Merge git://git.kernel.org/pub/scm/linux/kernel/git/kvalo/wireless-drivers.git
[platform/kernel/linux-starfive.git] / drivers / nvme / host / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS          256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS   4
36
37 #define NVME_RDMA_DATA_SGL_SIZE \
38         (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40         (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41
42 struct nvme_rdma_device {
43         struct ib_device        *dev;
44         struct ib_pd            *pd;
45         struct kref             ref;
46         struct list_head        entry;
47         unsigned int            num_inline_segments;
48 };
49
50 struct nvme_rdma_qe {
51         struct ib_cqe           cqe;
52         void                    *data;
53         u64                     dma;
54 };
55
56 struct nvme_rdma_sgl {
57         int                     nents;
58         struct sg_table         sg_table;
59 };
60
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63         struct nvme_request     req;
64         struct ib_mr            *mr;
65         struct nvme_rdma_qe     sqe;
66         union nvme_result       result;
67         __le16                  status;
68         refcount_t              ref;
69         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70         u32                     num_sge;
71         struct ib_reg_wr        reg_wr;
72         struct ib_cqe           reg_cqe;
73         struct nvme_rdma_queue  *queue;
74         struct nvme_rdma_sgl    data_sgl;
75         struct nvme_rdma_sgl    *metadata_sgl;
76         bool                    use_sig_mr;
77 };
78
79 enum nvme_rdma_queue_flags {
80         NVME_RDMA_Q_ALLOCATED           = 0,
81         NVME_RDMA_Q_LIVE                = 1,
82         NVME_RDMA_Q_TR_READY            = 2,
83 };
84
85 struct nvme_rdma_queue {
86         struct nvme_rdma_qe     *rsp_ring;
87         int                     queue_size;
88         size_t                  cmnd_capsule_len;
89         struct nvme_rdma_ctrl   *ctrl;
90         struct nvme_rdma_device *device;
91         struct ib_cq            *ib_cq;
92         struct ib_qp            *qp;
93
94         unsigned long           flags;
95         struct rdma_cm_id       *cm_id;
96         int                     cm_error;
97         struct completion       cm_done;
98         bool                    pi_support;
99 };
100
101 struct nvme_rdma_ctrl {
102         /* read only in the hot path */
103         struct nvme_rdma_queue  *queues;
104
105         /* other member variables */
106         struct blk_mq_tag_set   tag_set;
107         struct work_struct      err_work;
108
109         struct nvme_rdma_qe     async_event_sqe;
110
111         struct delayed_work     reconnect_work;
112
113         struct list_head        list;
114
115         struct blk_mq_tag_set   admin_tag_set;
116         struct nvme_rdma_device *device;
117
118         u32                     max_fr_pages;
119
120         struct sockaddr_storage addr;
121         struct sockaddr_storage src_addr;
122
123         struct nvme_ctrl        ctrl;
124         bool                    use_inline_data;
125         u32                     io_queues[HCTX_MAX_TYPES];
126 };
127
128 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
129 {
130         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
131 }
132
133 static LIST_HEAD(device_list);
134 static DEFINE_MUTEX(device_list_mutex);
135
136 static LIST_HEAD(nvme_rdma_ctrl_list);
137 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
138
139 /*
140  * Disabling this option makes small I/O goes faster, but is fundamentally
141  * unsafe.  With it turned off we will have to register a global rkey that
142  * allows read and write access to all physical memory.
143  */
144 static bool register_always = true;
145 module_param(register_always, bool, 0444);
146 MODULE_PARM_DESC(register_always,
147          "Use memory registration even for contiguous memory regions");
148
149 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
150                 struct rdma_cm_event *event);
151 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
152
153 static const struct blk_mq_ops nvme_rdma_mq_ops;
154 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
155
156 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
157 {
158         return queue - queue->ctrl->queues;
159 }
160
161 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
162 {
163         return nvme_rdma_queue_idx(queue) >
164                 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
165                 queue->ctrl->io_queues[HCTX_TYPE_READ];
166 }
167
168 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
169 {
170         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
171 }
172
173 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
174                 size_t capsule_size, enum dma_data_direction dir)
175 {
176         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
177         kfree(qe->data);
178 }
179
180 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
181                 size_t capsule_size, enum dma_data_direction dir)
182 {
183         qe->data = kzalloc(capsule_size, GFP_KERNEL);
184         if (!qe->data)
185                 return -ENOMEM;
186
187         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
188         if (ib_dma_mapping_error(ibdev, qe->dma)) {
189                 kfree(qe->data);
190                 qe->data = NULL;
191                 return -ENOMEM;
192         }
193
194         return 0;
195 }
196
197 static void nvme_rdma_free_ring(struct ib_device *ibdev,
198                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
199                 size_t capsule_size, enum dma_data_direction dir)
200 {
201         int i;
202
203         for (i = 0; i < ib_queue_size; i++)
204                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
205         kfree(ring);
206 }
207
208 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
209                 size_t ib_queue_size, size_t capsule_size,
210                 enum dma_data_direction dir)
211 {
212         struct nvme_rdma_qe *ring;
213         int i;
214
215         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
216         if (!ring)
217                 return NULL;
218
219         /*
220          * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
221          * lifetime. It's safe, since any chage in the underlying RDMA device
222          * will issue error recovery and queue re-creation.
223          */
224         for (i = 0; i < ib_queue_size; i++) {
225                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
226                         goto out_free_ring;
227         }
228
229         return ring;
230
231 out_free_ring:
232         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
233         return NULL;
234 }
235
236 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
237 {
238         pr_debug("QP event %s (%d)\n",
239                  ib_event_msg(event->event), event->event);
240
241 }
242
243 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
244 {
245         int ret;
246
247         ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
248                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
249         if (ret < 0)
250                 return ret;
251         if (ret == 0)
252                 return -ETIMEDOUT;
253         WARN_ON_ONCE(queue->cm_error > 0);
254         return queue->cm_error;
255 }
256
257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
258 {
259         struct nvme_rdma_device *dev = queue->device;
260         struct ib_qp_init_attr init_attr;
261         int ret;
262
263         memset(&init_attr, 0, sizeof(init_attr));
264         init_attr.event_handler = nvme_rdma_qp_event;
265         /* +1 for drain */
266         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267         /* +1 for drain */
268         init_attr.cap.max_recv_wr = queue->queue_size + 1;
269         init_attr.cap.max_recv_sge = 1;
270         init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
271         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272         init_attr.qp_type = IB_QPT_RC;
273         init_attr.send_cq = queue->ib_cq;
274         init_attr.recv_cq = queue->ib_cq;
275         if (queue->pi_support)
276                 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
277
278         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
279
280         queue->qp = queue->cm_id->qp;
281         return ret;
282 }
283
284 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
285                 struct request *rq, unsigned int hctx_idx)
286 {
287         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
288
289         kfree(req->sqe.data);
290 }
291
292 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
293                 struct request *rq, unsigned int hctx_idx,
294                 unsigned int numa_node)
295 {
296         struct nvme_rdma_ctrl *ctrl = set->driver_data;
297         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
298         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
299         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
300
301         nvme_req(rq)->ctrl = &ctrl->ctrl;
302         req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
303         if (!req->sqe.data)
304                 return -ENOMEM;
305
306         /* metadata nvme_rdma_sgl struct is located after command's data SGL */
307         if (queue->pi_support)
308                 req->metadata_sgl = (void *)nvme_req(rq) +
309                         sizeof(struct nvme_rdma_request) +
310                         NVME_RDMA_DATA_SGL_SIZE;
311
312         req->queue = queue;
313
314         return 0;
315 }
316
317 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
318                 unsigned int hctx_idx)
319 {
320         struct nvme_rdma_ctrl *ctrl = data;
321         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
322
323         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
324
325         hctx->driver_data = queue;
326         return 0;
327 }
328
329 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
330                 unsigned int hctx_idx)
331 {
332         struct nvme_rdma_ctrl *ctrl = data;
333         struct nvme_rdma_queue *queue = &ctrl->queues[0];
334
335         BUG_ON(hctx_idx != 0);
336
337         hctx->driver_data = queue;
338         return 0;
339 }
340
341 static void nvme_rdma_free_dev(struct kref *ref)
342 {
343         struct nvme_rdma_device *ndev =
344                 container_of(ref, struct nvme_rdma_device, ref);
345
346         mutex_lock(&device_list_mutex);
347         list_del(&ndev->entry);
348         mutex_unlock(&device_list_mutex);
349
350         ib_dealloc_pd(ndev->pd);
351         kfree(ndev);
352 }
353
354 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
355 {
356         kref_put(&dev->ref, nvme_rdma_free_dev);
357 }
358
359 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
360 {
361         return kref_get_unless_zero(&dev->ref);
362 }
363
364 static struct nvme_rdma_device *
365 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
366 {
367         struct nvme_rdma_device *ndev;
368
369         mutex_lock(&device_list_mutex);
370         list_for_each_entry(ndev, &device_list, entry) {
371                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
372                     nvme_rdma_dev_get(ndev))
373                         goto out_unlock;
374         }
375
376         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
377         if (!ndev)
378                 goto out_err;
379
380         ndev->dev = cm_id->device;
381         kref_init(&ndev->ref);
382
383         ndev->pd = ib_alloc_pd(ndev->dev,
384                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
385         if (IS_ERR(ndev->pd))
386                 goto out_free_dev;
387
388         if (!(ndev->dev->attrs.device_cap_flags &
389               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
390                 dev_err(&ndev->dev->dev,
391                         "Memory registrations not supported.\n");
392                 goto out_free_pd;
393         }
394
395         ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
396                                         ndev->dev->attrs.max_send_sge - 1);
397         list_add(&ndev->entry, &device_list);
398 out_unlock:
399         mutex_unlock(&device_list_mutex);
400         return ndev;
401
402 out_free_pd:
403         ib_dealloc_pd(ndev->pd);
404 out_free_dev:
405         kfree(ndev);
406 out_err:
407         mutex_unlock(&device_list_mutex);
408         return NULL;
409 }
410
411 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
412 {
413         struct nvme_rdma_device *dev;
414         struct ib_device *ibdev;
415
416         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
417                 return;
418
419         dev = queue->device;
420         ibdev = dev->dev;
421
422         if (queue->pi_support)
423                 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
424         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
425
426         /*
427          * The cm_id object might have been destroyed during RDMA connection
428          * establishment error flow to avoid getting other cma events, thus
429          * the destruction of the QP shouldn't use rdma_cm API.
