq)->cmd = &pdu->cmd;
443
444         return 0;
445 }
446
447 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
448                 unsigned int hctx_idx)
449 {
450         struct nvme_tcp_ctrl *ctrl = data;
451         struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
452
453         hctx->driver_data = queue;
454         return 0;
455 }
456
457 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
458                 unsigned int hctx_idx)
459 {
460         struct nvme_tcp_ctrl *ctrl = data;
461         struct nvme_tcp_queue *queue = &ctrl->queues[0];
462
463         hctx->driver_data = queue;
464         return 0;
465 }
466
467 static enum nvme_tcp_recv_state
468 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
469 {
470         return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
471                 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
472                 NVME_TCP_RECV_DATA;
473 }
474
475 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
476 {
477         queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
478                                 nvme_tcp_hdgst_len(queue);
479         queue->pdu_offset = 0;
480         queue->data_remaining = -1;
481         queue->ddgst_remaining = 0;
482 }
483
484 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
485 {
486         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
487                 return;
488
489         dev_warn(ctrl->device, "starting error recovery\n");
490         queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
491 }
492
493 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
494                 struct nvme_completion *cqe)
495 {
496         struct nvme_tcp_request *req;
497         struct request *rq;
498
499         rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
500         if (!rq) {
501                 dev_err(queue->ctrl->ctrl.device,
502                         "got bad cqe.command_id %#x on queue %d\n",
503                         cqe->command_id, nvme_tcp_queue_id(queue));
504                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
505                 return -EINVAL;
506         }
507
508         req = blk_mq_rq_to_pdu(rq);
509         if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
510                 req->status = cqe->status;
511
512         if (!nvme_try_complete_req(rq, req->status, cqe->result))
513                 nvme_complete_rq(rq);
514         queue->nr_cqe++;
515
516         return 0;
517 }
518
519 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
520                 struct nvme_tcp_data_pdu *pdu)
521 {
522         struct request *rq;
523
524         rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
525         if (!rq) {
526                 dev_err(queue->ctrl->ctrl.device,
527                         "got bad c2hdata.command_id %#x on queue %d\n",
528                         pdu->command_id, nvme_tcp_queue_id(queue));
529                 return -ENOENT;
530         }
531
532         if (!blk_rq_payload_bytes(rq)) {
533                 dev_err(queue->ctrl->ctrl.device,
534                         "queue %d tag %#x unexpected data\n",
535                         nvme_tcp_queue_id(queue), rq->tag);
536                 return -EIO;
537         }
538
539         queue->data_remaining = le32_to_cpu(pdu->data_length);
540
541         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
542             unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
543                 dev_err(queue->ctrl->ctrl.device,
544                         "queue %d tag %#x SUCCESS set but not last PDU\n",
545                         nvme_tcp_queue_id(queue), rq->tag);
546                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
547                 return -EPROTO;
548         }
549
550         return 0;
551 }
552
553 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
554                 struct nvme_tcp_rsp_pdu *pdu)
555 {
556         struct nvme_completion *cqe = &pdu->cqe;
557         int ret = 0;
558
559         /*
560          * AEN requests are special as they don't time out and can
561          * survive any kind of queue freeze and often don't respond to
562          * aborts.  We don't even bother to allocate a struct request
563          * for them but rather special case them here.
564          */
565         if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
566                                      cqe->command_id)))
567                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
568                                 &cqe->result);
569         else
570                 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
571
572         return ret;
573 }
574
575 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
576                 struct nvme_tcp_r2t_pdu *pdu)
577 {
578         struct nvme_tcp_data_pdu *data = req->pdu;
579         struct nvme_tcp_queue *queue = req->queue;
580         struct request *rq = blk_mq_rq_from_pdu(req);
581         u8 hdgst = nvme_tcp_hdgst_len(queue);
582         u8 ddgst = nvme_tcp_ddgst_len(queue);
583
584         req->pdu_len = le32_to_cpu(pdu->r2t_length);
585         req->pdu_sent = 0;
586
587         if (unlikely(!req->pdu_len)) {
588                 dev_err(queue->ctrl->ctrl.device,
589                         "req %d r2t len is %u, probably a bug...\n",
590                         rq->tag, req->pdu_len);
591                 return -EPROTO;
592         }
593
594         if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
595                 dev_err(queue->ctrl->ctrl.device,
596                         "req %d r2t len %u exceeded data len %u (%zu sent)\n",
597                         rq->tag, req->pdu_len, req->data_len,
598                         req->data_sent);
599                 return -EPROTO;
600         }
601
602         if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
603                 dev_err(queue->ctrl->ctrl.device,
604                         "req %d unexpected r2t offset %u (expected %zu)\n",
605                         rq->tag, le32_to_cpu(pdu->r2t_offset),
606                         req->data_sent);
607                 return -EPROTO;
608         }
609
610         memset(data, 0, sizeof(*data));
611         data->hdr.type = nvme_tcp_h2c_data;
612         data->hdr.flags = NVME_TCP_F_DATA_LAST;
613         if (queue->hdr_digest)
614                 data->hdr.flags |= NVME_TCP_F_HDGST;
615         if (queue->data_digest)
616                 data->hdr.flags |= NVME_TCP_F_DDGST;
617         data->hdr.hlen = sizeof(*data);
618         data->hdr.pdo = data->hdr.hlen + hdgst;
619         data->hdr.plen =
620                 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
621         data->ttag = pdu->ttag;
622         data->command_id = nvme_cid(rq);
623         data->data_offset = pdu->r2t_offset;
624         data->data_length = cpu_to_le32(req->pdu_len);
625         return 0;
626 }
627
628 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
629                 struct nvme_tcp_r2t_pdu *pdu)
630 {
631         struct nvme_tcp_request *req;
632         struct request *rq;
633         int ret;
634
635         rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
636         if (!rq) {
637                 dev_err(queue->ctrl->ctrl.device,
638                         "got bad r2t.command_id %#x on queue %d\n",
639                         pdu->command_id, nvme_tcp_queue_id(queue));
640                 return -ENOENT;
641         }
642         req = blk_mq_rq_to_pdu(rq);
643
644         ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
645         if (unlikely(ret))
646                 return ret;
647
648         req->state = NVME_TCP_SEND_H2C_PDU;
649         req->offset = 0;
650
651         nvme_tcp_queue_request(req, false, true);
652
653         return 0;
654 }
655
656 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
657                 unsigned int *offset, size_t *len)
658 {
659         struct nvme_tcp_hdr *hdr;
660         char *pdu = queue->pdu;
661         size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
662         int ret;
663
664         ret = skb_copy_bits(skb, *offset,
665                 &pdu[queue->pdu_offset], rcv_len);
666         if (unlikely(ret))
667                 return ret;
668
669         queue->pdu_remaining -= rcv_len;
670         queue->pdu_offset += rcv_len;
671         *offset += rcv_len;
672         *len -= rcv_len;
673         if (queue->pdu_remaining)
674                 return 0;
675
676         hdr = queue->pdu;
677         if (queue->hdr_digest) {
678                 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
679                 if (unlikely(ret))
680                         return ret;
681         }
682
683
684         if (queue->data_digest) {
685                 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
686                 if (unlikely(ret))
687                         return ret;
688         }
689
690         switch (hdr->type) {
691         case nvme_tcp_c2h_data:
692                 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
693         case nvme_tcp_rsp:
694                 nvme_tcp_init_recv_ctx(queue);
695                 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
696         case nvme_tcp_r2t:
697                 nvme_tcp_init_recv_ctx(queue);
698                 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
699         default:
700                 dev_err(queue->ctrl->ctrl.device,
701                         "unsupported pdu type (%d)\n", hdr->type);
702                 return -EINVAL;
703         }
704 }
705
706 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
707 {
708         union nvme_result res = {};
709
710         if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
711                 nvme_complete_rq(rq);
712 }
713
714 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
