usb: typec: mux: fix static inline syntax error
[platform/kernel/linux-starfive.git] / drivers / nvme / host / nvme.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2011-2014, Intel Corporation.
4  */
5
6 #ifndef _NVME_H
7 #define _NVME_H
8
9 #include <linux/nvme.h>
10 #include <linux/cdev.h>
11 #include <linux/pci.h>
12 #include <linux/kref.h>
13 #include <linux/blk-mq.h>
14 #include <linux/sed-opal.h>
15 #include <linux/fault-inject.h>
16 #include <linux/rcupdate.h>
17 #include <linux/wait.h>
18 #include <linux/t10-pi.h>
19
20 #include <trace/events/block.h>
21
22 extern unsigned int nvme_io_timeout;
23 #define NVME_IO_TIMEOUT (nvme_io_timeout * HZ)
24
25 extern unsigned int admin_timeout;
26 #define NVME_ADMIN_TIMEOUT      (admin_timeout * HZ)
27
28 #define NVME_DEFAULT_KATO       5
29
30 #ifdef CONFIG_ARCH_NO_SG_CHAIN
31 #define  NVME_INLINE_SG_CNT  0
32 #define  NVME_INLINE_METADATA_SG_CNT  0
33 #else
34 #define  NVME_INLINE_SG_CNT  2
35 #define  NVME_INLINE_METADATA_SG_CNT  1
36 #endif
37
38 /*
39  * Default to a 4K page size, with the intention to update this
40  * path in the future to accommodate architectures with differing
41  * kernel and IO page sizes.
42  */
43 #define NVME_CTRL_PAGE_SHIFT    12
44 #define NVME_CTRL_PAGE_SIZE     (1 << NVME_CTRL_PAGE_SHIFT)
45
46 extern struct workqueue_struct *nvme_wq;
47 extern struct workqueue_struct *nvme_reset_wq;
48 extern struct workqueue_struct *nvme_delete_wq;
49
50 /*
51  * List of workarounds for devices that required behavior not specified in
52  * the standard.
53  */
54 enum nvme_quirks {
55         /*
56          * Prefers I/O aligned to a stripe size specified in a vendor
57          * specific Identify field.
58          */
59         NVME_QUIRK_STRIPE_SIZE                  = (1 << 0),
60
61         /*
62          * The controller doesn't handle Identify value others than 0 or 1
63          * correctly.
64          */
65         NVME_QUIRK_IDENTIFY_CNS                 = (1 << 1),
66
67         /*
68          * The controller deterministically returns O's on reads to
69          * logical blocks that deallocate was called on.
70          */
71         NVME_QUIRK_DEALLOCATE_ZEROES            = (1 << 2),
72
73         /*
74          * The controller needs a delay before starts checking the device
75          * readiness, which is done by reading the NVME_CSTS_RDY bit.
76          */
77         NVME_QUIRK_DELAY_BEFORE_CHK_RDY         = (1 << 3),
78
79         /*
80          * APST should not be used.
81          */
82         NVME_QUIRK_NO_APST                      = (1 << 4),
83
84         /*
85          * The deepest sleep state should not be used.
86          */
87         NVME_QUIRK_NO_DEEPEST_PS                = (1 << 5),
88
89         /*
90          * Set MEDIUM priority on SQ creation
91          */
92         NVME_QUIRK_MEDIUM_PRIO_SQ               = (1 << 7),
93
94         /*
95          * Ignore device provided subnqn.
96          */
97         NVME_QUIRK_IGNORE_DEV_SUBNQN            = (1 << 8),
98
99         /*
100          * Broken Write Zeroes.
101          */
102         NVME_QUIRK_DISABLE_WRITE_ZEROES         = (1 << 9),
103
104         /*
105          * Force simple suspend/resume path.
106          */
107         NVME_QUIRK_SIMPLE_SUSPEND               = (1 << 10),
108
109         /*
110          * Use only one interrupt vector for all queues
111          */
112         NVME_QUIRK_SINGLE_VECTOR                = (1 << 11),
113
114         /*
115          * Use non-standard 128 bytes SQEs.
116          */
117         NVME_QUIRK_128_BYTES_SQES               = (1 << 12),
118
119         /*
120          * Prevent tag overlap between queues
121          */
122         NVME_QUIRK_SHARED_TAGS                  = (1 << 13),
123
124         /*
125          * Don't change the value of the temperature threshold feature
126          */
127         NVME_QUIRK_NO_TEMP_THRESH_CHANGE        = (1 << 14),
128
129         /*
130          * The controller doesn't handle the Identify Namespace
131          * Identification Descriptor list subcommand despite claiming
132          * NVMe 1.3 compliance.