430          */
431         ib_destroy_qp(queue->qp);
432         ib_free_cq(queue->ib_cq);
433
434         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
435                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
436
437         nvme_rdma_dev_put(dev);
438 }
439
440 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
441 {
442         u32 max_page_list_len;
443
444         if (pi_support)
445                 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
446         else
447                 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
448
449         return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
450 }
451
452 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
453 {
454         struct ib_device *ibdev;
455         const int send_wr_factor = 3;                   /* MR, SEND, INV */
456         const int cq_factor = send_wr_factor + 1;       /* + RECV */
457         int comp_vector, idx = nvme_rdma_queue_idx(queue);
458         enum ib_poll_context poll_ctx;
459         int ret, pages_per_mr;
460
461         queue->device = nvme_rdma_find_get_device(queue->cm_id);
462         if (!queue->device) {
463                 dev_err(queue->cm_id->device->dev.parent,
464                         "no client data found!\n");
465                 return -ECONNREFUSED;
466         }
467         ibdev = queue->device->dev;
468
469         /*
470          * Spread I/O queues completion vectors according their queue index.
471          * Admin queues can always go on completion vector 0.
472          */
473         comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
474
475         /* Polling queues need direct cq polling context */
476         if (nvme_rdma_poll_queue(queue))
477                 poll_ctx = IB_POLL_DIRECT;
478         else
479                 poll_ctx = IB_POLL_SOFTIRQ;
480
481         /* +1 for ib_stop_cq */
482         queue->ib_cq = ib_alloc_cq(ibdev, queue,
483                                 cq_factor * queue->queue_size + 1,
484                                 comp_vector, poll_ctx);
485         if (IS_ERR(queue->ib_cq)) {
486                 ret = PTR_ERR(queue->ib_cq);
487                 goto out_put_dev;
488         }
489
490         ret = nvme_rdma_create_qp(queue, send_wr_factor);
491         if (ret)
492                 goto out_destroy_ib_cq;
493
494         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
495                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
496         if (!queue->rsp_ring) {
497                 ret = -ENOMEM;
498                 goto out_destroy_qp;
499         }
500
501         /*
502          * Currently we don't use SG_GAPS MR's so if the first entry is
503          * misaligned we'll end up using two entries for a single data page,
504          * so one additional entry is required.
505          */
506         pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
507         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
508                               queue->queue_size,
509                               IB_MR_TYPE_MEM_REG,
510                               pages_per_mr, 0);
511         if (ret) {
512                 dev_err(queue->ctrl->ctrl.device,
513                         "failed to initialize MR pool sized %d for QID %d\n",
514                         queue->queue_size, idx);
515                 goto out_destroy_ring;
516         }
517
518         if (queue->pi_support) {
519                 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
520                                       queue->queue_size, IB_MR_TYPE_INTEGRITY,
521                                       pages_per_mr, pages_per_mr);
522                 if (ret) {
523                         dev_err(queue->ctrl->ctrl.device,
524                                 "failed to initialize PI MR pool sized %d for QID %d\n",
525                                 queue->queue_size, idx);
526                         goto out_destroy_mr_pool;
527                 }
528         }
529
530         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
531
532         return 0;
533
534 out_destroy_mr_pool:
535         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
536 out_destroy_ring:
537         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
538                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
539 out_destroy_qp:
540         rdma_destroy_qp(queue->cm_id);
541 out_destroy_ib_cq:
542         ib_free_cq(queue->ib_cq);
543 out_put_dev:
544         nvme_rdma_dev_put(queue->device);
545         return ret;
546 }
547
548 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
549                 int idx, size_t queue_size)
550 {
551         struct nvme_rdma_queue *queue;
552         struct sockaddr *src_addr = NULL;
553         int ret;
554
555         queue = &ctrl->queues[idx];
556         queue->ctrl = ctrl;
557         if (idx && ctrl->ctrl.max_integrity_segments)
558                 queue->pi_support = true;
559         else
560                 queue->pi_support = false;
561         init_completion(&queue->cm_done);
562
563         if (idx > 0)
564                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
565         else
566                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
567
568         queue->queue_size = queue_size;
569
570         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
571                         RDMA_PS_TCP, IB_QPT_RC);
572         if (IS_ERR(queue->cm_id)) {
573                 dev_info(ctrl->ctrl.device,
574                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
575                 return PTR_ERR(queue->cm_id);
576         }
577
578         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
579                 src_addr = (struct sockaddr *)&ctrl->src_addr;
580
581         queue->cm_error = -ETIMEDOUT;
582         ret = rdma_resolve_addr(queue->cm_id, src_addr,
583                         (struct sockaddr *)&ctrl->addr,
584                         NVME_RDMA_CONNECT_TIMEOUT_MS);
585         if (ret) {
586                 dev_info(ctrl->ctrl.device,
587                         "rdma_resolve_addr failed (%d).\n", ret);
588                 goto out_destroy_cm_id;
589         }
590
591         ret = nvme_rdma_wait_for_cm(queue);
592         if (ret) {
593                 dev_info(ctrl->ctrl.device,
594                         "rdma connection establishment failed (%d)\n", ret);
595                 goto out_destroy_cm_id;
596         }
597
598         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
599
600         return 0;
601
602 out_destroy_cm_id:
603         rdma_destroy_id(queue->cm_id);
604         nvme_rdma_destroy_queue_ib(queue);
605         return ret;
606 }
607
608 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
609 {
610         rdma_disconnect(queue->cm_id);
611         ib_drain_qp(queue->qp);
612 }
613
614 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
615 {
616         if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
617                 return;
618         __nvme_rdma_stop_queue(queue);
619 }
620
621 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
622 {
623         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
624                 return;
625
626         nvme_rdma_destroy_queue_ib(queue);
627         rdma_destroy_id(queue->cm_id);
628 }
629
630 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
631 {
632         int i;
633
634         for (i = 1; i < ctrl->ctrl.queue_count; i++)
635                 nvme_rdma_free_queue(&ctrl->queues[i]);
636 }
637
638 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
639 {
640         int i;
641
642         for (i = 1; i < ctrl->ctrl.queue_count; i++)
643                 nvme_rdma_stop_queue(&ctrl->queues[i]);
644 }
645
646 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
647 {
648         struct nvme_rdma_queue *queue = &ctrl->queues[idx];
649         bool poll = nvme_rdma_poll_queue(queue);
650         int ret;
651
652         if (idx)
653                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
654         else
655                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
656
657         if (!ret) {
658                 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
659         } else {
660                 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
661                         __nvme_rdma_stop_queue(queue);
662                 dev_info(ctrl->ctrl.device,
663                         "failed to connect queue: %d ret=%d\n", idx, ret);
664         }
665         return ret;
666 }
667
668 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
669 {
670         int i, ret = 0;
671
672         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
673                 ret = nvme_rdma_start_queue(ctrl, i);
674                 if (ret)
675                         goto out_stop_queues;
676         }
677
678         return 0;
679
680 out_stop_queues:
681         for (i--; i >= 1; i--)
682                 nvme_rdma_stop_queue(&ctrl->queues[i]);
683         return ret;
684 }
685
686 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
687 {
688         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
689         struct ib_device *ibdev = ctrl->device->dev;
690         unsigned int nr_io_queues, nr_default_queues;
691         unsigned int nr_read_queues, nr_poll_queues;
692         int i, ret;
693
694         nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
695                                 min(opts->nr_io_queues, num_online_cpus()));
696         nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
697                                 min(opts->nr_write_queues, num_online_cpus()));
698         nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
699         nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
700
701         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
702         if (ret)
703                 return ret;
704
705         ctrl->ctrl.queue_count = nr_io_queues + 1;
706         if (ctrl->ctrl.queue_count < 2)
707                 return 0;
708
709         dev_info(ctrl->ctrl.device,
710                 "creating %d I/O queues.\n", nr_io_queues);
711
712         if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
713                 /*
714                  * separate read/write queues
715                  * hand out dedicated default queues only after we have
716                  * sufficient read queues.