715                               unsigned int *offset, size_t *len)
716 {
717         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
718         struct request *rq =
719                 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
720         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
721
722         while (true) {
723                 int recv_len, ret;
724
725                 recv_len = min_t(size_t, *len, queue->data_remaining);
726                 if (!recv_len)
727                         break;
728
729                 if (!iov_iter_count(&req->iter)) {
730                         req->curr_bio = req->curr_bio->bi_next;
731
732                         /*
733                          * If we don`t have any bios it means that controller
734                          * sent more data than we requested, hence error
735                          */
736                         if (!req->curr_bio) {
737                                 dev_err(queue->ctrl->ctrl.device,
738                                         "queue %d no space in request %#x",
739                                         nvme_tcp_queue_id(queue), rq->tag);
740                                 nvme_tcp_init_recv_ctx(queue);
741                                 return -EIO;
742                         }
743                         nvme_tcp_init_iter(req, READ);
744                 }
745
746                 /* we can read only from what is left in this bio */
747                 recv_len = min_t(size_t, recv_len,
748                                 iov_iter_count(&req->iter));
749
750                 if (queue->data_digest)
751                         ret = skb_copy_and_hash_datagram_iter(skb, *offset,
752                                 &req->iter, recv_len, queue->rcv_hash);
753                 else
754                         ret = skb_copy_datagram_iter(skb, *offset,
755                                         &req->iter, recv_len);
756                 if (ret) {
757                         dev_err(queue->ctrl->ctrl.device,
758                                 "queue %d failed to copy request %#x data",
759                                 nvme_tcp_queue_id(queue), rq->tag);
760                         return ret;
761                 }
762
763                 *len -= recv_len;
764                 *offset += recv_len;
765                 queue->data_remaining -= recv_len;
766         }
767
768         if (!queue->data_remaining) {
769                 if (queue->data_digest) {
770                         nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
771                         queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
772                 } else {
773                         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
774                                 nvme_tcp_end_request(rq,
775                                                 le16_to_cpu(req->status));
776                                 queue->nr_cqe++;
777                         }
778                         nvme_tcp_init_recv_ctx(queue);
779                 }
780         }
781
782         return 0;
783 }
784
785 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
786                 struct sk_buff *skb, unsigned int *offset, size_t *len)
787 {
788         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
789         char *ddgst = (char *)&queue->recv_ddgst;
790         size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
791         off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
792         int ret;
793
794         ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
795         if (unlikely(ret))
796                 return ret;
797
798         queue->ddgst_remaining -= recv_len;
799         *offset += recv_len;
800         *len -= recv_len;
801         if (queue->ddgst_remaining)
802                 return 0;
803
804         if (queue->recv_ddgst != queue->exp_ddgst) {
805                 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
806                                         pdu->command_id);
807                 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
808
809                 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
810
811                 dev_err(queue->ctrl->ctrl.device,
812                         "data digest error: recv %#x expected %#x\n",
813                         le32_to_cpu(queue->recv_ddgst),
814                         le32_to_cpu(queue->exp_ddgst));
815         }
816
817         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
818                 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
819                                         pdu->command_id);
820                 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
821
822                 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
823                 queue->nr_cqe++;
824         }
825
826         nvme_tcp_init_recv_ctx(queue);
827         return 0;
828 }
829
830 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
831                              unsigned int offset, size_t len)
832 {
833         struct nvme_tcp_queue *queue = desc->arg.data;
834         size_t consumed = len;
835         int result;
836
837         while (len) {
838                 switch (nvme_tcp_recv_state(queue)) {
839                 case NVME_TCP_RECV_PDU:
840                         result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
841                         break;
842                 case NVME_TCP_RECV_DATA:
843                         result = nvme_tcp_recv_data(queue, skb, &offset, &len);
844                         break;
845                 case NVME_TCP_RECV_DDGST:
846                         result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
847                         break;
848                 default:
849                         result = -EFAULT;
850                 }
851                 if (result) {
852                         dev_err(queue->ctrl->ctrl.device,
853                                 "receive failed:  %d\n", result);
854                         queue->rd_enabled = false;
855                         nvme_tcp_error_recovery(&queue->ctrl->ctrl);
856                         return result;
857                 }
858         }
859
860         return consumed;
861 }
862
863 static void nvme_tcp_data_ready(struct sock *sk)
864 {
865         struct nvme_tcp_queue *queue;
866
867         read_lock_bh(&sk->sk_callback_lock);
868         queue = sk->sk_user_data;
869         if (likely(queue && queue->rd_enabled) &&
870             !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
871                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
872         read_unlock_bh(&sk->sk_callback_lock);
873 }
874
875 static void nvme_tcp_write_space(struct sock *sk)
876 {
877         struct nvme_tcp_queue *queue;
878
879         read_lock_bh(&sk->sk_callback_lock);
880         queue = sk->sk_user_data;
881         if (likely(queue && sk_stream_is_writeable(sk))) {
882                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
883                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
884         }
885         read_unlock_bh(&sk->sk_callback_lock);
886 }
887
888 static void nvme_tcp_state_change(struct sock *sk)
889 {
890         struct nvme_tcp_queue *queue;
891
892         read_lock_bh(&sk->sk_callback_lock);
893         queue = sk->sk_user_data;
894         if (!queue)
895                 goto done;
896
897         switch (sk->sk_state) {
898         case TCP_CLOSE:
899         case TCP_CLOSE_WAIT:
900         case TCP_LAST_ACK:
901         case TCP_FIN_WAIT1:
902         case TCP_FIN_WAIT2:
903                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
904                 break;
905         default:
906                 dev_info(queue->ctrl->ctrl.device,
907                         "queue %d socket state %d\n",
908                         nvme_tcp_queue_id(queue), sk->sk_state);
909         }
910
911         queue->state_change(sk);
912 done:
913         read_unlock_bh(&sk->sk_callback_lock);
914 }
915
916 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
917 {
918         queue->request = NULL;
919 }
920
921 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
922 {
923         nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
924 }
925
926 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
927 {
928         struct nvme_tcp_queue *queue = req->queue;
929
930         while (true) {
931                 struct page *page = nvme_tcp_req_cur_page(req);
932                 size_t offset = nvme_tcp_req_cur_offset(req);
933                 size_t len = nvme_tcp_req_cur_length(req);
934                 bool last = nvme_tcp_pdu_last_send(req, len);
935                 int ret, flags = MSG_DONTWAIT;
936
937                 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
938                         flags |= MSG_EOR;
939                 else
940                         flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
941
942                 if (sendpage_ok(page)) {
943                         ret = kernel_sendpage(queue->sock, page, offset, len,
944                                         flags);
945                 } else {
946                         ret = sock_no_sendpage(queue->sock, page, offset, len,
947                                         flags);
948                 }
949                 if (ret <= 0)
950                         return ret;
951
952                 if (queue->data_digest)
953                         nvme_tcp_ddgst_update(queue->snd_hash, page,
954                                         offset, ret);
955
956                 /*
957                  * update the request iterator except for the last payload send
958                  * in the request where we don't want to modify it as we may
959                  * compete with the RX path completing the request.
