1 // SPDX-License-Identifier: GPL-2.0
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
33 #define NVME_RDMA_MAX_SEGMENTS 256
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
42 struct nvme_rdma_device {
43 struct ib_device *dev;
46 struct list_head entry;
47 unsigned int num_inline_segments;
56 struct nvme_rdma_sgl {
58 struct sg_table sg_table;
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 struct nvme_request req;
65 struct nvme_rdma_qe sqe;
66 union nvme_result result;
69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
71 struct ib_reg_wr reg_wr;
72 struct ib_cqe reg_cqe;
73 struct nvme_rdma_queue *queue;
74 struct nvme_rdma_sgl data_sgl;
75 struct nvme_rdma_sgl *metadata_sgl;
79 enum nvme_rdma_queue_flags {
80 NVME_RDMA_Q_ALLOCATED = 0,
82 NVME_RDMA_Q_TR_READY = 2,
85 struct nvme_rdma_queue {
86 struct nvme_rdma_qe *rsp_ring;
88 size_t cmnd_capsule_len;
89 struct nvme_rdma_ctrl *ctrl;
90 struct nvme_rdma_device *device;
95 struct rdma_cm_id *cm_id;
97 struct completion cm_done;
102 struct nvme_rdma_ctrl {
103 /* read only in the hot path */
104 struct nvme_rdma_queue *queues;
106 /* other member variables */
107 struct blk_mq_tag_set tag_set;
108 struct work_struct err_work;
110 struct nvme_rdma_qe async_event_sqe;
112 struct delayed_work reconnect_work;
114 struct list_head list;
116 struct blk_mq_tag_set admin_tag_set;
117 struct nvme_rdma_device *device;
121 struct sockaddr_storage addr;
122 struct sockaddr_storage src_addr;
124 struct nvme_ctrl ctrl;
125 struct mutex teardown_lock;
126 bool use_inline_data;
127 u32 io_queues[HCTX_MAX_TYPES];
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
132 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
142 * Disabling this option makes small I/O goes faster, but is fundamentally
143 * unsafe. With it turned off we will have to register a global rkey that
144 * allows read and write access to all physical memory.
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 "Use memory registration even for contiguous memory regions");
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
161 return queue - queue->ctrl->queues;
164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
166 return nvme_rdma_queue_idx(queue) >
167 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 queue->ctrl->io_queues[HCTX_TYPE_READ];
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
173 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 size_t capsule_size, enum dma_data_direction dir)
179 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 size_t capsule_size, enum dma_data_direction dir)
186 qe->data = kzalloc(capsule_size, GFP_KERNEL);
190 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 if (ib_dma_mapping_error(ibdev, qe->dma)) {
200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 size_t capsule_size, enum dma_data_direction dir)
206 for (i = 0; i < ib_queue_size; i++)
207 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 size_t ib_queue_size, size_t capsule_size,
213 enum dma_data_direction dir)
215 struct nvme_rdma_qe *ring;
218 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
223 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 * lifetime. It's safe, since any chage in the underlying RDMA device
225 * will issue error recovery and queue re-creation.
227 for (i = 0; i < ib_queue_size; i++) {
228 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
235 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
241 pr_debug("QP event %s (%d)\n",
242 ib_event_msg(event->event), event->event);
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
250 ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
251 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
256 WARN_ON_ONCE(queue->cm_error > 0);
257 return queue->cm_error;
260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
262 struct nvme_rdma_device *dev = queue->device;
263 struct ib_qp_init_attr init_attr;
266 memset(&init_attr, 0, sizeof(init_attr));
267 init_attr.event_handler = nvme_rdma_qp_event;
269 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
271 init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 init_attr.cap.max_recv_sge = 1;
273 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
274 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 init_attr.qp_type = IB_QPT_RC;
276 init_attr.send_cq = queue->ib_cq;
277 init_attr.recv_cq = queue->ib_cq;
278 if (queue->pi_support)
279 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
280 init_attr.qp_context = queue;
282 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
284 queue->qp = queue->cm_id->qp;
288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
289 struct request *rq, unsigned int hctx_idx)
291 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293 kfree(req->sqe.data);
296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
297 struct request *rq, unsigned int hctx_idx,
298 unsigned int numa_node)
300 struct nvme_rdma_ctrl *ctrl = set->driver_data;
301 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
302 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
303 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
305 nvme_req(rq)->ctrl = &ctrl->ctrl;
306 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
310 /* metadata nvme_rdma_sgl struct is located after command's data SGL */
311 if (queue->pi_support)
312 req->metadata_sgl = (void *)nvme_req(rq) +
313 sizeof(struct nvme_rdma_request) +
314 NVME_RDMA_DATA_SGL_SIZE;
321 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
322 unsigned int hctx_idx)
324 struct nvme_rdma_ctrl *ctrl = data;
325 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
327 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
329 hctx->driver_data = queue;
333 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
334 unsigned int hctx_idx)
336 struct nvme_rdma_ctrl *ctrl = data;
337 struct nvme_rdma_queue *queue = &ctrl->queues[0];
339 BUG_ON(hctx_idx != 0);
341 hctx->driver_data = queue;
345 static void nvme_rdma_free_dev(struct kref *ref)
347 struct nvme_rdma_device *ndev =
348 container_of(ref, struct nvme_rdma_device, ref);
350 mutex_lock(&device_list_mutex);
351 list_del(&ndev->entry);
352 mutex_unlock(&device_list_mutex);
354 ib_dealloc_pd(ndev->pd);
358 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
360 kref_put(&dev->ref, nvme_rdma_free_dev);
363 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
365 return kref_get_unless_zero(&dev->ref);
368 static struct nvme_rdma_device *
369 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
371 struct nvme_rdma_device *ndev;
373 mutex_lock(&device_list_mutex);
374 list_for_each_entry(ndev, &device_list, entry) {
375 if (ndev->dev->node_guid == cm_id->device->node_guid &&
376 nvme_rdma_dev_get(ndev))
380 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
384 ndev->dev = cm_id->device;
385 kref_init(&ndev->ref);
387 ndev->pd = ib_alloc_pd(ndev->dev,
388 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
389 if (IS_ERR(ndev->pd))
392 if (!(ndev->dev->attrs.device_cap_flags &
393 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
394 dev_err(&ndev->dev->dev,
395 "Memory registrations not supported.\n");
399 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
400 ndev->dev->attrs.max_send_sge - 1);
401 list_add(&ndev->entry, &device_list);
403 mutex_unlock(&device_list_mutex);
407 ib_dealloc_pd(ndev->pd);
411 mutex_unlock(&device_list_mutex);
415 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
417 if (nvme_rdma_poll_queue(queue))
418 ib_free_cq(queue->ib_cq);
420 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
423 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
425 struct nvme_rdma_device *dev;
426 struct ib_device *ibdev;
428 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
434 if (queue->pi_support)
435 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
436 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
439 * The cm_id object might have been destroyed during RDMA connection
440 * establishment error flow to avoid getting other cma events, thus
441 * the destruction of the QP shouldn't use rdma_cm API.