717                  */
718                 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
719                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
720                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
721                         min(nr_default_queues, nr_io_queues);
722                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
723         } else {
724                 /*
725                  * shared read/write queues
726                  * either no write queues were requested, or we don't have
727                  * sufficient queue count to have dedicated default queues.
728                  */
729                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
730                         min(nr_read_queues, nr_io_queues);
731                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
732         }
733
734         if (opts->nr_poll_queues && nr_io_queues) {
735                 /* map dedicated poll queues only if we have queues left */
736                 ctrl->io_queues[HCTX_TYPE_POLL] =
737                         min(nr_poll_queues, nr_io_queues);
738         }
739
740         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
741                 ret = nvme_rdma_alloc_queue(ctrl, i,
742                                 ctrl->ctrl.sqsize + 1);
743                 if (ret)
744                         goto out_free_queues;
745         }
746
747         return 0;
748
749 out_free_queues:
750         for (i--; i >= 1; i--)
751                 nvme_rdma_free_queue(&ctrl->queues[i]);
752
753         return ret;
754 }
755
756 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
757                 bool admin)
758 {
759         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
760         struct blk_mq_tag_set *set;
761         int ret;
762
763         if (admin) {
764                 set = &ctrl->admin_tag_set;
765                 memset(set, 0, sizeof(*set));
766                 set->ops = &nvme_rdma_admin_mq_ops;
767                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
768                 set->reserved_tags = 2; /* connect + keep-alive */
769                 set->numa_node = nctrl->numa_node;
770                 set->cmd_size = sizeof(struct nvme_rdma_request) +
771                                 NVME_RDMA_DATA_SGL_SIZE;
772                 set->driver_data = ctrl;
773                 set->nr_hw_queues = 1;
774                 set->timeout = ADMIN_TIMEOUT;
775                 set->flags = BLK_MQ_F_NO_SCHED;
776         } else {
777                 set = &ctrl->tag_set;
778                 memset(set, 0, sizeof(*set));
779                 set->ops = &nvme_rdma_mq_ops;
780                 set->queue_depth = nctrl->sqsize + 1;
781                 set->reserved_tags = 1; /* fabric connect */
782                 set->numa_node = nctrl->numa_node;
783                 set->flags = BLK_MQ_F_SHOULD_MERGE;
784                 set->cmd_size = sizeof(struct nvme_rdma_request) +
785                                 NVME_RDMA_DATA_SGL_SIZE;
786                 if (nctrl->max_integrity_segments)
787                         set->cmd_size += sizeof(struct nvme_rdma_sgl) +
788                                          NVME_RDMA_METADATA_SGL_SIZE;
789                 set->driver_data = ctrl;
790                 set->nr_hw_queues = nctrl->queue_count - 1;
791                 set->timeout = NVME_IO_TIMEOUT;
792                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
793         }
794
795         ret = blk_mq_alloc_tag_set(set);
796         if (ret)
797                 return ERR_PTR(ret);
798
799         return set;
800 }
801
802 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
803                 bool remove)
804 {
805         if (remove) {
806                 blk_cleanup_queue(ctrl->ctrl.admin_q);
807                 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
808                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
809         }
810         if (ctrl->async_event_sqe.data) {
811                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
812                                 sizeof(struct nvme_command), DMA_TO_DEVICE);
813                 ctrl->async_event_sqe.data = NULL;
814         }
815         nvme_rdma_free_queue(&ctrl->queues[0]);
816 }
817
818 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
819                 bool new)
820 {
821         bool pi_capable = false;
822         int error;
823
824         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
825         if (error)
826                 return error;
827
828         ctrl->device = ctrl->queues[0].device;
829         ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
830
831         /* T10-PI support */
832         if (ctrl->device->dev->attrs.device_cap_flags &
833             IB_DEVICE_INTEGRITY_HANDOVER)
834                 pi_capable = true;
835
836         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
837                                                         pi_capable);
838
839         /*
840          * Bind the async event SQE DMA mapping to the admin queue lifetime.
841          * It's safe, since any chage in the underlying RDMA device will issue
842          * error recovery and queue re-creation.
843          */
844         error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
845                         sizeof(struct nvme_command), DMA_TO_DEVICE);
846         if (error)
847                 goto out_free_queue;
848
849         if (new) {
850                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
851                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
852                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
853                         goto out_free_async_qe;
854                 }
855
856                 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
857                 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
858                         error = PTR_ERR(ctrl->ctrl.fabrics_q);
859                         goto out_free_tagset;
860                 }
861
862                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
863                 if (IS_ERR(ctrl->ctrl.admin_q)) {
864                         error = PTR_ERR(ctrl->ctrl.admin_q);
865                         goto out_cleanup_fabrics_q;
866                 }
867         }
868
869         error = nvme_rdma_start_queue(ctrl, 0);
870         if (error)
871                 goto out_cleanup_queue;
872
873         error = nvme_enable_ctrl(&ctrl->ctrl);
874         if (error)
875                 goto out_stop_queue;
876
877         ctrl->ctrl.max_segments = ctrl->max_fr_pages;
878         ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
879         if (pi_capable)
880                 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
881         else
882                 ctrl->ctrl.max_integrity_segments = 0;
883
884         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
885
886         error = nvme_init_identify(&ctrl->ctrl);
887         if (error)
888                 goto out_stop_queue;
889
890         return 0;
891
892 out_stop_queue:
893         nvme_rdma_stop_queue(&ctrl->queues[0]);
894 out_cleanup_queue:
895         if (new)
896                 blk_cleanup_queue(ctrl->ctrl.admin_q);
897 out_cleanup_fabrics_q:
898         if (new)
899                 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
900 out_free_tagset:
901         if (new)
902                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
903 out_free_async_qe:
904         if (ctrl->async_event_sqe.data) {
905                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
906                         sizeof(struct nvme_command), DMA_TO_DEVICE);
907                 ctrl->async_event_sqe.data = NULL;
908         }
909 out_free_queue:
910         nvme_rdma_free_queue(&ctrl->queues[0]);
911         return error;
912 }
913
914 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
915                 bool remove)
916 {
917         if (remove) {
918                 blk_cleanup_queue(ctrl->ctrl.connect_q);
919                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
920         }
921         nvme_rdma_free_io_queues(ctrl);
922 }
923
924 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
925 {
926         int ret;
927
928         ret = nvme_rdma_alloc_io_queues(ctrl);
929         if (ret)
930                 return ret;
931
932         if (new) {
933                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
934                 if (IS_ERR(ctrl->ctrl.tagset)) {
935                         ret = PTR_ERR(ctrl->ctrl.tagset);
936                         goto out_free_io_queues;
937                 }
938
939                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
940                 if (IS_ERR(ctrl->ctrl.connect_q)) {
941                         ret = PTR_ERR(ctrl->ctrl.connect_q);
942                         goto out_free_tag_set;
943                 }
944         } else {
945                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
946                         ctrl->ctrl.queue_count - 1);
947         }
948
949         ret = nvme_rdma_start_io_queues(ctrl);
950         if (ret)
951                 goto out_cleanup_connect_q;
952
953         return 0;
954
955 out_cleanup_connect_q:
956         if (new)
957                 blk_cleanup_queue(ctrl->ctrl.connect_q);
958 out_free_tag_set:
959         if (new)
960                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
961 out_free_io_queues:
962         nvme_rdma_free_io_queues(ctrl);
963         return ret;
964 }
965
966 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
967                 bool remove)
968 {
969         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
970         nvme_rdma_stop_queue(&ctrl->queues[0]);
971         if (ctrl->ctrl.admin_tagset) {
972                 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
973                         nvme_cancel_request, &ctrl->ctrl);
974                 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
975         }
976         if (remove)
977                 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
978         nvme_rdma_destroy_admin_queue(ctrl, remove);
979 }
980
981 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
982                 bool remove)
983 {
984         if (ctrl->ctrl.queue_count > 1) {
985                 nvme_stop_queues(&ctrl->ctrl);
986                 nvme_rdma_stop_io_queues(ctrl);
987                 if (ctrl->ctrl.tagset) {
988                         blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
989                                 nvme_cancel_request, &ctrl->ctrl);
990                         blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
991                 }
992                 if (remove)
993                         nvme_start_queues(&ctrl->ctrl);
994                 nvme_rdma_destroy_io_queues(ctrl, remove);
995         }
996 }
997
998 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
999 {