960                  */
961                 if (req->data_sent + ret < req->data_len)
962                         nvme_tcp_advance_req(req, ret);
963
964                 /* fully successful last send in current PDU */
965                 if (last && ret == len) {
966                         if (queue->data_digest) {
967                                 nvme_tcp_ddgst_final(queue->snd_hash,
968                                         &req->ddgst);
969                                 req->state = NVME_TCP_SEND_DDGST;
970                                 req->offset = 0;
971                         } else {
972                                 nvme_tcp_done_send_req(queue);
973                         }
974                         return 1;
975                 }
976         }
977         return -EAGAIN;
978 }
979
980 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
981 {
982         struct nvme_tcp_queue *queue = req->queue;
983         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
984         bool inline_data = nvme_tcp_has_inline_data(req);
985         u8 hdgst = nvme_tcp_hdgst_len(queue);
986         int len = sizeof(*pdu) + hdgst - req->offset;
987         int flags = MSG_DONTWAIT;
988         int ret;
989
990         if (inline_data || nvme_tcp_queue_more(queue))
991                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
992         else
993                 flags |= MSG_EOR;
994
995         if (queue->hdr_digest && !req->offset)
996                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
997
998         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
999                         offset_in_page(pdu) + req->offset, len,  flags);
1000         if (unlikely(ret <= 0))
1001                 return ret;
1002
1003         len -= ret;
1004         if (!len) {
1005                 if (inline_data) {
1006                         req->state = NVME_TCP_SEND_DATA;
1007                         if (queue->data_digest)
1008                                 crypto_ahash_init(queue->snd_hash);
1009                 } else {
1010                         nvme_tcp_done_send_req(queue);
1011                 }
1012                 return 1;
1013         }
1014         req->offset += ret;
1015
1016         return -EAGAIN;
1017 }
1018
1019 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1020 {
1021         struct nvme_tcp_queue *queue = req->queue;
1022         struct nvme_tcp_data_pdu *pdu = req->pdu;
1023         u8 hdgst = nvme_tcp_hdgst_len(queue);
1024         int len = sizeof(*pdu) - req->offset + hdgst;
1025         int ret;
1026
1027         if (queue->hdr_digest && !req->offset)
1028                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1029
1030         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1031                         offset_in_page(pdu) + req->offset, len,
1032                         MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1033         if (unlikely(ret <= 0))
1034                 return ret;
1035
1036         len -= ret;
1037         if (!len) {
1038                 req->state = NVME_TCP_SEND_DATA;
1039                 if (queue->data_digest)
1040                         crypto_ahash_init(queue->snd_hash);
1041                 return 1;
1042         }
1043         req->offset += ret;
1044
1045         return -EAGAIN;
1046 }
1047
1048 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1049 {
1050         struct nvme_tcp_queue *queue = req->queue;
1051         int ret;
1052         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1053         struct kvec iov = {
1054                 .iov_base = &req->ddgst + req->offset,
1055                 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1056         };
1057
1058         if (nvme_tcp_queue_more(queue))
1059                 msg.msg_flags |= MSG_MORE;
1060         else
1061                 msg.msg_flags |= MSG_EOR;
1062
1063         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1064         if (unlikely(ret <= 0))
1065                 return ret;
1066
1067         if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1068                 nvme_tcp_done_send_req(queue);
1069                 return 1;
1070         }
1071
1072         req->offset += ret;
1073         return -EAGAIN;
1074 }
1075
1076 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1077 {
1078         struct nvme_tcp_request *req;
1079         int ret = 1;
1080
1081         if (!queue->request) {
1082                 queue->request = nvme_tcp_fetch_request(queue);
1083                 if (!queue->request)
1084                         return 0;
1085         }
1086         req = queue->request;
1087
1088         if (req->state == NVME_TCP_SEND_CMD_PDU) {
1089                 ret = nvme_tcp_try_send_cmd_pdu(req);
1090                 if (ret <= 0)
1091                         goto done;
1092                 if (!nvme_tcp_has_inline_data(req))
1093                         return ret;
1094         }
1095
1096         if (req->state == NVME_TCP_SEND_H2C_PDU) {
1097                 ret = nvme_tcp_try_send_data_pdu(req);
1098                 if (ret <= 0)
1099                         goto done;
1100         }
1101
1102         if (req->state == NVME_TCP_SEND_DATA) {
1103                 ret = nvme_tcp_try_send_data(req);
1104                 if (ret <= 0)
1105                         goto done;
1106         }
1107
1108         if (req->state == NVME_TCP_SEND_DDGST)
1109                 ret = nvme_tcp_try_send_ddgst(req);
1110 done:
1111         if (ret == -EAGAIN) {
1112                 ret = 0;
1113         } else if (ret < 0) {
1114                 dev_err(queue->ctrl->ctrl.device,
1115                         "failed to send request %d\n", ret);
1116                 if (ret != -EPIPE && ret != -ECONNRESET)
1117                         nvme_tcp_fail_request(queue->request);
1118                 nvme_tcp_done_send_req(queue);
1119         }
1120         return ret;
1121 }
1122
1123 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1124 {
1125         struct socket *sock = queue->sock;
1126         struct sock *sk = sock->sk;
1127         read_descriptor_t rd_desc;
1128         int consumed;
1129
1130         rd_desc.arg.data = queue;
1131         rd_desc.count = 1;
1132         lock_sock(sk);
1133         queue->nr_cqe = 0;
1134         consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1135         release_sock(sk);
1136         return consumed;
1137 }
1138
1139 static void nvme_tcp_io_work(struct work_struct *w)
1140 {
1141         struct nvme_tcp_queue *queue =
1142                 container_of(w, struct nvme_tcp_queue, io_work);
1143         unsigned long deadline = jiffies + msecs_to_jiffies(1);
1144
1145         do {
1146                 bool pending = false;
1147                 int result;
1148
1149                 if (mutex_trylock(&queue->send_mutex)) {
1150                         result = nvme_tcp_try_send(queue);
1151                         mutex_unlock(&queue->send_mutex);
1152                         if (result > 0)
1153                                 pending = true;
1154                         else if (unlikely(result < 0))
1155                                 break;
1156                 }
1157
1158                 result = nvme_tcp_try_recv(queue);
1159                 if (result > 0)
1160                         pending = true;
1161                 else if (unlikely(result < 0))
1162                         return;
1163
1164                 if (!pending)
1165                         return;
1166
1167         } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1168
1169         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1170 }
1171
1172 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1173 {
1174         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1175
1176         ahash_request_free(queue->rcv_hash);
1177         ahash_request_free(queue->snd_hash);
1178         crypto_free_ahash(tfm);
1179 }
1180
1181 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1182 {
1183         struct crypto_ahash *tfm;
1184
1185         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1186         if (IS_ERR(tfm))
1187                 return PTR_ERR(tfm);
1188
1189         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1190         if (!queue->snd_hash)
1191                 goto free_tfm;
1192         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1193
1194         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1195         if (!queue->rcv_hash)
1196                 goto free_snd_hash;
1197         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1198
1199         return 0;
1200 free_snd_hash:
1201         ahash_request_free(queue->snd_hash);
1202 free_tfm:
1203         crypto_free_ahash(tfm);
1204         return -ENOMEM;
1205 }
1206
1207 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1208 {
1209         struct nvme_tcp_request *async = &ctrl->async_req;
1210
1211         page_frag_free(async->pdu);
1212 }
1213
1214 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1215 {
1216         struct nvme_tcp_queue *queue = &ctrl->queues[0];
1217         struct nvme_tcp_request *async = &ctrl->async_req;
1218         u8 hdgst = nvme_tcp_hdgst_len(queue);
1219
1220         async->pdu = page_frag_alloc(&queue->pf_cache,
1221                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1222                 GFP_KERNEL | __GFP_ZERO);
1223         if (!async->pdu)
1224                 return -ENOMEM;
1225
1226         async->queue = &ctrl->queues[0];
1227         return 0;
1228 }
1229
1230 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1231 {
1232         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1233         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1234
1235         if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1236                 return;
1237
1238         if (queue->hdr_digest || queue->data_digest)
1239                 nvme_tcp_free_crypto(queue);
1240
1241         sock_release(queue->sock);
1242         kfree(queue->pdu);
1243         mutex_destroy(&queue->send_mutex);
1244         mutex_destroy(&queue->queue_lock);
1245 }
1246
1247 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1248 {
1249         struct nvme_tcp_icreq_pdu *icreq;
1250         struct nvme_tcp_icresp_pdu *icresp;
1251         struct msghdr msg = {};
1252         struct kvec iov;
1253         bool ctrl_hdgst, ctrl_ddgst;
1254         int ret;
1255
1256         icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1257         if (!icreq)
1258                 return -ENOMEM;
1259
1260         icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1261         if (!icresp) {
1262                 ret = -ENOMEM;
1263                 goto free_icreq;
1264         }
1265
1266         icreq->hdr.type = nvme_tcp_icreq;
1267         icreq->hdr.hlen = sizeof(*icreq);
1268         icreq->hdr.pdo = 0;
1269         icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1270         icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1271         icreq->maxr2t = 0; /* single inflight r2t supported */