443 ib_destroy_qp(queue->qp);
444 nvme_rdma_free_cq(queue);
446 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
447 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
449 nvme_rdma_dev_put(dev);
452 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
454 u32 max_page_list_len;
457 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
459 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
461 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
464 static int nvme_rdma_create_cq(struct ib_device *ibdev,
465 struct nvme_rdma_queue *queue)
467 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
468 enum ib_poll_context poll_ctx;
471 * Spread I/O queues completion vectors according their queue index.
472 * Admin queues can always go on completion vector 0.
474 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
476 /* Polling queues need direct cq polling context */
477 if (nvme_rdma_poll_queue(queue)) {
478 poll_ctx = IB_POLL_DIRECT;
479 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
480 comp_vector, poll_ctx);
482 poll_ctx = IB_POLL_SOFTIRQ;
483 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
484 comp_vector, poll_ctx);
487 if (IS_ERR(queue->ib_cq)) {
488 ret = PTR_ERR(queue->ib_cq);
495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
497 struct ib_device *ibdev;
498 const int send_wr_factor = 3; /* MR, SEND, INV */
499 const int cq_factor = send_wr_factor + 1; /* + RECV */
500 int ret, pages_per_mr;
502 queue->device = nvme_rdma_find_get_device(queue->cm_id);
503 if (!queue->device) {
504 dev_err(queue->cm_id->device->dev.parent,
505 "no client data found!\n");
506 return -ECONNREFUSED;
508 ibdev = queue->device->dev;
510 /* +1 for ib_stop_cq */
511 queue->cq_size = cq_factor * queue->queue_size + 1;
513 ret = nvme_rdma_create_cq(ibdev, queue);
517 ret = nvme_rdma_create_qp(queue, send_wr_factor);
519 goto out_destroy_ib_cq;
521 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
522 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
523 if (!queue->rsp_ring) {
529 * Currently we don't use SG_GAPS MR's so if the first entry is
530 * misaligned we'll end up using two entries for a single data page,
531 * so one additional entry is required.
533 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
534 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
539 dev_err(queue->ctrl->ctrl.device,
540 "failed to initialize MR pool sized %d for QID %d\n",
541 queue->queue_size, nvme_rdma_queue_idx(queue));
542 goto out_destroy_ring;
545 if (queue->pi_support) {
546 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
547 queue->queue_size, IB_MR_TYPE_INTEGRITY,
548 pages_per_mr, pages_per_mr);
550 dev_err(queue->ctrl->ctrl.device,
551 "failed to initialize PI MR pool sized %d for QID %d\n",
552 queue->queue_size, nvme_rdma_queue_idx(queue));
553 goto out_destroy_mr_pool;
557 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
562 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
564 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
565 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
567 rdma_destroy_qp(queue->cm_id);
569 nvme_rdma_free_cq(queue);
571 nvme_rdma_dev_put(queue->device);
575 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
576 int idx, size_t queue_size)
578 struct nvme_rdma_queue *queue;
579 struct sockaddr *src_addr = NULL;
582 queue = &ctrl->queues[idx];
584 if (idx && ctrl->ctrl.max_integrity_segments)
585 queue->pi_support = true;
587 queue->pi_support = false;
588 init_completion(&queue->cm_done);
591 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
593 queue->cmnd_capsule_len = sizeof(struct nvme_command);
595 queue->queue_size = queue_size;
597 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
598 RDMA_PS_TCP, IB_QPT_RC);
599 if (IS_ERR(queue->cm_id)) {
600 dev_info(ctrl->ctrl.device,
601 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
602 return PTR_ERR(queue->cm_id);
605 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
606 src_addr = (struct sockaddr *)&ctrl->src_addr;
608 queue->cm_error = -ETIMEDOUT;
609 ret = rdma_resolve_addr(queue->cm_id, src_addr,
610 (struct sockaddr *)&ctrl->addr,
611 NVME_RDMA_CONNECT_TIMEOUT_MS);
613 dev_info(ctrl->ctrl.device,
614 "rdma_resolve_addr failed (%d).\n", ret);
615 goto out_destroy_cm_id;
618 ret = nvme_rdma_wait_for_cm(queue);
620 dev_info(ctrl->ctrl.device,
621 "rdma connection establishment failed (%d)\n", ret);
622 goto out_destroy_cm_id;
625 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
630 rdma_destroy_id(queue->cm_id);
631 nvme_rdma_destroy_queue_ib(queue);
635 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
637 rdma_disconnect(queue->cm_id);
638 ib_drain_qp(queue->qp);
641 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
643 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
645 __nvme_rdma_stop_queue(queue);
648 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
650 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
653 nvme_rdma_destroy_queue_ib(queue);
654 rdma_destroy_id(queue->cm_id);
657 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
661 for (i = 1; i < ctrl->ctrl.queue_count; i++)
662 nvme_rdma_free_queue(&ctrl->queues[i]);
665 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
669 for (i = 1; i < ctrl->ctrl.queue_count; i++)
670 nvme_rdma_stop_queue(&ctrl->queues[i]);
673 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
675 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
676 bool poll = nvme_rdma_poll_queue(queue);
680 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
682 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
685 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
687 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
688 __nvme_rdma_stop_queue(queue);
689 dev_info(ctrl->ctrl.device,
690 "failed to connect queue: %d ret=%d\n", idx, ret);
695 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
699 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
700 ret = nvme_rdma_start_queue(ctrl, i);
702 goto out_stop_queues;
708 for (i--; i >= 1; i--)
709 nvme_rdma_stop_queue(&ctrl->queues[i]);
713 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
715 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
716 struct ib_device *ibdev = ctrl->device->dev;
717 unsigned int nr_io_queues, nr_default_queues;
718 unsigned int nr_read_queues, nr_poll_queues;
721 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
722 min(opts->nr_io_queues, num_online_cpus()));
723 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors,
724 min(opts->nr_write_queues, num_online_cpus()));
725 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
726 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
728 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
732 ctrl->ctrl.queue_count = nr_io_queues + 1;
733 if (ctrl->ctrl.queue_count < 2)
736 dev_info(ctrl->ctrl.device,
737 "creating %d I/O queues.\n", nr_io_queues);
739 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
741 * separate read/write queues
742 * hand out dedicated default queues only after we have
743 * sufficient read queues.
745 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
746 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
747 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
748 min(nr_default_queues, nr_io_queues);
749 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
752 * shared read/write queues
753 * either no write queues were requested, or we don't have
754 * sufficient queue count to have dedicated default queues.