133          */
134         NVME_QUIRK_NO_NS_DESC_LIST              = (1 << 15),
135
136         /*
137          * The controller does not properly handle DMA addresses over
138          * 48 bits.
139          */
140         NVME_QUIRK_DMA_ADDRESS_BITS_48          = (1 << 16),
141
142         /*
143          * The controller requires the command_id value be limited, so skip
144          * encoding the generation sequence number.
145          */
146         NVME_QUIRK_SKIP_CID_GEN                 = (1 << 17),
147
148         /*
149          * Reports garbage in the namespace identifiers (eui64, nguid, uuid).
150          */
151         NVME_QUIRK_BOGUS_NID                    = (1 << 18),
152
153         /*
154          * No temperature thresholds for channels other than 0 (Composite).
155          */
156         NVME_QUIRK_NO_SECONDARY_TEMP_THRESH     = (1 << 19),
157 };
158
159 /*
160  * Common request structure for NVMe passthrough.  All drivers must have
161  * this structure as the first member of their request-private data.
162  */
163 struct nvme_request {
164         struct nvme_command     *cmd;
165         union nvme_result       result;
166         u8                      genctr;
167         u8                      retries;
168         u8                      flags;
169         u16                     status;
170 #ifdef CONFIG_NVME_MULTIPATH
171         unsigned long           start_time;
172 #endif
173         struct nvme_ctrl        *ctrl;
174 };
175
176 /*
177  * Mark a bio as coming in through the mpath node.
178  */
179 #define REQ_NVME_MPATH          REQ_DRV
180
181 enum {
182         NVME_REQ_CANCELLED              = (1 << 0),
183         NVME_REQ_USERCMD                = (1 << 1),
184         NVME_MPATH_IO_STATS             = (1 << 2),
185 };
186
187 static inline struct nvme_request *nvme_req(struct request *req)
188 {
189         return blk_mq_rq_to_pdu(req);
190 }
191
192 static inline u16 nvme_req_qid(struct request *req)
193 {
194         if (!req->q->queuedata)
195                 return 0;
196
197         return req->mq_hctx->queue_num + 1;
198 }
199
200 /* The below value is the specific amount of delay needed before checking
201  * readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the
202  * NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was
203  * found empirically.
204  */
205 #define NVME_QUIRK_DELAY_AMOUNT         2300
206
207 /*
208  * enum nvme_ctrl_state: Controller state
209  *
210  * @NVME_CTRL_NEW:              New controller just allocated, initial state
211  * @NVME_CTRL_LIVE:             Controller is connected and I/O capable
212  * @NVME_CTRL_RESETTING:        Controller is resetting (or scheduled reset)
213  * @NVME_CTRL_CONNECTING:       Controller is disconnected, now connecting the
214  *                              transport
215  * @NVME_CTRL_DELETING:         Controller is deleting (or scheduled deletion)
216  * @NVME_CTRL_DELETING_NOIO:    Controller is deleting and I/O is not
217  *                              disabled/failed immediately. This state comes
218  *                              after all async event processing took place and
219  *                              before ns removal and the controller deletion
220  *                              progress
221  * @NVME_CTRL_DEAD:             Controller is non-present/unresponsive during
222  *                              shutdown or removal. In this case we forcibly
223  *                              kill all inflight I/O as they have no chance to
224  *                              complete
225  */
226 enum nvme_ctrl_state {
227         NVME_CTRL_NEW,
228         NVME_CTRL_LIVE,
229         NVME_CTRL_RESETTING,
230         NVME_CTRL_CONNECTING,
231         NVME_CTRL_DELETING,
232         NVME_CTRL_DELETING_NOIO,
233         NVME_CTRL_DEAD,
234 };
235
236 struct nvme_fault_inject {
237 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
238         struct fault_attr attr;
239         struct dentry *parent;
240         bool dont_retry;        /* DNR, do not retry */
241         u16 status;             /* status code */
242 #endif
243 };
244
245 enum nvme_ctrl_flags {
246         NVME_CTRL_FAILFAST_EXPIRED      = 0,
247         NVME_CTRL_ADMIN_Q_STOPPED       = 1,
248         NVME_CTRL_STARTED_ONCE          = 2,
249         NVME_CTRL_STOPPED               = 3,
250 };
251
252 struct nvme_ctrl {
253         bool comp_seen;
254         enum nvme_ctrl_state state;
255         bool identified;
256         spinlock_t lock;
257         struct mutex scan_lock;
258         const struct nvme_ctrl_ops *ops;
259         struct request_queue *admin_q;
260         struct request_queue *connect_q;
261         struct request_queue *fabrics_q;
262         struct device *dev;