1272         icreq->hpda = 0; /* no alignment constraint */
1273         if (queue->hdr_digest)
1274                 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1275         if (queue->data_digest)
1276                 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1277
1278         iov.iov_base = icreq;
1279         iov.iov_len = sizeof(*icreq);
1280         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1281         if (ret < 0)
1282                 goto free_icresp;
1283
1284         memset(&msg, 0, sizeof(msg));
1285         iov.iov_base = icresp;
1286         iov.iov_len = sizeof(*icresp);
1287         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1288                         iov.iov_len, msg.msg_flags);
1289         if (ret < 0)
1290                 goto free_icresp;
1291
1292         ret = -EINVAL;
1293         if (icresp->hdr.type != nvme_tcp_icresp) {
1294                 pr_err("queue %d: bad type returned %d\n",
1295                         nvme_tcp_queue_id(queue), icresp->hdr.type);
1296                 goto free_icresp;
1297         }
1298
1299         if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1300                 pr_err("queue %d: bad pdu length returned %d\n",
1301                         nvme_tcp_queue_id(queue), icresp->hdr.plen);
1302                 goto free_icresp;
1303         }
1304
1305         if (icresp->pfv != NVME_TCP_PFV_1_0) {
1306                 pr_err("queue %d: bad pfv returned %d\n",
1307                         nvme_tcp_queue_id(queue), icresp->pfv);
1308                 goto free_icresp;
1309         }
1310
1311         ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1312         if ((queue->data_digest && !ctrl_ddgst) ||
1313             (!queue->data_digest && ctrl_ddgst)) {
1314                 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1315                         nvme_tcp_queue_id(queue),
1316                         queue->data_digest ? "enabled" : "disabled",
1317                         ctrl_ddgst ? "enabled" : "disabled");
1318                 goto free_icresp;
1319         }
1320
1321         ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1322         if ((queue->hdr_digest && !ctrl_hdgst) ||
1323             (!queue->hdr_digest && ctrl_hdgst)) {
1324                 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1325                         nvme_tcp_queue_id(queue),
1326                         queue->hdr_digest ? "enabled" : "disabled",
1327                         ctrl_hdgst ? "enabled" : "disabled");
1328                 goto free_icresp;
1329         }
1330
1331         if (icresp->cpda != 0) {
1332                 pr_err("queue %d: unsupported cpda returned %d\n",
1333                         nvme_tcp_queue_id(queue), icresp->cpda);
1334                 goto free_icresp;
1335         }
1336
1337         ret = 0;
1338 free_icresp:
1339         kfree(icresp);
1340 free_icreq:
1341         kfree(icreq);
1342         return ret;
1343 }
1344
1345 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1346 {
1347         return nvme_tcp_queue_id(queue) == 0;
1348 }
1349
1350 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1351 {
1352         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1353         int qid = nvme_tcp_queue_id(queue);
1354
1355         return !nvme_tcp_admin_queue(queue) &&
1356                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1357 }
1358
1359 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1360 {
1361         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1362         int qid = nvme_tcp_queue_id(queue);
1363
1364         return !nvme_tcp_admin_queue(queue) &&
1365                 !nvme_tcp_default_queue(queue) &&
1366                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1367                           ctrl->io_queues[HCTX_TYPE_READ];
1368 }
1369
1370 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1371 {
1372         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1373         int qid = nvme_tcp_queue_id(queue);
1374
1375         return !nvme_tcp_admin_queue(queue) &&
1376                 !nvme_tcp_default_queue(queue) &&
1377                 !nvme_tcp_read_queue(queue) &&
1378                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1379                           ctrl->io_queues[HCTX_TYPE_READ] +
1380                           ctrl->io_queues[HCTX_TYPE_POLL];
1381 }
1382
1383 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1384 {
1385         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1386         int qid = nvme_tcp_queue_id(queue);
1387         int n = 0;
1388
1389         if (nvme_tcp_default_queue(queue))
1390                 n = qid - 1;
1391         else if (nvme_tcp_read_queue(queue))
1392                 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1393         else if (nvme_tcp_poll_queue(queue))
1394                 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1395                                 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1396         queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1397 }
1398
1399 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1400                 int qid, size_t queue_size)
1401 {
1402         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1403         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1404         int ret, rcv_pdu_size;
1405
1406         mutex_init(&queue->queue_lock);
1407         queue->ctrl = ctrl;
1408         init_llist_head(&queue->req_list);
1409         INIT_LIST_HEAD(&queue->send_list);
1410         mutex_init(&queue->send_mutex);
1411         INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1412         queue->queue_size = queue_size;
1413
1414         if (qid > 0)
1415                 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1416         else
1417                 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1418                                                 NVME_TCP_ADMIN_CCSZ;
1419
1420         ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1421                         IPPROTO_TCP, &queue->sock);
1422         if (ret) {
1423                 dev_err(nctrl->device,
1424                         "failed to create socket: %d\n", ret);
1425                 goto err_destroy_mutex;
1426         }
1427
1428         /* Single syn retry */
1429         tcp_sock_set_syncnt(queue->sock->sk, 1);
1430
1431         /* Set TCP no delay */
1432         tcp_sock_set_nodelay(queue->sock->sk);
1433
1434         /*
1435          * Cleanup whatever is sitting in the TCP transmit queue on socket
1436          * close. This is done to prevent stale data from being sent should
1437          * the network connection be restored before TCP times out.
1438          */
1439         sock_no_linger(queue->sock->sk);
1440
1441         if (so_priority > 0)
1442                 sock_set_priority(queue->sock->sk, so_priority);
1443
1444         /* Set socket type of service */
1445         if (nctrl->opts->tos >= 0)
1446                 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1447
1448         /* Set 10 seconds timeout for icresp recvmsg */
1449         queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1450
1451         queue->sock->sk->sk_allocation = GFP_ATOMIC;
1452         nvme_tcp_set_queue_io_cpu(queue);
1453         queue->request = NULL;
1454         queue->data_remaining = 0;
1455         queue->ddgst_remaining = 0;
1456         queue->pdu_remaining = 0;
1457         queue->pdu_offset = 0;
1458         sk_set_memalloc(queue->sock->sk);
1459
1460         if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1461                 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1462                         sizeof(ctrl->src_addr));
1463                 if (ret) {
1464                         dev_err(nctrl->device,
1465                                 "failed to bind queue %d socket %d\n",
1466                                 qid, ret);
1467                         goto err_sock;
1468                 }
1469         }
1470
1471         if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1472                 char *iface = nctrl->opts->host_iface;
1473                 sockptr_t optval = KERNEL_SOCKPTR(iface);
1474
1475                 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1476                                       optval, strlen(iface));
1477                 if (ret) {
1478                         dev_err(nctrl->device,
1479                           "failed to bind to interface %s queue %d err %d\n",
1480                           iface, qid, ret);
1481                         goto err_sock;
1482                 }
1483         }
1484
1485         queue->hdr_digest = nctrl->opts->hdr_digest;
1486         queue->data_digest = nctrl->opts->data_digest;
1487         if (queue->hdr_digest || queue->data_digest) {
1488                 ret = nvme_tcp_alloc_crypto(queue);
1489                 if (ret) {
1490                         dev_err(nctrl->device,
1491                                 "failed to allocate queue %d crypto\n", qid);
1492                         goto err_sock;
1493                 }
1494         }
1495
1496         rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1497                         nvme_tcp_hdgst_len(queue);
1498         queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1499         if (!queue->pdu) {
1500                 ret = -ENOMEM;
1501                 goto err_crypto;
1502         }
1503
1504         dev_dbg(nctrl->device, "connecting queue %d\n",
1505                         nvme_tcp_queue_id(queue));
1506
1507         ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1508                 sizeof(ctrl->addr), 0);
1509         if (ret) {
1510                 dev_err(nctrl->device,
1511                         "failed to connect socket: %d\n", ret);
1512                 goto err_rcv_pdu;
1513         }
1514
1515         ret = nvme_tcp_init_connection(queue);
1516         if (ret)
1517                 goto err_init_connect;
1518
1519         queue->rd_enabled = true;
1520         set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1521         nvme_tcp_init_recv_ctx(queue);
1522
1523         write_lock_bh(&queue->sock->sk->sk_callback_lock);
1524         queue->sock->sk->sk_user_data = queue;
1525         queue->state_change = queue->sock->sk->sk_state_change;
1526         queue->data_ready = queue->sock->sk->sk_data_ready;
1527         queue->write_space = queue->sock->sk->sk_write_space;
1528         queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1529         queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1530         queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1531 #ifdef CONFIG_NET_RX_BUSY_POLL
1532         queue->sock->sk->sk_ll_usec = 1;
1533 #endif
1534         write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1535
