1 // SPDX-License-Identifier: GPL-2.0
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
33 #define NVME_RDMA_MAX_SEGMENTS 256
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
37 struct nvme_rdma_device {
38 struct ib_device *dev;
41 struct list_head entry;
42 unsigned int num_inline_segments;
51 struct nvme_rdma_queue;
52 struct nvme_rdma_request {
53 struct nvme_request req;
55 struct nvme_rdma_qe sqe;
56 union nvme_result result;
59 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
62 struct ib_reg_wr reg_wr;
63 struct ib_cqe reg_cqe;
64 struct nvme_rdma_queue *queue;
65 struct sg_table sg_table;
66 struct scatterlist first_sgl[];
69 enum nvme_rdma_queue_flags {
70 NVME_RDMA_Q_ALLOCATED = 0,
72 NVME_RDMA_Q_TR_READY = 2,
75 struct nvme_rdma_queue {
76 struct nvme_rdma_qe *rsp_ring;
78 size_t cmnd_capsule_len;
79 struct nvme_rdma_ctrl *ctrl;
80 struct nvme_rdma_device *device;
85 struct rdma_cm_id *cm_id;
87 struct completion cm_done;
90 struct nvme_rdma_ctrl {
91 /* read only in the hot path */
92 struct nvme_rdma_queue *queues;
94 /* other member variables */
95 struct blk_mq_tag_set tag_set;
96 struct work_struct err_work;
98 struct nvme_rdma_qe async_event_sqe;
100 struct delayed_work reconnect_work;
102 struct list_head list;
104 struct blk_mq_tag_set admin_tag_set;
105 struct nvme_rdma_device *device;
109 struct sockaddr_storage addr;
110 struct sockaddr_storage src_addr;
112 struct nvme_ctrl ctrl;
113 bool use_inline_data;
114 u32 io_queues[HCTX_MAX_TYPES];
117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
119 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
122 static LIST_HEAD(device_list);
123 static DEFINE_MUTEX(device_list_mutex);
125 static LIST_HEAD(nvme_rdma_ctrl_list);
126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
129 * Disabling this option makes small I/O goes faster, but is fundamentally
130 * unsafe. With it turned off we will have to register a global rkey that
131 * allows read and write access to all physical memory.
133 static bool register_always = true;
134 module_param(register_always, bool, 0444);
135 MODULE_PARM_DESC(register_always,
136 "Use memory registration even for contiguous memory regions");
138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
139 struct rdma_cm_event *event);
140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
142 static const struct blk_mq_ops nvme_rdma_mq_ops;
143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
145 /* XXX: really should move to a generic header sooner or later.. */
146 static inline void put_unaligned_le24(u32 val, u8 *p)
153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
155 return queue - queue->ctrl->queues;
158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
160 return nvme_rdma_queue_idx(queue) >
161 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
162 queue->ctrl->io_queues[HCTX_TYPE_READ];
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
167 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171 size_t capsule_size, enum dma_data_direction dir)
173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 size_t capsule_size, enum dma_data_direction dir)
180 qe->data = kzalloc(capsule_size, GFP_KERNEL);
184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185 if (ib_dma_mapping_error(ibdev, qe->dma)) {
194 static void nvme_rdma_free_ring(struct ib_device *ibdev,
195 struct nvme_rdma_qe *ring, size_t ib_queue_size,
196 size_t capsule_size, enum dma_data_direction dir)
200 for (i = 0; i < ib_queue_size; i++)
201 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
206 size_t ib_queue_size, size_t capsule_size,
207 enum dma_data_direction dir)
209 struct nvme_rdma_qe *ring;
212 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
217 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
218 * lifetime. It's safe, since any chage in the underlying RDMA device
219 * will issue error recovery and queue re-creation.
221 for (i = 0; i < ib_queue_size; i++) {
222 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
233 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
235 pr_debug("QP event %s (%d)\n",
236 ib_event_msg(event->event), event->event);
240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
244 ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
245 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
250 WARN_ON_ONCE(queue->cm_error > 0);
251 return queue->cm_error;
254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
256 struct nvme_rdma_device *dev = queue->device;
257 struct ib_qp_init_attr init_attr;
260 memset(&init_attr, 0, sizeof(init_attr));
261 init_attr.event_handler = nvme_rdma_qp_event;
263 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
265 init_attr.cap.max_recv_wr = queue->queue_size + 1;
266 init_attr.cap.max_recv_sge = 1;
267 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
268 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
269 init_attr.qp_type = IB_QPT_RC;
270 init_attr.send_cq = queue->ib_cq;
271 init_attr.recv_cq = queue->ib_cq;
273 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
275 queue->qp = queue->cm_id->qp;
279 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
280 struct request *rq, unsigned int hctx_idx)
282 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
284 kfree(req->sqe.data);
287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
288 struct request *rq, unsigned int hctx_idx,
289 unsigned int numa_node)
291 struct nvme_rdma_ctrl *ctrl = set->driver_data;
292 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
294 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
296 nvme_req(rq)->ctrl = &ctrl->ctrl;
297 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
306 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
307 unsigned int hctx_idx)
309 struct nvme_rdma_ctrl *ctrl = data;
310 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
312 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
314 hctx->driver_data = queue;
318 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
319 unsigned int hctx_idx)
321 struct nvme_rdma_ctrl *ctrl = data;
322 struct nvme_rdma_queue *queue = &ctrl->queues[0];
324 BUG_ON(hctx_idx != 0);
326 hctx->driver_data = queue;
330 static void nvme_rdma_free_dev(struct kref *ref)
332 struct nvme_rdma_device *ndev =
333 container_of(ref, struct nvme_rdma_device, ref);
335 mutex_lock(&device_list_mutex);
336 list_del(&ndev->entry);
337 mutex_unlock(&device_list_mutex);
339 ib_dealloc_pd(ndev->pd);
343 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
345 kref_put(&dev->ref, nvme_rdma_free_dev);
348 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
350 return kref_get_unless_zero(&dev->ref);
353 static struct nvme_rdma_device *
354 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
356 struct nvme_rdma_device *ndev;
358 mutex_lock(&device_list_mutex);
359 list_for_each_entry(ndev, &device_list, entry) {
360 if (ndev->dev->node_guid == cm_id->device->node_guid &&
361 nvme_rdma_dev_get(ndev))
365 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
369 ndev->dev = cm_id->device;
370 kref_init(&ndev->ref);
372 ndev->pd = ib_alloc_pd(ndev->dev,
373 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
374 if (IS_ERR(ndev->pd))
377 if (!(ndev->dev->attrs.device_cap_flags &
378 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
379 dev_err(&ndev->dev->dev,
380 "Memory registrations not supported.\n");
384 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
385 ndev->dev->attrs.max_send_sge - 1);
386 list_add(&ndev->entry, &device_list);
388 mutex_unlock(&device_list_mutex);
392 ib_dealloc_pd(ndev->pd);
396 mutex_unlock(&device_list_mutex);
400 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
402 struct nvme_rdma_device *dev;
403 struct ib_device *ibdev;
405 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
411 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
414 * The cm_id object might have been destroyed during RDMA connection
415 * establishment error flow to avoid getting other cma events, thus
416 * the destruction of the QP shouldn't use rdma_cm API.
