4a8cfb360d316980c1246bc01e7fce347818d126
[platform/kernel/linux-starfive.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31
32 #include "trace.h"
33 #include "nvme.h"
34
35 #define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
37
38 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ  4096
45 #define NVME_MAX_SEGS   127
46
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0444);
49
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0444);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58
59 static unsigned int sgl_threshold = SZ_32K;
60 module_param(sgl_threshold, uint, 0644);
61 MODULE_PARM_DESC(sgl_threshold,
62                 "Use SGLs when average request segment size is larger or equal to "
63                 "this size. Use 0 to disable SGLs.");
64
65 #define NVME_PCI_MIN_QUEUE_SIZE 2
66 #define NVME_PCI_MAX_QUEUE_SIZE 4095
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69         .set = io_queue_depth_set,
70         .get = param_get_uint,
71 };
72
73 static unsigned int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
76
77 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78 {
79         unsigned int n;
80         int ret;
81
82         ret = kstrtouint(val, 10, &n);
83         if (ret != 0 || n > num_possible_cpus())
84                 return -EINVAL;
85         return param_set_uint(val, kp);
86 }
87
88 static const struct kernel_param_ops io_queue_count_ops = {
89         .set = io_queue_count_set,
90         .get = param_get_uint,
91 };
92
93 static unsigned int write_queues;
94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
95 MODULE_PARM_DESC(write_queues,
96         "Number of queues to use for writes. If not set, reads and writes "
97         "will share a queue set.");
98
99 static unsigned int poll_queues;
100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
102
103 static bool noacpi;
104 module_param(noacpi, bool, 0444);
105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106
107 struct nvme_dev;
108 struct nvme_queue;
109
110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
112
113 /*
114  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
115  */
116 struct nvme_dev {
117         struct nvme_queue *queues;
118         struct blk_mq_tag_set tagset;
119         struct blk_mq_tag_set admin_tagset;
120         u32 __iomem *dbs;
121         struct device *dev;
122         struct dma_pool *prp_page_pool;
123         struct dma_pool *prp_small_pool;
124         unsigned online_queues;
125         unsigned max_qid;
126         unsigned io_queues[HCTX_MAX_TYPES];
127         unsigned int num_vecs;
128         u32 q_depth;
129         int io_sqes;
130         u32 db_stride;
131         void __iomem *bar;
132         unsigned long bar_mapped_size;
133         struct work_struct remove_work;
134         struct mutex shutdown_lock;
135         bool subsystem;
136         u64 cmb_size;
137         bool cmb_use_sqes;
138         u32 cmbsz;
139         u32 cmbloc;
140         struct nvme_ctrl ctrl;
141         u32 last_ps;
142         bool hmb;
143
144         mempool_t *iod_mempool;
145
146         /* shadow doorbell buffer support: */
147         u32 *dbbuf_dbs;
148         dma_addr_t dbbuf_dbs_dma_addr;
149         u32 *dbbuf_eis;
150         dma_addr_t dbbuf_eis_dma_addr;
151
152         /* host memory buffer support: */
153         u64 host_mem_size;
154         u32 nr_host_mem_descs;
155         dma_addr_t host_mem_descs_dma;
156         struct nvme_host_mem_buf_desc *host_mem_descs;
157         void **host_mem_desc_bufs;
158         unsigned int nr_allocated_queues;
159         unsigned int nr_write_queues;
160         unsigned int nr_poll_queues;
161
162         bool attrs_added;
163 };
164
165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167         return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168                         NVME_PCI_MAX_QUEUE_SIZE);
169 }
170
171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173         return qid * 2 * stride;
174 }
175
176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178         return (qid * 2 + 1) * stride;
179 }
180
181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183         return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185
186 /*
187  * An NVM Express queue.  Each device has at least two (one for admin
188  * commands and one for I/O commands).
189  */
190 struct nvme_queue {
191         struct nvme_dev *dev;
192         spinlock_t sq_lock;
193         void *sq_cmds;
194          /* only used for poll queues: */
195         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196         struct nvme_completion *cqes;
197         dma_addr_t sq_dma_addr;
198         dma_addr_t cq_dma_addr;
199         u32 __iomem *q_db;
200         u32 q_depth;
201         u16 cq_vector;
202         u16 sq_tail;
203         u16 last_sq_tail;
204         u16 cq_head;
205         u16 qid;
206         u8 cq_phase;
207         u8 sqes;
208         unsigned long flags;
209 #define NVMEQ_ENABLED           0
210 #define NVMEQ_SQ_CMB            1
211 #define NVMEQ_DELETE_ERROR      2
212 #define NVMEQ_POLLED            3
213         u32 *dbbuf_sq_db;
214         u32 *dbbuf_cq_db;
215         u32 *dbbuf_sq_ei;
216         u32 *dbbuf_cq_ei;
217         struct completion delete_done;
218 };
219
220 /*
221  * The nvme_iod describes the data in an I/O.
222  *
223  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224  * to the actual struct scatterlist.
225  */
226 struct nvme_iod {
227         struct nvme_request req;
228         struct nvme_command cmd;
229         struct nvme_queue *nvmeq;
230         bool use_sgl;
231         int aborted;
232         int npages;             /* In the PRP list. 0 means small pool in use */
233         dma_addr_t first_dma;
234         unsigned int dma_len;   /* length of single DMA segment mapping */
235         dma_addr_t meta_dma;
236         struct sg_table sgt;
237 };
238
239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241         return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243
244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246         unsigned int mem_size = nvme_dbbuf_size(dev);
247
248         if (dev->dbbuf_dbs) {
249                 /*
250                  * Clear the dbbuf memory so the driver doesn't observe stale
251                  * values from the previous instantiation.
252                  */
253                 memset(dev->dbbuf_dbs, 0, mem_size);
254                 memset(dev->dbbuf_eis, 0, mem_size);
255                 return 0;
256         }
257
258         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
259                                             &dev->dbbuf_dbs_dma_addr,
260                                             GFP_KERNEL);
261         if (!dev->dbbuf_dbs)
262                 return -ENOMEM;
263         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
264                                             &dev->dbbuf_eis_dma_addr,
265                                             GFP_KERNEL);
266         if (!dev->dbbuf_eis) {
267                 dma_free_coherent(dev->dev, mem_size,
268                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
269                 dev->dbbuf_dbs = NULL;
270                 return -ENOMEM;
271         }
272
273         return 0;
274 }
275
276 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
277 {
278         unsigned int mem_size = nvme_dbbuf_size(dev);
279
280         if (dev->dbbuf_dbs) {
281                 dma_free_coherent(dev->dev, mem_size,
282                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
283                 dev->dbbuf_dbs = NULL;
284         }
285         if (dev->dbbuf_eis) {
286                 dma_free_coherent(dev->dev, mem_size,
287                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
288                 dev->dbbuf_eis = NULL;
289         }
290 }
291
292 static void nvme_dbbuf_init(struct nvme_dev *dev,
293                             struct nvme_queue *nvmeq, int qid)
294 {
295         if (!dev->dbbuf_dbs || !qid)
296                 return;
297
298         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
299         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
300         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
301         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
302 }
303
304 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
305 {
306         if (!nvmeq->qid)
307                 return;
308
309         nvmeq->dbbuf_sq_db = NULL;
310         nvmeq->dbbuf_cq_db = NULL;
311         nvmeq->dbbuf_sq_ei = NULL;
312         nvmeq->dbbuf_cq_ei = NULL;
313 }
314
315 static void nvme_dbbuf_set(struct nvme_dev *dev)
316 {
317         struct nvme_command c = { };
318         unsigned int i;
319
320         if (!dev->dbbuf_dbs)
321                 return;
322
323         c.dbbuf.opcode = nvme_admin_dbbuf;
324         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
325         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
326
327         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
328                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
329                 /* Free memory and continue on */
330                 nvme_dbbuf_dma_free(dev);
331
332                 for (i = 1; i <= dev->online_queues; i++)
333                         nvme_dbbuf_free(&dev->queues[i]);
334         }
335 }
336
337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
338 {
339         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
340 }
341
342 /* Update dbbuf and return true if an MMIO is required */
343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
344                                               volatile u32 *dbbuf_ei)
345 {
346         if (dbbuf_db) {
347                 u16 old_value;
348
349                 /*
350                  * Ensure that the queue is written before updating
351                  * the doorbell in memory
352                  */
353                 wmb();
354
355                 old_value = *dbbuf_db;
356                 *dbbuf_db = value;
357
358                 /*
359                  * Ensure that the doorbell is updated before reading the event
360                  * index from memory.  The controller needs to provide similar
361                  * ordering to ensure the envent index is updated before reading
362                  * the doorbell.
363                  */
364                 mb();
365
366                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
367                         return false;
368         }
369
370         return true;
371 }
372
373 /*
374  * Will slightly overestimate the number of pages needed.  This is OK
375  * as it only leads to a small amount of wasted memory for the lifetime of
376  * the I/O.
377  */
378 static int nvme_pci_npages_prp(void)
379 {
380         unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
381                                       NVME_CTRL_PAGE_SIZE);
382         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
383 }
384
385 /*
386  * Calculates the number of pages needed for the SGL segments. For example a 4k
387  * page can accommodate 256 SGL descriptors.
388  */
389 static int nvme_pci_npages_sgl(void)
390 {
391         return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
392                         PAGE_SIZE);
393 }
394
395 static size_t nvme_pci_iod_alloc_size(void)
396 {
397         size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
398
399         return sizeof(__le64 *) * npages +
400                 sizeof(struct scatterlist) * NVME_MAX_SEGS;
401 }
402
403 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
404                                 unsigned int hctx_idx)
405 {
406         struct nvme_dev *dev = data;
407         struct nvme_queue *nvmeq = &dev->queues[0];
408
409         WARN_ON(hctx_idx != 0);
410         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
411
412         hctx->driver_data = nvmeq;
413         return 0;
414 }
415
416 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
417                           unsigned int hctx_idx)
418 {
419         struct nvme_dev *dev = data;
420         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
421
422         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
423         hctx->driver_data = nvmeq;
424         return 0;
425 }
426
427 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
428                 struct request *req, unsigned int hctx_idx,
429                 unsigned int numa_node)
430 {
431         struct nvme_dev *dev = set->driver_data;
432         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
433         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
434         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
435
436         BUG_ON(!nvmeq);
437         iod->nvmeq = nvmeq;
438
439         nvme_req(req)->ctrl = &dev->ctrl;
440         nvme_req(req)->cmd = &iod->cmd;
441         return 0;
442 }
443
444 static int queue_irq_offset(struct nvme_dev *dev)
445 {
446         /* if we have more than 1 vec, admin queue offsets us by 1 */
447         if (dev->num_vecs > 1)
448                 return 1;
449
450         return 0;
451 }
452
453 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
454 {
455         struct nvme_dev *dev = set->driver_data;
456         int i, qoff, offset;
457
458         offset = queue_irq_offset(dev);
459         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
460                 struct blk_mq_queue_map *map = &set->map[i];
461
462                 map->nr_queues = dev->io_queues[i];
463                 if (!map->nr_queues) {
464                         BUG_ON(i == HCTX_TYPE_DEFAULT);
465                         continue;
466                 }
467
468                 /*
469                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
470                  * affinity), so use the regular blk-mq cpu mapping
471                  */
472                 map->queue_offset = qoff;
473                 if (i != HCTX_TYPE_POLL && offset)
474                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
475                 else
476                         blk_mq_map_queues(map);
477                 qoff += map->nr_queues;
478                 offset += map->nr_queues;
479         }
480 }
481
482 /*
483  * Write sq tail if we are asked to, or if the next command would wrap.