1536         return 0;
1537
1538 err_init_connect:
1539         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1540 err_rcv_pdu:
1541         kfree(queue->pdu);
1542 err_crypto:
1543         if (queue->hdr_digest || queue->data_digest)
1544                 nvme_tcp_free_crypto(queue);
1545 err_sock:
1546         sock_release(queue->sock);
1547         queue->sock = NULL;
1548 err_destroy_mutex:
1549         mutex_destroy(&queue->send_mutex);
1550         mutex_destroy(&queue->queue_lock);
1551         return ret;
1552 }
1553
1554 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1555 {
1556         struct socket *sock = queue->sock;
1557
1558         write_lock_bh(&sock->sk->sk_callback_lock);
1559         sock->sk->sk_user_data  = NULL;
1560         sock->sk->sk_data_ready = queue->data_ready;
1561         sock->sk->sk_state_change = queue->state_change;
1562         sock->sk->sk_write_space  = queue->write_space;
1563         write_unlock_bh(&sock->sk->sk_callback_lock);
1564 }
1565
1566 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1567 {
1568         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1569         nvme_tcp_restore_sock_calls(queue);
1570         cancel_work_sync(&queue->io_work);
1571 }
1572
1573 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1574 {
1575         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1576         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1577
1578         mutex_lock(&queue->queue_lock);
1579         if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1580                 __nvme_tcp_stop_queue(queue);
1581         mutex_unlock(&queue->queue_lock);
1582 }
1583
1584 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1585 {
1586         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1587         int ret;
1588
1589         if (idx)
1590                 ret = nvmf_connect_io_queue(nctrl, idx);
1591         else
1592                 ret = nvmf_connect_admin_queue(nctrl);
1593
1594         if (!ret) {
1595                 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1596         } else {
1597                 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1598                         __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1599                 dev_err(nctrl->device,
1600                         "failed to connect queue: %d ret=%d\n", idx, ret);
1601         }
1602         return ret;
1603 }
1604
1605 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1606                 bool admin)
1607 {
1608         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1609         struct blk_mq_tag_set *set;
1610         int ret;
1611
1612         if (admin) {
1613                 set = &ctrl->admin_tag_set;
1614                 memset(set, 0, sizeof(*set));
1615                 set->ops = &nvme_tcp_admin_mq_ops;
1616                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1617                 set->reserved_tags = NVMF_RESERVED_TAGS;
1618                 set->numa_node = nctrl->numa_node;
1619                 set->flags = BLK_MQ_F_BLOCKING;
1620                 set->cmd_size = sizeof(struct nvme_tcp_request);
1621                 set->driver_data = ctrl;
1622                 set->nr_hw_queues = 1;
1623                 set->timeout = NVME_ADMIN_TIMEOUT;
1624         } else {
1625                 set = &ctrl->tag_set;
1626                 memset(set, 0, sizeof(*set));
1627                 set->ops = &nvme_tcp_mq_ops;
1628                 set->queue_depth = nctrl->sqsize + 1;
1629                 set->reserved_tags = NVMF_RESERVED_TAGS;
1630                 set->numa_node = nctrl->numa_node;
1631                 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1632                 set->cmd_size = sizeof(struct nvme_tcp_request);
1633                 set->driver_data = ctrl;
1634                 set->nr_hw_queues = nctrl->queue_count - 1;
1635                 set->timeout = NVME_IO_TIMEOUT;
1636                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1637         }
1638
1639         ret = blk_mq_alloc_tag_set(set);
1640         if (ret)
1641                 return ERR_PTR(ret);
1642
1643         return set;
1644 }
1645
1646 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1647 {
1648         if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1649                 cancel_work_sync(&ctrl->async_event_work);
1650                 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1651                 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1652         }
1653
1654         nvme_tcp_free_queue(ctrl, 0);
1655 }
1656
1657 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1658 {
1659         int i;
1660
1661         for (i = 1; i < ctrl->queue_count; i++)
1662                 nvme_tcp_free_queue(ctrl, i);
1663 }
1664
1665 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1666 {
1667         int i;
1668
1669         for (i = 1; i < ctrl->queue_count; i++)
1670                 nvme_tcp_stop_queue(ctrl, i);
1671 }
1672
1673 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1674 {
1675         int i, ret = 0;
1676
1677         for (i = 1; i < ctrl->queue_count; i++) {
1678                 ret = nvme_tcp_start_queue(ctrl, i);
1679                 if (ret)
1680                         goto out_stop_queues;
1681         }
1682
1683         return 0;
1684
1685 out_stop_queues:
1686         for (i--; i >= 1; i--)
1687                 nvme_tcp_stop_queue(ctrl, i);
1688         return ret;
1689 }
1690
1691 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1692 {
1693         int ret;
1694
1695         ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1696         if (ret)
1697                 return ret;
1698
1699         ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1700         if (ret)
1701                 goto out_free_queue;
1702
1703         return 0;
1704
1705 out_free_queue:
1706         nvme_tcp_free_queue(ctrl, 0);
1707         return ret;
1708 }
1709
1710 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1711 {
1712         int i, ret;
1713
1714         for (i = 1; i < ctrl->queue_count; i++) {
1715                 ret = nvme_tcp_alloc_queue(ctrl, i,
1716                                 ctrl->sqsize + 1);
1717                 if (ret)
1718                         goto out_free_queues;
1719         }
1720
1721         return 0;
1722
1723 out_free_queues:
1724         for (i--; i >= 1; i--)
1725                 nvme_tcp_free_queue(ctrl, i);
1726
1727         return ret;
1728 }
1729
1730 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1731 {
1732         unsigned int nr_io_queues;
1733
1734         nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1735         nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1736         nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1737
1738         return nr_io_queues;
1739 }
1740
1741 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1742                 unsigned int nr_io_queues)
1743 {
1744         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1745         struct nvmf_ctrl_options *opts = nctrl->opts;
1746
1747         if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1748                 /*
1749                  * separate read/write queues
1750                  * hand out dedicated default queues only after we have
1751                  * sufficient read queues.
1752                  */
1753                 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1754                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1755                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1756                         min(opts->nr_write_queues, nr_io_queues);
1757                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1758         } else {
1759                 /*
1760                  * shared read/write queues
1761                  * either no write queues were requested, or we don't have
1762                  * sufficient queue count to have dedicated default queues.
1763                  */
1764                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1765                         min(opts->nr_io_queues, nr_io_queues);
1766                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1767         }
1768
1769         if (opts->nr_poll_queues && nr_io_queues) {
1770                 /* map dedicated poll queues only if we have queues left */
1771                 ctrl->io_queues[HCTX_TYPE_POLL] =
1772                         min(opts->nr_poll_queues, nr_io_queues);
1773         }
1774 }
1775
1776 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1777 {
1778         unsigned int nr_io_queues;
1779         int ret;
1780
1781         nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1782         ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1783         if (ret)
1784                 return ret;
1785
1786         if (nr_io_queues == 0) {
1787                 dev_err(ctrl->device,
1788                         "unable to set any I/O queues\n");
1789                 return -ENOMEM;
1790         }
1791
1792         ctrl->queue_count = nr_io_queues + 1;
1793         dev_info(ctrl->device,
1794                 "creating %d I/O queues.\n", nr_io_queues);
1795
1796         nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1797
1798         return __nvme_tcp_alloc_io_queues(ctrl);
1799 }
1800
1801 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1802 {
1803         nvme_tcp_stop_io_queues(ctrl);
1804         if (remove) {
1805                 blk_cleanup_queue(ctrl->connect_q);
1806                 blk_mq_free_tag_set(ctrl->tagset);
1807         }
1808         nvme_tcp_free_io_queues(ctrl);
1809 }
1810
1811 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1812 {
1813         int ret;
1814
1815         ret = nvme_tcp_alloc_io_queues(ctrl);
1816         if (ret)
1817                 return ret;
1818
1819         if (new) {
1820                 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1821                 if (IS_ERR(ctrl->tagset)) {
1822                         ret = PTR_ERR(ctrl->tagset);
1823                         goto out_free_io_queues;
1824                 }
1825
1826                 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1827                 if (IS_ERR(ctrl->connect_q)) {
1828                         ret = PTR_ERR(ctrl->connect_q);
1829                         goto out_free_tag_set;
1830                 }
1831         }
1832
1833         ret = nvme_tcp_start_io_queues(ctrl);
1834         if (ret)
1835                 goto out_cleanup_connect_q;
1836
1837         if (!new) {
1838                 nvme_start_queues(ctrl);
1839                 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1840                         /*
1841                          * If we timed out waiting for freeze we are likely to
1842                          * be stuck.  Fail the controller initialization just
1843                          * to be safe.