418 ib_destroy_qp(queue->qp);
419 ib_free_cq(queue->ib_cq);
421 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
422 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
424 nvme_rdma_dev_put(dev);
427 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
429 return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
430 ibdev->attrs.max_fast_reg_page_list_len);
433 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
435 struct ib_device *ibdev;
436 const int send_wr_factor = 3; /* MR, SEND, INV */
437 const int cq_factor = send_wr_factor + 1; /* + RECV */
438 int comp_vector, idx = nvme_rdma_queue_idx(queue);
439 enum ib_poll_context poll_ctx;
442 queue->device = nvme_rdma_find_get_device(queue->cm_id);
443 if (!queue->device) {
444 dev_err(queue->cm_id->device->dev.parent,
445 "no client data found!\n");
446 return -ECONNREFUSED;
448 ibdev = queue->device->dev;
451 * Spread I/O queues completion vectors according their queue index.
452 * Admin queues can always go on completion vector 0.
454 comp_vector = idx == 0 ? idx : idx - 1;
456 /* Polling queues need direct cq polling context */
457 if (nvme_rdma_poll_queue(queue))
458 poll_ctx = IB_POLL_DIRECT;
460 poll_ctx = IB_POLL_SOFTIRQ;
462 /* +1 for ib_stop_cq */
463 queue->ib_cq = ib_alloc_cq(ibdev, queue,
464 cq_factor * queue->queue_size + 1,
465 comp_vector, poll_ctx);
466 if (IS_ERR(queue->ib_cq)) {
467 ret = PTR_ERR(queue->ib_cq);
471 ret = nvme_rdma_create_qp(queue, send_wr_factor);
473 goto out_destroy_ib_cq;
475 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
476 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
477 if (!queue->rsp_ring) {
482 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
485 nvme_rdma_get_max_fr_pages(ibdev));
487 dev_err(queue->ctrl->ctrl.device,
488 "failed to initialize MR pool sized %d for QID %d\n",
489 queue->queue_size, idx);
490 goto out_destroy_ring;
493 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
498 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
499 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
501 rdma_destroy_qp(queue->cm_id);
503 ib_free_cq(queue->ib_cq);
505 nvme_rdma_dev_put(queue->device);
509 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
510 int idx, size_t queue_size)
512 struct nvme_rdma_queue *queue;
513 struct sockaddr *src_addr = NULL;
516 queue = &ctrl->queues[idx];
518 init_completion(&queue->cm_done);
521 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
523 queue->cmnd_capsule_len = sizeof(struct nvme_command);
525 queue->queue_size = queue_size;
527 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
528 RDMA_PS_TCP, IB_QPT_RC);
529 if (IS_ERR(queue->cm_id)) {
530 dev_info(ctrl->ctrl.device,
531 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
532 return PTR_ERR(queue->cm_id);
535 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
536 src_addr = (struct sockaddr *)&ctrl->src_addr;
538 queue->cm_error = -ETIMEDOUT;
539 ret = rdma_resolve_addr(queue->cm_id, src_addr,
540 (struct sockaddr *)&ctrl->addr,
541 NVME_RDMA_CONNECT_TIMEOUT_MS);
543 dev_info(ctrl->ctrl.device,
544 "rdma_resolve_addr failed (%d).\n", ret);
545 goto out_destroy_cm_id;
548 ret = nvme_rdma_wait_for_cm(queue);
550 dev_info(ctrl->ctrl.device,
551 "rdma connection establishment failed (%d)\n", ret);
552 goto out_destroy_cm_id;
555 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
560 rdma_destroy_id(queue->cm_id);
561 nvme_rdma_destroy_queue_ib(queue);
565 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
567 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
570 rdma_disconnect(queue->cm_id);
571 ib_drain_qp(queue->qp);
574 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
576 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
579 nvme_rdma_destroy_queue_ib(queue);
580 rdma_destroy_id(queue->cm_id);
583 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
587 for (i = 1; i < ctrl->ctrl.queue_count; i++)
588 nvme_rdma_free_queue(&ctrl->queues[i]);
591 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
595 for (i = 1; i < ctrl->ctrl.queue_count; i++)
596 nvme_rdma_stop_queue(&ctrl->queues[i]);
599 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
601 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
602 bool poll = nvme_rdma_poll_queue(queue);
606 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
608 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
611 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
613 dev_info(ctrl->ctrl.device,
614 "failed to connect queue: %d ret=%d\n", idx, ret);
618 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
622 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
623 ret = nvme_rdma_start_queue(ctrl, i);
625 goto out_stop_queues;
631 for (i--; i >= 1; i--)
632 nvme_rdma_stop_queue(&ctrl->queues[i]);
636 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
638 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
639 struct ib_device *ibdev = ctrl->device->dev;
640 unsigned int nr_io_queues, nr_default_queues;
641 unsigned int nr_read_queues, nr_poll_queues;
644 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
645 min(opts->nr_io_queues, num_online_cpus()));
646 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors,
647 min(opts->nr_write_queues, num_online_cpus()));
648 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
649 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
651 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
655 ctrl->ctrl.queue_count = nr_io_queues + 1;
656 if (ctrl->ctrl.queue_count < 2)
659 dev_info(ctrl->ctrl.device,
660 "creating %d I/O queues.\n", nr_io_queues);
662 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
664 * separate read/write queues
665 * hand out dedicated default queues only after we have
666 * sufficient read queues.