484  */
485 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
486 {
487         if (!write_sq) {
488                 u16 next_tail = nvmeq->sq_tail + 1;
489
490                 if (next_tail == nvmeq->q_depth)
491                         next_tail = 0;
492                 if (next_tail != nvmeq->last_sq_tail)
493                         return;
494         }
495
496         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
497                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
498                 writel(nvmeq->sq_tail, nvmeq->q_db);
499         nvmeq->last_sq_tail = nvmeq->sq_tail;
500 }
501
502 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
503                                     struct nvme_command *cmd)
504 {
505         memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
506                 absolute_pointer(cmd), sizeof(*cmd));
507         if (++nvmeq->sq_tail == nvmeq->q_depth)
508                 nvmeq->sq_tail = 0;
509 }
510
511 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
512 {
513         struct nvme_queue *nvmeq = hctx->driver_data;
514
515         spin_lock(&nvmeq->sq_lock);
516         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
517                 nvme_write_sq_db(nvmeq, true);
518         spin_unlock(&nvmeq->sq_lock);
519 }
520
521 static void **nvme_pci_iod_list(struct request *req)
522 {
523         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
524         return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
525 }
526
527 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
528 {
529         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
530         int nseg = blk_rq_nr_phys_segments(req);
531         unsigned int avg_seg_size;
532
533         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
534
535         if (!nvme_ctrl_sgl_supported(&dev->ctrl))
536                 return false;
537         if (!iod->nvmeq->qid)
538                 return false;
539         if (!sgl_threshold || avg_seg_size < sgl_threshold)
540                 return false;
541         return true;
542 }
543
544 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
545 {
546         const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
547         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
548         dma_addr_t dma_addr = iod->first_dma;
549         int i;
550
551         for (i = 0; i < iod->npages; i++) {
552                 __le64 *prp_list = nvme_pci_iod_list(req)[i];
553                 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
554
555                 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
556                 dma_addr = next_dma_addr;
557         }
558 }
559
560 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
561 {
562         const int last_sg = SGES_PER_PAGE - 1;
563         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
564         dma_addr_t dma_addr = iod->first_dma;
565         int i;
566
567         for (i = 0; i < iod->npages; i++) {
568                 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
569                 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
570
571                 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
572                 dma_addr = next_dma_addr;
573         }
574 }
575
576 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
577 {
578         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
579
580         if (iod->dma_len) {
581                 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
582                                rq_dma_dir(req));
583                 return;
584         }
585
586         WARN_ON_ONCE(!iod->sgt.nents);
587
588         dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
589
590         if (iod->npages == 0)
591                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
592                               iod->first_dma);
593         else if (iod->use_sgl)
594                 nvme_free_sgls(dev, req);
595         else
596                 nvme_free_prps(dev, req);
597         mempool_free(iod->sgt.sgl, dev->iod_mempool);
598 }
599
600 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
601 {
602         int i;
603         struct scatterlist *sg;
604
605         for_each_sg(sgl, sg, nents, i) {
606                 dma_addr_t phys = sg_phys(sg);
607                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
608                         "dma_address:%pad dma_length:%d\n",
609                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
610                         sg_dma_len(sg));
611         }
612 }
613
614 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
615                 struct request *req, struct nvme_rw_command *cmnd)
616 {
617         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
618         struct dma_pool *pool;
619         int length = blk_rq_payload_bytes(req);
620         struct scatterlist *sg = iod->sgt.sgl;
621         int dma_len = sg_dma_len(sg);
622         u64 dma_addr = sg_dma_address(sg);
623         int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
624         __le64 *prp_list;
625         void **list = nvme_pci_iod_list(req);
626         dma_addr_t prp_dma;
627         int nprps, i;
628
629         length -= (NVME_CTRL_PAGE_SIZE - offset);
630         if (length <= 0) {
631                 iod->first_dma = 0;
632                 goto done;
633         }
634
635         dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
636         if (dma_len) {
637                 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
638         } else {
639                 sg = sg_next(sg);
640                 dma_addr = sg_dma_address(sg);
641                 dma_len = sg_dma_len(sg);
642         }
643
644         if (length <= NVME_CTRL_PAGE_SIZE) {
645                 iod->first_dma = dma_addr;
646                 goto done;
647         }
648
649         nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
650         if (nprps <= (256 / 8)) {
651                 pool = dev->prp_small_pool;
652                 iod->npages = 0;
653         } else {
654                 pool = dev->prp_page_pool;
655                 iod->npages = 1;
656         }
657
658         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
659         if (!prp_list) {
660                 iod->npages = -1;
661                 return BLK_STS_RESOURCE;
662         }
663         list[0] = prp_list;
664         iod->first_dma = prp_dma;
665         i = 0;
666         for (;;) {
667                 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
668                         __le64 *old_prp_list = prp_list;
669                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
670                         if (!prp_list)
671                                 goto free_prps;
672                         list[iod->npages++] = prp_list;
673                         prp_list[0] = old_prp_list[i - 1];
674                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
675                         i = 1;
676                 }
677                 prp_list[i++] = cpu_to_le64(dma_addr);
678                 dma_len -= NVME_CTRL_PAGE_SIZE;
679                 dma_addr += NVME_CTRL_PAGE_SIZE;
680                 length -= NVME_CTRL_PAGE_SIZE;
681                 if (length <= 0)
682                         break;
683                 if (dma_len > 0)
684                         continue;
685                 if (unlikely(dma_len < 0))
686                         goto bad_sgl;
687                 sg = sg_next(sg);
688                 dma_addr = sg_dma_address(sg);
689                 dma_len = sg_dma_len(sg);
690         }
691 done:
692         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
693         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
694         return BLK_STS_OK;
695 free_prps:
696         nvme_free_prps(dev, req);
697         return BLK_STS_RESOURCE;
698 bad_sgl:
699         WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
700                         "Invalid SGL for payload:%d nents:%d\n",
701                         blk_rq_payload_bytes(req), iod->sgt.nents);
702         return BLK_STS_IOERR;
703 }
704
705 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
706                 struct scatterlist *sg)
707 {
708         sge->addr = cpu_to_le64(sg_dma_address(sg));
709         sge->length = cpu_to_le32(sg_dma_len(sg));
710         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
711 }
712
713 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
714                 dma_addr_t dma_addr, int entries)
715 {
716         sge->addr = cpu_to_le64(dma_addr);
717         if (entries < SGES_PER_PAGE) {
718                 sge->length = cpu_to_le32(entries * sizeof(*sge));
719                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
720         } else {
721                 sge->length = cpu_to_le32(PAGE_SIZE);
722                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
723         }
724 }
725
726 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
727                 struct request *req, struct nvme_rw_command *cmd)
728 {
729         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
730         struct dma_pool *pool;
731         struct nvme_sgl_desc *sg_list;
732         struct scatterlist *sg = iod->sgt.sgl;
733         unsigned int entries = iod->sgt.nents;
734         dma_addr_t sgl_dma;
735         int i = 0;
736
737         /* setting the transfer type as SGL */
738         cmd->flags = NVME_CMD_SGL_METABUF;
739
740         if (entries == 1) {
741                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
742                 return BLK_STS_OK;
743         }
744
745         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
746                 pool = dev->prp_small_pool;
747                 iod->npages = 0;
748         } else {
749                 pool = dev->prp_page_pool;
750                 iod->npages = 1;
751         }
752
753         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
754         if (!sg_list) {
755                 iod->npages = -1;
756                 return BLK_STS_RESOURCE;
757         }
758
759         nvme_pci_iod_list(req)[0] = sg_list;
760         iod->first_dma = sgl_dma;
761
762         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
763
764         do {
765                 if (i == SGES_PER_PAGE) {
766                         struct nvme_sgl_desc *old_sg_desc = sg_list;
767                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
768
769                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
770                         if (!sg_list)
771                                 goto free_sgls;
772
773                         i = 0;
774                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
775                         sg_list[i++] = *link;
776                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
777                 }
778
779                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
780                 sg = sg_next(sg);
781         } while (--entries > 0);
782
783         return BLK_STS_OK;
784 free_sgls:
785         nvme_free_sgls(dev, req);
786         return BLK_STS_RESOURCE;
787 }
788
789 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
790                 struct request *req, struct nvme_rw_command *cmnd,
791                 struct bio_vec *bv)
792 {
793         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
794         unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
795         unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
796
797         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
798         if (dma_mapping_error(dev->dev, iod->first_dma))
799                 return BLK_STS_RESOURCE;
800         iod->dma_len = bv->bv_len;
801
802         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
803         if (bv->bv_len > first_prp_len)
804                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
805         return BLK_STS_OK;
806 }
807
808 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
809                 struct request *req, struct nvme_rw_command *cmnd,
810                 struct bio_vec *bv)
811 {
812         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
813
814         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
815         if (dma_mapping_error(dev->dev, iod->first_dma))
816                 return BLK_STS_RESOURCE;
817         iod->dma_len = bv->bv_len;
818
819         cmnd->flags = NVME_CMD_SGL_METABUF;
820         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
821         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
822         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
823         return BLK_STS_OK;
824 }
825
826 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
827                 struct nvme_command *cmnd)
828 {
829         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
830         blk_status_t ret = BLK_STS_RESOURCE;
831         int rc;
832
833         if (blk_rq_nr_phys_segments(req) == 1) {
834                 struct bio_vec bv = req_bvec(req);
835
836                 if (!is_pci_p2pdma_page(bv.bv_page)) {
837                         if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
838                                 return nvme_setup_prp_simple(dev, req,
839                                                              &cmnd->rw, &bv);
840
841                         if (iod->nvmeq->qid && sgl_threshold &&
842                             nvme_ctrl_sgl_supported(&dev->ctrl))
843                                 return nvme_setup_sgl_simple(dev, req,
844                                                              &cmnd->rw, &bv);
845                 }
846         }
847
848         iod->dma_len = 0;
849         iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
850         if (!iod->sgt.sgl)
851                 return BLK_STS_RESOURCE;
852         sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
853         iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
854         if (!iod->sgt.orig_nents)
855                 goto out_free_sg;
856
857         rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
858                              DMA_ATTR_NO_WARN);
859         if (rc) {
860                 if (rc == -EREMOTEIO)
861                         ret = BLK_STS_TARGET;
862                 goto out_free_sg;
863         }
864
865         iod->use_sgl = nvme_pci_use_sgls(dev, req);
866         if (iod->use_sgl)
867                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
868         else
869                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
870         if (ret != BLK_STS_OK)
871                 goto out_unmap_sg;
872         return BLK_STS_OK;
873
874 out_unmap_sg:
875         dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
876 out_free_sg:
877         mempool_free(iod->sgt.sgl, dev->iod_mempool);
878         return ret;
879 }
880
881 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
882                 struct nvme_command *cmnd)
883 {
884         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
885
886         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
887                         rq_dma_dir(req), 0);
888         if (dma_mapping_error(dev->dev, iod->meta_dma))
889                 return BLK_STS_IOERR;
890         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
891         return BLK_STS_OK;
892 }
893
894 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
895 {
896         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
897         blk_status_t ret;
898
899         iod->aborted = 0;
900         iod->npages = -1;
901         iod->sgt.nents = 0;
902
903         ret = nvme_setup_cmd(req->q->queuedata, req);
904         if (ret)
905                 return ret;
906
907         if (blk_rq_nr_phys_segments(req)) {
908                 ret = nvme_map_data(dev, req, &iod->cmd);
909                 if (ret)
910                         goto out_free_cmd;
911         }
912
913         if (blk_integrity_rq(req)) {
914                 ret = nvme_map_metadata(dev, req, &iod->cmd);
915                 if (ret)
916                         goto out_unmap_data;
917         }
918
919         blk_mq_start_request(req);
920         return BLK_STS_OK;
921 out_unmap_data:
922         nvme_unmap_data(dev, req);
923 out_free_cmd:
924         nvme_cleanup_cmd(req);
925         return ret;
926 }
927
928 /*
929  * NOTE: ns is NULL when called on the admin queue.
930  */
931 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
932                          const struct blk_mq_queue_data *bd)
933 {
934         struct nvme_queue *nvmeq = hctx->driver_data;
935         struct nvme_dev *dev = nvmeq->dev;
936         struct request *req = bd->rq;
937         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
938         blk_status_t ret;
939
940         /*
941          * We should not need to do this, but we're still using this to
942          * ensure we can drain requests on a dying queue.
943          */
944         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
945                 return BLK_STS_IOERR;
946
947         if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
948                 return nvme_fail_nonready_command(&dev->ctrl, req);
949
950         ret = nvme_prep_rq(dev, req);
951         if (unlikely(ret))
952                 return ret;
953         spin_lock(&nvmeq->sq_lock);
954         nvme_sq_copy_cmd(nvmeq, &iod->cmd);
955         nvme_write_sq_db(nvmeq, bd->last);
956         spin_unlock(&nvmeq->sq_lock);
957         return BLK_STS_OK;
958 }
959
960 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
961 {
962         spin_lock(&nvmeq->sq_lock);
963         while (!rq_list_empty(*rqlist)) {
964                 struct request *req = rq_list_pop(rqlist);
965                 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
966
967                 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
968         }
969         nvme_write_sq_db(nvmeq, true);
970         spin_unlock(&nvmeq->sq_lock);
971 }
972
973 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
974 {
975         /*
976          * We should not need to do this, but we're still using this to
977          * ensure we can drain requests on a dying queue.