1844                          */
1845                         ret = -ENODEV;
1846                         goto out_wait_freeze_timed_out;
1847                 }
1848                 blk_mq_update_nr_hw_queues(ctrl->tagset,
1849                         ctrl->queue_count - 1);
1850                 nvme_unfreeze(ctrl);
1851         }
1852
1853         return 0;
1854
1855 out_wait_freeze_timed_out:
1856         nvme_stop_queues(ctrl);
1857         nvme_sync_io_queues(ctrl);
1858         nvme_tcp_stop_io_queues(ctrl);
1859 out_cleanup_connect_q:
1860         nvme_cancel_tagset(ctrl);
1861         if (new)
1862                 blk_cleanup_queue(ctrl->connect_q);
1863 out_free_tag_set:
1864         if (new)
1865                 blk_mq_free_tag_set(ctrl->tagset);
1866 out_free_io_queues:
1867         nvme_tcp_free_io_queues(ctrl);
1868         return ret;
1869 }
1870
1871 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1872 {
1873         nvme_tcp_stop_queue(ctrl, 0);
1874         if (remove) {
1875                 blk_cleanup_queue(ctrl->admin_q);
1876                 blk_cleanup_queue(ctrl->fabrics_q);
1877                 blk_mq_free_tag_set(ctrl->admin_tagset);
1878         }
1879         nvme_tcp_free_admin_queue(ctrl);
1880 }
1881
1882 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1883 {
1884         int error;
1885
1886         error = nvme_tcp_alloc_admin_queue(ctrl);
1887         if (error)
1888                 return error;
1889
1890         if (new) {
1891                 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1892                 if (IS_ERR(ctrl->admin_tagset)) {
1893                         error = PTR_ERR(ctrl->admin_tagset);
1894                         goto out_free_queue;
1895                 }
1896
1897                 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1898                 if (IS_ERR(ctrl->fabrics_q)) {
1899                         error = PTR_ERR(ctrl->fabrics_q);
1900                         goto out_free_tagset;
1901                 }
1902
1903                 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1904                 if (IS_ERR(ctrl->admin_q)) {
1905                         error = PTR_ERR(ctrl->admin_q);
1906                         goto out_cleanup_fabrics_q;
1907                 }
1908         }
1909
1910         error = nvme_tcp_start_queue(ctrl, 0);
1911         if (error)
1912                 goto out_cleanup_queue;
1913
1914         error = nvme_enable_ctrl(ctrl);
1915         if (error)
1916                 goto out_stop_queue;
1917
1918         blk_mq_unquiesce_queue(ctrl->admin_q);
1919
1920         error = nvme_init_ctrl_finish(ctrl);
1921         if (error)
1922                 goto out_quiesce_queue;
1923
1924         return 0;
1925
1926 out_quiesce_queue:
1927         blk_mq_quiesce_queue(ctrl->admin_q);
1928         blk_sync_queue(ctrl->admin_q);
1929 out_stop_queue:
1930         nvme_tcp_stop_queue(ctrl, 0);
1931         nvme_cancel_admin_tagset(ctrl);
1932 out_cleanup_queue:
1933         if (new)
1934                 blk_cleanup_queue(ctrl->admin_q);
1935 out_cleanup_fabrics_q:
1936         if (new)
1937                 blk_cleanup_queue(ctrl->fabrics_q);
1938 out_free_tagset:
1939         if (new)
1940                 blk_mq_free_tag_set(ctrl->admin_tagset);
1941 out_free_queue:
1942         nvme_tcp_free_admin_queue(ctrl);
1943         return error;
1944 }
1945
1946 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1947                 bool remove)
1948 {
1949         blk_mq_quiesce_queue(ctrl->admin_q);
1950         blk_sync_queue(ctrl->admin_q);
1951         nvme_tcp_stop_queue(ctrl, 0);
1952         nvme_cancel_admin_tagset(ctrl);
1953         if (remove)
1954                 blk_mq_unquiesce_queue(ctrl->admin_q);
1955         nvme_tcp_destroy_admin_queue(ctrl, remove);
1956 }
1957
1958 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1959                 bool remove)
1960 {
1961         if (ctrl->queue_count <= 1)
1962                 return;
1963         blk_mq_quiesce_queue(ctrl->admin_q);
1964         nvme_start_freeze(ctrl);
1965         nvme_stop_queues(ctrl);
1966         nvme_sync_io_queues(ctrl);
1967         nvme_tcp_stop_io_queues(ctrl);
1968         nvme_cancel_tagset(ctrl);
1969         if (remove)
1970                 nvme_start_queues(ctrl);
1971         nvme_tcp_destroy_io_queues(ctrl, remove);
1972 }
1973
1974 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1975 {
1976         /* If we are resetting/deleting then do nothing */
1977         if (ctrl->state != NVME_CTRL_CONNECTING) {
1978                 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1979                         ctrl->state == NVME_CTRL_LIVE);
1980                 return;
1981         }
1982
1983         if (nvmf_should_reconnect(ctrl)) {
1984                 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1985                         ctrl->opts->reconnect_delay);
1986                 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1987                                 ctrl->opts->reconnect_delay * HZ);
1988         } else {
1989                 dev_info(ctrl->device, "Removing controller...\n");
1990                 nvme_delete_ctrl(ctrl);
1991         }
1992 }
1993
1994 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1995 {
1996         struct nvmf_ctrl_options *opts = ctrl->opts;
1997         int ret;
1998
1999         ret = nvme_tcp_configure_admin_queue(ctrl, new);
2000         if (ret)
2001                 return ret;
2002
2003         if (ctrl->icdoff) {
2004                 ret = -EOPNOTSUPP;
2005                 dev_err(ctrl->device, "icdoff is not supported!\n");
2006                 goto destroy_admin;
2007         }
2008
2009         if (!nvme_ctrl_sgl_supported(ctrl)) {
2010                 ret = -EOPNOTSUPP;
2011                 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2012                 goto destroy_admin;
2013         }
2014
2015         if (opts->queue_size > ctrl->sqsize + 1)
2016                 dev_warn(ctrl->device,
2017                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
2018                         opts->queue_size, ctrl->sqsize + 1);
2019
2020         if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2021                 dev_warn(ctrl->device,
2022                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
2023                         ctrl->sqsize + 1, ctrl->maxcmd);
2024                 ctrl->sqsize = ctrl->maxcmd - 1;
2025         }
2026
2027         if (ctrl->queue_count > 1) {
2028                 ret = nvme_tcp_configure_io_queues(ctrl, new);
2029                 if (ret)
2030                         goto destroy_admin;
2031         }
2032
2033         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2034                 /*
2035                  * state change failure is ok if we started ctrl delete,
2036                  * unless we're during creation of a new controller to
2037                  * avoid races with teardown flow.