668 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
669 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
670 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
671 min(nr_default_queues, nr_io_queues);
672 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
675 * shared read/write queues
676 * either no write queues were requested, or we don't have
677 * sufficient queue count to have dedicated default queues.
679 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
680 min(nr_read_queues, nr_io_queues);
681 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
684 if (opts->nr_poll_queues && nr_io_queues) {
685 /* map dedicated poll queues only if we have queues left */
686 ctrl->io_queues[HCTX_TYPE_POLL] =
687 min(nr_poll_queues, nr_io_queues);
690 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
691 ret = nvme_rdma_alloc_queue(ctrl, i,
692 ctrl->ctrl.sqsize + 1);
694 goto out_free_queues;
700 for (i--; i >= 1; i--)
701 nvme_rdma_free_queue(&ctrl->queues[i]);
706 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
709 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
710 struct blk_mq_tag_set *set;
714 set = &ctrl->admin_tag_set;
715 memset(set, 0, sizeof(*set));
716 set->ops = &nvme_rdma_admin_mq_ops;
717 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
718 set->reserved_tags = 2; /* connect + keep-alive */
719 set->numa_node = nctrl->numa_node;
720 set->cmd_size = sizeof(struct nvme_rdma_request) +
721 SG_CHUNK_SIZE * sizeof(struct scatterlist);
722 set->driver_data = ctrl;
723 set->nr_hw_queues = 1;
724 set->timeout = ADMIN_TIMEOUT;
725 set->flags = BLK_MQ_F_NO_SCHED;
727 set = &ctrl->tag_set;
728 memset(set, 0, sizeof(*set));
729 set->ops = &nvme_rdma_mq_ops;
730 set->queue_depth = nctrl->sqsize + 1;
731 set->reserved_tags = 1; /* fabric connect */
732 set->numa_node = nctrl->numa_node;
733 set->flags = BLK_MQ_F_SHOULD_MERGE;
734 set->cmd_size = sizeof(struct nvme_rdma_request) +
735 SG_CHUNK_SIZE * sizeof(struct scatterlist);
736 set->driver_data = ctrl;
737 set->nr_hw_queues = nctrl->queue_count - 1;
738 set->timeout = NVME_IO_TIMEOUT;
739 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
742 ret = blk_mq_alloc_tag_set(set);
749 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
753 blk_cleanup_queue(ctrl->ctrl.admin_q);
754 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
756 if (ctrl->async_event_sqe.data) {
757 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
758 sizeof(struct nvme_command), DMA_TO_DEVICE);
759 ctrl->async_event_sqe.data = NULL;
761 nvme_rdma_free_queue(&ctrl->queues[0]);
764 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
769 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
773 ctrl->device = ctrl->queues[0].device;
774 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
776 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
779 * Bind the async event SQE DMA mapping to the admin queue lifetime.
780 * It's safe, since any chage in the underlying RDMA device will issue
781 * error recovery and queue re-creation.