1000         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1001
1002         if (list_empty(&ctrl->list))
1003                 goto free_ctrl;
1004
1005         mutex_lock(&nvme_rdma_ctrl_mutex);
1006         list_del(&ctrl->list);
1007         mutex_unlock(&nvme_rdma_ctrl_mutex);
1008
1009         nvmf_free_options(nctrl->opts);
1010 free_ctrl:
1011         kfree(ctrl->queues);
1012         kfree(ctrl);
1013 }
1014
1015 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1016 {
1017         /* If we are resetting/deleting then do nothing */
1018         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1019                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1020                         ctrl->ctrl.state == NVME_CTRL_LIVE);
1021                 return;
1022         }
1023
1024         if (nvmf_should_reconnect(&ctrl->ctrl)) {
1025                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1026                         ctrl->ctrl.opts->reconnect_delay);
1027                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1028                                 ctrl->ctrl.opts->reconnect_delay * HZ);
1029         } else {
1030                 nvme_delete_ctrl(&ctrl->ctrl);
1031         }
1032 }
1033
1034 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1035 {
1036         int ret = -EINVAL;
1037         bool changed;
1038
1039         ret = nvme_rdma_configure_admin_queue(ctrl, new);
1040         if (ret)
1041                 return ret;
1042
1043         if (ctrl->ctrl.icdoff) {
1044                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1045                 goto destroy_admin;
1046         }
1047
1048         if (!(ctrl->ctrl.sgls & (1 << 2))) {
1049                 dev_err(ctrl->ctrl.device,
1050                         "Mandatory keyed sgls are not supported!\n");
1051                 goto destroy_admin;
1052         }
1053
1054         if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1055                 dev_warn(ctrl->ctrl.device,
1056                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1057                         ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1058         }
1059
1060         if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1061                 dev_warn(ctrl->ctrl.device,
1062                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
1063                         ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1064                 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1065         }
1066
1067         if (ctrl->ctrl.sgls & (1 << 20))
1068                 ctrl->use_inline_data = true;
1069
1070         if (ctrl->ctrl.queue_count > 1) {
1071                 ret = nvme_rdma_configure_io_queues(ctrl, new);
1072                 if (ret)
1073                         goto destroy_admin;
1074         }
1075
1076         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1077         if (!changed) {
1078                 /*
1079                  * state change failure is ok if we're in DELETING state,
1080                  * unless we're during creation of a new controller to
1081                  * avoid races with teardown flow.
1082                  */
1083                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1084                 WARN_ON_ONCE(new);
1085                 ret = -EINVAL;
1086                 goto destroy_io;
1087         }
1088
1089         nvme_start_ctrl(&ctrl->ctrl);
1090         return 0;
1091
1092 destroy_io:
1093         if (ctrl->ctrl.queue_count > 1)
1094                 nvme_rdma_destroy_io_queues(ctrl, new);
1095 destroy_admin:
1096         nvme_rdma_stop_queue(&ctrl->queues[0]);
1097         nvme_rdma_destroy_admin_queue(ctrl, new);
1098         return ret;
1099 }
1100
1101 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1102 {
1103         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1104                         struct nvme_rdma_ctrl, reconnect_work);
1105
1106         ++ctrl->ctrl.nr_reconnects;
1107
1108         if (nvme_rdma_setup_ctrl(ctrl, false))
1109                 goto requeue;
1110
1111         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1112                         ctrl->ctrl.nr_reconnects);
1113
1114         ctrl->ctrl.nr_reconnects = 0;
1115
1116         return;
1117
1118 requeue:
1119         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1120                         ctrl->ctrl.nr_reconnects);
1121         nvme_rdma_reconnect_or_remove(ctrl);
1122 }
1123
1124 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1125 {
1126         struct nvme_rdma_ctrl *ctrl = container_of(work,
1127                         struct nvme_rdma_ctrl, err_work);
1128
1129         nvme_stop_keep_alive(&ctrl->ctrl);
1130         nvme_rdma_teardown_io_queues(ctrl, false);
1131         nvme_start_queues(&ctrl->ctrl);
1132         nvme_rdma_teardown_admin_queue(ctrl, false);
1133         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1134
1135         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1136                 /* state change failure is ok if we're in DELETING state */
1137                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1138                 return;
1139         }
1140
1141         nvme_rdma_reconnect_or_remove(ctrl);
1142 }
1143
1144 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1145 {
1146         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1147                 return;
1148
1149         queue_work(nvme_reset_wq, &ctrl->err_work);
1150 }
1151
1152 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1153                 const char *op)
1154 {
1155         struct nvme_rdma_queue *queue = cq->cq_context;
1156         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1157
1158         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1159                 dev_info(ctrl->ctrl.device,
1160                              "%s for CQE 0x%p failed with status %s (%d)\n",
1161                              op, wc->wr_cqe,
1162                              ib_wc_status_msg(wc->status), wc->status);
1163         nvme_rdma_error_recovery(ctrl);
1164 }
1165
1166 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1167 {
1168         if (unlikely(wc->status != IB_WC_SUCCESS))
1169                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1170 }
1171
1172 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1173 {
1174         struct nvme_rdma_request *req =
1175                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1176         struct request *rq = blk_mq_rq_from_pdu(req);
1177
1178         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1179                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1180                 return;
1181         }
1182
1183         if (refcount_dec_and_test(&req->ref))
1184                 nvme_end_request(rq, req->status, req->result);
1185
1186 }
1187
1188 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1189                 struct nvme_rdma_request *req)
1190 {
1191         struct ib_send_wr wr = {
1192                 .opcode             = IB_WR_LOCAL_INV,
1193                 .next               = NULL,
1194                 .num_sge            = 0,
1195                 .send_flags         = IB_SEND_SIGNALED,
1196                 .ex.invalidate_rkey = req->mr->rkey,
1197         };
1198
1199         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1200         wr.wr_cqe = &req->reg_cqe;
1201
1202         return ib_post_send(queue->qp, &wr, NULL);
1203 }
1204
1205 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1206                 struct request *rq)
1207 {
1208         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1209         struct nvme_rdma_device *dev = queue->device;
1210         struct ib_device *ibdev = dev->dev;
1211         struct list_head *pool = &queue->qp->rdma_mrs;
1212
1213         if (!blk_rq_nr_phys_segments(rq))
1214                 return;
1215
1216         if (blk_integrity_rq(rq)) {
1217                 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1218                                 req->metadata_sgl->nents, rq_dma_dir(rq));
1219                 sg_free_table_chained(&req->metadata_sgl->sg_table,
1220                                       NVME_INLINE_METADATA_SG_CNT);
1221         }
1222
1223         if (req->use_sig_mr)
1224                 pool = &queue->qp->sig_mrs;
1225
1226         if (req->mr) {
1227                 ib_mr_pool_put(queue->qp, pool, req->mr);
1228                 req->mr = NULL;
1229         }
1230
1231         ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1232                         rq_dma_dir(rq));
1233         sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1234 }
1235
1236 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1237 {
1238         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1239
1240         sg->addr = 0;
1241         put_unaligned_le24(0, sg->length);
1242         put_unaligned_le32(0, sg->key);
1243         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1244         return 0;
1245 }
1246
1247 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1248                 struct nvme_rdma_request *req, struct nvme_command *c,
1249                 int count)
1250 {
1251         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1252         struct scatterlist *sgl = req->data_sgl.sg_table.sgl;
1253         struct ib_sge *sge = &req->sge[1];
1254         u32 len = 0;
1255         int i;
1256
1257         for (i = 0; i < count; i++, sgl++, sge++) {
1258                 sge->addr = sg_dma_address(sgl);
1259                 sge->length = sg_dma_len(sgl);
1260                 sge->lkey = queue->device->pd->local_dma_lkey;
1261                 len += sge->length;
1262         }
1263
1264         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1265         sg->length = cpu_to_le32(len);
1266         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1267
1268         req->num_sge += count;
1269         return 0;
1270 }
1271
1272 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1273                 struct nvme_rdma_request *req, struct nvme_command *c)
1274 {
1275         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1276
1277         sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1278         put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1279         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1280         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1281         return 0;
1282 }
1283
1284 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1285                 struct nvme_rdma_request *req, struct nvme_command *c,
1286                 int count)
1287 {
1288         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1289         int nr;
1290
1291         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1292         if (WARN_ON_ONCE(!req->mr))
1293                 return -EAGAIN;
1294
1295         /*
1296          * Align the MR to a 4K page size to match the ctrl page size and
1297          * the block virtual boundary.