978          */
979         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
980                 return false;
981         if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
982                 return false;
983
984         req->mq_hctx->tags->rqs[req->tag] = req;
985         return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
986 }
987
988 static void nvme_queue_rqs(struct request **rqlist)
989 {
990         struct request *req, *next, *prev = NULL;
991         struct request *requeue_list = NULL;
992
993         rq_list_for_each_safe(rqlist, req, next) {
994                 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
995
996                 if (!nvme_prep_rq_batch(nvmeq, req)) {
997                         /* detach 'req' and add to remainder list */
998                         rq_list_move(rqlist, &requeue_list, req, prev);
999
1000                         req = prev;
1001                         if (!req)
1002                                 continue;
1003                 }
1004
1005                 if (!next || req->mq_hctx != next->mq_hctx) {
1006                         /* detach rest of list, and submit */
1007                         req->rq_next = NULL;
1008                         nvme_submit_cmds(nvmeq, rqlist);
1009                         *rqlist = next;
1010                         prev = NULL;
1011                 } else
1012                         prev = req;
1013         }
1014
1015         *rqlist = requeue_list;
1016 }
1017
1018 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1019 {
1020         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1021         struct nvme_dev *dev = iod->nvmeq->dev;
1022
1023         if (blk_integrity_rq(req))
1024                 dma_unmap_page(dev->dev, iod->meta_dma,
1025                                rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1026         if (blk_rq_nr_phys_segments(req))
1027                 nvme_unmap_data(dev, req);
1028 }
1029
1030 static void nvme_pci_complete_rq(struct request *req)
1031 {
1032         nvme_pci_unmap_rq(req);
1033         nvme_complete_rq(req);
1034 }
1035
1036 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1037 {
1038         nvme_complete_batch(iob, nvme_pci_unmap_rq);
1039 }
1040
1041 /* We read the CQE phase first to check if the rest of the entry is valid */
1042 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1043 {
1044         struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1045
1046         return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1047 }
1048
1049 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1050 {
1051         u16 head = nvmeq->cq_head;
1052
1053         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1054                                               nvmeq->dbbuf_cq_ei))
1055                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1056 }
1057
1058 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1059 {
1060         if (!nvmeq->qid)
1061                 return nvmeq->dev->admin_tagset.tags[0];
1062         return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1063 }
1064
1065 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1066                                    struct io_comp_batch *iob, u16 idx)
1067 {
1068         struct nvme_completion *cqe = &nvmeq->cqes[idx];
1069         __u16 command_id = READ_ONCE(cqe->command_id);
1070         struct request *req;
1071
1072         /*
1073          * AEN requests are special as they don't time out and can
1074          * survive any kind of queue freeze and often don't respond to
1075          * aborts.  We don't even bother to allocate a struct request
1076          * for them but rather special case them here.
1077          */
1078         if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1079                 nvme_complete_async_event(&nvmeq->dev->ctrl,
1080                                 cqe->status, &cqe->result);
1081                 return;
1082         }
1083
1084         req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1085         if (unlikely(!req)) {
1086                 dev_warn(nvmeq->dev->ctrl.device,
1087                         "invalid id %d completed on queue %d\n",
1088                         command_id, le16_to_cpu(cqe->sq_id));
1089                 return;
1090         }
1091
1092         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1093         if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1094             !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1095                                         nvme_pci_complete_batch))
1096                 nvme_pci_complete_rq(req);
1097 }
1098
1099 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1100 {
1101         u32 tmp = nvmeq->cq_head + 1;
1102
1103         if (tmp == nvmeq->q_depth) {
1104                 nvmeq->cq_head = 0;
1105                 nvmeq->cq_phase ^= 1;
1106         } else {
1107                 nvmeq->cq_head = tmp;
1108         }
1109 }
1110
1111 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1112                                struct io_comp_batch *iob)
1113 {
1114         int found = 0;
1115
1116         while (nvme_cqe_pending(nvmeq)) {
1117                 found++;
1118                 /*
1119                  * load-load control dependency between phase and the rest of
1120                  * the cqe requires a full read memory barrier
1121                  */
1122                 dma_rmb();
1123                 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1124                 nvme_update_cq_head(nvmeq);
1125         }
1126
1127         if (found)
1128                 nvme_ring_cq_doorbell(nvmeq);
1129         return found;
1130 }
1131
1132 static irqreturn_t nvme_irq(int irq, void *data)
1133 {
1134         struct nvme_queue *nvmeq = data;
1135         DEFINE_IO_COMP_BATCH(iob);
1136
1137         if (nvme_poll_cq(nvmeq, &iob)) {
1138                 if (!rq_list_empty(iob.req_list))
1139                         nvme_pci_complete_batch(&iob);
1140                 return IRQ_HANDLED;
1141         }
1142         return IRQ_NONE;
1143 }
1144
1145 static irqreturn_t nvme_irq_check(int irq, void *data)
1146 {
1147         struct nvme_queue *nvmeq = data;
1148
1149         if (nvme_cqe_pending(nvmeq))
1150                 return IRQ_WAKE_THREAD;
1151         return IRQ_NONE;
1152 }
1153
1154 /*
1155  * Poll for completions for any interrupt driven queue
1156  * Can be called from any context.
1157  */
1158 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1159 {
1160         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1161
1162         WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1163
1164         disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1165         nvme_poll_cq(nvmeq, NULL);
1166         enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1167 }
1168
1169 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1170 {
1171         struct nvme_queue *nvmeq = hctx->driver_data;
1172         bool found;
1173
1174         if (!nvme_cqe_pending(nvmeq))
1175                 return 0;
1176
1177         spin_lock(&nvmeq->cq_poll_lock);
1178         found = nvme_poll_cq(nvmeq, iob);
1179         spin_unlock(&nvmeq->cq_poll_lock);
1180
1181         return found;
1182 }
1183
1184 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1185 {
1186         struct nvme_dev *dev = to_nvme_dev(ctrl);
1187         struct nvme_queue *nvmeq = &dev->queues[0];
1188         struct nvme_command c = { };
1189
1190         c.common.opcode = nvme_admin_async_event;
1191         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1192
1193         spin_lock(&nvmeq->sq_lock);
1194         nvme_sq_copy_cmd(nvmeq, &c);
1195         nvme_write_sq_db(nvmeq, true);
1196         spin_unlock(&nvmeq->sq_lock);
1197 }
1198
1199 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1200 {
1201         struct nvme_command c = { };
1202
1203         c.delete_queue.opcode = opcode;
1204         c.delete_queue.qid = cpu_to_le16(id);
1205
1206         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1207 }
1208
1209 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1210                 struct nvme_queue *nvmeq, s16 vector)
1211 {
1212         struct nvme_command c = { };
1213         int flags = NVME_QUEUE_PHYS_CONTIG;
1214
1215         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1216                 flags |= NVME_CQ_IRQ_ENABLED;
1217
1218         /*
1219          * Note: we (ab)use the fact that the prp fields survive if no data
1220          * is attached to the request.
1221          */
1222         c.create_cq.opcode = nvme_admin_create_cq;
1223         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1224         c.create_cq.cqid = cpu_to_le16(qid);
1225         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1226         c.create_cq.cq_flags = cpu_to_le16(flags);
1227         c.create_cq.irq_vector = cpu_to_le16(vector);
1228
1229         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1230 }
1231
1232 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1233                                                 struct nvme_queue *nvmeq)
1234 {
1235         struct nvme_ctrl *ctrl = &dev->ctrl;
1236         struct nvme_command c = { };
1237         int flags = NVME_QUEUE_PHYS_CONTIG;
1238
1239         /*
1240          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1241          * set. Since URGENT priority is zeroes, it makes all queues
1242          * URGENT.
1243          */
1244         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1245                 flags |= NVME_SQ_PRIO_MEDIUM;
1246
1247         /*
1248          * Note: we (ab)use the fact that the prp fields survive if no data
1249          * is attached to the request.
1250          */
1251         c.create_sq.opcode = nvme_admin_create_sq;
1252         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1253         c.create_sq.sqid = cpu_to_le16(qid);
1254         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1255         c.create_sq.sq_flags = cpu_to_le16(flags);
1256         c.create_sq.cqid = cpu_to_le16(qid);
1257
1258         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1259 }
1260
1261 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1262 {
1263         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1264 }
1265
1266 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1267 {
1268         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1269 }
1270
1271 static void abort_endio(struct request *req, blk_status_t error)
1272 {
1273         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1274         struct nvme_queue *nvmeq = iod->nvmeq;
1275
1276         dev_warn(nvmeq->dev->ctrl.device,
1277                  "Abort status: 0x%x", nvme_req(req)->status);
1278         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1279         blk_mq_free_request(req);
1280 }
1281
1282 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1283 {
1284         /* If true, indicates loss of adapter communication, possibly by a
1285          * NVMe Subsystem reset.
1286          */
1287         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1288
1289         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1290         switch (dev->ctrl.state) {
1291         case NVME_CTRL_RESETTING:
1292         case NVME_CTRL_CONNECTING:
1293                 return false;
1294         default:
1295                 break;
1296         }
1297
1298         /* We shouldn't reset unless the controller is on fatal error state
1299          * _or_ if we lost the communication with it.
1300          */
1301         if (!(csts & NVME_CSTS_CFS) && !nssro)
1302                 return false;
1303
1304         return true;
1305 }
1306
1307 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1308 {
1309         /* Read a config register to help see what died. */
1310         u16 pci_status;
1311         int result;
1312
1313         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1314                                       &pci_status);
1315         if (result == PCIBIOS_SUCCESSFUL)
1316                 dev_warn(dev->ctrl.device,
1317                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1318                          csts, pci_status);
1319         else
1320                 dev_warn(dev->ctrl.device,
1321                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1322                          csts, result);
1323
1324         if (csts != ~0)
1325                 return;
1326
1327         dev_warn(dev->ctrl.device,
1328                  "Does your device have a faulty power saving mode enabled?\n");
1329         dev_warn(dev->ctrl.device,
1330                  "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1331 }
1332
1333 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1334 {
1335         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1336         struct nvme_queue *nvmeq = iod->nvmeq;
1337         struct nvme_dev *dev = nvmeq->dev;
1338         struct request *abort_req;
1339         struct nvme_command cmd = { };
1340         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1341
1342         /* If PCI error recovery process is happening, we cannot reset or
1343          * the recovery mechanism will surely fail.
1344          */
1345         mb();
1346         if (pci_channel_offline(to_pci_dev(dev->dev)))
1347                 return BLK_EH_RESET_TIMER;
1348
1349         /*
1350          * Reset immediately if the controller is failed
1351          */
1352         if (nvme_should_reset(dev, csts)) {
1353                 nvme_warn_reset(dev, csts);
1354                 nvme_dev_disable(dev, false);
1355                 nvme_reset_ctrl(&dev->ctrl);
1356                 return BLK_EH_DONE;
1357         }
1358
1359         /*
1360          * Did we miss an interrupt?
1361          */
1362         if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1363                 nvme_poll(req->mq_hctx, NULL);
1364         else
1365                 nvme_poll_irqdisable(nvmeq);
1366
1367         if (blk_mq_request_completed(req)) {
1368                 dev_warn(dev->ctrl.device,
1369                          "I/O %d QID %d timeout, completion polled\n",
1370                          req->tag, nvmeq->qid);
1371                 return BLK_EH_DONE;
1372         }
1373
1374         /*
1375          * Shutdown immediately if controller times out while starting. The
1376          * reset work will see the pci device disabled when it gets the forced
1377          * cancellation error. All outstanding requests are completed on
1378          * shutdown, so we return BLK_EH_DONE.
1379          */
1380         switch (dev->ctrl.state) {
1381         case NVME_CTRL_CONNECTING:
1382                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1383                 fallthrough;
1384         case NVME_CTRL_DELETING:
1385                 dev_warn_ratelimited(dev->ctrl.device,
1386                          "I/O %d QID %d timeout, disable controller\n",
1387                          req->tag, nvmeq->qid);
1388                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1389                 nvme_dev_disable(dev, true);
1390                 return BLK_EH_DONE;
1391         case NVME_CTRL_RESETTING:
1392                 return BLK_EH_RESET_TIMER;
1393         default:
1394                 break;
1395         }
1396
1397         /*
1398          * Shutdown the controller immediately and schedule a reset if the
1399          * command was already aborted once before and still hasn't been
1400          * returned to the driver, or if this is the admin queue.