263         int instance;
264         int numa_node;
265         struct blk_mq_tag_set *tagset;
266         struct blk_mq_tag_set *admin_tagset;
267         struct list_head namespaces;
268         struct rw_semaphore namespaces_rwsem;
269         struct device ctrl_device;
270         struct device *device;  /* char device */
271 #ifdef CONFIG_NVME_HWMON
272         struct device *hwmon_device;
273 #endif
274         struct cdev cdev;
275         struct work_struct reset_work;
276         struct work_struct delete_work;
277         wait_queue_head_t state_wq;
278
279         struct nvme_subsystem *subsys;
280         struct list_head subsys_entry;
281
282         struct opal_dev *opal_dev;
283
284         char name[12];
285         u16 cntlid;
286
287         u32 ctrl_config;
288         u16 mtfa;
289         u32 queue_count;
290
291         u64 cap;
292         u32 max_hw_sectors;
293         u32 max_segments;
294         u32 max_integrity_segments;
295         u32 max_discard_sectors;
296         u32 max_discard_segments;
297         u32 max_zeroes_sectors;
298 #ifdef CONFIG_BLK_DEV_ZONED
299         u32 max_zone_append;
300 #endif
301         u16 crdt[3];
302         u16 oncs;
303         u32 dmrsl;
304         u16 oacs;
305         u16 sqsize;
306         u32 max_namespaces;
307         atomic_t abort_limit;
308         u8 vwc;
309         u32 vs;
310         u32 sgls;
311         u16 kas;
312         u8 npss;
313         u8 apsta;
314         u16 wctemp;
315         u16 cctemp;
316         u32 oaes;
317         u32 aen_result;
318         u32 ctratt;
319         unsigned int shutdown_timeout;
320         unsigned int kato;
321         bool subsystem;
322         unsigned long quirks;
323         struct nvme_id_power_state psd[32];
324         struct nvme_effects_log *effects;
325         struct xarray cels;
326         struct work_struct scan_work;
327         struct work_struct async_event_work;
328         struct delayed_work ka_work;
329         struct delayed_work failfast_work;
330         struct nvme_command ka_cmd;
331         struct work_struct fw_act_work;
332         unsigned long events;
333
334 #ifdef CONFIG_NVME_MULTIPATH
335         /* asymmetric namespace access: */
336         u8 anacap;
337         u8 anatt;
338         u32 anagrpmax;
339         u32 nanagrpid;
340         struct mutex ana_lock;
341         struct nvme_ana_rsp_hdr *ana_log_buf;
342         size_t ana_log_size;
343         struct timer_list anatt_timer;
344         struct work_struct ana_work;
345 #endif
346
347 #ifdef CONFIG_NVME_AUTH
348         struct work_struct dhchap_auth_work;
349         struct mutex dhchap_auth_mutex;
350         struct nvme_dhchap_queue_context *dhchap_ctxs;
351         struct nvme_dhchap_key *host_key;
352         struct nvme_dhchap_key *ctrl_key;
353         u16 transaction;
354 #endif
355
356         /* Power saving configuration */
357         u64 ps_max_latency_us;
358         bool apst_enabled;
359
360         /* PCIe only: */
361         u32 hmpre;
362         u32 hmmin;
363         u32 hmminds;
364         u16 hmmaxd;
365
366         /* Fabrics only */
367         u32 ioccsz;
368         u32 iorcsz;
369         u16 icdoff;
370         u16 maxcmd;
371         int nr_reconnects;
372         unsigned long flags;
373         struct nvmf_ctrl_options *opts;
374
375         struct page *discard_page;
376         unsigned long discard_page_busy;
377
378         struct nvme_fault_inject fault_inject;
379
380         enum nvme_ctrl_type cntrltype;
381         enum nvme_dctype dctype;
382 };
383
384 enum nvme_iopolicy {
385         NVME_IOPOLICY_NUMA,
386         NVME_IOPOLICY_RR,
387 };
388
389 struct nvme_subsystem {
390         int                     instance;
391         struct device           dev;
392         /*
393          * Because we unregister the device on the last put we need
394          * a separate refcount.
395          */
396         struct kref             ref;
397         struct list_head        entry;
398         struct mutex            lock;
399         struct list_head        ctrls;
400         struct list_head        nsheads;
401         char                    subnqn[NVMF_NQN_SIZE];
402         char                    serial[20];
403         char                    model[40];
404         char                    firmware_rev[8];
405         u8                      cmic;
406         enum nvme_subsys_type   subtype;
407         u16                     vendor_id;
408         u16                     awupf;  /* 0's based awupf value. */
409         struct ida              ns_ida;
410 #ifdef CONFIG_NVME_MULTIPATH
411         enum nvme_iopolicy      iopolicy;
412 #endif
413 };
414
415 /*
416  * Container structure for uniqueue namespace identifiers.