1298          */
1299         nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1300                           SZ_4K);
1301         if (unlikely(nr < count)) {
1302                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1303                 req->mr = NULL;
1304                 if (nr < 0)
1305                         return nr;
1306                 return -EINVAL;
1307         }
1308
1309         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1310
1311         req->reg_cqe.done = nvme_rdma_memreg_done;
1312         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1313         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1314         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1315         req->reg_wr.wr.num_sge = 0;
1316         req->reg_wr.mr = req->mr;
1317         req->reg_wr.key = req->mr->rkey;
1318         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1319                              IB_ACCESS_REMOTE_READ |
1320                              IB_ACCESS_REMOTE_WRITE;
1321
1322         sg->addr = cpu_to_le64(req->mr->iova);
1323         put_unaligned_le24(req->mr->length, sg->length);
1324         put_unaligned_le32(req->mr->rkey, sg->key);
1325         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1326                         NVME_SGL_FMT_INVALIDATE;
1327
1328         return 0;
1329 }
1330
1331 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1332                 struct nvme_command *cmd, struct ib_sig_domain *domain,
1333                 u16 control, u8 pi_type)
1334 {
1335         domain->sig_type = IB_SIG_TYPE_T10_DIF;
1336         domain->sig.dif.bg_type = IB_T10DIF_CRC;
1337         domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1338         domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1339         if (control & NVME_RW_PRINFO_PRCHK_REF)
1340                 domain->sig.dif.ref_remap = true;
1341
1342         domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1343         domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1344         domain->sig.dif.app_escape = true;
1345         if (pi_type == NVME_NS_DPS_PI_TYPE3)
1346                 domain->sig.dif.ref_escape = true;
1347 }
1348
1349 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1350                 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1351                 u8 pi_type)
1352 {
1353         u16 control = le16_to_cpu(cmd->rw.control);
1354
1355         memset(sig_attrs, 0, sizeof(*sig_attrs));
1356         if (control & NVME_RW_PRINFO_PRACT) {
1357                 /* for WRITE_INSERT/READ_STRIP no memory domain */
1358                 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1359                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1360                                          pi_type);
1361                 /* Clear the PRACT bit since HCA will generate/verify the PI */
1362                 control &= ~NVME_RW_PRINFO_PRACT;
1363                 cmd->rw.control = cpu_to_le16(control);
1364         } else {
1365                 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1366                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1367                                          pi_type);
1368                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1369                                          pi_type);
1370         }
1371 }
1372
1373 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1374 {
1375         *mask = 0;
1376         if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1377                 *mask |= IB_SIG_CHECK_REFTAG;
1378         if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1379                 *mask |= IB_SIG_CHECK_GUARD;
1380 }
1381
1382 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1383 {
1384         if (unlikely(wc->status != IB_WC_SUCCESS))
1385                 nvme_rdma_wr_error(cq, wc, "SIG");
1386 }
1387
1388 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1389                 struct nvme_rdma_request *req, struct nvme_command *c,
1390                 int count, int pi_count)
1391 {
1392         struct nvme_rdma_sgl *sgl = &req->data_sgl;
1393         struct ib_reg_wr *wr = &req->reg_wr;
1394         struct request *rq = blk_mq_rq_from_pdu(req);
1395         struct nvme_ns *ns = rq->q->queuedata;
1396         struct bio *bio = rq->bio;
1397         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1398         int nr;
1399
1400         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1401         if (WARN_ON_ONCE(!req->mr))
1402                 return -EAGAIN;
1403
1404         nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1405                              req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1406                              SZ_4K);
1407         if (unlikely(nr))
1408                 goto mr_put;
1409
1410         nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1411                                 req->mr->sig_attrs, ns->pi_type);
1412         nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1413
1414         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1415
1416         req->reg_cqe.done = nvme_rdma_sig_done;
1417         memset(wr, 0, sizeof(*wr));
1418         wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1419         wr->wr.wr_cqe = &req->reg_cqe;
1420         wr->wr.num_sge = 0;
1421         wr->wr.send_flags = 0;
1422         wr->mr = req->mr;
1423         wr->key = req->mr->rkey;
1424         wr->access = IB_ACCESS_LOCAL_WRITE |
1425                      IB_ACCESS_REMOTE_READ |
1426                      IB_ACCESS_REMOTE_WRITE;
1427
1428         sg->addr = cpu_to_le64(req->mr->iova);
1429         put_unaligned_le24(req->mr->length, sg->length);
1430         put_unaligned_le32(req->mr->rkey, sg->key);
1431         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1432
1433         return 0;
1434
1435 mr_put:
1436         ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1437         req->mr = NULL;
1438         if (nr < 0)
1439                 return nr;
1440         return -EINVAL;
1441 }
1442
1443 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1444                 struct request *rq, struct nvme_command *c)
1445 {
1446         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1447         struct nvme_rdma_device *dev = queue->device;
1448         struct ib_device *ibdev = dev->dev;
1449         int pi_count = 0;
1450         int count, ret;
1451
1452         req->num_sge = 1;
1453         refcount_set(&req->ref, 2); /* send and recv completions */
1454
1455         c->common.flags |= NVME_CMD_SGL_METABUF;
1456
1457         if (!blk_rq_nr_phys_segments(rq))
1458                 return nvme_rdma_set_sg_null(c);
1459
1460         req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1461         ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1462                         blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1463                         NVME_INLINE_SG_CNT);
1464         if (ret)
1465                 return -ENOMEM;
1466
1467         req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1468                                             req->data_sgl.sg_table.sgl);
1469
1470         count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1471                               req->data_sgl.nents, rq_dma_dir(rq));
1472         if (unlikely(count <= 0)) {
1473                 ret = -EIO;
1474                 goto out_free_table;
1475         }
1476
1477         if (blk_integrity_rq(rq)) {
1478                 req->metadata_sgl->sg_table.sgl =
1479                         (struct scatterlist *)(req->metadata_sgl + 1);
1480                 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1481                                 blk_rq_count_integrity_sg(rq->q, rq->bio),
1482                                 req->metadata_sgl->sg_table.sgl,
1483                                 NVME_INLINE_METADATA_SG_CNT);
1484                 if (unlikely(ret)) {
1485                         ret = -ENOMEM;
1486                         goto out_unmap_sg;
1487                 }
1488
1489                 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1490                                 rq->bio, req->metadata_sgl->sg_table.sgl);
1491                 pi_count = ib_dma_map_sg(ibdev,
1492                                          req->metadata_sgl->sg_table.sgl,
1493                                          req->metadata_sgl->nents,
1494                                          rq_dma_dir(rq));
1495                 if (unlikely(pi_count <= 0)) {
1496                         ret = -EIO;
1497                         goto out_free_pi_table;
1498                 }
1499         }
1500
1501         if (req->use_sig_mr) {
1502                 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1503                 goto out;
1504         }
1505
1506         if (count <= dev->num_inline_segments) {
1507                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1508                     queue->ctrl->use_inline_data &&
1509                     blk_rq_payload_bytes(rq) <=
1510                                 nvme_rdma_inline_data_size(queue)) {
1511                         ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1512                         goto out;
1513                 }
1514
1515                 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1516                         ret = nvme_rdma_map_sg_single(queue, req, c);
1517                         goto out;
1518                 }
1519         }
1520
1521         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1522 out:
1523         if (unlikely(ret))
1524                 goto out_unmap_pi_sg;
1525
1526         return 0;
1527
1528 out_unmap_pi_sg:
1529         if (blk_integrity_rq(rq))
1530                 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1531                                 req->metadata_sgl->nents, rq_dma_dir(rq));
1532 out_free_pi_table:
1533         if (blk_integrity_rq(rq))
1534                 sg_free_table_chained(&req->metadata_sgl->sg_table,
1535                                       NVME_INLINE_METADATA_SG_CNT);
1536 out_unmap_sg:
1537         ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1538                         rq_dma_dir(rq));
1539 out_free_table:
1540         sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1541         return ret;
1542 }
1543
1544 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1545 {
1546         struct nvme_rdma_qe *qe =
1547                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1548         struct nvme_rdma_request *req =