1401          */
1402         if (!nvmeq->qid || iod->aborted) {
1403                 dev_warn(dev->ctrl.device,
1404                          "I/O %d QID %d timeout, reset controller\n",
1405                          req->tag, nvmeq->qid);
1406                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1407                 nvme_dev_disable(dev, false);
1408                 nvme_reset_ctrl(&dev->ctrl);
1409
1410                 return BLK_EH_DONE;
1411         }
1412
1413         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1414                 atomic_inc(&dev->ctrl.abort_limit);
1415                 return BLK_EH_RESET_TIMER;
1416         }
1417         iod->aborted = 1;
1418
1419         cmd.abort.opcode = nvme_admin_abort_cmd;
1420         cmd.abort.cid = nvme_cid(req);
1421         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1422
1423         dev_warn(nvmeq->dev->ctrl.device,
1424                 "I/O %d (%s) QID %d timeout, aborting\n",
1425                  req->tag,
1426                  nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1427                  nvmeq->qid);
1428
1429         abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1430                                          BLK_MQ_REQ_NOWAIT);
1431         if (IS_ERR(abort_req)) {
1432                 atomic_inc(&dev->ctrl.abort_limit);
1433                 return BLK_EH_RESET_TIMER;
1434         }
1435         nvme_init_request(abort_req, &cmd);
1436
1437         abort_req->end_io = abort_endio;
1438         abort_req->end_io_data = NULL;
1439         abort_req->rq_flags |= RQF_QUIET;
1440         blk_execute_rq_nowait(abort_req, false);
1441
1442         /*
1443          * The aborted req will be completed on receiving the abort req.
1444          * We enable the timer again. If hit twice, it'll cause a device reset,
1445          * as the device then is in a faulty state.
1446          */
1447         return BLK_EH_RESET_TIMER;
1448 }
1449
1450 static void nvme_free_queue(struct nvme_queue *nvmeq)
1451 {
1452         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1453                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1454         if (!nvmeq->sq_cmds)
1455                 return;
1456
1457         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1458                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1459                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1460         } else {
1461                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1462                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1463         }
1464 }
1465
1466 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1467 {
1468         int i;
1469
1470         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1471                 dev->ctrl.queue_count--;
1472                 nvme_free_queue(&dev->queues[i]);
1473         }
1474 }
1475
1476 /**
1477  * nvme_suspend_queue - put queue into suspended state
1478  * @nvmeq: queue to suspend
1479  */
1480 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1481 {
1482         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1483                 return 1;
1484
1485         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1486         mb();
1487
1488         nvmeq->dev->online_queues--;
1489         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1490                 nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1491         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1492                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1493         return 0;
1494 }
1495
1496 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1497 {
1498         int i;
1499
1500         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1501                 nvme_suspend_queue(&dev->queues[i]);
1502 }
1503
1504 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1505 {
1506         struct nvme_queue *nvmeq = &dev->queues[0];
1507
1508         if (shutdown)
1509                 nvme_shutdown_ctrl(&dev->ctrl);
1510         else
1511                 nvme_disable_ctrl(&dev->ctrl);
1512
1513         nvme_poll_irqdisable(nvmeq);
1514 }
1515
1516 /*
1517  * Called only on a device that has been disabled and after all other threads
1518  * that can check this device's completion queues have synced, except
1519  * nvme_poll(). This is the last chance for the driver to see a natural
1520  * completion before nvme_cancel_request() terminates all incomplete requests.
1521  */
1522 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1523 {
1524         int i;
1525
1526         for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1527                 spin_lock(&dev->queues[i].cq_poll_lock);
1528                 nvme_poll_cq(&dev->queues[i], NULL);
1529                 spin_unlock(&dev->queues[i].cq_poll_lock);
1530         }
1531 }
1532
1533 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1534                                 int entry_size)
1535 {
1536         int q_depth = dev->q_depth;
1537         unsigned q_size_aligned = roundup(q_depth * entry_size,
1538                                           NVME_CTRL_PAGE_SIZE);
1539
1540         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1541                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1542
1543                 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1544                 q_depth = div_u64(mem_per_q, entry_size);
1545
1546                 /*
1547                  * Ensure the reduced q_depth is above some threshold where it
1548                  * would be better to map queues in system memory with the
1549                  * original depth
1550                  */
1551                 if (q_depth < 64)
1552                         return -ENOMEM;
1553         }
1554
1555         return q_depth;
1556 }
1557
1558 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1559                                 int qid)
1560 {
1561         struct pci_dev *pdev = to_pci_dev(dev->dev);
1562
1563         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1564                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1565                 if (nvmeq->sq_cmds) {
1566                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1567                                                         nvmeq->sq_cmds);
1568                         if (nvmeq->sq_dma_addr) {
1569                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1570                                 return 0;
1571                         }
1572
1573                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1574                 }
1575         }
1576
1577         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1578                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1579         if (!nvmeq->sq_cmds)
1580                 return -ENOMEM;
1581         return 0;
1582 }
1583
1584 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1585 {
1586         struct nvme_queue *nvmeq = &dev->queues[qid];
1587
1588         if (dev->ctrl.queue_count > qid)
1589                 return 0;
1590
1591         nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1592         nvmeq->q_depth = depth;
1593         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1594                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1595         if (!nvmeq->cqes)
1596                 goto free_nvmeq;
1597
1598         if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1599                 goto free_cqdma;
1600
1601         nvmeq->dev = dev;
1602         spin_lock_init(&nvmeq->sq_lock);
1603         spin_lock_init(&nvmeq->cq_poll_lock);
1604         nvmeq->cq_head = 0;
1605         nvmeq->cq_phase = 1;
1606         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1607         nvmeq->qid = qid;
1608         dev->ctrl.queue_count++;
1609
1610         return 0;
1611
1612  free_cqdma:
1613         dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1614                           nvmeq->cq_dma_addr);
1615  free_nvmeq:
1616         return -ENOMEM;
1617 }
1618
1619 static int queue_request_irq(struct nvme_queue *nvmeq)
1620 {
1621         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1622         int nr = nvmeq->dev->ctrl.instance;
1623
1624         if (use_threaded_interrupts) {
1625                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1626                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1627         } else {
1628                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1629                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1630         }
1631 }
1632
1633 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1634 {
1635         struct nvme_dev *dev = nvmeq->dev;
1636
1637         nvmeq->sq_tail = 0;
1638         nvmeq->last_sq_tail = 0;
1639         nvmeq->cq_head = 0;
1640         nvmeq->cq_phase = 1;
1641         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1642         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1643         nvme_dbbuf_init(dev, nvmeq, qid);
1644         dev->online_queues++;
1645         wmb(); /* ensure the first interrupt sees the initialization */
1646 }
1647
1648 /*
1649  * Try getting shutdown_lock while setting up IO queues.
1650  */
1651 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1652 {
1653         /*
1654          * Give up if the lock is being held by nvme_dev_disable.
1655          */
1656         if (!mutex_trylock(&dev->shutdown_lock))
1657                 return -ENODEV;
1658
1659         /*
1660          * Controller is in wrong state, fail early.
1661          */
1662         if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1663                 mutex_unlock(&dev->shutdown_lock);
1664                 return -ENODEV;
1665         }
1666
1667         return 0;
1668 }
1669
1670 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1671 {
1672         struct nvme_dev *dev = nvmeq->dev;
1673         int result;
1674         u16 vector = 0;
1675
1676         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1677
1678         /*
1679          * A queue's vector matches the queue identifier unless the controller
1680          * has only one vector available.
1681          */
1682         if (!polled)
1683                 vector = dev->num_vecs == 1 ? 0 : qid;
1684         else
1685                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1686
1687         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1688         if (result)
1689                 return result;
1690
1691         result = adapter_alloc_sq(dev, qid, nvmeq);
1692         if (result < 0)
1693                 return result;
1694         if (result)
1695                 goto release_cq;
1696
1697         nvmeq->cq_vector = vector;
1698
1699         result = nvme_setup_io_queues_trylock(dev);
1700         if (result)
1701                 return result;
1702         nvme_init_queue(nvmeq, qid);
1703         if (!polled) {
1704                 result = queue_request_irq(nvmeq);
1705                 if (result < 0)
1706                         goto release_sq;
1707         }
1708
1709         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1710         mutex_unlock(&dev->shutdown_lock);
1711         return result;
1712
1713 release_sq:
1714         dev->online_queues--;
1715         mutex_unlock(&dev->shutdown_lock);
1716         adapter_delete_sq(dev, qid);
1717 release_cq:
1718         adapter_delete_cq(dev, qid);
1719         return result;
1720 }
1721
1722 static const struct blk_mq_ops nvme_mq_admin_ops = {
1723         .queue_rq       = nvme_queue_rq,
1724         .complete       = nvme_pci_complete_rq,
1725         .init_hctx      = nvme_admin_init_hctx,
1726         .init_request   = nvme_pci_init_request,
1727         .timeout        = nvme_timeout,
1728 };
1729
1730 static const struct blk_mq_ops nvme_mq_ops = {
1731         .queue_rq       = nvme_queue_rq,
1732         .queue_rqs      = nvme_queue_rqs,
1733         .complete       = nvme_pci_complete_rq,
1734         .commit_rqs     = nvme_commit_rqs,
1735         .init_hctx      = nvme_init_hctx,
1736         .init_request   = nvme_pci_init_request,
1737         .map_queues     = nvme_pci_map_queues,
1738         .timeout        = nvme_timeout,
1739         .poll           = nvme_poll,
1740 };
1741
1742 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1743 {
1744         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1745                 /*
1746                  * If the controller was reset during removal, it's possible
1747                  * user requests may be waiting on a stopped queue. Start the
1748                  * queue to flush these to completion.
1749                  */
1750                 nvme_start_admin_queue(&dev->ctrl);
1751                 blk_mq_destroy_queue(dev->ctrl.admin_q);
1752                 blk_mq_free_tag_set(&dev->admin_tagset);
1753         }
1754 }
1755
1756 static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
1757 {
1758         struct blk_mq_tag_set *set = &dev->admin_tagset;
1759
1760         set->ops = &nvme_mq_admin_ops;
1761         set->nr_hw_queues = 1;
1762
1763         set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1764         set->timeout = NVME_ADMIN_TIMEOUT;
1765         set->numa_node = dev->ctrl.numa_node;
1766         set->cmd_size = sizeof(struct nvme_iod);
1767         set->flags = BLK_MQ_F_NO_SCHED;
1768         set->driver_data = dev;
1769
1770         if (blk_mq_alloc_tag_set(set))
1771                 return -ENOMEM;
1772         dev->ctrl.admin_tagset = set;
1773
1774         dev->ctrl.admin_q = blk_mq_init_queue(set);
1775         if (IS_ERR(dev->ctrl.admin_q)) {
1776                 blk_mq_free_tag_set(set);
1777                 dev->ctrl.admin_q = NULL;
1778                 return -ENOMEM;
1779         }
1780         if (!blk_get_queue(dev->ctrl.admin_q)) {
1781                 nvme_dev_remove_admin(dev);
1782                 dev->ctrl.admin_q = NULL;
1783                 return -ENODEV;
1784         }
1785         return 0;
1786 }
1787
1788 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1789 {
1790         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1791 }
1792
1793 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1794 {
1795         struct pci_dev *pdev = to_pci_dev(dev->dev);
1796
1797         if (size <= dev->bar_mapped_size)
1798                 return 0;
1799         if (size > pci_resource_len(pdev, 0))
1800                 return -ENOMEM;
1801         if (dev->bar)
1802                 iounmap(dev->bar);
1803         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1804         if (!dev->bar) {
1805                 dev->bar_mapped_size = 0;
1806                 return -ENOMEM;
1807         }
1808         dev->bar_mapped_size = size;
1809         dev->dbs = dev->bar + NVME_REG_DBS;
1810
1811         return 0;
1812 }
1813
1814 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1815 {
1816         int result;
1817         u32 aqa;
1818         struct nvme_queue *nvmeq;
1819
1820         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1821         if (result < 0)
1822                 return result;
1823
1824         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1825                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1826
1827         if (dev->subsystem &&
1828             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1829                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1830
1831         result = nvme_disable_ctrl(&dev->ctrl);
1832         if (result < 0)
1833                 return result;
1834
1835         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1836         if (result)
1837                 return result;
1838
1839         dev->ctrl.numa_node = dev_to_node(dev->dev);
1840
1841         nvmeq = &dev->queues[0];
1842         aqa = nvmeq->q_depth - 1;
1843         aqa |= aqa << 16;
1844
1845         writel(aqa, dev->bar + NVME_REG_AQA);
1846         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1847         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1848
1849         result = nvme_enable_ctrl(&dev->ctrl);
1850         if (result)
1851                 return result;
1852
1853         nvmeq->cq_vector = 0;
1854         nvme_init_queue(nvmeq, 0);
1855         result = queue_request_irq(nvmeq);
1856         if (result) {
1857                 dev->online_queues--;
1858                 return result;
1859         }
1860
1861         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1862         return result;
1863 }
1864
1865 static int nvme_create_io_queues(struct nvme_dev *dev)
1866 {
1867         unsigned i, max, rw_queues;
1868         int ret = 0;
1869
1870         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1871                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1872                         ret = -ENOMEM;
1873                         break;
1874                 }
1875         }
1876
1877         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1878         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1879                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1880                                 dev->io_queues[HCTX_TYPE_READ];
1881         } else {
1882                 rw_queues = max;
1883         }
1884
1885         for (i = dev->online_queues; i <= max; i++) {
1886                 bool polled = i > rw_queues;
1887
1888                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1889                 if (ret)
1890                         break;
1891         }
1892
1893         /*
1894          * Ignore failing Create SQ/CQ commands, we can continue with less
1895          * than the desired amount of queues, and even a controller without
1896          * I/O queues can still be used to issue admin commands.  This might
1897          * be useful to upgrade a buggy firmware for example.