756 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
757 min(nr_read_queues, nr_io_queues);
758 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
761 if (opts->nr_poll_queues && nr_io_queues) {
762 /* map dedicated poll queues only if we have queues left */
763 ctrl->io_queues[HCTX_TYPE_POLL] =
764 min(nr_poll_queues, nr_io_queues);
767 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
768 ret = nvme_rdma_alloc_queue(ctrl, i,
769 ctrl->ctrl.sqsize + 1);
771 goto out_free_queues;
777 for (i--; i >= 1; i--)
778 nvme_rdma_free_queue(&ctrl->queues[i]);
783 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
786 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
787 struct blk_mq_tag_set *set;
791 set = &ctrl->admin_tag_set;
792 memset(set, 0, sizeof(*set));
793 set->ops = &nvme_rdma_admin_mq_ops;
794 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
795 set->reserved_tags = 2; /* connect + keep-alive */
796 set->numa_node = nctrl->numa_node;
797 set->cmd_size = sizeof(struct nvme_rdma_request) +
798 NVME_RDMA_DATA_SGL_SIZE;
799 set->driver_data = ctrl;
800 set->nr_hw_queues = 1;
801 set->timeout = ADMIN_TIMEOUT;
802 set->flags = BLK_MQ_F_NO_SCHED;
804 set = &ctrl->tag_set;
805 memset(set, 0, sizeof(*set));
806 set->ops = &nvme_rdma_mq_ops;
807 set->queue_depth = nctrl->sqsize + 1;
808 set->reserved_tags = 1; /* fabric connect */
809 set->numa_node = nctrl->numa_node;
810 set->flags = BLK_MQ_F_SHOULD_MERGE;
811 set->cmd_size = sizeof(struct nvme_rdma_request) +
812 NVME_RDMA_DATA_SGL_SIZE;
813 if (nctrl->max_integrity_segments)
814 set->cmd_size += sizeof(struct nvme_rdma_sgl) +
815 NVME_RDMA_METADATA_SGL_SIZE;
816 set->driver_data = ctrl;
817 set->nr_hw_queues = nctrl->queue_count - 1;
818 set->timeout = NVME_IO_TIMEOUT;
819 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
822 ret = blk_mq_alloc_tag_set(set);
829 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
833 blk_cleanup_queue(ctrl->ctrl.admin_q);
834 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
835 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
837 if (ctrl->async_event_sqe.data) {
838 cancel_work_sync(&ctrl->ctrl.async_event_work);
839 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
840 sizeof(struct nvme_command), DMA_TO_DEVICE);
841 ctrl->async_event_sqe.data = NULL;
843 nvme_rdma_free_queue(&ctrl->queues[0]);
846 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
849 bool pi_capable = false;
852 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
856 ctrl->device = ctrl->queues[0].device;
857 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
860 if (ctrl->device->dev->attrs.device_cap_flags &
861 IB_DEVICE_INTEGRITY_HANDOVER)
864 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
868 * Bind the async event SQE DMA mapping to the admin queue lifetime.
869 * It's safe, since any chage in the underlying RDMA device will issue
870 * error recovery and queue re-creation.
872 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
873 sizeof(struct nvme_command), DMA_TO_DEVICE);
878 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
879 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
880 error = PTR_ERR(ctrl->ctrl.admin_tagset);
881 goto out_free_async_qe;
884 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
885 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
886 error = PTR_ERR(ctrl->ctrl.fabrics_q);
887 goto out_free_tagset;
890 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
891 if (IS_ERR(ctrl->ctrl.admin_q)) {
892 error = PTR_ERR(ctrl->ctrl.admin_q);
893 goto out_cleanup_fabrics_q;
897 error = nvme_rdma_start_queue(ctrl, 0);
899 goto out_cleanup_queue;
901 error = nvme_enable_ctrl(&ctrl->ctrl);
905 ctrl->ctrl.max_segments = ctrl->max_fr_pages;
906 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
908 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
910 ctrl->ctrl.max_integrity_segments = 0;
912 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
914 error = nvme_init_identify(&ctrl->ctrl);
921 nvme_rdma_stop_queue(&ctrl->queues[0]);
924 blk_cleanup_queue(ctrl->ctrl.admin_q);
925 out_cleanup_fabrics_q:
927 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
930 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
932 if (ctrl->async_event_sqe.data) {
933 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
934 sizeof(struct nvme_command), DMA_TO_DEVICE);
935 ctrl->async_event_sqe.data = NULL;
938 nvme_rdma_free_queue(&ctrl->queues[0]);
942 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
946 blk_cleanup_queue(ctrl->ctrl.connect_q);
947 blk_mq_free_tag_set(ctrl->ctrl.tagset);
949 nvme_rdma_free_io_queues(ctrl);
952 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
956 ret = nvme_rdma_alloc_io_queues(ctrl);
961 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
962 if (IS_ERR(ctrl->ctrl.tagset)) {
963 ret = PTR_ERR(ctrl->ctrl.tagset);
964 goto out_free_io_queues;
967 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
968 if (IS_ERR(ctrl->ctrl.connect_q)) {
969 ret = PTR_ERR(ctrl->ctrl.connect_q);
970 goto out_free_tag_set;
974 ret = nvme_rdma_start_io_queues(ctrl);
976 goto out_cleanup_connect_q;
979 nvme_start_queues(&ctrl->ctrl);
980 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
982 * If we timed out waiting for freeze we are likely to
983 * be stuck. Fail the controller initialization just
987 goto out_wait_freeze_timed_out;
989 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
990 ctrl->ctrl.queue_count - 1);
991 nvme_unfreeze(&ctrl->ctrl);
996 out_wait_freeze_timed_out:
997 nvme_stop_queues(&ctrl->ctrl);
998 nvme_rdma_stop_io_queues(ctrl);
999 out_cleanup_connect_q:
1001 blk_cleanup_queue(ctrl->ctrl.connect_q);
1004 blk_mq_free_tag_set(ctrl->ctrl.tagset);
1006 nvme_rdma_free_io_queues(ctrl);
1010 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1013 mutex_lock(&ctrl->teardown_lock);
1014 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1015 nvme_rdma_stop_queue(&ctrl->queues[0]);
1016 if (ctrl->ctrl.admin_tagset) {
1017 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
1018 nvme_cancel_request, &ctrl->ctrl);
1019 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
1022 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1023 nvme_rdma_destroy_admin_queue(ctrl, remove);
1024 mutex_unlock(&ctrl->teardown_lock);
1027 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1030 mutex_lock(&ctrl->teardown_lock);
1031 if (ctrl->ctrl.queue_count > 1) {
1032 nvme_start_freeze(&ctrl->ctrl);
1033 nvme_stop_queues(&ctrl->ctrl);
1034 nvme_rdma_stop_io_queues(ctrl);
1035 if (ctrl->ctrl.tagset) {
1036 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
1037 nvme_cancel_request, &ctrl->ctrl);
1038 blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
1041 nvme_start_queues(&ctrl->ctrl);
1042 nvme_rdma_destroy_io_queues(ctrl, remove);
1044 mutex_unlock(&ctrl->teardown_lock);
1047 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1049 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1051 if (list_empty(&ctrl->list))
1054 mutex_lock(&nvme_rdma_ctrl_mutex);
1055 list_del(&ctrl->list);
1056 mutex_unlock(&nvme_rdma_ctrl_mutex);
1058 nvmf_free_options(nctrl->opts);
1060 kfree(ctrl->queues);
1064 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1066 /* If we are resetting/deleting then do nothing */
1067 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1068 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1069 ctrl->ctrl.state == NVME_CTRL_LIVE);
1073 if (nvmf_should_reconnect(&ctrl->ctrl)) {
1074 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1075 ctrl->ctrl.opts->reconnect_delay);
1076 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1077 ctrl->ctrl.opts->reconnect_delay * HZ);
1079 nvme_delete_ctrl(&ctrl->ctrl);
1083 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1088 ret = nvme_rdma_configure_admin_queue(ctrl, new);
1092 if (ctrl->ctrl.icdoff) {
1093 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1097 if (!(ctrl->ctrl.sgls & (1 << 2))) {
1098 dev_err(ctrl->ctrl.device,
1099 "Mandatory keyed sgls are not supported!\n");
1103 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1104 dev_warn(ctrl->ctrl.device,
1105 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1106 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1109 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1110 dev_warn(ctrl->ctrl.device,
1111 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1112 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1113 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1116 if (ctrl->ctrl.sgls & (1 << 20))
1117 ctrl->use_inline_data = true;
1119 if (ctrl->ctrl.queue_count > 1) {
1120 ret = nvme_rdma_configure_io_queues(ctrl, new);
1125 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1128 * state change failure is ok if we started ctrl delete,
1129 * unless we're during creation of a new controller to
1130 * avoid races with teardown flow.