2038                  */
2039                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2040                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2041                 WARN_ON_ONCE(new);
2042                 ret = -EINVAL;
2043                 goto destroy_io;
2044         }
2045
2046         nvme_start_ctrl(ctrl);
2047         return 0;
2048
2049 destroy_io:
2050         if (ctrl->queue_count > 1) {
2051                 nvme_stop_queues(ctrl);
2052                 nvme_sync_io_queues(ctrl);
2053                 nvme_tcp_stop_io_queues(ctrl);
2054                 nvme_cancel_tagset(ctrl);
2055                 nvme_tcp_destroy_io_queues(ctrl, new);
2056         }
2057 destroy_admin:
2058         blk_mq_quiesce_queue(ctrl->admin_q);
2059         blk_sync_queue(ctrl->admin_q);
2060         nvme_tcp_stop_queue(ctrl, 0);
2061         nvme_cancel_admin_tagset(ctrl);
2062         nvme_tcp_destroy_admin_queue(ctrl, new);
2063         return ret;
2064 }
2065
2066 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2067 {
2068         struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2069                         struct nvme_tcp_ctrl, connect_work);
2070         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2071
2072         ++ctrl->nr_reconnects;
2073
2074         if (nvme_tcp_setup_ctrl(ctrl, false))
2075                 goto requeue;
2076
2077         dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2078                         ctrl->nr_reconnects);
2079
2080         ctrl->nr_reconnects = 0;
2081
2082         return;
2083
2084 requeue:
2085         dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2086                         ctrl->nr_reconnects);
2087         nvme_tcp_reconnect_or_remove(ctrl);
2088 }
2089
2090 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2091 {
2092         struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2093                                 struct nvme_tcp_ctrl, err_work);
2094         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2095
2096         nvme_stop_keep_alive(ctrl);
2097         nvme_tcp_teardown_io_queues(ctrl, false);
2098         /* unquiesce to fail fast pending requests */
2099         nvme_start_queues(ctrl);
2100         nvme_tcp_teardown_admin_queue(ctrl, false);
2101         blk_mq_unquiesce_queue(ctrl->admin_q);
2102
2103         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2104                 /* state change failure is ok if we started ctrl delete */
2105                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2106                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2107                 return;
2108         }
2109
2110         nvme_tcp_reconnect_or_remove(ctrl);
2111 }
2112
2113 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2114 {
2115         cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2116         cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2117
2118         nvme_tcp_teardown_io_queues(ctrl, shutdown);
2119         blk_mq_quiesce_queue(ctrl->admin_q);
2120         if (shutdown)
2121                 nvme_shutdown_ctrl(ctrl);
2122         else
2123                 nvme_disable_ctrl(ctrl);
2124         nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2125 }
2126
2127 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2128 {
2129         nvme_tcp_teardown_ctrl(ctrl, true);
2130 }
2131
2132 static void nvme_reset_ctrl_work(struct work_struct *work)
2133 {
2134         struct nvme_ctrl *ctrl =
2135                 container_of(work, struct nvme_ctrl, reset_work);
2136
2137         nvme_stop_ctrl(ctrl);
2138         nvme_tcp_teardown_ctrl(ctrl, false);
2139
2140         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2141                 /* state change failure is ok if we started ctrl delete */
2142                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2143                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2144                 return;
2145         }
2146
2147         if (nvme_tcp_setup_ctrl(ctrl, false))
2148                 goto out_fail;
2149
2150         return;
2151
2152 out_fail:
2153         ++ctrl->nr_reconnects;
2154         nvme_tcp_reconnect_or_remove(ctrl);
2155 }
2156
2157 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2158 {
2159         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2160
2161         if (list_empty(&ctrl->list))
2162                 goto free_ctrl;
2163
2164         mutex_lock(&nvme_tcp_ctrl_mutex);
2165         list_del(&ctrl->list);
2166         mutex_unlock(&nvme_tcp_ctrl_mutex);
2167
2168         nvmf_free_options(nctrl->opts);
2169 free_ctrl:
2170         kfree(ctrl->queues);
2171         kfree(ctrl);
2172 }
2173
2174 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2175 {
2176         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2177
2178         sg->addr = 0;
2179         sg->length = 0;
2180         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2181                         NVME_SGL_FMT_TRANSPORT_A;
2182 }
2183
2184 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2185                 struct nvme_command *c, u32 data_len)
2186 {
2187         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2188
2189         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2190         sg->length = cpu_to_le32(data_len);
2191         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2192 }
2193
2194 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2195                 u32 data_len)
2196 {
2197         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2198
2199         sg->addr = 0;
2200         sg->length = cpu_to_le32(data_len);
2201         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2202                         NVME_SGL_FMT_TRANSPORT_A;
2203 }
2204
2205 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2206 {
2207         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2208         struct nvme_tcp_queue *queue = &ctrl->queues[0];
2209         struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2210         struct nvme_command *cmd = &pdu->cmd;
2211         u8 hdgst = nvme_tcp_hdgst_len(queue);
2212
2213         memset(pdu, 0, sizeof(*pdu));
2214         pdu->hdr.type = nvme_tcp_cmd;
2215         if (queue->hdr_digest)
2216                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2217         pdu->hdr.hlen = sizeof(*pdu);
2218         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2219
2220         cmd->common.opcode = nvme_admin_async_event;
2221         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2222         cmd->common.flags |= NVME_CMD_SGL_METABUF;
2223         nvme_tcp_set_sg_null(cmd);
2224
2225         ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2226         ctrl->async_req.offset = 0;
2227         ctrl->async_req.curr_bio = NULL;
2228         ctrl->async_req.data_len = 0;
2229
2230         nvme_tcp_queue_request(&ctrl->async_req, true, true);
2231 }
2232
2233 static void nvme_tcp_complete_timed_out(struct request *rq)
2234 {
2235         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2236         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2237
2238         nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2239         if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2240                 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2241                 blk_mq_complete_request(rq);
2242         }
2243 }
2244
2245 static enum blk_eh_timer_return
2246 nvme_tcp_timeout(struct request *rq, bool reserved)
2247 {
2248         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2249         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2250         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2251
2252         dev_warn(ctrl->device,
2253                 "queue %d: timeout request %#x type %d\n",
2254                 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2255
2256         if (ctrl->state != NVME_CTRL_LIVE) {
2257                 /*
2258                  * If we are resetting, connecting or deleting we should
2259                  * complete immediately because we may block controller
2260                  * teardown or setup sequence
2261                  * - ctrl disable/shutdown fabrics requests
2262                  * - connect requests
2263                  * - initialization admin requests
2264                  * - I/O requests that entered after unquiescing and
2265                  *   the controller stopped responding
2266                  *
2267                  * All other requests should be cancelled by the error
2268                  * recovery work, so it's fine that we fail it here.
2269                  */
2270                 nvme_tcp_complete_timed_out(rq);
2271                 return BLK_EH_DONE;
2272         }
2273
2274         /*
2275          * LIVE state should trigger the normal error recovery which will
2276          * handle completing this request.
2277          */
2278         nvme_tcp_error_recovery(ctrl);
2279         return BLK_EH_RESET_TIMER;
2280 }
2281
2282 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2283                         struct request *rq)
2284 {
2285         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2286         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2287         struct nvme_command *c = &pdu->cmd;
2288
2289         c->common.flags |= NVME_CMD_SGL_METABUF;
2290
2291         if (!blk_rq_nr_phys_segments(rq))
2292                 nvme_tcp_set_sg_null(c);
2293         else if (rq_data_dir(rq) == WRITE &&
2294             req->data_len <= nvme_tcp_inline_data_size(queue))
2295                 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2296         else
2297                 nvme_tcp_set_sg_host_data(c, req->data_len);
2298
2299         return 0;
2300 }
2301
2302 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2303                 struct request *rq)
2304 {
2305         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2306         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2307         struct nvme_tcp_queue *queue = req->queue;
2308         u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2309         blk_status_t ret;
2310
2311         ret = nvme_setup_cmd(ns, rq);
2312         if (ret)
2313                 return ret;
2314
2315         req->state = NVME_TCP_SEND_CMD_PDU;
2316         req->status = cpu_to_le16(NVME_SC_SUCCESS);
2317         req->offset = 0;
2318         req->data_sent = 0;
2319         req->pdu_len = 0;
2320         req->pdu_sent = 0;
2321         req->data_len = blk_rq_nr_phys_segments(rq) ?