1898          */
1899         return ret >= 0 ? 0 : ret;
1900 }
1901
1902 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1903 {
1904         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1905
1906         return 1ULL << (12 + 4 * szu);
1907 }
1908
1909 static u32 nvme_cmb_size(struct nvme_dev *dev)
1910 {
1911         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1912 }
1913
1914 static void nvme_map_cmb(struct nvme_dev *dev)
1915 {
1916         u64 size, offset;
1917         resource_size_t bar_size;
1918         struct pci_dev *pdev = to_pci_dev(dev->dev);
1919         int bar;
1920
1921         if (dev->cmb_size)
1922                 return;
1923
1924         if (NVME_CAP_CMBS(dev->ctrl.cap))
1925                 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1926
1927         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1928         if (!dev->cmbsz)
1929                 return;
1930         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1931
1932         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1933         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1934         bar = NVME_CMB_BIR(dev->cmbloc);
1935         bar_size = pci_resource_len(pdev, bar);
1936
1937         if (offset > bar_size)
1938                 return;
1939
1940         /*
1941          * Tell the controller about the host side address mapping the CMB,
1942          * and enable CMB decoding for the NVMe 1.4+ scheme:
1943          */
1944         if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1945                 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1946                              (pci_bus_address(pdev, bar) + offset),
1947                              dev->bar + NVME_REG_CMBMSC);
1948         }
1949
1950         /*
1951          * Controllers may support a CMB size larger than their BAR,
1952          * for example, due to being behind a bridge. Reduce the CMB to
1953          * the reported size of the BAR
1954          */
1955         if (size > bar_size - offset)
1956                 size = bar_size - offset;
1957
1958         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1959                 dev_warn(dev->ctrl.device,
1960                          "failed to register the CMB\n");
1961                 return;
1962         }
1963
1964         dev->cmb_size = size;
1965         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1966
1967         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1968                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1969                 pci_p2pmem_publish(pdev, true);
1970 }
1971
1972 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1973 {
1974         u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1975         u64 dma_addr = dev->host_mem_descs_dma;
1976         struct nvme_command c = { };
1977         int ret;
1978
1979         c.features.opcode       = nvme_admin_set_features;
1980         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1981         c.features.dword11      = cpu_to_le32(bits);
1982         c.features.dword12      = cpu_to_le32(host_mem_size);
1983         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1984         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1985         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1986
1987         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1988         if (ret) {
1989                 dev_warn(dev->ctrl.device,
1990                          "failed to set host mem (err %d, flags %#x).\n",
1991                          ret, bits);
1992         } else
1993                 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1994
1995         return ret;
1996 }
1997
1998 static void nvme_free_host_mem(struct nvme_dev *dev)
1999 {
2000         int i;
2001
2002         for (i = 0; i < dev->nr_host_mem_descs; i++) {
2003                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2004                 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2005
2006                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2007                                le64_to_cpu(desc->addr),
2008                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2009         }
2010
2011         kfree(dev->host_mem_desc_bufs);
2012         dev->host_mem_desc_bufs = NULL;
2013         dma_free_coherent(dev->dev,
2014                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2015                         dev->host_mem_descs, dev->host_mem_descs_dma);
2016         dev->host_mem_descs = NULL;
2017         dev->nr_host_mem_descs = 0;
2018 }
2019
2020 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2021                 u32 chunk_size)
2022 {
2023         struct nvme_host_mem_buf_desc *descs;
2024         u32 max_entries, len;
2025         dma_addr_t descs_dma;
2026         int i = 0;
2027         void **bufs;
2028         u64 size, tmp;
2029
2030         tmp = (preferred + chunk_size - 1);
2031         do_div(tmp, chunk_size);
2032         max_entries = tmp;
2033
2034         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2035                 max_entries = dev->ctrl.hmmaxd;
2036
2037         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2038                                    &descs_dma, GFP_KERNEL);
2039         if (!descs)
2040                 goto out;
2041
2042         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2043         if (!bufs)
2044                 goto out_free_descs;
2045
2046         for (size = 0; size < preferred && i < max_entries; size += len) {
2047                 dma_addr_t dma_addr;
2048
2049                 len = min_t(u64, chunk_size, preferred - size);
2050                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2051                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2052                 if (!bufs[i])
2053                         break;
2054
2055                 descs[i].addr = cpu_to_le64(dma_addr);
2056                 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2057                 i++;
2058         }
2059
2060         if (!size)
2061                 goto out_free_bufs;
2062
2063         dev->nr_host_mem_descs = i;
2064         dev->host_mem_size = size;
2065         dev->host_mem_descs = descs;
2066         dev->host_mem_descs_dma = descs_dma;
2067         dev->host_mem_desc_bufs = bufs;
2068         return 0;
2069
2070 out_free_bufs:
2071         while (--i >= 0) {
2072                 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2073
2074                 dma_free_attrs(dev->dev, size, bufs[i],
2075                                le64_to_cpu(descs[i].addr),
2076                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2077         }
2078
2079         kfree(bufs);
2080 out_free_descs:
2081         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2082                         descs_dma);
2083 out:
2084         dev->host_mem_descs = NULL;
2085         return -ENOMEM;
2086 }
2087
2088 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2089 {
2090         u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2091         u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2092         u64 chunk_size;
2093
2094         /* start big and work our way down */
2095         for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2096                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2097                         if (!min || dev->host_mem_size >= min)
2098                                 return 0;
2099                         nvme_free_host_mem(dev);
2100                 }
2101         }
2102
2103         return -ENOMEM;
2104 }
2105
2106 static int nvme_setup_host_mem(struct nvme_dev *dev)
2107 {
2108         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2109         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2110         u64 min = (u64)dev->ctrl.hmmin * 4096;
2111         u32 enable_bits = NVME_HOST_MEM_ENABLE;
2112         int ret;
2113
2114         preferred = min(preferred, max);
2115         if (min > max) {
2116                 dev_warn(dev->ctrl.device,
2117                         "min host memory (%lld MiB) above limit (%d MiB).\n",
2118                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
2119                 nvme_free_host_mem(dev);
2120                 return 0;
2121         }
2122
2123         /*
2124          * If we already have a buffer allocated check if we can reuse it.
2125          */
2126         if (dev->host_mem_descs) {
2127                 if (dev->host_mem_size >= min)
2128                         enable_bits |= NVME_HOST_MEM_RETURN;
2129                 else
2130                         nvme_free_host_mem(dev);
2131         }
2132
2133         if (!dev->host_mem_descs) {
2134                 if (nvme_alloc_host_mem(dev, min, preferred)) {
2135                         dev_warn(dev->ctrl.device,
2136                                 "failed to allocate host memory buffer.\n");
2137                         return 0; /* controller must work without HMB */
2138                 }
2139
2140                 dev_info(dev->ctrl.device,
2141                         "allocated %lld MiB host memory buffer.\n",
2142                         dev->host_mem_size >> ilog2(SZ_1M));
2143         }
2144
2145         ret = nvme_set_host_mem(dev, enable_bits);
2146         if (ret)
2147                 nvme_free_host_mem(dev);
2148         return ret;
2149 }
2150
2151 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2152                 char *buf)
2153 {
2154         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2155
2156         return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2157                        ndev->cmbloc, ndev->cmbsz);
2158 }
2159 static DEVICE_ATTR_RO(cmb);
2160
2161 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2162                 char *buf)
2163 {
2164         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2165
2166         return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2167 }
2168 static DEVICE_ATTR_RO(cmbloc);
2169
2170 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2171                 char *buf)
2172 {
2173         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2174
2175         return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2176 }
2177 static DEVICE_ATTR_RO(cmbsz);
2178
2179 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2180                         char *buf)
2181 {
2182         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2183
2184         return sysfs_emit(buf, "%d\n", ndev->hmb);
2185 }
2186
2187 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2188                          const char *buf, size_t count)
2189 {
2190         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2191         bool new;
2192         int ret;
2193
2194         if (strtobool(buf, &new) < 0)
2195                 return -EINVAL;
2196
2197         if (new == ndev->hmb)
2198                 return count;
2199
2200         if (new) {
2201                 ret = nvme_setup_host_mem(ndev);
2202         } else {
2203                 ret = nvme_set_host_mem(ndev, 0);
2204                 if (!ret)
2205                         nvme_free_host_mem(ndev);
2206         }
2207
2208         if (ret < 0)
2209                 return ret;
2210
2211         return count;
2212 }
2213 static DEVICE_ATTR_RW(hmb);
2214
2215 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2216                 struct attribute *a, int n)
2217 {
2218         struct nvme_ctrl *ctrl =
2219                 dev_get_drvdata(container_of(kobj, struct device, kobj));
2220         struct nvme_dev *dev = to_nvme_dev(ctrl);
2221
2222         if (a == &dev_attr_cmb.attr ||
2223             a == &dev_attr_cmbloc.attr ||
2224             a == &dev_attr_cmbsz.attr) {
2225                 if (!dev->cmbsz)
2226                         return 0;
2227         }
2228         if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2229                 return 0;
2230
2231         return a->mode;
2232 }
2233
2234 static struct attribute *nvme_pci_attrs[] = {
2235         &dev_attr_cmb.attr,
2236         &dev_attr_cmbloc.attr,
2237         &dev_attr_cmbsz.attr,
2238         &dev_attr_hmb.attr,
2239         NULL,
2240 };
2241
2242 static const struct attribute_group nvme_pci_attr_group = {
2243         .attrs          = nvme_pci_attrs,
2244         .is_visible     = nvme_pci_attrs_are_visible,
2245 };
2246
2247 /*
2248  * nirqs is the number of interrupts available for write and read
2249  * queues. The core already reserved an interrupt for the admin queue.
2250  */
2251 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2252 {
2253         struct nvme_dev *dev = affd->priv;
2254         unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2255
2256         /*
2257          * If there is no interrupt available for queues, ensure that
2258          * the default queue is set to 1. The affinity set size is
2259          * also set to one, but the irq core ignores it for this case.
2260          *
2261          * If only one interrupt is available or 'write_queue' == 0, combine
2262          * write and read queues.
2263          *
2264          * If 'write_queues' > 0, ensure it leaves room for at least one read
2265          * queue.
2266          */
2267         if (!nrirqs) {
2268                 nrirqs = 1;
2269                 nr_read_queues = 0;
2270         } else if (nrirqs == 1 || !nr_write_queues) {
2271                 nr_read_queues = 0;
2272         } else if (nr_write_queues >= nrirqs) {
2273                 nr_read_queues = 1;
2274         } else {
2275                 nr_read_queues = nrirqs - nr_write_queues;
2276         }
2277
2278         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2279         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2280         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2281         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2282         affd->nr_sets = nr_read_queues ? 2 : 1;
2283 }
2284
2285 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2286 {
2287         struct pci_dev *pdev = to_pci_dev(dev->dev);
2288         struct irq_affinity affd = {
2289                 .pre_vectors    = 1,
2290                 .calc_sets      = nvme_calc_irq_sets,
2291                 .priv           = dev,
2292         };
2293         unsigned int irq_queues, poll_queues;
2294
2295         /*
2296          * Poll queues don't need interrupts, but we need at least one I/O queue
2297          * left over for non-polled I/O.
2298          */
2299         poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2300         dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2301
2302         /*
2303          * Initialize for the single interrupt case, will be updated in
2304          * nvme_calc_irq_sets().
2305          */
2306         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2307         dev->io_queues[HCTX_TYPE_READ] = 0;
2308
2309         /*
2310          * We need interrupts for the admin queue and each non-polled I/O queue,
2311          * but some Apple controllers require all queues to use the first
2312          * vector.
2313          */
2314         irq_queues = 1;
2315         if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2316                 irq_queues += (nr_io_queues - poll_queues);
2317         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2318                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2319 }
2320
2321 static void nvme_disable_io_queues(struct nvme_dev *dev)
2322 {
2323         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2324                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2325 }
2326
2327 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2328 {
2329         /*
2330          * If tags are shared with admin queue (Apple bug), then
2331          * make sure we only use one IO queue.