1132 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1133 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1139 nvme_start_ctrl(&ctrl->ctrl);
1143 if (ctrl->ctrl.queue_count > 1)
1144 nvme_rdma_destroy_io_queues(ctrl, new);
1146 nvme_rdma_stop_queue(&ctrl->queues[0]);
1147 nvme_rdma_destroy_admin_queue(ctrl, new);
1151 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1153 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1154 struct nvme_rdma_ctrl, reconnect_work);
1156 ++ctrl->ctrl.nr_reconnects;
1158 if (nvme_rdma_setup_ctrl(ctrl, false))
1161 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1162 ctrl->ctrl.nr_reconnects);
1164 ctrl->ctrl.nr_reconnects = 0;
1169 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1170 ctrl->ctrl.nr_reconnects);
1171 nvme_rdma_reconnect_or_remove(ctrl);
1174 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1176 struct nvme_rdma_ctrl *ctrl = container_of(work,
1177 struct nvme_rdma_ctrl, err_work);
1179 nvme_stop_keep_alive(&ctrl->ctrl);
1180 nvme_rdma_teardown_io_queues(ctrl, false);
1181 nvme_start_queues(&ctrl->ctrl);
1182 nvme_rdma_teardown_admin_queue(ctrl, false);
1183 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1185 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1186 /* state change failure is ok if we started ctrl delete */
1187 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1188 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1192 nvme_rdma_reconnect_or_remove(ctrl);
1195 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1197 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1200 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1201 queue_work(nvme_reset_wq, &ctrl->err_work);
1204 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1206 struct request *rq = blk_mq_rq_from_pdu(req);
1208 if (!refcount_dec_and_test(&req->ref))
1210 if (!nvme_try_complete_req(rq, req->status, req->result))
1211 nvme_rdma_complete_rq(rq);
1214 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1217 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1218 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1220 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1221 dev_info(ctrl->ctrl.device,
1222 "%s for CQE 0x%p failed with status %s (%d)\n",
1224 ib_wc_status_msg(wc->status), wc->status);
1225 nvme_rdma_error_recovery(ctrl);
1228 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1230 if (unlikely(wc->status != IB_WC_SUCCESS))
1231 nvme_rdma_wr_error(cq, wc, "MEMREG");
1234 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1236 struct nvme_rdma_request *req =
1237 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1239 if (unlikely(wc->status != IB_WC_SUCCESS))
1240 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1242 nvme_rdma_end_request(req);
1245 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1246 struct nvme_rdma_request *req)
1248 struct ib_send_wr wr = {
1249 .opcode = IB_WR_LOCAL_INV,
1252 .send_flags = IB_SEND_SIGNALED,
1253 .ex.invalidate_rkey = req->mr->rkey,
1256 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1257 wr.wr_cqe = &req->reg_cqe;
1259 return ib_post_send(queue->qp, &wr, NULL);
1262 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1265 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1266 struct nvme_rdma_device *dev = queue->device;
1267 struct ib_device *ibdev = dev->dev;
1268 struct list_head *pool = &queue->qp->rdma_mrs;
1270 if (!blk_rq_nr_phys_segments(rq))
1273 if (blk_integrity_rq(rq)) {
1274 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1275 req->metadata_sgl->nents, rq_dma_dir(rq));
1276 sg_free_table_chained(&req->metadata_sgl->sg_table,
1277 NVME_INLINE_METADATA_SG_CNT);
1280 if (req->use_sig_mr)
1281 pool = &queue->qp->sig_mrs;
1284 ib_mr_pool_put(queue->qp, pool, req->mr);
1288 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1290 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1293 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1295 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1298 put_unaligned_le24(0, sg->length);
1299 put_unaligned_le32(0, sg->key);
1300 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1304 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1305 struct nvme_rdma_request *req, struct nvme_command *c,
1308 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1309 struct scatterlist *sgl = req->data_sgl.sg_table.sgl;
1310 struct ib_sge *sge = &req->sge[1];
1314 for (i = 0; i < count; i++, sgl++, sge++) {
1315 sge->addr = sg_dma_address(sgl);
1316 sge->length = sg_dma_len(sgl);
1317 sge->lkey = queue->device->pd->local_dma_lkey;
1321 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1322 sg->length = cpu_to_le32(len);
1323 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1325 req->num_sge += count;
1329 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1330 struct nvme_rdma_request *req, struct nvme_command *c)
1332 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1334 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1335 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1336 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1337 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1341 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1342 struct nvme_rdma_request *req, struct nvme_command *c,
1345 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1348 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1349 if (WARN_ON_ONCE(!req->mr))
1353 * Align the MR to a 4K page size to match the ctrl page size and
1354 * the block virtual boundary.