783 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
784 sizeof(struct nvme_command), DMA_TO_DEVICE);
789 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
790 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
791 error = PTR_ERR(ctrl->ctrl.admin_tagset);
792 goto out_free_async_qe;
795 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
796 if (IS_ERR(ctrl->ctrl.admin_q)) {
797 error = PTR_ERR(ctrl->ctrl.admin_q);
798 goto out_free_tagset;
802 error = nvme_rdma_start_queue(ctrl, 0);
804 goto out_cleanup_queue;
806 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
809 dev_err(ctrl->ctrl.device,
810 "prop_get NVME_REG_CAP failed\n");
815 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
817 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
821 ctrl->ctrl.max_hw_sectors =
822 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
824 error = nvme_init_identify(&ctrl->ctrl);
831 nvme_rdma_stop_queue(&ctrl->queues[0]);
834 blk_cleanup_queue(ctrl->ctrl.admin_q);
837 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
839 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
840 sizeof(struct nvme_command), DMA_TO_DEVICE);
841 ctrl->async_event_sqe.data = NULL;
843 nvme_rdma_free_queue(&ctrl->queues[0]);
847 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
851 blk_cleanup_queue(ctrl->ctrl.connect_q);
852 blk_mq_free_tag_set(ctrl->ctrl.tagset);
854 nvme_rdma_free_io_queues(ctrl);
857 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
861 ret = nvme_rdma_alloc_io_queues(ctrl);
866 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
867 if (IS_ERR(ctrl->ctrl.tagset)) {
868 ret = PTR_ERR(ctrl->ctrl.tagset);
869 goto out_free_io_queues;
872 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
873 if (IS_ERR(ctrl->ctrl.connect_q)) {
874 ret = PTR_ERR(ctrl->ctrl.connect_q);
875 goto out_free_tag_set;
878 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
879 ctrl->ctrl.queue_count - 1);
882 ret = nvme_rdma_start_io_queues(ctrl);
884 goto out_cleanup_connect_q;
888 out_cleanup_connect_q:
890 blk_cleanup_queue(ctrl->ctrl.connect_q);
893 blk_mq_free_tag_set(ctrl->ctrl.tagset);
895 nvme_rdma_free_io_queues(ctrl);
899 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
902 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
903 nvme_rdma_stop_queue(&ctrl->queues[0]);
904 if (ctrl->ctrl.admin_tagset)
905 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
906 nvme_cancel_request, &ctrl->ctrl);
907 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
908 nvme_rdma_destroy_admin_queue(ctrl, remove);
911 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
914 if (ctrl->ctrl.queue_count > 1) {
915 nvme_stop_queues(&ctrl->ctrl);
916 nvme_rdma_stop_io_queues(ctrl);
917 if (ctrl->ctrl.tagset)
918 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
919 nvme_cancel_request, &ctrl->ctrl);
921 nvme_start_queues(&ctrl->ctrl);
922 nvme_rdma_destroy_io_queues(ctrl, remove);
926 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
928 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
930 if (list_empty(&ctrl->list))
933 mutex_lock(&nvme_rdma_ctrl_mutex);
934 list_del(&ctrl->list);
935 mutex_unlock(&nvme_rdma_ctrl_mutex);
937 nvmf_free_options(nctrl->opts);
943 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
945 /* If we are resetting/deleting then do nothing */
946 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
947 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
948 ctrl->ctrl.state == NVME_CTRL_LIVE);
952 if (nvmf_should_reconnect(&ctrl->ctrl)) {
953 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
954 ctrl->ctrl.opts->reconnect_delay);
955 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
956 ctrl->ctrl.opts->reconnect_delay * HZ);
958 nvme_delete_ctrl(&ctrl->ctrl);
962 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
967 ret = nvme_rdma_configure_admin_queue(ctrl, new);
971 if (ctrl->ctrl.icdoff) {
972 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
976 if (!(ctrl->ctrl.sgls & (1 << 2))) {
977 dev_err(ctrl->ctrl.device,
978 "Mandatory keyed sgls are not supported!\n");
982 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
983 dev_warn(ctrl->ctrl.device,
984 "queue_size %zu > ctrl sqsize %u, clamping down\n",
985 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
988 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
989 dev_warn(ctrl->ctrl.device,
990 "sqsize %u > ctrl maxcmd %u, clamping down\n",
991 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
992 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
995 if (ctrl->ctrl.sgls & (1 << 20))
996 ctrl->use_inline_data = true;
998 if (ctrl->ctrl.queue_count > 1) {
999 ret = nvme_rdma_configure_io_queues(ctrl, new);
1004 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1006 /* state change failure is ok if we're in DELETING state */
1007 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1012 nvme_start_ctrl(&ctrl->ctrl);
1016 if (ctrl->ctrl.queue_count > 1)
1017 nvme_rdma_destroy_io_queues(ctrl, new);
1019 nvme_rdma_stop_queue(&ctrl->queues[0]);
1020 nvme_rdma_destroy_admin_queue(ctrl, new);
1024 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1026 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1027 struct nvme_rdma_ctrl, reconnect_work);
1029 ++ctrl->ctrl.nr_reconnects;
1031 if (nvme_rdma_setup_ctrl(ctrl, false))
1034 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1035 ctrl->ctrl.nr_reconnects);
1037 ctrl->ctrl.nr_reconnects = 0;
1042 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1043 ctrl->ctrl.nr_reconnects);
1044 nvme_rdma_reconnect_or_remove(ctrl);
1047 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1049 struct nvme_rdma_ctrl *ctrl = container_of(work,
1050 struct nvme_rdma_ctrl, err_work);
1052 nvme_stop_keep_alive(&ctrl->ctrl);
1053 nvme_rdma_teardown_io_queues(ctrl, false);
1054 nvme_start_queues(&ctrl->ctrl);
1055 nvme_rdma_teardown_admin_queue(ctrl, false);
1057 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1058 /* state change failure is ok if we're in DELETING state */
1059 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1063 nvme_rdma_reconnect_or_remove(ctrl);
1066 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1068 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1071 queue_work(nvme_wq, &ctrl->err_work);
1074 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1077 struct nvme_rdma_queue *queue = cq->cq_context;
1078 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1080 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1081 dev_info(ctrl->ctrl.device,
1082 "%s for CQE 0x%p failed with status %s (%d)\n",
1084 ib_wc_status_msg(wc->status), wc->status);
1085 nvme_rdma_error_recovery(ctrl);
1088 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1090 if (unlikely(wc->status != IB_WC_SUCCESS))
1091 nvme_rdma_wr_error(cq, wc, "MEMREG");
1094 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1096 struct nvme_rdma_request *req =
1097 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1098 struct request *rq = blk_mq_rq_from_pdu(req);
1100 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1101 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1105 if (refcount_dec_and_test(&req->ref))
1106 nvme_end_request(rq, req->status, req->result);
1110 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1111 struct nvme_rdma_request *req)
1113 struct ib_send_wr wr = {
1114 .opcode = IB_WR_LOCAL_INV,
1117 .send_flags = IB_SEND_SIGNALED,
1118 .ex.invalidate_rkey = req->mr->rkey,
1121 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1122 wr.wr_cqe = &req->reg_cqe;
1124 return ib_post_send(queue->qp, &wr, NULL);
1127 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1130 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1131 struct nvme_rdma_device *dev = queue->device;
1132 struct ib_device *ibdev = dev->dev;
1134 if (!blk_rq_nr_phys_segments(rq))
1138 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1142 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1143 req->nents, rq_data_dir(rq) ==
1144 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1146 nvme_cleanup_cmd(rq);
1147 sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
1150 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1152 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1155 put_unaligned_le24(0, sg->length);
1156 put_unaligned_le32(0, sg->key);
1157 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1161 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1162 struct nvme_rdma_request *req, struct nvme_command *c,
1165 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1166 struct scatterlist *sgl = req->sg_table.sgl;
1167 struct ib_sge *sge = &req->sge[1];
1171 for (i = 0; i < count; i++, sgl++, sge++) {
1172 sge->addr = sg_dma_address(sgl);
1173 sge->length = sg_dma_len(sgl);
1174 sge->lkey = queue->device->pd->local_dma_lkey;
1178 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1179 sg->length = cpu_to_le32(len);
1180 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1182 req->num_sge += count;
1186 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1187 struct nvme_rdma_request *req, struct nvme_command *c)
1189 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1191 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1192 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1193 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1194 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1198 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1199 struct nvme_rdma_request *req, struct nvme_command *c,
1202 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1205 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1206 if (WARN_ON_ONCE(!req->mr))
1210 * Align the MR to a 4K page size to match the ctrl page size and
1211 * the block virtual boundary.