1549                 container_of(qe, struct nvme_rdma_request, sqe);
1550         struct request *rq = blk_mq_rq_from_pdu(req);
1551
1552         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1553                 nvme_rdma_wr_error(cq, wc, "SEND");
1554                 return;
1555         }
1556
1557         if (refcount_dec_and_test(&req->ref))
1558                 nvme_end_request(rq, req->status, req->result);
1559 }
1560
1561 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1562                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1563                 struct ib_send_wr *first)
1564 {
1565         struct ib_send_wr wr;
1566         int ret;
1567
1568         sge->addr   = qe->dma;
1569         sge->length = sizeof(struct nvme_command);
1570         sge->lkey   = queue->device->pd->local_dma_lkey;
1571
1572         wr.next       = NULL;
1573         wr.wr_cqe     = &qe->cqe;
1574         wr.sg_list    = sge;
1575         wr.num_sge    = num_sge;
1576         wr.opcode     = IB_WR_SEND;
1577         wr.send_flags = IB_SEND_SIGNALED;
1578
1579         if (first)
1580                 first->next = &wr;
1581         else
1582                 first = &wr;
1583
1584         ret = ib_post_send(queue->qp, first, NULL);
1585         if (unlikely(ret)) {
1586                 dev_err(queue->ctrl->ctrl.device,
1587                              "%s failed with error code %d\n", __func__, ret);
1588         }
1589         return ret;
1590 }
1591
1592 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1593                 struct nvme_rdma_qe *qe)
1594 {
1595         struct ib_recv_wr wr;
1596         struct ib_sge list;
1597         int ret;
1598
1599         list.addr   = qe->dma;
1600         list.length = sizeof(struct nvme_completion);
1601         list.lkey   = queue->device->pd->local_dma_lkey;
1602
1603         qe->cqe.done = nvme_rdma_recv_done;
1604
1605         wr.next     = NULL;
1606         wr.wr_cqe   = &qe->cqe;
1607         wr.sg_list  = &list;
1608         wr.num_sge  = 1;
1609
1610         ret = ib_post_recv(queue->qp, &wr, NULL);
1611         if (unlikely(ret)) {
1612                 dev_err(queue->ctrl->ctrl.device,
1613                         "%s failed with error code %d\n", __func__, ret);
1614         }
1615         return ret;
1616 }
1617
1618 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1619 {
1620         u32 queue_idx = nvme_rdma_queue_idx(queue);
1621
1622         if (queue_idx == 0)
1623                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1624         return queue->ctrl->tag_set.tags[queue_idx - 1];
1625 }
1626
1627 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1628 {
1629         if (unlikely(wc->status != IB_WC_SUCCESS))
1630                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1631 }
1632
1633 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1634 {
1635         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1636         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1637         struct ib_device *dev = queue->device->dev;
1638         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1639         struct nvme_command *cmd = sqe->data;
1640         struct ib_sge sge;
1641         int ret;
1642
1643         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1644
1645         memset(cmd, 0, sizeof(*cmd));
1646         cmd->common.opcode = nvme_admin_async_event;
1647         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1648         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1649         nvme_rdma_set_sg_null(cmd);
1650
1651         sqe->cqe.done = nvme_rdma_async_done;
1652
1653         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1654                         DMA_TO_DEVICE);
1655
1656         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1657         WARN_ON_ONCE(ret);
1658 }
1659
1660 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1661                 struct nvme_completion *cqe, struct ib_wc *wc)
1662 {
1663         struct request *rq;
1664         struct nvme_rdma_request *req;
1665
1666         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1667         if (!rq) {
1668                 dev_err(queue->ctrl->ctrl.device,
1669                         "tag 0x%x on QP %#x not found\n",
1670                         cqe->command_id, queue->qp->qp_num);
1671                 nvme_rdma_error_recovery(queue->ctrl);
1672                 return;
1673         }
1674         req = blk_mq_rq_to_pdu(rq);
1675
1676         req->status = cqe->status;
1677         req->result = cqe->result;
1678
1679         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1680                 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1681                         dev_err(queue->ctrl->ctrl.device,
1682                                 "Bogus remote invalidation for rkey %#x\n",
1683                                 req->mr->rkey);
1684                         nvme_rdma_error_recovery(queue->ctrl);
1685                 }
1686         } else if (req->mr) {
1687                 int ret;
1688
1689                 ret = nvme_rdma_inv_rkey(queue, req);
1690                 if (unlikely(ret < 0)) {
1691                         dev_err(queue->ctrl->ctrl.device,
1692                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1693                                 req->mr->rkey, ret);
1694                         nvme_rdma_error_recovery(queue->ctrl);
1695                 }
1696                 /* the local invalidation completion will end the request */
1697                 return;
1698         }
1699
1700         if (refcount_dec_and_test(&req->ref))
1701                 nvme_end_request(rq, req->status, req->result);
1702 }
1703
1704 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1705 {
1706         struct nvme_rdma_qe *qe =
1707                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1708         struct nvme_rdma_queue *queue = cq->cq_context;
1709         struct ib_device *ibdev = queue->device->dev;
1710         struct nvme_completion *cqe = qe->data;
1711         const size_t len = sizeof(struct nvme_completion);
1712
1713         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1714                 nvme_rdma_wr_error(cq, wc, "RECV");
1715                 return;
1716         }
1717
1718         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1719         /*
1720          * AEN requests are special as they don't time out and can
1721          * survive any kind of queue freeze and often don't respond to
1722          * aborts.  We don't even bother to allocate a struct request
1723          * for them but rather special case them here.
1724          */
1725         if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1726                                      cqe->command_id)))
1727                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1728                                 &cqe->result);
1729         else
1730                 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1731         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1732
1733         nvme_rdma_post_recv(queue, qe);
1734 }
1735
1736 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1737 {
1738         int ret, i;
1739
1740         for (i = 0; i < queue->queue_size; i++) {
1741                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1742                 if (ret)
1743                         goto out_destroy_queue_ib;
1744         }
1745
1746         return 0;
1747
1748 out_destroy_queue_ib:
1749         nvme_rdma_destroy_queue_ib(queue);
1750         return ret;
1751 }
1752
1753 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1754                 struct rdma_cm_event *ev)
1755 {
1756         struct rdma_cm_id *cm_id = queue->cm_id;
1757         int status = ev->status;
1758         const char *rej_msg;
1759         const struct nvme_rdma_cm_rej *rej_data;
1760         u8 rej_data_len;
1761
1762         rej_msg = rdma_reject_msg(cm_id, status);
1763         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1764
1765         if (rej_data && rej_data_len >= sizeof(u16)) {
1766                 u16 sts = le16_to_cpu(rej_data->sts);
1767
1768                 dev_err(queue->ctrl->ctrl.device,
1769                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1770                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1771         } else {
1772                 dev_err(queue->ctrl->ctrl.device,
1773                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1774         }
1775
1776         return -ECONNRESET;
1777 }
1778
1779 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1780 {
1781         struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1782         int ret;
1783
1784         ret = nvme_rdma_create_queue_ib(queue);
1785         if (ret)
1786                 return ret;
1787
1788         if (ctrl->opts->tos >= 0)
1789                 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1790         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1791         if (ret) {
1792                 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1793                         queue->cm_error);
1794                 goto out_destroy_queue;
1795         }
1796
1797         return 0;
1798
1799 out_destroy_queue:
1800         nvme_rdma_destroy_queue_ib(queue);
1801         return ret;
1802 }
1803
1804 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1805 {
1806         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1807         struct rdma_conn_param param = { };
1808         struct nvme_rdma_cm_req priv = { };
1809         int ret;
1810
1811         param.qp_num = queue->qp->qp_num;
1812         param.flow_control = 1;
1813
1814         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1815         /* maximum retry count */
1816         param.retry_count = 7;
1817         param.rnr_retry_count = 7;
1818         param.private_data = &priv;
1819         param.private_data_len = sizeof(priv);
1820
1821         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1822         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1823         /*
1824          * set the admin queue depth to the minimum size
1825          * specified by the Fabrics standard.
1826          */
1827         if (priv.qid == 0) {
1828                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1829                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1830         } else {
1831                 /*
1832                  * current interpretation of the fabrics spec
1833                  * is at minimum you make hrqsize sqsize+1, or a
1834                  * 1's based representation of sqsize.