1356 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1358 if (unlikely(nr < count)) {
1359 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1366 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1368 req->reg_cqe.done = nvme_rdma_memreg_done;
1369 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1370 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1371 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1372 req->reg_wr.wr.num_sge = 0;
1373 req->reg_wr.mr = req->mr;
1374 req->reg_wr.key = req->mr->rkey;
1375 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1376 IB_ACCESS_REMOTE_READ |
1377 IB_ACCESS_REMOTE_WRITE;
1379 sg->addr = cpu_to_le64(req->mr->iova);
1380 put_unaligned_le24(req->mr->length, sg->length);
1381 put_unaligned_le32(req->mr->rkey, sg->key);
1382 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1383 NVME_SGL_FMT_INVALIDATE;
1388 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1389 struct nvme_command *cmd, struct ib_sig_domain *domain,
1390 u16 control, u8 pi_type)
1392 domain->sig_type = IB_SIG_TYPE_T10_DIF;
1393 domain->sig.dif.bg_type = IB_T10DIF_CRC;
1394 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1395 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1396 if (control & NVME_RW_PRINFO_PRCHK_REF)
1397 domain->sig.dif.ref_remap = true;
1399 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1400 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1401 domain->sig.dif.app_escape = true;
1402 if (pi_type == NVME_NS_DPS_PI_TYPE3)
1403 domain->sig.dif.ref_escape = true;
1406 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1407 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1410 u16 control = le16_to_cpu(cmd->rw.control);
1412 memset(sig_attrs, 0, sizeof(*sig_attrs));
1413 if (control & NVME_RW_PRINFO_PRACT) {
1414 /* for WRITE_INSERT/READ_STRIP no memory domain */
1415 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1416 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1418 /* Clear the PRACT bit since HCA will generate/verify the PI */
1419 control &= ~NVME_RW_PRINFO_PRACT;
1420 cmd->rw.control = cpu_to_le16(control);
1422 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1423 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1425 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1430 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1433 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1434 *mask |= IB_SIG_CHECK_REFTAG;
1435 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1436 *mask |= IB_SIG_CHECK_GUARD;
1439 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1441 if (unlikely(wc->status != IB_WC_SUCCESS))
1442 nvme_rdma_wr_error(cq, wc, "SIG");
1445 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1446 struct nvme_rdma_request *req, struct nvme_command *c,
1447 int count, int pi_count)
1449 struct nvme_rdma_sgl *sgl = &req->data_sgl;
1450 struct ib_reg_wr *wr = &req->reg_wr;
1451 struct request *rq = blk_mq_rq_from_pdu(req);
1452 struct nvme_ns *ns = rq->q->queuedata;
1453 struct bio *bio = rq->bio;
1454 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1457 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1458 if (WARN_ON_ONCE(!req->mr))
1461 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1462 req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1467 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1468 req->mr->sig_attrs, ns->pi_type);
1469 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1471 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1473 req->reg_cqe.done = nvme_rdma_sig_done;
1474 memset(wr, 0, sizeof(*wr));
1475 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1476 wr->wr.wr_cqe = &req->reg_cqe;
1478 wr->wr.send_flags = 0;
1480 wr->key = req->mr->rkey;
1481 wr->access = IB_ACCESS_LOCAL_WRITE |
1482 IB_ACCESS_REMOTE_READ |
1483 IB_ACCESS_REMOTE_WRITE;
1485 sg->addr = cpu_to_le64(req->mr->iova);
1486 put_unaligned_le24(req->mr->length, sg->length);
1487 put_unaligned_le32(req->mr->rkey, sg->key);
1488 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1493 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1500 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1501 struct request *rq, struct nvme_command *c)
1503 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1504 struct nvme_rdma_device *dev = queue->device;
1505 struct ib_device *ibdev = dev->dev;
1510 refcount_set(&req->ref, 2); /* send and recv completions */
1512 c->common.flags |= NVME_CMD_SGL_METABUF;
1514 if (!blk_rq_nr_phys_segments(rq))
1515 return nvme_rdma_set_sg_null(c);
1517 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1518 ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1519 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1520 NVME_INLINE_SG_CNT);
1524 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1525 req->data_sgl.sg_table.sgl);
1527 count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1528 req->data_sgl.nents, rq_dma_dir(rq));
1529 if (unlikely(count <= 0)) {
1531 goto out_free_table;
1534 if (blk_integrity_rq(rq)) {
1535 req->metadata_sgl->sg_table.sgl =
1536 (struct scatterlist *)(req->metadata_sgl + 1);
1537 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1538 blk_rq_count_integrity_sg(rq->q, rq->bio),
1539 req->metadata_sgl->sg_table.sgl,
1540 NVME_INLINE_METADATA_SG_CNT);
1541 if (unlikely(ret)) {
1546 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1547 rq->bio, req->metadata_sgl->sg_table.sgl);
1548 pi_count = ib_dma_map_sg(ibdev,
1549 req->metadata_sgl->sg_table.sgl,
1550 req->metadata_sgl->nents,
1552 if (unlikely(pi_count <= 0)) {
1554 goto out_free_pi_table;
1558 if (req->use_sig_mr) {
1559 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1563 if (count <= dev->num_inline_segments) {
1564 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1565 queue->ctrl->use_inline_data &&
1566 blk_rq_payload_bytes(rq) <=
1567 nvme_rdma_inline_data_size(queue)) {
1568 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1572 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1573 ret = nvme_rdma_map_sg_single(queue, req, c);
1578 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1581 goto out_unmap_pi_sg;
1586 if (blk_integrity_rq(rq))
1587 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1588 req->metadata_sgl->nents, rq_dma_dir(rq));
1590 if (blk_integrity_rq(rq))
1591 sg_free_table_chained(&req->metadata_sgl->sg_table,
1592 NVME_INLINE_METADATA_SG_CNT);
1594 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1597 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1601 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1603 struct nvme_rdma_qe *qe =
1604 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1605 struct nvme_rdma_request *req =
1606 container_of(qe, struct nvme_rdma_request, sqe);
1608 if (unlikely(wc->status != IB_WC_SUCCESS))
1609 nvme_rdma_wr_error(cq, wc, "SEND");
1611 nvme_rdma_end_request(req);