2332          */
2333         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2334                 return 1;
2335         return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2336 }
2337
2338 static int nvme_setup_io_queues(struct nvme_dev *dev)
2339 {
2340         struct nvme_queue *adminq = &dev->queues[0];
2341         struct pci_dev *pdev = to_pci_dev(dev->dev);
2342         unsigned int nr_io_queues;
2343         unsigned long size;
2344         int result;
2345
2346         /*
2347          * Sample the module parameters once at reset time so that we have
2348          * stable values to work with.
2349          */
2350         dev->nr_write_queues = write_queues;
2351         dev->nr_poll_queues = poll_queues;
2352
2353         nr_io_queues = dev->nr_allocated_queues - 1;
2354         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2355         if (result < 0)
2356                 return result;
2357
2358         if (nr_io_queues == 0)
2359                 return 0;
2360
2361         /*
2362          * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2363          * from set to unset. If there is a window to it is truely freed,
2364          * pci_free_irq_vectors() jumping into this window will crash.
2365          * And take lock to avoid racing with pci_free_irq_vectors() in
2366          * nvme_dev_disable() path.
2367          */
2368         result = nvme_setup_io_queues_trylock(dev);
2369         if (result)
2370                 return result;
2371         if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2372                 pci_free_irq(pdev, 0, adminq);
2373
2374         if (dev->cmb_use_sqes) {
2375                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2376                                 sizeof(struct nvme_command));
2377                 if (result > 0)
2378                         dev->q_depth = result;
2379                 else
2380                         dev->cmb_use_sqes = false;
2381         }
2382
2383         do {
2384                 size = db_bar_size(dev, nr_io_queues);
2385                 result = nvme_remap_bar(dev, size);
2386                 if (!result)
2387                         break;
2388                 if (!--nr_io_queues) {
2389                         result = -ENOMEM;
2390                         goto out_unlock;
2391                 }
2392         } while (1);
2393         adminq->q_db = dev->dbs;
2394
2395  retry:
2396         /* Deregister the admin queue's interrupt */
2397         if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2398                 pci_free_irq(pdev, 0, adminq);
2399
2400         /*
2401          * If we enable msix early due to not intx, disable it again before
2402          * setting up the full range we need.
2403          */
2404         pci_free_irq_vectors(pdev);
2405
2406         result = nvme_setup_irqs(dev, nr_io_queues);
2407         if (result <= 0) {
2408                 result = -EIO;
2409                 goto out_unlock;
2410         }
2411
2412         dev->num_vecs = result;
2413         result = max(result - 1, 1);
2414         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2415
2416         /*
2417          * Should investigate if there's a performance win from allocating
2418          * more queues than interrupt vectors; it might allow the submission
2419          * path to scale better, even if the receive path is limited by the
2420          * number of interrupts.
2421          */
2422         result = queue_request_irq(adminq);
2423         if (result)
2424                 goto out_unlock;
2425         set_bit(NVMEQ_ENABLED, &adminq->flags);
2426         mutex_unlock(&dev->shutdown_lock);
2427
2428         result = nvme_create_io_queues(dev);
2429         if (result || dev->online_queues < 2)
2430                 return result;
2431
2432         if (dev->online_queues - 1 < dev->max_qid) {
2433                 nr_io_queues = dev->online_queues - 1;
2434                 nvme_disable_io_queues(dev);
2435                 result = nvme_setup_io_queues_trylock(dev);
2436                 if (result)
2437                         return result;
2438                 nvme_suspend_io_queues(dev);
2439                 goto retry;
2440         }
2441         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2442                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2443                                         dev->io_queues[HCTX_TYPE_READ],
2444                                         dev->io_queues[HCTX_TYPE_POLL]);
2445         return 0;
2446 out_unlock:
2447         mutex_unlock(&dev->shutdown_lock);
2448         return result;
2449 }
2450
2451 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2452 {
2453         struct nvme_queue *nvmeq = req->end_io_data;
2454
2455         blk_mq_free_request(req);
2456         complete(&nvmeq->delete_done);
2457 }
2458
2459 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2460 {
2461         struct nvme_queue *nvmeq = req->end_io_data;
2462
2463         if (error)
2464                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2465
2466         nvme_del_queue_end(req, error);
2467 }
2468
2469 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2470 {
2471         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2472         struct request *req;
2473         struct nvme_command cmd = { };
2474
2475         cmd.delete_queue.opcode = opcode;
2476         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2477
2478         req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2479         if (IS_ERR(req))
2480                 return PTR_ERR(req);
2481         nvme_init_request(req, &cmd);
2482
2483         if (opcode == nvme_admin_delete_cq)
2484                 req->end_io = nvme_del_cq_end;
2485         else
2486                 req->end_io = nvme_del_queue_end;
2487         req->end_io_data = nvmeq;
2488
2489         init_completion(&nvmeq->delete_done);
2490         req->rq_flags |= RQF_QUIET;
2491         blk_execute_rq_nowait(req, false);
2492         return 0;
2493 }
2494
2495 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2496 {
2497         int nr_queues = dev->online_queues - 1, sent = 0;
2498         unsigned long timeout;
2499
2500  retry:
2501         timeout = NVME_ADMIN_TIMEOUT;
2502         while (nr_queues > 0) {
2503                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2504                         break;
2505                 nr_queues--;
2506                 sent++;
2507         }
2508         while (sent) {
2509                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2510
2511                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2512                                 timeout);
2513                 if (timeout == 0)
2514                         return false;
2515
2516                 sent--;
2517                 if (nr_queues)
2518                         goto retry;
2519         }
2520         return true;
2521 }
2522
2523 static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
2524 {
2525         struct blk_mq_tag_set * set = &dev->tagset;
2526         int ret;
2527
2528         set->ops = &nvme_mq_ops;
2529         set->nr_hw_queues = dev->online_queues - 1;
2530         set->nr_maps = 2; /* default + read */
2531         if (dev->io_queues[HCTX_TYPE_POLL])
2532                 set->nr_maps++;
2533         set->timeout = NVME_IO_TIMEOUT;
2534         set->numa_node = dev->ctrl.numa_node;
2535         set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2536         set->cmd_size = sizeof(struct nvme_iod);
2537         set->flags = BLK_MQ_F_SHOULD_MERGE;
2538         set->driver_data = dev;
2539
2540         /*
2541          * Some Apple controllers requires tags to be unique
2542          * across admin and IO queue, so reserve the first 32
2543          * tags of the IO queue.
2544          */
2545         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2546                 set->reserved_tags = NVME_AQ_DEPTH;
2547
2548         ret = blk_mq_alloc_tag_set(set);
2549         if (ret) {
2550                 dev_warn(dev->ctrl.device,
2551                         "IO queues tagset allocation failed %d\n", ret);
2552                 return;
2553         }
2554         dev->ctrl.tagset = set;
2555 }
2556
2557 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2558 {
2559         blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2560         /* free previously allocated queues that are no longer usable */
2561         nvme_free_queues(dev, dev->online_queues);
2562 }
2563
2564 static int nvme_pci_enable(struct nvme_dev *dev)
2565 {
2566         int result = -ENOMEM;
2567         struct pci_dev *pdev = to_pci_dev(dev->dev);
2568         int dma_address_bits = 64;
2569
2570         if (pci_enable_device_mem(pdev))
2571                 return result;
2572
2573         pci_set_master(pdev);
2574
2575         if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2576                 dma_address_bits = 48;
2577         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2578                 goto disable;
2579
2580         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2581                 result = -ENODEV;
2582                 goto disable;
2583         }
2584
2585         /*
2586          * Some devices and/or platforms don't advertise or work with INTx
2587          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2588          * adjust this later.
2589          */
2590         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2591         if (result < 0)
2592                 return result;
2593
2594         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2595
2596         dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2597                                 io_queue_depth);
2598         dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2599         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2600         dev->dbs = dev->bar + 4096;
2601
2602         /*
2603          * Some Apple controllers require a non-standard SQE size.
2604          * Interestingly they also seem to ignore the CC:IOSQES register
2605          * so we don't bother updating it here.
2606          */
2607         if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2608                 dev->io_sqes = 7;
2609         else
2610                 dev->io_sqes = NVME_NVM_IOSQES;
2611
2612         /*
2613          * Temporary fix for the Apple controller found in the MacBook8,1 and
2614          * some MacBook7,1 to avoid controller resets and data loss.
2615          */
2616         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2617                 dev->q_depth = 2;
2618                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2619                         "set queue depth=%u to work around controller resets\n",
2620                         dev->q_depth);
2621         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2622                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2623                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2624                 dev->q_depth = 64;
2625                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2626                         "set queue depth=%u\n", dev->q_depth);
2627         }
2628
2629         /*
2630          * Controllers with the shared tags quirk need the IO queue to be
2631          * big enough so that we get 32 tags for the admin queue
2632          */
2633         if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2634             (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2635                 dev->q_depth = NVME_AQ_DEPTH + 2;
2636                 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2637                          dev->q_depth);
2638         }
2639
2640
2641         nvme_map_cmb(dev);
2642
2643         pci_enable_pcie_error_reporting(pdev);
2644         pci_save_state(pdev);
2645         return 0;
2646
2647  disable:
2648         pci_disable_device(pdev);
2649         return result;
2650 }
2651
2652 static void nvme_dev_unmap(struct nvme_dev *dev)
2653 {
2654         if (dev->bar)
2655                 iounmap(dev->bar);
2656         pci_release_mem_regions(to_pci_dev(dev->dev));
2657 }
2658
2659 static void nvme_pci_disable(struct nvme_dev *dev)
2660 {
2661         struct pci_dev *pdev = to_pci_dev(dev->dev);
2662
2663         pci_free_irq_vectors(pdev);
2664
2665         if (pci_is_enabled(pdev)) {
2666                 pci_disable_pcie_error_reporting(pdev);
2667                 pci_disable_device(pdev);
2668         }
2669 }
2670
2671 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2672 {
2673         bool dead = true, freeze = false;
2674         struct pci_dev *pdev = to_pci_dev(dev->dev);
2675
2676         mutex_lock(&dev->shutdown_lock);
2677         if (pci_is_enabled(pdev)) {
2678                 u32 csts;
2679
2680                 if (pci_device_is_present(pdev))
2681                         csts = readl(dev->bar + NVME_REG_CSTS);
2682                 else
2683                         csts = ~0;
2684
2685                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2686                     dev->ctrl.state == NVME_CTRL_RESETTING) {
2687                         freeze = true;
2688                         nvme_start_freeze(&dev->ctrl);
2689                 }
2690                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2691                         pdev->error_state  != pci_channel_io_normal);
2692         }
2693
2694         /*
2695          * Give the controller a chance to complete all entered requests if
2696          * doing a safe shutdown.
2697          */
2698         if (!dead && shutdown && freeze)
2699                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2700
2701         nvme_stop_queues(&dev->ctrl);
2702
2703         if (!dead && dev->ctrl.queue_count > 0) {
2704                 nvme_disable_io_queues(dev);
2705                 nvme_disable_admin_queue(dev, shutdown);
2706         }
2707         nvme_suspend_io_queues(dev);
2708         nvme_suspend_queue(&dev->queues[0]);
2709         nvme_pci_disable(dev);
2710         nvme_reap_pending_cqes(dev);
2711
2712         nvme_cancel_tagset(&dev->ctrl);
2713         nvme_cancel_admin_tagset(&dev->ctrl);
2714
2715         /*
2716          * The driver will not be starting up queues again if shutting down so
2717          * must flush all entered requests to their failed completion to avoid
2718          * deadlocking blk-mq hot-cpu notifier.