1835                  */
1836                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1837                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1838         }
1839
1840         ret = rdma_connect(queue->cm_id, &param);
1841         if (ret) {
1842                 dev_err(ctrl->ctrl.device,
1843                         "rdma_connect failed (%d).\n", ret);
1844                 goto out_destroy_queue_ib;
1845         }
1846
1847         return 0;
1848
1849 out_destroy_queue_ib:
1850         nvme_rdma_destroy_queue_ib(queue);
1851         return ret;
1852 }
1853
1854 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1855                 struct rdma_cm_event *ev)
1856 {
1857         struct nvme_rdma_queue *queue = cm_id->context;
1858         int cm_error = 0;
1859
1860         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1861                 rdma_event_msg(ev->event), ev->event,
1862                 ev->status, cm_id);
1863
1864         switch (ev->event) {
1865         case RDMA_CM_EVENT_ADDR_RESOLVED:
1866                 cm_error = nvme_rdma_addr_resolved(queue);
1867                 break;
1868         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1869                 cm_error = nvme_rdma_route_resolved(queue);
1870                 break;
1871         case RDMA_CM_EVENT_ESTABLISHED:
1872                 queue->cm_error = nvme_rdma_conn_established(queue);
1873                 /* complete cm_done regardless of success/failure */
1874                 complete(&queue->cm_done);
1875                 return 0;
1876         case RDMA_CM_EVENT_REJECTED:
1877                 nvme_rdma_destroy_queue_ib(queue);
1878                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1879                 break;
1880         case RDMA_CM_EVENT_ROUTE_ERROR:
1881         case RDMA_CM_EVENT_CONNECT_ERROR:
1882         case RDMA_CM_EVENT_UNREACHABLE:
1883                 nvme_rdma_destroy_queue_ib(queue);
1884                 /* fall through */
1885         case RDMA_CM_EVENT_ADDR_ERROR:
1886                 dev_dbg(queue->ctrl->ctrl.device,
1887                         "CM error event %d\n", ev->event);
1888                 cm_error = -ECONNRESET;
1889                 break;
1890         case RDMA_CM_EVENT_DISCONNECTED:
1891         case RDMA_CM_EVENT_ADDR_CHANGE:
1892         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1893                 dev_dbg(queue->ctrl->ctrl.device,
1894                         "disconnect received - connection closed\n");
1895                 nvme_rdma_error_recovery(queue->ctrl);
1896                 break;
1897         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1898                 /* device removal is handled via the ib_client API */
1899                 break;
1900         default:
1901                 dev_err(queue->ctrl->ctrl.device,
1902                         "Unexpected RDMA CM event (%d)\n", ev->event);
1903                 nvme_rdma_error_recovery(queue->ctrl);
1904                 break;
1905         }
1906
1907         if (cm_error) {
1908                 queue->cm_error = cm_error;
1909                 complete(&queue->cm_done);
1910         }
1911
1912         return 0;
1913 }
1914
1915 static enum blk_eh_timer_return
1916 nvme_rdma_timeout(struct request *rq, bool reserved)
1917 {
1918         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1919         struct nvme_rdma_queue *queue = req->queue;
1920         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1921
1922         dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1923                  rq->tag, nvme_rdma_queue_idx(queue));
1924
1925         /*
1926          * Restart the timer if a controller reset is already scheduled. Any
1927          * timed out commands would be handled before entering the connecting
1928          * state.
1929          */
1930         if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
1931                 return BLK_EH_RESET_TIMER;
1932
1933         if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1934                 /*
1935                  * Teardown immediately if controller times out while starting
1936                  * or we are already started error recovery. all outstanding
1937                  * requests are completed on shutdown, so we return BLK_EH_DONE.
1938                  */
1939                 flush_work(&ctrl->err_work);
1940                 nvme_rdma_teardown_io_queues(ctrl, false);
1941                 nvme_rdma_teardown_admin_queue(ctrl, false);
1942                 return BLK_EH_DONE;
1943         }
1944
1945         dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1946         nvme_rdma_error_recovery(ctrl);
1947
1948         return BLK_EH_RESET_TIMER;
1949 }
1950
1951 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1952                 const struct blk_mq_queue_data *bd)
1953 {
1954         struct nvme_ns *ns = hctx->queue->queuedata;
1955         struct nvme_rdma_queue *queue = hctx->driver_data;
1956         struct request *rq = bd->rq;
1957         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1958         struct nvme_rdma_qe *sqe = &req->sqe;
1959         struct nvme_command *c = sqe->data;
1960         struct ib_device *dev;
1961         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1962         blk_status_t ret;
1963         int err;
1964
1965         WARN_ON_ONCE(rq->tag < 0);
1966
1967         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1968                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1969
1970         dev = queue->device->dev;
1971
1972         req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1973                                          sizeof(struct nvme_command),
1974                                          DMA_TO_DEVICE);
1975         err = ib_dma_mapping_error(dev, req->sqe.dma);
1976         if (unlikely(err))
1977                 return BLK_STS_RESOURCE;
1978
1979         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1980                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1981
1982         ret = nvme_setup_cmd(ns, rq, c);
1983         if (ret)
1984                 goto unmap_qe;
1985
1986         blk_mq_start_request(rq);
1987
1988         if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1989             queue->pi_support &&
1990             (c->common.opcode == nvme_cmd_write ||
1991              c->common.opcode == nvme_cmd_read) &&
1992             nvme_ns_has_pi(ns))
1993                 req->use_sig_mr = true;
1994         else
1995                 req->use_sig_mr = false;
1996
1997         err = nvme_rdma_map_data(queue, rq, c);
1998         if (unlikely(err < 0)) {
1999                 dev_err(queue->ctrl->ctrl.device,
2000                              "Failed to map data (%d)\n", err);
2001                 goto err;
2002         }
2003
2004         sqe->cqe.done = nvme_rdma_send_done;
2005
2006         ib_dma_sync_single_for_device(dev, sqe->dma,
2007                         sizeof(struct nvme_command), DMA_TO_DEVICE);
2008
2009         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2010                         req->mr ? &req->reg_wr.wr : NULL);
2011         if (unlikely(err))
2012                 goto err_unmap;
2013
2014         return BLK_STS_OK;
2015
2016 err_unmap:
2017         nvme_rdma_unmap_data(queue, rq);
2018 err:
2019         if (err == -ENOMEM || err == -EAGAIN)
2020                 ret = BLK_STS_RESOURCE;
2021         else
2022                 ret = BLK_STS_IOERR;
2023         nvme_cleanup_cmd(rq);
2024 unmap_qe:
2025         ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2026                             DMA_TO_DEVICE);
2027         return ret;
2028 }
2029
2030 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2031 {
2032         struct nvme_rdma_queue *queue = hctx->driver_data;
2033
2034         return ib_process_cq_direct(queue->ib_cq, -1);
2035 }
2036
2037 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2038 {
2039         struct request *rq = blk_mq_rq_from_pdu(req);
2040         struct ib_mr_status mr_status;
2041         int ret;
2042
2043         ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2044         if (ret) {
2045                 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2046                 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2047                 return;
2048         }
2049
2050         if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2051                 switch (mr_status.sig_err.err_type) {
2052                 case IB_SIG_BAD_GUARD:
2053                         nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2054                         break;
2055                 case IB_SIG_BAD_REFTAG:
2056                         nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2057                         break;
2058                 case IB_SIG_BAD_APPTAG:
2059                         nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2060                         break;
2061                 }
2062                 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2063                        mr_status.sig_err.err_type, mr_status.sig_err.expected,
2064                        mr_status.sig_err.actual);
2065         }
2066 }
2067
2068 static void nvme_rdma_complete_rq(struct request *rq)
2069 {
2070         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2071         struct nvme_rdma_queue *queue = req->queue;
2072         struct ib_device *ibdev = queue->device->dev;
2073
2074         if (req->use_sig_mr)
2075                 nvme_rdma_check_pi_status(req);
2076
2077         nvme_rdma_unmap_data(queue, rq);
2078         ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2079                             DMA_TO_DEVICE);
2080         nvme_complete_rq(rq);
2081 }
2082
2083 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2084 {
2085         struct nvme_rdma_ctrl *ctrl = set->driver_data;
2086         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2087
2088         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2089                 /* separate read/write queues */
2090                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2091                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2092                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2093                 set->map[HCTX_TYPE_READ].nr_queues =
2094                         ctrl->io_queues[HCTX_TYPE_READ];
2095                 set->map[HCTX_TYPE_READ].queue_offset =
2096                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2097         } else {
2098                 /* shared read/write queues */
2099                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2100                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2101                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2102                 set->map[HCTX_TYPE_READ].nr_queues =
2103                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2104                 set->map[HCTX_TYPE_READ].queue_offset = 0;
2105         }
2106         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2107                         ctrl->device->dev, 0);
2108         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2109                         ctrl->device->dev, 0);
2110
2111         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2112                 /* map dedicated poll queues only if we have queues left */
2113                 set->map[HCTX_TYPE_POLL].nr_queues =
2114                                 ctrl->io_queues[HCTX_TYPE_POLL];
2115                 set->map[HCTX_TYPE_POLL].queue_offset =
2116                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2117                         ctrl->io_queues[HCTX_TYPE_READ];
2118                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2119         }
2120
2121         dev_info(ctrl->ctrl.device,
2122                 "mapped %d/%d/%d default/read/poll queues.\n",
2123                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2124                 ctrl->io_queues[HCTX_TYPE_READ],
2125                 ctrl->io_queues[HCTX_TYPE_POLL]);
2126
2127         return 0;
2128 }
2129
2130 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2131         .queue_rq       = nvme_rdma_queue_rq,
2132         .complete       = nvme_rdma_complete_rq,
2133         .init_request   = nvme_rdma_init_request,
2134         .exit_request   = nvme_rdma_exit_request,
2135         .init_hctx      = nvme_rdma_init_hctx,
2136         .timeout        = nvme_rdma_timeout,
2137         .map_queues     = nvme_rdma_map_queues,
2138         .poll           = nvme_rdma_poll,
2139 };
2140
2141 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2142         .queue_rq       = nvme_rdma_queue_rq,
2143         .complete       = nvme_rdma_complete_rq,
2144         .init_request   = nvme_rdma_init_request,
2145         .exit_request   = nvme_rdma_exit_request,
2146         .init_hctx      = nvme_rdma_init_admin_hctx,
2147         .timeout        = nvme_rdma_timeout,
2148 };
2149
2150 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2151 {
2152         cancel_work_sync(&ctrl->err_work);
2153         cancel_delayed_work_sync(&ctrl->reconnect_work);
2154
2155         nvme_rdma_teardown_io_queues(ctrl, shutdown);
2156         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2157         if (shutdown)
2158                 nvme_shutdown_ctrl(&ctrl->ctrl);
2159         else
2160                 nvme_disable_ctrl(&ctrl->ctrl);
2161         nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2162 }
2163
2164 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2165 {
2166         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2167 }
2168
2169 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2170 {
2171         struct nvme_rdma_ctrl *ctrl =
2172                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2173
2174         nvme_stop_ctrl(&ctrl->ctrl);
2175         nvme_rdma_shutdown_ctrl(ctrl, false);
2176
2177         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2178                 /* state change failure should never happen */
2179                 WARN_ON_ONCE(1);
2180                 return;
2181         }
2182
2183         if (nvme_rdma_setup_ctrl(ctrl, false))
2184                 goto out_fail;
2185
2186         return;
2187
2188 out_fail:
2189         ++ctrl->ctrl.nr_reconnects;
2190         nvme_rdma_reconnect_or_remove(ctrl);
2191 }
2192
2193 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2194         .name                   = "rdma",
2195         .module                 = THIS_MODULE,
2196         .flags                  = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2197         .reg_read32             = nvmf_reg_read32,
2198         .reg_read64             = nvmf_reg_read64,
2199         .reg_write32            = nvmf_reg_write32,
2200         .free_ctrl              = nvme_rdma_free_ctrl,
2201         .submit_async_event     = nvme_rdma_submit_async_event,
2202         .delete_ctrl            = nvme_rdma_delete_ctrl,
2203         .get_address            = nvmf_get_address,
2204 };
2205
2206 /*
2207  * Fails a connection request if it matches an existing controller
2208  * (association) with the same tuple:
2209  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2210  *
2211  * if local address is not specified in the request, it will match an
2212  * existing controller with all the other parameters the same and no
2213  * local port address specified as well.