1614 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1615 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1616 struct ib_send_wr *first)
1618 struct ib_send_wr wr;
1621 sge->addr = qe->dma;
1622 sge->length = sizeof(struct nvme_command);
1623 sge->lkey = queue->device->pd->local_dma_lkey;
1626 wr.wr_cqe = &qe->cqe;
1628 wr.num_sge = num_sge;
1629 wr.opcode = IB_WR_SEND;
1630 wr.send_flags = IB_SEND_SIGNALED;
1637 ret = ib_post_send(queue->qp, first, NULL);
1638 if (unlikely(ret)) {
1639 dev_err(queue->ctrl->ctrl.device,
1640 "%s failed with error code %d\n", __func__, ret);
1645 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1646 struct nvme_rdma_qe *qe)
1648 struct ib_recv_wr wr;
1652 list.addr = qe->dma;
1653 list.length = sizeof(struct nvme_completion);
1654 list.lkey = queue->device->pd->local_dma_lkey;
1656 qe->cqe.done = nvme_rdma_recv_done;
1659 wr.wr_cqe = &qe->cqe;
1663 ret = ib_post_recv(queue->qp, &wr, NULL);
1664 if (unlikely(ret)) {
1665 dev_err(queue->ctrl->ctrl.device,
1666 "%s failed with error code %d\n", __func__, ret);
1671 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1673 u32 queue_idx = nvme_rdma_queue_idx(queue);
1676 return queue->ctrl->admin_tag_set.tags[queue_idx];
1677 return queue->ctrl->tag_set.tags[queue_idx - 1];
1680 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1682 if (unlikely(wc->status != IB_WC_SUCCESS))
1683 nvme_rdma_wr_error(cq, wc, "ASYNC");
1686 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1688 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1689 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1690 struct ib_device *dev = queue->device->dev;
1691 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1692 struct nvme_command *cmd = sqe->data;
1696 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1698 memset(cmd, 0, sizeof(*cmd));
1699 cmd->common.opcode = nvme_admin_async_event;
1700 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1701 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1702 nvme_rdma_set_sg_null(cmd);
1704 sqe->cqe.done = nvme_rdma_async_done;
1706 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1709 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1713 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1714 struct nvme_completion *cqe, struct ib_wc *wc)
1717 struct nvme_rdma_request *req;
1719 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1721 dev_err(queue->ctrl->ctrl.device,
1722 "tag 0x%x on QP %#x not found\n",
1723 cqe->command_id, queue->qp->qp_num);
1724 nvme_rdma_error_recovery(queue->ctrl);
1727 req = blk_mq_rq_to_pdu(rq);
1729 req->status = cqe->status;
1730 req->result = cqe->result;
1732 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1733 if (unlikely(!req->mr ||
1734 wc->ex.invalidate_rkey != req->mr->rkey)) {
1735 dev_err(queue->ctrl->ctrl.device,
1736 "Bogus remote invalidation for rkey %#x\n",
1737 req->mr ? req->mr->rkey : 0);
1738 nvme_rdma_error_recovery(queue->ctrl);
1740 } else if (req->mr) {
1743 ret = nvme_rdma_inv_rkey(queue, req);
1744 if (unlikely(ret < 0)) {
1745 dev_err(queue->ctrl->ctrl.device,
1746 "Queueing INV WR for rkey %#x failed (%d)\n",
1747 req->mr->rkey, ret);
1748 nvme_rdma_error_recovery(queue->ctrl);
1750 /* the local invalidation completion will end the request */
1754 nvme_rdma_end_request(req);
1757 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1759 struct nvme_rdma_qe *qe =
1760 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1761 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1762 struct ib_device *ibdev = queue->device->dev;
1763 struct nvme_completion *cqe = qe->data;
1764 const size_t len = sizeof(struct nvme_completion);
1766 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1767 nvme_rdma_wr_error(cq, wc, "RECV");
1771 /* sanity checking for received data length */
1772 if (unlikely(wc->byte_len < len)) {
1773 dev_err(queue->ctrl->ctrl.device,
1774 "Unexpected nvme completion length(%d)\n", wc->byte_len);
1775 nvme_rdma_error_recovery(queue->ctrl);
1779 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1781 * AEN requests are special as they don't time out and can
1782 * survive any kind of queue freeze and often don't respond to
1783 * aborts. We don't even bother to allocate a struct request
1784 * for them but rather special case them here.
1786 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1788 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1791 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1792 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1794 nvme_rdma_post_recv(queue, qe);
1797 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1801 for (i = 0; i < queue->queue_size; i++) {
1802 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1804 goto out_destroy_queue_ib;
1809 out_destroy_queue_ib:
1810 nvme_rdma_destroy_queue_ib(queue);
1814 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1815 struct rdma_cm_event *ev)
1817 struct rdma_cm_id *cm_id = queue->cm_id;
1818 int status = ev->status;
1819 const char *rej_msg;
1820 const struct nvme_rdma_cm_rej *rej_data;
1823 rej_msg = rdma_reject_msg(cm_id, status);
1824 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1826 if (rej_data && rej_data_len >= sizeof(u16)) {
1827 u16 sts = le16_to_cpu(rej_data->sts);
1829 dev_err(queue->ctrl->ctrl.device,
1830 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1831 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1833 dev_err(queue->ctrl->ctrl.device,
1834 "Connect rejected: status %d (%s).\n", status, rej_msg);
1840 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1842 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1845 ret = nvme_rdma_create_queue_ib(queue);
1849 if (ctrl->opts->tos >= 0)
1850 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1851 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1853 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1855 goto out_destroy_queue;
1861 nvme_rdma_destroy_queue_ib(queue);
1865 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1867 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1868 struct rdma_conn_param param = { };
1869 struct nvme_rdma_cm_req priv = { };
1872 param.qp_num = queue->qp->qp_num;
1873 param.flow_control = 1;
1875 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1876 /* maximum retry count */
1877 param.retry_count = 7;
1878 param.rnr_retry_count = 7;
1879 param.private_data = &priv;
1880 param.private_data_len = sizeof(priv);
1882 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1883 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1885 * set the admin queue depth to the minimum size
1886 * specified by the Fabrics standard.
1888 if (priv.qid == 0) {
1889 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1890 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1893 * current interpretation of the fabrics spec
1894 * is at minimum you make hrqsize sqsize+1, or a
1895 * 1's based representation of sqsize.