1213 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1214 if (unlikely(nr < count)) {
1215 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1222 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1224 req->reg_cqe.done = nvme_rdma_memreg_done;
1225 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1226 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1227 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1228 req->reg_wr.wr.num_sge = 0;
1229 req->reg_wr.mr = req->mr;
1230 req->reg_wr.key = req->mr->rkey;
1231 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1232 IB_ACCESS_REMOTE_READ |
1233 IB_ACCESS_REMOTE_WRITE;
1235 sg->addr = cpu_to_le64(req->mr->iova);
1236 put_unaligned_le24(req->mr->length, sg->length);
1237 put_unaligned_le32(req->mr->rkey, sg->key);
1238 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1239 NVME_SGL_FMT_INVALIDATE;
1244 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1245 struct request *rq, struct nvme_command *c)
1247 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1248 struct nvme_rdma_device *dev = queue->device;
1249 struct ib_device *ibdev = dev->dev;
1253 refcount_set(&req->ref, 2); /* send and recv completions */
1255 c->common.flags |= NVME_CMD_SGL_METABUF;
1257 if (!blk_rq_nr_phys_segments(rq))
1258 return nvme_rdma_set_sg_null(c);
1260 req->sg_table.sgl = req->first_sgl;
1261 ret = sg_alloc_table_chained(&req->sg_table,
1262 blk_rq_nr_phys_segments(rq), req->sg_table.sgl,
1267 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1269 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1270 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1271 if (unlikely(count <= 0)) {
1273 goto out_free_table;
1276 if (count <= dev->num_inline_segments) {
1277 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1278 queue->ctrl->use_inline_data &&
1279 blk_rq_payload_bytes(rq) <=
1280 nvme_rdma_inline_data_size(queue)) {
1281 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1285 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1286 ret = nvme_rdma_map_sg_single(queue, req, c);
1291 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1299 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1300 req->nents, rq_data_dir(rq) ==
1301 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1303 sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
1307 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1309 struct nvme_rdma_qe *qe =
1310 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1311 struct nvme_rdma_request *req =
1312 container_of(qe, struct nvme_rdma_request, sqe);
1313 struct request *rq = blk_mq_rq_from_pdu(req);
1315 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1316 nvme_rdma_wr_error(cq, wc, "SEND");
1320 if (refcount_dec_and_test(&req->ref))
1321 nvme_end_request(rq, req->status, req->result);
1324 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1325 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1326 struct ib_send_wr *first)
1328 struct ib_send_wr wr;
1331 sge->addr = qe->dma;
1332 sge->length = sizeof(struct nvme_command),
1333 sge->lkey = queue->device->pd->local_dma_lkey;
1336 wr.wr_cqe = &qe->cqe;
1338 wr.num_sge = num_sge;
1339 wr.opcode = IB_WR_SEND;
1340 wr.send_flags = IB_SEND_SIGNALED;
1347 ret = ib_post_send(queue->qp, first, NULL);
1348 if (unlikely(ret)) {
1349 dev_err(queue->ctrl->ctrl.device,
1350 "%s failed with error code %d\n", __func__, ret);
1355 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1356 struct nvme_rdma_qe *qe)
1358 struct ib_recv_wr wr;
1362 list.addr = qe->dma;
1363 list.length = sizeof(struct nvme_completion);
1364 list.lkey = queue->device->pd->local_dma_lkey;
1366 qe->cqe.done = nvme_rdma_recv_done;
1369 wr.wr_cqe = &qe->cqe;
1373 ret = ib_post_recv(queue->qp, &wr, NULL);
1374 if (unlikely(ret)) {
1375 dev_err(queue->ctrl->ctrl.device,
1376 "%s failed with error code %d\n", __func__, ret);
1381 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1383 u32 queue_idx = nvme_rdma_queue_idx(queue);
1386 return queue->ctrl->admin_tag_set.tags[queue_idx];
1387 return queue->ctrl->tag_set.tags[queue_idx - 1];
1390 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1392 if (unlikely(wc->status != IB_WC_SUCCESS))
1393 nvme_rdma_wr_error(cq, wc, "ASYNC");
1396 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1398 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1399 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1400 struct ib_device *dev = queue->device->dev;
1401 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1402 struct nvme_command *cmd = sqe->data;
1406 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1408 memset(cmd, 0, sizeof(*cmd));
1409 cmd->common.opcode = nvme_admin_async_event;
1410 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1411 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1412 nvme_rdma_set_sg_null(cmd);
1414 sqe->cqe.done = nvme_rdma_async_done;
1416 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1419 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1423 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1424 struct nvme_completion *cqe, struct ib_wc *wc)
1427 struct nvme_rdma_request *req;
1429 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1431 dev_err(queue->ctrl->ctrl.device,
1432 "tag 0x%x on QP %#x not found\n",
1433 cqe->command_id, queue->qp->qp_num);
1434 nvme_rdma_error_recovery(queue->ctrl);
1437 req = blk_mq_rq_to_pdu(rq);
1439 req->status = cqe->status;
1440 req->result = cqe->result;
1442 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1443 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1444 dev_err(queue->ctrl->ctrl.device,
1445 "Bogus remote invalidation for rkey %#x\n",
1447 nvme_rdma_error_recovery(queue->ctrl);
1449 } else if (req->mr) {
1452 ret = nvme_rdma_inv_rkey(queue, req);
1453 if (unlikely(ret < 0)) {
1454 dev_err(queue->ctrl->ctrl.device,
1455 "Queueing INV WR for rkey %#x failed (%d)\n",
1456 req->mr->rkey, ret);
1457 nvme_rdma_error_recovery(queue->ctrl);
1459 /* the local invalidation completion will end the request */