2719          */
2720         if (shutdown) {
2721                 nvme_start_queues(&dev->ctrl);
2722                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2723                         nvme_start_admin_queue(&dev->ctrl);
2724         }
2725         mutex_unlock(&dev->shutdown_lock);
2726 }
2727
2728 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2729 {
2730         if (!nvme_wait_reset(&dev->ctrl))
2731                 return -EBUSY;
2732         nvme_dev_disable(dev, shutdown);
2733         return 0;
2734 }
2735
2736 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2737 {
2738         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2739                                                 NVME_CTRL_PAGE_SIZE,
2740                                                 NVME_CTRL_PAGE_SIZE, 0);
2741         if (!dev->prp_page_pool)
2742                 return -ENOMEM;
2743
2744         /* Optimisation for I/Os between 4k and 128k */
2745         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2746                                                 256, 256, 0);
2747         if (!dev->prp_small_pool) {
2748                 dma_pool_destroy(dev->prp_page_pool);
2749                 return -ENOMEM;
2750         }
2751         return 0;
2752 }
2753
2754 static void nvme_release_prp_pools(struct nvme_dev *dev)
2755 {
2756         dma_pool_destroy(dev->prp_page_pool);
2757         dma_pool_destroy(dev->prp_small_pool);
2758 }
2759
2760 static void nvme_free_tagset(struct nvme_dev *dev)
2761 {
2762         if (dev->tagset.tags)
2763                 blk_mq_free_tag_set(&dev->tagset);
2764         dev->ctrl.tagset = NULL;
2765 }
2766
2767 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2768 {
2769         struct nvme_dev *dev = to_nvme_dev(ctrl);
2770
2771         nvme_dbbuf_dma_free(dev);
2772         nvme_free_tagset(dev);
2773         if (dev->ctrl.admin_q)
2774                 blk_put_queue(dev->ctrl.admin_q);
2775         free_opal_dev(dev->ctrl.opal_dev);
2776         mempool_destroy(dev->iod_mempool);
2777         put_device(dev->dev);
2778         kfree(dev->queues);
2779         kfree(dev);
2780 }
2781
2782 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2783 {
2784         /*
2785          * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2786          * may be holding this pci_dev's device lock.
2787          */
2788         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2789         nvme_get_ctrl(&dev->ctrl);
2790         nvme_dev_disable(dev, false);
2791         nvme_kill_queues(&dev->ctrl);
2792         if (!queue_work(nvme_wq, &dev->remove_work))
2793                 nvme_put_ctrl(&dev->ctrl);
2794 }
2795
2796 static void nvme_reset_work(struct work_struct *work)
2797 {
2798         struct nvme_dev *dev =
2799                 container_of(work, struct nvme_dev, ctrl.reset_work);
2800         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2801         int result;
2802
2803         if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2804                 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2805                          dev->ctrl.state);
2806                 result = -ENODEV;
2807                 goto out;
2808         }
2809
2810         /*
2811          * If we're called to reset a live controller first shut it down before
2812          * moving on.
2813          */
2814         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2815                 nvme_dev_disable(dev, false);
2816         nvme_sync_queues(&dev->ctrl);
2817
2818         mutex_lock(&dev->shutdown_lock);
2819         result = nvme_pci_enable(dev);
2820         if (result)
2821                 goto out_unlock;
2822
2823         result = nvme_pci_configure_admin_queue(dev);
2824         if (result)
2825                 goto out_unlock;
2826
2827         if (!dev->ctrl.admin_q) {
2828                 result = nvme_pci_alloc_admin_tag_set(dev);
2829                 if (result)
2830                         goto out_unlock;
2831         } else {
2832                 nvme_start_admin_queue(&dev->ctrl);
2833         }
2834
2835         /*
2836          * Limit the max command size to prevent iod->sg allocations going
2837          * over a single page.
2838          */
2839         dev->ctrl.max_hw_sectors = min_t(u32,
2840                 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2841         dev->ctrl.max_segments = NVME_MAX_SEGS;
2842
2843         /*
2844          * Don't limit the IOMMU merged segment size.
2845          */
2846         dma_set_max_seg_size(dev->dev, 0xffffffff);
2847         dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2848
2849         mutex_unlock(&dev->shutdown_lock);
2850
2851         /*
2852          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2853          * initializing procedure here.
2854          */
2855         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2856                 dev_warn(dev->ctrl.device,
2857                         "failed to mark controller CONNECTING\n");
2858                 result = -EBUSY;
2859                 goto out;
2860         }
2861
2862         /*
2863          * We do not support an SGL for metadata (yet), so we are limited to a
2864          * single integrity segment for the separate metadata pointer.
2865          */
2866         dev->ctrl.max_integrity_segments = 1;
2867
2868         result = nvme_init_ctrl_finish(&dev->ctrl);
2869         if (result)
2870                 goto out;
2871
2872         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2873                 if (!dev->ctrl.opal_dev)
2874                         dev->ctrl.opal_dev =
2875                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2876                 else if (was_suspend)
2877                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2878         } else {
2879                 free_opal_dev(dev->ctrl.opal_dev);
2880                 dev->ctrl.opal_dev = NULL;
2881         }
2882
2883         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2884                 result = nvme_dbbuf_dma_alloc(dev);
2885                 if (result)
2886                         dev_warn(dev->dev,
2887                                  "unable to allocate dma for dbbuf\n");
2888         }
2889
2890         if (dev->ctrl.hmpre) {
2891                 result = nvme_setup_host_mem(dev);
2892                 if (result < 0)
2893                         goto out;
2894         }
2895
2896         result = nvme_setup_io_queues(dev);
2897         if (result)
2898                 goto out;
2899
2900         /*
2901          * Keep the controller around but remove all namespaces if we don't have
2902          * any working I/O queue.
2903          */
2904         if (dev->online_queues < 2) {
2905                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2906                 nvme_kill_queues(&dev->ctrl);
2907                 nvme_remove_namespaces(&dev->ctrl);
2908                 nvme_free_tagset(dev);
2909         } else {
2910                 nvme_start_queues(&dev->ctrl);
2911                 nvme_wait_freeze(&dev->ctrl);
2912                 if (!dev->ctrl.tagset)
2913                         nvme_pci_alloc_tag_set(dev);
2914                 else
2915                         nvme_pci_update_nr_queues(dev);
2916                 nvme_dbbuf_set(dev);
2917                 nvme_unfreeze(&dev->ctrl);
2918         }
2919
2920         /*
2921          * If only admin queue live, keep it to do further investigation or
2922          * recovery.
2923          */
2924         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2925                 dev_warn(dev->ctrl.device,
2926                         "failed to mark controller live state\n");
2927                 result = -ENODEV;
2928                 goto out;
2929         }
2930
2931         if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2932                         &nvme_pci_attr_group))
2933                 dev->attrs_added = true;
2934
2935         nvme_start_ctrl(&dev->ctrl);
2936         return;
2937
2938  out_unlock:
2939         mutex_unlock(&dev->shutdown_lock);
2940  out:
2941         if (result)
2942                 dev_warn(dev->ctrl.device,
2943                          "Removing after probe failure status: %d\n", result);
2944         nvme_remove_dead_ctrl(dev);
2945 }
2946
2947 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2948 {
2949         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2950         struct pci_dev *pdev = to_pci_dev(dev->dev);
2951
2952         if (pci_get_drvdata(pdev))
2953                 device_release_driver(&pdev->dev);
2954         nvme_put_ctrl(&dev->ctrl);
2955 }
2956
2957 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2958 {
2959         *val = readl(to_nvme_dev(ctrl)->bar + off);
2960         return 0;
2961 }
2962
2963 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2964 {
2965         writel(val, to_nvme_dev(ctrl)->bar + off);
2966         return 0;
2967 }
2968
2969 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2970 {
2971         *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2972         return 0;
2973 }
2974
2975 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2976 {
2977         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2978
2979         return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2980 }
2981
2982 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2983 {
2984         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2985         struct nvme_subsystem *subsys = ctrl->subsys;
2986
2987         dev_err(ctrl->device,
2988                 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2989                 pdev->vendor, pdev->device,
2990                 nvme_strlen(subsys->model, sizeof(subsys->model)),
2991                 subsys->model, nvme_strlen(subsys->firmware_rev,
2992                                            sizeof(subsys->firmware_rev)),
2993                 subsys->firmware_rev);
2994 }
2995
2996 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2997 {
2998         struct nvme_dev *dev = to_nvme_dev(ctrl);
2999
3000         return dma_pci_p2pdma_supported(dev->dev);
3001 }
3002
3003 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3004         .name                   = "pcie",
3005         .module                 = THIS_MODULE,
3006         .flags                  = NVME_F_METADATA_SUPPORTED,
3007         .reg_read32             = nvme_pci_reg_read32,
3008         .reg_write32            = nvme_pci_reg_write32,
3009         .reg_read64             = nvme_pci_reg_read64,
3010         .free_ctrl              = nvme_pci_free_ctrl,
3011         .submit_async_event     = nvme_pci_submit_async_event,
3012         .get_address            = nvme_pci_get_address,
3013         .print_device_info      = nvme_pci_print_device_info,
3014         .supports_pci_p2pdma    = nvme_pci_supports_pci_p2pdma,
3015 };
3016
3017 static int nvme_dev_map(struct nvme_dev *dev)
3018 {
3019         struct pci_dev *pdev = to_pci_dev(dev->dev);
3020
3021         if (pci_request_mem_regions(pdev, "nvme"))
3022                 return -ENODEV;
3023
3024         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3025                 goto release;
3026
3027         return 0;
3028   release:
3029         pci_release_mem_regions(pdev);
3030         return -ENODEV;
3031 }
3032
3033 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3034 {
3035         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3036                 /*
3037                  * Several Samsung devices seem to drop off the PCIe bus
3038                  * randomly when APST is on and uses the deepest sleep state.
3039                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3040                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3041                  * 950 PRO 256GB", but it seems to be restricted to two Dell
3042                  * laptops.
3043                  */
3044                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3045                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3046                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3047                         return NVME_QUIRK_NO_DEEPEST_PS;
3048         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3049                 /*
3050                  * Samsung SSD 960 EVO drops off the PCIe bus after system
3051                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3052                  * within few minutes after bootup on a Coffee Lake board -
3053                  * ASUS PRIME Z370-A
3054                  */
3055                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3056                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3057                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3058                         return NVME_QUIRK_NO_APST;
3059         } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3060                     pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3061                    (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3062                 /*
3063                  * Forcing to use host managed nvme power settings for
3064                  * lowest idle power with quick resume latency on
3065                  * Samsung and Toshiba SSDs based on suspend behavior
3066                  * on Coffee Lake board for LENOVO C640
3067                  */
3068                 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3069                      dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3070                         return NVME_QUIRK_SIMPLE_SUSPEND;
3071         }
3072
3073         return 0;
3074 }
3075
3076 static void nvme_async_probe(void *data, async_cookie_t cookie)
3077 {
3078         struct nvme_dev *dev = data;
3079
3080         flush_work(&dev->ctrl.reset_work);
3081         flush_work(&dev->ctrl.scan_work);
3082         nvme_put_ctrl(&dev->ctrl);
3083 }
3084
3085 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3086 {
3087         int node, result = -ENOMEM;
3088         struct nvme_dev *dev;
3089         unsigned long quirks = id->driver_data;
3090         size_t alloc_size;
3091
3092         node = dev_to_node(&pdev->dev);
3093         if (node == NUMA_NO_NODE)
3094                 set_dev_node(&pdev->dev, first_memory_node);
3095
3096         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3097         if (!dev)
3098                 return -ENOMEM;
3099
3100         dev->nr_write_queues = write_queues;
3101         dev->nr_poll_queues = poll_queues;
3102         dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3103         dev->queues = kcalloc_node(dev->nr_allocated_queues,
3104                         sizeof(struct nvme_queue), GFP_KERNEL, node);
3105         if (!dev->queues)
3106                 goto free;
3107
3108         dev->dev = get_device(&pdev->dev);
3109         pci_set_drvdata(pdev, dev);
3110
3111         result = nvme_dev_map(dev);
3112         if (result)
3113                 goto put_pci;
3114
3115         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3116         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3117         mutex_init(&dev->shutdown_lock);
3118
3119         result = nvme_setup_prp_pools(dev);
3120         if (result)
3121                 goto unmap;
3122
3123         quirks |= check_vendor_combination_bug(pdev);
3124
3125         if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3126                 /*
3127                  * Some systems use a bios work around to ask for D3 on
3128                  * platforms that support kernel managed suspend.
3129                  */
3130                 dev_info(&pdev->dev,
3131                          "platform quirk: setting simple suspend\n");
3132                 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3133         }
3134
3135         /*
3136          * Double check that our mempool alloc size will cover the biggest
3137          * command we support.
3138          */
3139         alloc_size = nvme_pci_iod_alloc_size();
3140         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3141
3142         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3143                                                 mempool_kfree,
3144                                                 (void *) alloc_size,
3145                                                 GFP_KERNEL, node);
3146         if (!dev->iod_mempool) {
3147                 result = -ENOMEM;
3148                 goto release_pools;
3149         }
3150
3151         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3152                         quirks);
3153         if (result)
3154                 goto release_mempool;
3155
3156         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3157
3158         nvme_reset_ctrl(&dev->ctrl);
3159         async_schedule(nvme_async_probe, dev);
3160
3161         return 0;
3162
3163  release_mempool:
3164         mempool_destroy(dev->iod_mempool);
3165  release_pools:
3166         nvme_release_prp_pools(dev);
3167  unmap:
3168         nvme_dev_unmap(dev);
3169  put_pci:
3170         put_device(dev->dev);
3171  free:
3172         kfree(dev->queues);
3173         kfree(dev);
3174         return result;
3175 }
3176
3177 static void nvme_reset_prepare(struct pci_dev *pdev)
3178 {
3179         struct nvme_dev *dev = pci_get_drvdata(pdev);
3180
3181         /*
3182          * We don't need to check the return value from waiting for the reset
3183          * state as pci_dev device lock is held, making it impossible to race
3184          * with ->remove().