1897 priv.hrqsize = cpu_to_le16(queue->queue_size);
1898 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1901 ret = rdma_connect_locked(queue->cm_id, ¶m);
1903 dev_err(ctrl->ctrl.device,
1904 "rdma_connect_locked failed (%d).\n", ret);
1905 goto out_destroy_queue_ib;
1910 out_destroy_queue_ib:
1911 nvme_rdma_destroy_queue_ib(queue);
1915 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1916 struct rdma_cm_event *ev)
1918 struct nvme_rdma_queue *queue = cm_id->context;
1921 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1922 rdma_event_msg(ev->event), ev->event,
1925 switch (ev->event) {
1926 case RDMA_CM_EVENT_ADDR_RESOLVED:
1927 cm_error = nvme_rdma_addr_resolved(queue);
1929 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1930 cm_error = nvme_rdma_route_resolved(queue);
1932 case RDMA_CM_EVENT_ESTABLISHED:
1933 queue->cm_error = nvme_rdma_conn_established(queue);
1934 /* complete cm_done regardless of success/failure */
1935 complete(&queue->cm_done);
1937 case RDMA_CM_EVENT_REJECTED:
1938 cm_error = nvme_rdma_conn_rejected(queue, ev);
1940 case RDMA_CM_EVENT_ROUTE_ERROR:
1941 case RDMA_CM_EVENT_CONNECT_ERROR:
1942 case RDMA_CM_EVENT_UNREACHABLE:
1943 nvme_rdma_destroy_queue_ib(queue);
1945 case RDMA_CM_EVENT_ADDR_ERROR:
1946 dev_dbg(queue->ctrl->ctrl.device,
1947 "CM error event %d\n", ev->event);
1948 cm_error = -ECONNRESET;
1950 case RDMA_CM_EVENT_DISCONNECTED:
1951 case RDMA_CM_EVENT_ADDR_CHANGE:
1952 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1953 dev_dbg(queue->ctrl->ctrl.device,
1954 "disconnect received - connection closed\n");
1955 nvme_rdma_error_recovery(queue->ctrl);
1957 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1958 /* device removal is handled via the ib_client API */
1961 dev_err(queue->ctrl->ctrl.device,
1962 "Unexpected RDMA CM event (%d)\n", ev->event);
1963 nvme_rdma_error_recovery(queue->ctrl);
1968 queue->cm_error = cm_error;
1969 complete(&queue->cm_done);
1975 static void nvme_rdma_complete_timed_out(struct request *rq)
1977 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1978 struct nvme_rdma_queue *queue = req->queue;
1979 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1981 /* fence other contexts that may complete the command */
1982 mutex_lock(&ctrl->teardown_lock);
1983 nvme_rdma_stop_queue(queue);
1984 if (!blk_mq_request_completed(rq)) {
1985 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
1986 blk_mq_complete_request(rq);
1988 mutex_unlock(&ctrl->teardown_lock);
1991 static enum blk_eh_timer_return
1992 nvme_rdma_timeout(struct request *rq, bool reserved)
1994 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1995 struct nvme_rdma_queue *queue = req->queue;
1996 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1998 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1999 rq->tag, nvme_rdma_queue_idx(queue));
2001 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2003 * If we are resetting, connecting or deleting we should
2004 * complete immediately because we may block controller
2005 * teardown or setup sequence
2006 * - ctrl disable/shutdown fabrics requests
2007 * - connect requests
2008 * - initialization admin requests
2009 * - I/O requests that entered after unquiescing and
2010 * the controller stopped responding
2012 * All other requests should be cancelled by the error
2013 * recovery work, so it's fine that we fail it here.
2015 nvme_rdma_complete_timed_out(rq);
2020 * LIVE state should trigger the normal error recovery which will
2021 * handle completing this request.
2023 nvme_rdma_error_recovery(ctrl);
2024 return BLK_EH_RESET_TIMER;
2027 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2028 const struct blk_mq_queue_data *bd)
2030 struct nvme_ns *ns = hctx->queue->queuedata;
2031 struct nvme_rdma_queue *queue = hctx->driver_data;
2032 struct request *rq = bd->rq;
2033 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2034 struct nvme_rdma_qe *sqe = &req->sqe;
2035 struct nvme_command *c = sqe->data;
2036 struct ib_device *dev;
2037 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2041 WARN_ON_ONCE(rq->tag < 0);
2043 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2044 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2046 dev = queue->device->dev;
2048 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2049 sizeof(struct nvme_command),
2051 err = ib_dma_mapping_error(dev, req->sqe.dma);
2053 return BLK_STS_RESOURCE;
2055 ib_dma_sync_single_for_cpu(dev, sqe->dma,
2056 sizeof(struct nvme_command), DMA_TO_DEVICE);
2058 ret = nvme_setup_cmd(ns, rq, c);
2062 blk_mq_start_request(rq);
2064 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2065 queue->pi_support &&
2066 (c->common.opcode == nvme_cmd_write ||
2067 c->common.opcode == nvme_cmd_read) &&
2069 req->use_sig_mr = true;
2071 req->use_sig_mr = false;
2073 err = nvme_rdma_map_data(queue, rq, c);
2074 if (unlikely(err < 0)) {
2075 dev_err(queue->ctrl->ctrl.device,
2076 "Failed to map data (%d)\n", err);
2080 sqe->cqe.done = nvme_rdma_send_done;
2082 ib_dma_sync_single_for_device(dev, sqe->dma,
2083 sizeof(struct nvme_command), DMA_TO_DEVICE);
2085 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2086 req->mr ? &req->reg_wr.wr : NULL);
2093 nvme_rdma_unmap_data(queue, rq);
2095 if (err == -ENOMEM || err == -EAGAIN)
2096 ret = BLK_STS_RESOURCE;
2098 ret = BLK_STS_IOERR;
2099 nvme_cleanup_cmd(rq);
2101 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2106 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2108 struct nvme_rdma_queue *queue = hctx->driver_data;
2110 return ib_process_cq_direct(queue->ib_cq, -1);
2113 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2115 struct request *rq = blk_mq_rq_from_pdu(req);
2116 struct ib_mr_status mr_status;
2119 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2121 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2122 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2126 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2127 switch (mr_status.sig_err.err_type) {
2128 case IB_SIG_BAD_GUARD:
2129 nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2131 case IB_SIG_BAD_REFTAG:
2132 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2134 case IB_SIG_BAD_APPTAG:
2135 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2138 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2139 mr_status.sig_err.err_type, mr_status.sig_err.expected,
2140 mr_status.sig_err.actual);
2144 static void nvme_rdma_complete_rq(struct request *rq)
2146 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2147 struct nvme_rdma_queue *queue = req->queue;
2148 struct ib_device *ibdev = queue->device->dev;
2150 if (req->use_sig_mr)
2151 nvme_rdma_check_pi_status(req);
2153 nvme_rdma_unmap_data(queue, rq);
2154 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2156 nvme_complete_rq(rq);
2159 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2161 struct nvme_rdma_ctrl *ctrl = set->driver_data;
2162 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2164 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2165 /* separate read/write queues */
2166 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2167 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2168 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2169 set->map[HCTX_TYPE_READ].nr_queues =
2170 ctrl->io_queues[HCTX_TYPE_READ];
2171 set->map[HCTX_TYPE_READ].queue_offset =
2172 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2174 /* shared read/write queues */
2175 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2176 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2177 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2178 set->map[HCTX_TYPE_READ].nr_queues =