1463 if (refcount_dec_and_test(&req->ref))
1464 nvme_end_request(rq, req->status, req->result);
1467 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1469 struct nvme_rdma_qe *qe =
1470 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1471 struct nvme_rdma_queue *queue = cq->cq_context;
1472 struct ib_device *ibdev = queue->device->dev;
1473 struct nvme_completion *cqe = qe->data;
1474 const size_t len = sizeof(struct nvme_completion);
1476 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1477 nvme_rdma_wr_error(cq, wc, "RECV");
1481 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1483 * AEN requests are special as they don't time out and can
1484 * survive any kind of queue freeze and often don't respond to
1485 * aborts. We don't even bother to allocate a struct request
1486 * for them but rather special case them here.
1488 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1489 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1490 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1493 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1494 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1496 nvme_rdma_post_recv(queue, qe);
1499 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1503 for (i = 0; i < queue->queue_size; i++) {
1504 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1506 goto out_destroy_queue_ib;
1511 out_destroy_queue_ib:
1512 nvme_rdma_destroy_queue_ib(queue);
1516 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1517 struct rdma_cm_event *ev)
1519 struct rdma_cm_id *cm_id = queue->cm_id;
1520 int status = ev->status;
1521 const char *rej_msg;
1522 const struct nvme_rdma_cm_rej *rej_data;
1525 rej_msg = rdma_reject_msg(cm_id, status);
1526 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1528 if (rej_data && rej_data_len >= sizeof(u16)) {
1529 u16 sts = le16_to_cpu(rej_data->sts);
1531 dev_err(queue->ctrl->ctrl.device,
1532 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1533 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1535 dev_err(queue->ctrl->ctrl.device,
1536 "Connect rejected: status %d (%s).\n", status, rej_msg);
1542 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1546 ret = nvme_rdma_create_queue_ib(queue);
1550 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1552 dev_err(queue->ctrl->ctrl.device,
1553 "rdma_resolve_route failed (%d).\n",
1555 goto out_destroy_queue;
1561 nvme_rdma_destroy_queue_ib(queue);
1565 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1567 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1568 struct rdma_conn_param param = { };
1569 struct nvme_rdma_cm_req priv = { };
1572 param.qp_num = queue->qp->qp_num;
1573 param.flow_control = 1;
1575 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1576 /* maximum retry count */
1577 param.retry_count = 7;
1578 param.rnr_retry_count = 7;
1579 param.private_data = &priv;
1580 param.private_data_len = sizeof(priv);
1582 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1583 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1585 * set the admin queue depth to the minimum size
1586 * specified by the Fabrics standard.
1588 if (priv.qid == 0) {
1589 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1590 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1593 * current interpretation of the fabrics spec
1594 * is at minimum you make hrqsize sqsize+1, or a
1595 * 1's based representation of sqsize.
1597 priv.hrqsize = cpu_to_le16(queue->queue_size);
1598 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1601 ret = rdma_connect(queue->cm_id, ¶m);
1603 dev_err(ctrl->ctrl.device,
1604 "rdma_connect failed (%d).\n", ret);
1605 goto out_destroy_queue_ib;
1610 out_destroy_queue_ib:
1611 nvme_rdma_destroy_queue_ib(queue);
1615 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1616 struct rdma_cm_event *ev)
1618 struct nvme_rdma_queue *queue = cm_id->context;
1621 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1622 rdma_event_msg(ev->event), ev->event,
1625 switch (ev->event) {
1626 case RDMA_CM_EVENT_ADDR_RESOLVED:
1627 cm_error = nvme_rdma_addr_resolved(queue);
1629 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1630 cm_error = nvme_rdma_route_resolved(queue);
1632 case RDMA_CM_EVENT_ESTABLISHED:
1633 queue->cm_error = nvme_rdma_conn_established(queue);
1634 /* complete cm_done regardless of success/failure */
1635 complete(&queue->cm_done);
1637 case RDMA_CM_EVENT_REJECTED:
1638 nvme_rdma_destroy_queue_ib(queue);
1639 cm_error = nvme_rdma_conn_rejected(queue, ev);
1641 case RDMA_CM_EVENT_ROUTE_ERROR:
1642 case RDMA_CM_EVENT_CONNECT_ERROR:
1643 case RDMA_CM_EVENT_UNREACHABLE:
1644 nvme_rdma_destroy_queue_ib(queue);
1646 case RDMA_CM_EVENT_ADDR_ERROR:
1647 dev_dbg(queue->ctrl->ctrl.device,
1648 "CM error event %d\n", ev->event);
1649 cm_error = -ECONNRESET;
1651 case RDMA_CM_EVENT_DISCONNECTED:
1652 case RDMA_CM_EVENT_ADDR_CHANGE:
1653 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1654 dev_dbg(queue->ctrl->ctrl.device,
1655 "disconnect received - connection closed\n");
1656 nvme_rdma_error_recovery(queue->ctrl);
1658 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1659 /* device removal is handled via the ib_client API */
1662 dev_err(queue->ctrl->ctrl.device,
1663 "Unexpected RDMA CM event (%d)\n", ev->event);
1664 nvme_rdma_error_recovery(queue->ctrl);
1669 queue->cm_error = cm_error;
1670 complete(&queue->cm_done);
1676 static enum blk_eh_timer_return
1677 nvme_rdma_timeout(struct request *rq, bool reserved)
1679 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1680 struct nvme_rdma_queue *queue = req->queue;
1681 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1683 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1684 rq->tag, nvme_rdma_queue_idx(queue));
1686 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1688 * Teardown immediately if controller times out while starting
1689 * or we are already started error recovery. all outstanding
1690 * requests are completed on shutdown, so we return BLK_EH_DONE.