2322                                 blk_rq_payload_bytes(rq) : 0;
2323         req->curr_bio = rq->bio;
2324         if (req->curr_bio && req->data_len)
2325                 nvme_tcp_init_iter(req, rq_data_dir(rq));
2326
2327         if (rq_data_dir(rq) == WRITE &&
2328             req->data_len <= nvme_tcp_inline_data_size(queue))
2329                 req->pdu_len = req->data_len;
2330
2331         pdu->hdr.type = nvme_tcp_cmd;
2332         pdu->hdr.flags = 0;
2333         if (queue->hdr_digest)
2334                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2335         if (queue->data_digest && req->pdu_len) {
2336                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2337                 ddgst = nvme_tcp_ddgst_len(queue);
2338         }
2339         pdu->hdr.hlen = sizeof(*pdu);
2340         pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2341         pdu->hdr.plen =
2342                 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2343
2344         ret = nvme_tcp_map_data(queue, rq);
2345         if (unlikely(ret)) {
2346                 nvme_cleanup_cmd(rq);
2347                 dev_err(queue->ctrl->ctrl.device,
2348                         "Failed to map data (%d)\n", ret);
2349                 return ret;
2350         }
2351
2352         return 0;
2353 }
2354
2355 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2356 {
2357         struct nvme_tcp_queue *queue = hctx->driver_data;
2358
2359         if (!llist_empty(&queue->req_list))
2360                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2361 }
2362
2363 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2364                 const struct blk_mq_queue_data *bd)
2365 {
2366         struct nvme_ns *ns = hctx->queue->queuedata;
2367         struct nvme_tcp_queue *queue = hctx->driver_data;
2368         struct request *rq = bd->rq;
2369         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2370         bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2371         blk_status_t ret;
2372
2373         if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2374                 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2375
2376         ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2377         if (unlikely(ret))
2378                 return ret;
2379
2380         blk_mq_start_request(rq);
2381
2382         nvme_tcp_queue_request(req, true, bd->last);
2383
2384         return BLK_STS_OK;
2385 }
2386
2387 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2388 {
2389         struct nvme_tcp_ctrl *ctrl = set->driver_data;
2390         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2391
2392         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2393                 /* separate read/write queues */
2394                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2395                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2396                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2397                 set->map[HCTX_TYPE_READ].nr_queues =
2398                         ctrl->io_queues[HCTX_TYPE_READ];
2399                 set->map[HCTX_TYPE_READ].queue_offset =
2400                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2401         } else {
2402                 /* shared read/write queues */
2403                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2404                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2405                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2406                 set->map[HCTX_TYPE_READ].nr_queues =
2407                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2408                 set->map[HCTX_TYPE_READ].queue_offset = 0;
2409         }
2410         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2411         blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2412
2413         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2414                 /* map dedicated poll queues only if we have queues left */
2415                 set->map[HCTX_TYPE_POLL].nr_queues =
2416                                 ctrl->io_queues[HCTX_TYPE_POLL];
2417                 set->map[HCTX_TYPE_POLL].queue_offset =
2418                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2419                         ctrl->io_queues[HCTX_TYPE_READ];
2420                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2421         }
2422
2423         dev_info(ctrl->ctrl.device,
2424                 "mapped %d/%d/%d default/read/poll queues.\n",
2425                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2426                 ctrl->io_queues[HCTX_TYPE_READ],
2427                 ctrl->io_queues[HCTX_TYPE_POLL]);
2428
2429         return 0;
2430 }
2431
2432 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2433 {
2434         struct nvme_tcp_queue *queue = hctx->driver_data;
2435         struct sock *sk = queue->sock->sk;
2436
2437         if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2438                 return 0;
2439
2440         set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2441         if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2442                 sk_busy_loop(sk, true);
2443         nvme_tcp_try_recv(queue);
2444         clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2445         return queue->nr_cqe;
2446 }
2447
2448 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2449         .queue_rq       = nvme_tcp_queue_rq,
2450         .commit_rqs     = nvme_tcp_commit_rqs,
2451         .complete       = nvme_complete_rq,
2452         .init_request   = nvme_tcp_init_request,
2453         .exit_request   = nvme_tcp_exit_request,
2454         .init_hctx      = nvme_tcp_init_hctx,
2455         .timeout        = nvme_tcp_timeout,
2456         .map_queues     = nvme_tcp_map_queues,
2457         .poll           = nvme_tcp_poll,
2458 };
2459
2460 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2461         .queue_rq       = nvme_tcp_queue_rq,
2462         .complete       = nvme_complete_rq,
2463         .init_request   = nvme_tcp_init_request,
2464         .exit_request   = nvme_tcp_exit_request,
2465         .init_hctx      = nvme_tcp_init_admin_hctx,
2466         .timeout        = nvme_tcp_timeout,
2467 };
2468
2469 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2470         .name                   = "tcp",
2471         .module                 = THIS_MODULE,
2472         .flags                  = NVME_F_FABRICS,
2473         .reg_read32             = nvmf_reg_read32,
2474         .reg_read64             = nvmf_reg_read64,
2475         .reg_write32            = nvmf_reg_write32,
2476         .free_ctrl              = nvme_tcp_free_ctrl,
2477         .submit_async_event     = nvme_tcp_submit_async_event,
2478         .delete_ctrl            = nvme_tcp_delete_ctrl,
2479         .get_address            = nvmf_get_address,
2480 };
2481
2482 static bool
2483 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2484 {
2485         struct nvme_tcp_ctrl *ctrl;
2486         bool found = false;
2487
2488         mutex_lock(&nvme_tcp_ctrl_mutex);
2489         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2490                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2491                 if (found)
2492                         break;
2493         }
2494         mutex_unlock(&nvme_tcp_ctrl_mutex);
2495
2496         return found;
2497 }
2498
2499 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2500                 struct nvmf_ctrl_options *opts)
2501 {
2502         struct nvme_tcp_ctrl *ctrl;
2503         int ret;
2504
2505         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2506         if (!ctrl)
2507                 return ERR_PTR(-ENOMEM);
2508
2509         INIT_LIST_HEAD(&ctrl->list);
2510         ctrl->ctrl.opts = opts;
2511         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2512                                 opts->nr_poll_queues + 1;
2513         ctrl->ctrl.sqsize = opts->queue_size - 1;
2514         ctrl->ctrl.kato = opts->kato;
2515
2516         INIT_DELAYED_WORK(&ctrl->connect_work,
2517                         nvme_tcp_reconnect_ctrl_work);
2518         INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2519         INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2520
2521         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2522                 opts->trsvcid =
2523                         kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2524                 if (!opts->trsvcid) {
2525                         ret = -ENOMEM;
2526                         goto out_free_ctrl;
2527                 }
2528                 opts->mask |= NVMF_OPT_TRSVCID;
2529         }
2530
2531         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2532                         opts->traddr, opts->trsvcid, &ctrl->addr);
2533         if (ret) {
2534                 pr_err("malformed address passed: %s:%s\n",
2535                         opts->traddr, opts->trsvcid);
2536                 goto out_free_ctrl;
2537         }
2538
2539         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2540                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2541                         opts->host_traddr, NULL, &ctrl->src_addr);
2542                 if (ret) {
2543                         pr_err("malformed src address passed: %s\n",
2544                                opts->host_traddr);
2545                         goto out_free_ctrl;
2546                 }
2547         }
2548
2549         if (opts->mask & NVMF_OPT_HOST_IFACE) {
2550                 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2551                         pr_err("invalid interface passed: %s\n",
2552                                opts->host_iface);
2553                         ret = -ENODEV;
2554                         goto out_free_ctrl;
2555                 }
2556         }
2557
2558         if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2559                 ret = -EALREADY;
2560                 goto out_free_ctrl;
2561         }
2562
2563         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2564                                 GFP_KERNEL);
2565         if (!ctrl->queues) {
2566                 ret = -ENOMEM;
2567                 goto out_free_ctrl;
2568         }
2569
2570         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2571         if (ret)
2572                 goto out_kfree_queues;
2573
2574         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2575                 WARN_ON_ONCE(1);
2576                 ret = -EINTR;
2577                 goto out_uninit_ctrl;
2578         }
2579
2580         ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2581         if (ret)
2582                 goto out_uninit_ctrl;
2583
2584         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2585                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2586
2587         mutex_lock(&nvme_tcp_ctrl_mutex);
2588         list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2589         mutex_unlock(&nvme_tcp_ctrl_mutex);
2590
2591         return &ctrl->ctrl;
2592
2593 out_uninit_ctrl:
2594         nvme_uninit_ctrl(&ctrl->ctrl);
2595         nvme_put_ctrl(&ctrl->ctrl);
2596         if (ret > 0)
2597                 ret = -EIO;
2598         return ERR_PTR(ret);
2599 out_kfree_queues:
2600         kfree(ctrl->queues);
2601 out_free_ctrl:
2602         kfree(ctrl);
2603         return ERR_PTR(ret);
2604 }
2605
2606 static struct nvmf_transport_ops nvme_tcp_transport = {
2607         .name           = "tcp",
2608         .module         = THIS_MODULE,
2609         .required_opts  = NVMF_OPT_TRADDR,
2610         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2611                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2612                           NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2613                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2614                           NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2615         .create_ctrl    = nvme_tcp_create_ctrl,
2616 };
2617
2618 static int __init nvme_tcp_init_module(void)
2619 {
2620         nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2621                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2622         if (!nvme_tcp_wq)
2623                 return -ENOMEM;
2624
2625         nvmf_register_transport(&nvme_tcp_transport);
2626         return 0;
2627 }
2628
2629 static void __exit nvme_tcp_cleanup_module(void)
2630 {
2631         struct nvme_tcp_ctrl *ctrl;
2632
2633         nvmf_unregister_transport(&nvme_tcp_transport);
2634
2635         mutex_lock(&nvme_tcp_ctrl_mutex);
2636         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2637                 nvme_delete_ctrl(&ctrl->ctrl);
2638         mutex_unlock(&nvme_tcp_ctrl_mutex);
2639         flush_workqueue(nvme_delete_wq);
2640
2641         destroy_workqueue(nvme_tcp_wq);
2642 }
2643
2644 module_init(nvme_tcp_init_module);
2645 module_exit(nvme_tcp_cleanup_module);
2646
2647 MODULE_LICENSE("GPL v2");