2179 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2180 set->map[HCTX_TYPE_READ].queue_offset = 0;
2182 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2183 ctrl->device->dev, 0);
2184 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2185 ctrl->device->dev, 0);
2187 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2188 /* map dedicated poll queues only if we have queues left */
2189 set->map[HCTX_TYPE_POLL].nr_queues =
2190 ctrl->io_queues[HCTX_TYPE_POLL];
2191 set->map[HCTX_TYPE_POLL].queue_offset =
2192 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2193 ctrl->io_queues[HCTX_TYPE_READ];
2194 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2197 dev_info(ctrl->ctrl.device,
2198 "mapped %d/%d/%d default/read/poll queues.\n",
2199 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2200 ctrl->io_queues[HCTX_TYPE_READ],
2201 ctrl->io_queues[HCTX_TYPE_POLL]);
2206 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2207 .queue_rq = nvme_rdma_queue_rq,
2208 .complete = nvme_rdma_complete_rq,
2209 .init_request = nvme_rdma_init_request,
2210 .exit_request = nvme_rdma_exit_request,
2211 .init_hctx = nvme_rdma_init_hctx,
2212 .timeout = nvme_rdma_timeout,
2213 .map_queues = nvme_rdma_map_queues,
2214 .poll = nvme_rdma_poll,
2217 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2218 .queue_rq = nvme_rdma_queue_rq,
2219 .complete = nvme_rdma_complete_rq,
2220 .init_request = nvme_rdma_init_request,
2221 .exit_request = nvme_rdma_exit_request,
2222 .init_hctx = nvme_rdma_init_admin_hctx,
2223 .timeout = nvme_rdma_timeout,
2226 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2228 cancel_work_sync(&ctrl->err_work);
2229 cancel_delayed_work_sync(&ctrl->reconnect_work);
2231 nvme_rdma_teardown_io_queues(ctrl, shutdown);
2232 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2234 nvme_shutdown_ctrl(&ctrl->ctrl);
2236 nvme_disable_ctrl(&ctrl->ctrl);
2237 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2240 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2242 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2245 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2247 struct nvme_rdma_ctrl *ctrl =
2248 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2250 nvme_stop_ctrl(&ctrl->ctrl);
2251 nvme_rdma_shutdown_ctrl(ctrl, false);
2253 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2254 /* state change failure should never happen */
2259 if (nvme_rdma_setup_ctrl(ctrl, false))
2265 ++ctrl->ctrl.nr_reconnects;
2266 nvme_rdma_reconnect_or_remove(ctrl);
2269 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2271 .module = THIS_MODULE,
2272 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2273 .reg_read32 = nvmf_reg_read32,
2274 .reg_read64 = nvmf_reg_read64,
2275 .reg_write32 = nvmf_reg_write32,
2276 .free_ctrl = nvme_rdma_free_ctrl,
2277 .submit_async_event = nvme_rdma_submit_async_event,
2278 .delete_ctrl = nvme_rdma_delete_ctrl,
2279 .get_address = nvmf_get_address,
2283 * Fails a connection request if it matches an existing controller
2284 * (association) with the same tuple:
2285 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2287 * if local address is not specified in the request, it will match an
2288 * existing controller with all the other parameters the same and no
2289 * local port address specified as well.
2291 * The ports don't need to be compared as they are intrinsically
2292 * already matched by the port pointers supplied.
2295 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2297 struct nvme_rdma_ctrl *ctrl;
2300 mutex_lock(&nvme_rdma_ctrl_mutex);
2301 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2302 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2306 mutex_unlock(&nvme_rdma_ctrl_mutex);
2311 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2312 struct nvmf_ctrl_options *opts)
2314 struct nvme_rdma_ctrl *ctrl;
2318 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2320 return ERR_PTR(-ENOMEM);
2321 ctrl->ctrl.opts = opts;
2322 INIT_LIST_HEAD(&ctrl->list);
2323 mutex_init(&ctrl->teardown_lock);
2325 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2327 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2328 if (!opts->trsvcid) {
2332 opts->mask |= NVMF_OPT_TRSVCID;
2335 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2336 opts->traddr, opts->trsvcid, &ctrl->addr);
2338 pr_err("malformed address passed: %s:%s\n",
2339 opts->traddr, opts->trsvcid);
2343 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2344 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2345 opts->host_traddr, NULL, &ctrl->src_addr);
2347 pr_err("malformed src address passed: %s\n",
2353 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2358 INIT_DELAYED_WORK(&ctrl->reconnect_work,
2359 nvme_rdma_reconnect_ctrl_work);
2360 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2361 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2363 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2364 opts->nr_poll_queues + 1;
2365 ctrl->ctrl.sqsize = opts->queue_size - 1;
2366 ctrl->ctrl.kato = opts->kato;
2369 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2374 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2375 0 /* no quirks, we're perfect! */);
2377 goto out_kfree_queues;
2379 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2380 WARN_ON_ONCE(!changed);
2382 ret = nvme_rdma_setup_ctrl(ctrl, true);
2384 goto out_uninit_ctrl;
2386 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2387 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2389 mutex_lock(&nvme_rdma_ctrl_mutex);
2390 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2391 mutex_unlock(&nvme_rdma_ctrl_mutex);
2396 nvme_uninit_ctrl(&ctrl->ctrl);
2397 nvme_put_ctrl(&ctrl->ctrl);
2400 return ERR_PTR(ret);
2402 kfree(ctrl->queues);
2405 return ERR_PTR(ret);
2408 static struct nvmf_transport_ops nvme_rdma_transport = {
2410 .module = THIS_MODULE,
2411 .required_opts = NVMF_OPT_TRADDR,
2412 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2413 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2414 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2416 .create_ctrl = nvme_rdma_create_ctrl,
2419 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2421 struct nvme_rdma_ctrl *ctrl;
2422 struct nvme_rdma_device *ndev;
2425 mutex_lock(&device_list_mutex);
2426 list_for_each_entry(ndev, &device_list, entry) {
2427 if (ndev->dev == ib_device) {
2432 mutex_unlock(&device_list_mutex);
2437 /* Delete all controllers using this device */
2438 mutex_lock(&nvme_rdma_ctrl_mutex);
2439 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2440 if (ctrl->device->dev != ib_device)
2442 nvme_delete_ctrl(&ctrl->ctrl);
2444 mutex_unlock(&nvme_rdma_ctrl_mutex);
2446 flush_workqueue(nvme_delete_wq);
2449 static struct ib_client nvme_rdma_ib_client = {
2450 .name = "nvme_rdma",
2451 .remove = nvme_rdma_remove_one
2454 static int __init nvme_rdma_init_module(void)
2458 ret = ib_register_client(&nvme_rdma_ib_client);
2462 ret = nvmf_register_transport(&nvme_rdma_transport);
2464 goto err_unreg_client;
2469 ib_unregister_client(&nvme_rdma_ib_client);
2473 static void __exit nvme_rdma_cleanup_module(void)
2475 struct nvme_rdma_ctrl *ctrl;
2477 nvmf_unregister_transport(&nvme_rdma_transport);
2478 ib_unregister_client(&nvme_rdma_ib_client);
2480 mutex_lock(&nvme_rdma_ctrl_mutex);
2481 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2482 nvme_delete_ctrl(&ctrl->ctrl);
2483 mutex_unlock(&nvme_rdma_ctrl_mutex);
2484 flush_workqueue(nvme_delete_wq);
2487 module_init(nvme_rdma_init_module);
2488 module_exit(nvme_rdma_cleanup_module);
2490 MODULE_LICENSE("GPL v2");