1692 flush_work(&ctrl->err_work);
1693 nvme_rdma_teardown_io_queues(ctrl, false);
1694 nvme_rdma_teardown_admin_queue(ctrl, false);
1698 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1699 nvme_rdma_error_recovery(ctrl);
1701 return BLK_EH_RESET_TIMER;
1704 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1705 const struct blk_mq_queue_data *bd)
1707 struct nvme_ns *ns = hctx->queue->queuedata;
1708 struct nvme_rdma_queue *queue = hctx->driver_data;
1709 struct request *rq = bd->rq;
1710 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1711 struct nvme_rdma_qe *sqe = &req->sqe;
1712 struct nvme_command *c = sqe->data;
1713 struct ib_device *dev;
1714 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1718 WARN_ON_ONCE(rq->tag < 0);
1720 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1721 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1723 dev = queue->device->dev;
1725 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1726 sizeof(struct nvme_command),
1728 err = ib_dma_mapping_error(dev, req->sqe.dma);
1730 return BLK_STS_RESOURCE;
1732 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1733 sizeof(struct nvme_command), DMA_TO_DEVICE);
1735 ret = nvme_setup_cmd(ns, rq, c);
1739 blk_mq_start_request(rq);
1741 err = nvme_rdma_map_data(queue, rq, c);
1742 if (unlikely(err < 0)) {
1743 dev_err(queue->ctrl->ctrl.device,
1744 "Failed to map data (%d)\n", err);
1745 nvme_cleanup_cmd(rq);
1749 sqe->cqe.done = nvme_rdma_send_done;
1751 ib_dma_sync_single_for_device(dev, sqe->dma,
1752 sizeof(struct nvme_command), DMA_TO_DEVICE);
1754 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1755 req->mr ? &req->reg_wr.wr : NULL);
1756 if (unlikely(err)) {
1757 nvme_rdma_unmap_data(queue, rq);
1764 if (err == -ENOMEM || err == -EAGAIN)
1765 ret = BLK_STS_RESOURCE;
1767 ret = BLK_STS_IOERR;
1769 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
1774 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1776 struct nvme_rdma_queue *queue = hctx->driver_data;
1778 return ib_process_cq_direct(queue->ib_cq, -1);
1781 static void nvme_rdma_complete_rq(struct request *rq)
1783 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1784 struct nvme_rdma_queue *queue = req->queue;
1785 struct ib_device *ibdev = queue->device->dev;
1787 nvme_rdma_unmap_data(queue, rq);
1788 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
1790 nvme_complete_rq(rq);
1793 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1795 struct nvme_rdma_ctrl *ctrl = set->driver_data;
1796 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1798 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
1799 /* separate read/write queues */
1800 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1801 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1802 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1803 set->map[HCTX_TYPE_READ].nr_queues =
1804 ctrl->io_queues[HCTX_TYPE_READ];
1805 set->map[HCTX_TYPE_READ].queue_offset =
1806 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1808 /* shared read/write queues */
1809 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1810 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1811 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1812 set->map[HCTX_TYPE_READ].nr_queues =
1813 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1814 set->map[HCTX_TYPE_READ].queue_offset = 0;
1816 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1817 ctrl->device->dev, 0);
1818 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1819 ctrl->device->dev, 0);
1821 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
1822 /* map dedicated poll queues only if we have queues left */
1823 set->map[HCTX_TYPE_POLL].nr_queues =
1824 ctrl->io_queues[HCTX_TYPE_POLL];
1825 set->map[HCTX_TYPE_POLL].queue_offset =
1826 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1827 ctrl->io_queues[HCTX_TYPE_READ];
1828 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1831 dev_info(ctrl->ctrl.device,
1832 "mapped %d/%d/%d default/read/poll queues.\n",
1833 ctrl->io_queues[HCTX_TYPE_DEFAULT],
1834 ctrl->io_queues[HCTX_TYPE_READ],
1835 ctrl->io_queues[HCTX_TYPE_POLL]);
1840 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1841 .queue_rq = nvme_rdma_queue_rq,
1842 .complete = nvme_rdma_complete_rq,
1843 .init_request = nvme_rdma_init_request,
1844 .exit_request = nvme_rdma_exit_request,
1845 .init_hctx = nvme_rdma_init_hctx,
1846 .timeout = nvme_rdma_timeout,
1847 .map_queues = nvme_rdma_map_queues,
1848 .poll = nvme_rdma_poll,
1851 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1852 .queue_rq = nvme_rdma_queue_rq,
1853 .complete = nvme_rdma_complete_rq,
1854 .init_request = nvme_rdma_init_request,
1855 .exit_request = nvme_rdma_exit_request,
1856 .init_hctx = nvme_rdma_init_admin_hctx,
1857 .timeout = nvme_rdma_timeout,
1860 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1862 cancel_work_sync(&ctrl->err_work);
1863 cancel_delayed_work_sync(&ctrl->reconnect_work);
1865 nvme_rdma_teardown_io_queues(ctrl, shutdown);
1867 nvme_shutdown_ctrl(&ctrl->ctrl);
1869 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1870 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1873 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1875 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1878 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1880 struct nvme_rdma_ctrl *ctrl =