3185          */
3186         nvme_disable_prepare_reset(dev, false);
3187         nvme_sync_queues(&dev->ctrl);
3188 }
3189
3190 static void nvme_reset_done(struct pci_dev *pdev)
3191 {
3192         struct nvme_dev *dev = pci_get_drvdata(pdev);
3193
3194         if (!nvme_try_sched_reset(&dev->ctrl))
3195                 flush_work(&dev->ctrl.reset_work);
3196 }
3197
3198 static void nvme_shutdown(struct pci_dev *pdev)
3199 {
3200         struct nvme_dev *dev = pci_get_drvdata(pdev);
3201
3202         nvme_disable_prepare_reset(dev, true);
3203 }
3204
3205 static void nvme_remove_attrs(struct nvme_dev *dev)
3206 {
3207         if (dev->attrs_added)
3208                 sysfs_remove_group(&dev->ctrl.device->kobj,
3209                                    &nvme_pci_attr_group);
3210 }
3211
3212 /*
3213  * The driver's remove may be called on a device in a partially initialized
3214  * state. This function must not have any dependencies on the device state in
3215  * order to proceed.
3216  */
3217 static void nvme_remove(struct pci_dev *pdev)
3218 {
3219         struct nvme_dev *dev = pci_get_drvdata(pdev);
3220
3221         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3222         pci_set_drvdata(pdev, NULL);
3223
3224         if (!pci_device_is_present(pdev)) {
3225                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3226                 nvme_dev_disable(dev, true);
3227         }
3228
3229         flush_work(&dev->ctrl.reset_work);
3230         nvme_stop_ctrl(&dev->ctrl);
3231         nvme_remove_namespaces(&dev->ctrl);
3232         nvme_dev_disable(dev, true);
3233         nvme_remove_attrs(dev);
3234         nvme_free_host_mem(dev);
3235         nvme_dev_remove_admin(dev);
3236         nvme_free_queues(dev, 0);
3237         nvme_release_prp_pools(dev);
3238         nvme_dev_unmap(dev);
3239         nvme_uninit_ctrl(&dev->ctrl);
3240 }
3241
3242 #ifdef CONFIG_PM_SLEEP
3243 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3244 {
3245         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3246 }
3247
3248 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3249 {
3250         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3251 }
3252
3253 static int nvme_resume(struct device *dev)
3254 {
3255         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3256         struct nvme_ctrl *ctrl = &ndev->ctrl;
3257
3258         if (ndev->last_ps == U32_MAX ||
3259             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3260                 goto reset;
3261         if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3262                 goto reset;
3263
3264         return 0;
3265 reset:
3266         return nvme_try_sched_reset(ctrl);
3267 }
3268
3269 static int nvme_suspend(struct device *dev)
3270 {
3271         struct pci_dev *pdev = to_pci_dev(dev);
3272         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3273         struct nvme_ctrl *ctrl = &ndev->ctrl;
3274         int ret = -EBUSY;
3275
3276         ndev->last_ps = U32_MAX;
3277
3278         /*
3279          * The platform does not remove power for a kernel managed suspend so
3280          * use host managed nvme power settings for lowest idle power if
3281          * possible. This should have quicker resume latency than a full device
3282          * shutdown.  But if the firmware is involved after the suspend or the
3283          * device does not support any non-default power states, shut down the
3284          * device fully.
3285          *
3286          * If ASPM is not enabled for the device, shut down the device and allow
3287          * the PCI bus layer to put it into D3 in order to take the PCIe link
3288          * down, so as to allow the platform to achieve its minimum low-power
3289          * state (which may not be possible if the link is up).
3290          */
3291         if (pm_suspend_via_firmware() || !ctrl->npss ||
3292             !pcie_aspm_enabled(pdev) ||
3293             (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3294                 return nvme_disable_prepare_reset(ndev, true);
3295
3296         nvme_start_freeze(ctrl);
3297         nvme_wait_freeze(ctrl);
3298         nvme_sync_queues(ctrl);
3299
3300         if (ctrl->state != NVME_CTRL_LIVE)
3301                 goto unfreeze;
3302
3303         /*
3304          * Host memory access may not be successful in a system suspend state,
3305          * but the specification allows the controller to access memory in a
3306          * non-operational power state.
3307          */
3308         if (ndev->hmb) {
3309                 ret = nvme_set_host_mem(ndev, 0);
3310                 if (ret < 0)
3311                         goto unfreeze;
3312         }
3313
3314         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3315         if (ret < 0)
3316                 goto unfreeze;
3317
3318         /*
3319          * A saved state prevents pci pm from generically controlling the
3320          * device's power. If we're using protocol specific settings, we don't
3321          * want pci interfering.
3322          */
3323         pci_save_state(pdev);
3324
3325         ret = nvme_set_power_state(ctrl, ctrl->npss);
3326         if (ret < 0)
3327                 goto unfreeze;
3328
3329         if (ret) {
3330                 /* discard the saved state */
3331                 pci_load_saved_state(pdev, NULL);
3332
3333                 /*
3334                  * Clearing npss forces a controller reset on resume. The
3335                  * correct value will be rediscovered then.
3336                  */
3337                 ret = nvme_disable_prepare_reset(ndev, true);
3338                 ctrl->npss = 0;
3339         }
3340 unfreeze:
3341         nvme_unfreeze(ctrl);
3342         return ret;
3343 }
3344
3345 static int nvme_simple_suspend(struct device *dev)
3346 {
3347         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3348
3349         return nvme_disable_prepare_reset(ndev, true);
3350 }
3351
3352 static int nvme_simple_resume(struct device *dev)
3353 {
3354         struct pci_dev *pdev = to_pci_dev(dev);
3355         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3356
3357         return nvme_try_sched_reset(&ndev->ctrl);
3358 }
3359
3360 static const struct dev_pm_ops nvme_dev_pm_ops = {
3361         .suspend        = nvme_suspend,
3362         .resume         = nvme_resume,
3363         .freeze         = nvme_simple_suspend,
3364         .thaw           = nvme_simple_resume,
3365         .poweroff       = nvme_simple_suspend,
3366         .restore        = nvme_simple_resume,
3367 };
3368 #endif /* CONFIG_PM_SLEEP */
3369
3370 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3371                                                 pci_channel_state_t state)
3372 {
3373         struct nvme_dev *dev = pci_get_drvdata(pdev);
3374
3375         /*
3376          * A frozen channel requires a reset. When detected, this method will
3377          * shutdown the controller to quiesce. The controller will be restarted
3378          * after the slot reset through driver's slot_reset callback.
3379          */
3380         switch (state) {
3381         case pci_channel_io_normal:
3382                 return PCI_ERS_RESULT_CAN_RECOVER;
3383         case pci_channel_io_frozen:
3384                 dev_warn(dev->ctrl.device,
3385                         "frozen state error detected, reset controller\n");
3386                 nvme_dev_disable(dev, false);
3387                 return PCI_ERS_RESULT_NEED_RESET;
3388         case pci_channel_io_perm_failure:
3389                 dev_warn(dev->ctrl.device,
3390                         "failure state error detected, request disconnect\n");
3391                 return PCI_ERS_RESULT_DISCONNECT;
3392         }
3393         return PCI_ERS_RESULT_NEED_RESET;
3394 }
3395
3396 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3397 {
3398         struct nvme_dev *dev = pci_get_drvdata(pdev);
3399
3400         dev_info(dev->ctrl.device, "restart after slot reset\n");
3401         pci_restore_state(pdev);
3402         nvme_reset_ctrl(&dev->ctrl);
3403         return PCI_ERS_RESULT_RECOVERED;
3404 }
3405
3406 static void nvme_error_resume(struct pci_dev *pdev)
3407 {
3408         struct nvme_dev *dev = pci_get_drvdata(pdev);
3409
3410         flush_work(&dev->ctrl.reset_work);
3411 }
3412
3413 static const struct pci_error_handlers nvme_err_handler = {
3414         .error_detected = nvme_error_detected,
3415         .slot_reset     = nvme_slot_reset,
3416         .resume         = nvme_error_resume,
3417         .reset_prepare  = nvme_reset_prepare,
3418         .reset_done     = nvme_reset_done,
3419 };
3420
3421 static const struct pci_device_id nvme_id_table[] = {
3422         { PCI_VDEVICE(INTEL, 0x0953),   /* Intel 750/P3500/P3600/P3700 */
3423                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3424                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3425         { PCI_VDEVICE(INTEL, 0x0a53),   /* Intel P3520 */
3426                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3427                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3428         { PCI_VDEVICE(INTEL, 0x0a54),   /* Intel P4500/P4600 */
3429                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3430                                 NVME_QUIRK_DEALLOCATE_ZEROES |
3431                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3432         { PCI_VDEVICE(INTEL, 0x0a55),   /* Dell Express Flash P4600 */
3433                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3434                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3435         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3436                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3437                                 NVME_QUIRK_MEDIUM_PRIO_SQ |
3438                                 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3439                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3440         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3441                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3442         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3443                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3444                                 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3445                                 NVME_QUIRK_BOGUS_NID, },
3446         { PCI_VDEVICE(REDHAT, 0x0010),  /* Qemu emulated controller */
3447                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3448         { PCI_DEVICE(0x126f, 0x2263),   /* Silicon Motion unidentified */
3449                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3450                                 NVME_QUIRK_BOGUS_NID, },
3451         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3452                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3453                                 NVME_QUIRK_NO_NS_DESC_LIST, },
3454         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3455                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3456         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3457                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3458         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3459                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3460         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3461                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3462         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3463                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3464                                 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3465                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3466         { PCI_DEVICE(0x1987, 0x5012),   /* Phison E12 */
3467                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3468         { PCI_DEVICE(0x1987, 0x5016),   /* Phison E16 */
3469                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3470                                 NVME_QUIRK_BOGUS_NID, },
3471         { PCI_DEVICE(0x1b4b, 0x1092),   /* Lexar 256 GB SSD */
3472                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3473                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3474         { PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3475                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3476         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3477                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3478                                 NVME_QUIRK_BOGUS_NID, },
3479         { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3480                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3481                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3482          { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3483                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3484         { PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3485                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3486         { PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3487                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3488         { PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3489                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3490         { PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3491                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3492         { PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3493                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3494         { PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3495                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3496         { PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3497                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3498         { PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3499                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3500         { PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3501                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3502         { PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3503                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3504         { PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3505                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3506         { PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3507                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3508         { PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3509                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3510         { PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3511                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3512         { PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3513                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3514         { PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3515                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3516         { PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3517                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3518         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3519                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3520         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3521                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3522         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3523                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3524         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3525                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3526         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3527                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3528         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3529                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3530         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3531                 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3532         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3533         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3534                 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3535                                 NVME_QUIRK_128_BYTES_SQES |
3536                                 NVME_QUIRK_SHARED_TAGS |
3537                                 NVME_QUIRK_SKIP_CID_GEN },
3538         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3539         { 0, }
3540 };
3541 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3542
3543 static struct pci_driver nvme_driver = {
3544         .name           = "nvme",
3545         .id_table       = nvme_id_table,
3546         .probe          = nvme_probe,
3547         .remove         = nvme_remove,
3548         .shutdown       = nvme_shutdown,
3549 #ifdef CONFIG_PM_SLEEP
3550         .driver         = {
3551                 .pm     = &nvme_dev_pm_ops,
3552         },
3553 #endif
3554         .sriov_configure = pci_sriov_configure_simple,
3555         .err_handler    = &nvme_err_handler,
3556 };
3557
3558 static int __init nvme_init(void)
3559 {
3560         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3561         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3562         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3563         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3564
3565         return pci_register_driver(&nvme_driver);
3566 }
3567
3568 static void __exit nvme_exit(void)
3569 {
3570         pci_unregister_driver(&nvme_driver);
3571         flush_workqueue(nvme_wq);
3572 }
3573
3574 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3575 MODULE_LICENSE("GPL");
3576 MODULE_VERSION("1.0");
3577 module_init(nvme_init);
3578 module_exit(nvme_exit);