2214  *
2215  * The ports don't need to be compared as they are intrinsically
2216  * already matched by the port pointers supplied.
2217  */
2218 static bool
2219 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2220 {
2221         struct nvme_rdma_ctrl *ctrl;
2222         bool found = false;
2223
2224         mutex_lock(&nvme_rdma_ctrl_mutex);
2225         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2226                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2227                 if (found)
2228                         break;
2229         }
2230         mutex_unlock(&nvme_rdma_ctrl_mutex);
2231
2232         return found;
2233 }
2234
2235 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2236                 struct nvmf_ctrl_options *opts)
2237 {
2238         struct nvme_rdma_ctrl *ctrl;
2239         int ret;
2240         bool changed;
2241
2242         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2243         if (!ctrl)
2244                 return ERR_PTR(-ENOMEM);
2245         ctrl->ctrl.opts = opts;
2246         INIT_LIST_HEAD(&ctrl->list);
2247
2248         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2249                 opts->trsvcid =
2250                         kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2251                 if (!opts->trsvcid) {
2252                         ret = -ENOMEM;
2253                         goto out_free_ctrl;
2254                 }
2255                 opts->mask |= NVMF_OPT_TRSVCID;
2256         }
2257
2258         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2259                         opts->traddr, opts->trsvcid, &ctrl->addr);
2260         if (ret) {
2261                 pr_err("malformed address passed: %s:%s\n",
2262                         opts->traddr, opts->trsvcid);
2263                 goto out_free_ctrl;
2264         }
2265
2266         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2267                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2268                         opts->host_traddr, NULL, &ctrl->src_addr);
2269                 if (ret) {
2270                         pr_err("malformed src address passed: %s\n",
2271                                opts->host_traddr);
2272                         goto out_free_ctrl;
2273                 }
2274         }
2275
2276         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2277                 ret = -EALREADY;
2278                 goto out_free_ctrl;
2279         }
2280
2281         INIT_DELAYED_WORK(&ctrl->reconnect_work,
2282                         nvme_rdma_reconnect_ctrl_work);
2283         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2284         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2285
2286         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2287                                 opts->nr_poll_queues + 1;
2288         ctrl->ctrl.sqsize = opts->queue_size - 1;
2289         ctrl->ctrl.kato = opts->kato;
2290
2291         ret = -ENOMEM;
2292         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2293                                 GFP_KERNEL);
2294         if (!ctrl->queues)
2295                 goto out_free_ctrl;
2296
2297         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2298                                 0 /* no quirks, we're perfect! */);
2299         if (ret)
2300                 goto out_kfree_queues;
2301
2302         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2303         WARN_ON_ONCE(!changed);
2304
2305         ret = nvme_rdma_setup_ctrl(ctrl, true);
2306         if (ret)
2307                 goto out_uninit_ctrl;
2308
2309         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2310                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2311
2312         mutex_lock(&nvme_rdma_ctrl_mutex);
2313         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2314         mutex_unlock(&nvme_rdma_ctrl_mutex);
2315
2316         return &ctrl->ctrl;
2317
2318 out_uninit_ctrl:
2319         nvme_uninit_ctrl(&ctrl->ctrl);
2320         nvme_put_ctrl(&ctrl->ctrl);
2321         if (ret > 0)
2322                 ret = -EIO;
2323         return ERR_PTR(ret);
2324 out_kfree_queues:
2325         kfree(ctrl->queues);
2326 out_free_ctrl:
2327         kfree(ctrl);
2328         return ERR_PTR(ret);
2329 }
2330
2331 static struct nvmf_transport_ops nvme_rdma_transport = {
2332         .name           = "rdma",
2333         .module         = THIS_MODULE,
2334         .required_opts  = NVMF_OPT_TRADDR,
2335         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2336                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2337                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2338                           NVMF_OPT_TOS,
2339         .create_ctrl    = nvme_rdma_create_ctrl,
2340 };
2341
2342 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2343 {
2344         struct nvme_rdma_ctrl *ctrl;
2345         struct nvme_rdma_device *ndev;
2346         bool found = false;
2347
2348         mutex_lock(&device_list_mutex);
2349         list_for_each_entry(ndev, &device_list, entry) {
2350                 if (ndev->dev == ib_device) {
2351                         found = true;
2352                         break;
2353                 }
2354         }
2355         mutex_unlock(&device_list_mutex);
2356
2357         if (!found)
2358                 return;
2359
2360         /* Delete all controllers using this device */
2361         mutex_lock(&nvme_rdma_ctrl_mutex);
2362         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2363                 if (ctrl->device->dev != ib_device)
2364                         continue;
2365                 nvme_delete_ctrl(&ctrl->ctrl);
2366         }
2367         mutex_unlock(&nvme_rdma_ctrl_mutex);
2368
2369         flush_workqueue(nvme_delete_wq);
2370 }
2371
2372 static struct ib_client nvme_rdma_ib_client = {
2373         .name   = "nvme_rdma",
2374         .remove = nvme_rdma_remove_one
2375 };
2376
2377 static int __init nvme_rdma_init_module(void)
2378 {
2379         int ret;
2380
2381         ret = ib_register_client(&nvme_rdma_ib_client);
2382         if (ret)
2383                 return ret;
2384
2385         ret = nvmf_register_transport(&nvme_rdma_transport);
2386         if (ret)
2387                 goto err_unreg_client;
2388
2389         return 0;
2390
2391 err_unreg_client:
2392         ib_unregister_client(&nvme_rdma_ib_client);
2393         return ret;
2394 }
2395
2396 static void __exit nvme_rdma_cleanup_module(void)
2397 {
2398         struct nvme_rdma_ctrl *ctrl;
2399
2400         nvmf_unregister_transport(&nvme_rdma_transport);
2401         ib_unregister_client(&nvme_rdma_ib_client);
2402
2403         mutex_lock(&nvme_rdma_ctrl_mutex);
2404         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2405                 nvme_delete_ctrl(&ctrl->ctrl);
2406         mutex_unlock(&nvme_rdma_ctrl_mutex);
2407         flush_workqueue(nvme_delete_wq);
2408 }
2409
2410 module_init(nvme_rdma_init_module);
2411 module_exit(nvme_rdma_cleanup_module);
2412
2413 MODULE_LICENSE("GPL v2");