1881 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1883 nvme_stop_ctrl(&ctrl->ctrl);
1884 nvme_rdma_shutdown_ctrl(ctrl, false);
1886 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1887 /* state change failure should never happen */
1892 if (nvme_rdma_setup_ctrl(ctrl, false))
1898 ++ctrl->ctrl.nr_reconnects;
1899 nvme_rdma_reconnect_or_remove(ctrl);
1902 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1904 .module = THIS_MODULE,
1905 .flags = NVME_F_FABRICS,
1906 .reg_read32 = nvmf_reg_read32,
1907 .reg_read64 = nvmf_reg_read64,
1908 .reg_write32 = nvmf_reg_write32,
1909 .free_ctrl = nvme_rdma_free_ctrl,
1910 .submit_async_event = nvme_rdma_submit_async_event,
1911 .delete_ctrl = nvme_rdma_delete_ctrl,
1912 .get_address = nvmf_get_address,
1916 * Fails a connection request if it matches an existing controller
1917 * (association) with the same tuple:
1918 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1920 * if local address is not specified in the request, it will match an
1921 * existing controller with all the other parameters the same and no
1922 * local port address specified as well.
1924 * The ports don't need to be compared as they are intrinsically
1925 * already matched by the port pointers supplied.
1928 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1930 struct nvme_rdma_ctrl *ctrl;
1933 mutex_lock(&nvme_rdma_ctrl_mutex);
1934 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1935 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1939 mutex_unlock(&nvme_rdma_ctrl_mutex);
1944 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1945 struct nvmf_ctrl_options *opts)
1947 struct nvme_rdma_ctrl *ctrl;
1951 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1953 return ERR_PTR(-ENOMEM);
1954 ctrl->ctrl.opts = opts;
1955 INIT_LIST_HEAD(&ctrl->list);
1957 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1959 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1960 if (!opts->trsvcid) {
1964 opts->mask |= NVMF_OPT_TRSVCID;
1967 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1968 opts->traddr, opts->trsvcid, &ctrl->addr);
1970 pr_err("malformed address passed: %s:%s\n",
1971 opts->traddr, opts->trsvcid);
1975 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1976 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1977 opts->host_traddr, NULL, &ctrl->src_addr);
1979 pr_err("malformed src address passed: %s\n",
1985 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1990 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1991 nvme_rdma_reconnect_ctrl_work);
1992 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1993 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1995 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
1996 opts->nr_poll_queues + 1;
1997 ctrl->ctrl.sqsize = opts->queue_size - 1;
1998 ctrl->ctrl.kato = opts->kato;
2001 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2006 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2007 0 /* no quirks, we're perfect! */);
2009 goto out_kfree_queues;
2011 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2012 WARN_ON_ONCE(!changed);
2014 ret = nvme_rdma_setup_ctrl(ctrl, true);
2016 goto out_uninit_ctrl;
2018 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2019 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2021 nvme_get_ctrl(&ctrl->ctrl);
2023 mutex_lock(&nvme_rdma_ctrl_mutex);
2024 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2025 mutex_unlock(&nvme_rdma_ctrl_mutex);
2030 nvme_uninit_ctrl(&ctrl->ctrl);
2031 nvme_put_ctrl(&ctrl->ctrl);
2034 return ERR_PTR(ret);
2036 kfree(ctrl->queues);
2039 return ERR_PTR(ret);
2042 static struct nvmf_transport_ops nvme_rdma_transport = {
2044 .module = THIS_MODULE,
2045 .required_opts = NVMF_OPT_TRADDR,
2046 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2047 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2048 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES,
2049 .create_ctrl = nvme_rdma_create_ctrl,
2052 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2054 struct nvme_rdma_ctrl *ctrl;
2055 struct nvme_rdma_device *ndev;
2058 mutex_lock(&device_list_mutex);
2059 list_for_each_entry(ndev, &device_list, entry) {
2060 if (ndev->dev == ib_device) {
2065 mutex_unlock(&device_list_mutex);
2070 /* Delete all controllers using this device */
2071 mutex_lock(&nvme_rdma_ctrl_mutex);
2072 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2073 if (ctrl->device->dev != ib_device)
2075 nvme_delete_ctrl(&ctrl->ctrl);
2077 mutex_unlock(&nvme_rdma_ctrl_mutex);
2079 flush_workqueue(nvme_delete_wq);
2082 static struct ib_client nvme_rdma_ib_client = {
2083 .name = "nvme_rdma",
2084 .remove = nvme_rdma_remove_one
2087 static int __init nvme_rdma_init_module(void)
2091 ret = ib_register_client(&nvme_rdma_ib_client);
2095 ret = nvmf_register_transport(&nvme_rdma_transport);
2097 goto err_unreg_client;
2102 ib_unregister_client(&nvme_rdma_ib_client);
2106 static void __exit nvme_rdma_cleanup_module(void)
2108 nvmf_unregister_transport(&nvme_rdma_transport);
2109 ib_unregister_client(&nvme_rdma_ib_client);
2112 module_init(nvme_rdma_init_module);
2113 module_exit(nvme_rdma_cleanup_module);
2115 MODULE_LICENSE("GPL v2");