417  */
418 struct nvme_ns_ids {
419         u8      eui64[8];
420         u8      nguid[16];
421         uuid_t  uuid;
422         u8      csi;
423 };
424
425 /*
426  * Anchor structure for namespaces.  There is one for each namespace in a
427  * NVMe subsystem that any of our controllers can see, and the namespace
428  * structure for each controller is chained of it.  For private namespaces
429  * there is a 1:1 relation to our namespace structures, that is ->list
430  * only ever has a single entry for private namespaces.
431  */
432 struct nvme_ns_head {
433         struct list_head        list;
434         struct srcu_struct      srcu;
435         struct nvme_subsystem   *subsys;
436         unsigned                ns_id;
437         struct nvme_ns_ids      ids;
438         struct list_head        entry;
439         struct kref             ref;
440         bool                    shared;
441         int                     instance;
442         struct nvme_effects_log *effects;
443
444         struct cdev             cdev;
445         struct device           cdev_device;
446
447         struct gendisk          *disk;
448 #ifdef CONFIG_NVME_MULTIPATH
449         struct bio_list         requeue_list;
450         spinlock_t              requeue_lock;
451         struct work_struct      requeue_work;
452         struct mutex            lock;
453         unsigned long           flags;
454 #define NVME_NSHEAD_DISK_LIVE   0
455         struct nvme_ns __rcu    *current_path[];
456 #endif
457 };
458
459 static inline bool nvme_ns_head_multipath(struct nvme_ns_head *head)
460 {
461         return IS_ENABLED(CONFIG_NVME_MULTIPATH) && head->disk;
462 }
463
464 enum nvme_ns_features {
465         NVME_NS_EXT_LBAS = 1 << 0, /* support extended LBA format */
466         NVME_NS_METADATA_SUPPORTED = 1 << 1, /* support getting generated md */
467         NVME_NS_DEAC,           /* DEAC bit in Write Zeores supported */
468 };
469
470 struct nvme_ns {
471         struct list_head list;
472
473         struct nvme_ctrl *ctrl;
474         struct request_queue *queue;
475         struct gendisk *disk;
476 #ifdef CONFIG_NVME_MULTIPATH
477         enum nvme_ana_state ana_state;
478         u32 ana_grpid;
479 #endif
480         struct list_head siblings;
481         struct kref kref;
482         struct nvme_ns_head *head;
483
484         int lba_shift;
485         u16 ms;
486         u16 pi_size;
487         u16 sgs;
488         u32 sws;
489         u8 pi_type;
490         u8 guard_type;
491 #ifdef CONFIG_BLK_DEV_ZONED
492         u64 zsze;
493 #endif
494         unsigned long features;
495         unsigned long flags;
496 #define NVME_NS_REMOVING        0
497 #define NVME_NS_ANA_PENDING     2
498 #define NVME_NS_FORCE_RO        3
499 #define NVME_NS_READY           4
500
501         struct cdev             cdev;
502         struct device           cdev_device;
503
504         struct nvme_fault_inject fault_inject;
505
506 };
507
508 /* NVMe ns supports metadata actions by the controller (generate/strip) */
509 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
510 {
511         return ns->pi_type && ns->ms == ns->pi_size;
512 }
513
514 struct nvme_ctrl_ops {
515         const char *name;
516         struct module *module;
517         unsigned int flags;
518 #define NVME_F_FABRICS                  (1 << 0)
519 #define NVME_F_METADATA_SUPPORTED       (1 << 1)
520 #define NVME_F_BLOCKING                 (1 << 2)
521
522         const struct attribute_group **dev_attr_groups;
523         int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val);
524         int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val);
525         int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val);
526         void (*free_ctrl)(struct nvme_ctrl *ctrl);
527         void (*submit_async_event)(struct nvme_ctrl *ctrl);
528         void (*delete_ctrl)(struct nvme_ctrl *ctrl);
529         void (*stop_ctrl)(struct nvme_ctrl *ctrl);
530         int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size);
531         void (*print_device_info)(struct nvme_ctrl *ctrl);
532         bool (*supports_pci_p2pdma)(struct nvme_ctrl *ctrl);
533 };
534
535 /*
536  * nvme command_id is constructed as such:
537  * | xxxx | xxxxxxxxxxxx |
538  *   gen    request tag
539  */
540 #define nvme_genctr_mask(gen)                   (gen & 0xf)
541 #define nvme_cid_install_genctr(gen)            (nvme_genctr_mask(gen) << 12)
542 #define nvme_genctr_from_cid(cid)               ((cid & 0xf000) >> 12)
543 #define nvme_tag_from_cid(cid)                  (cid & 0xfff)
544
545 static inline u16 nvme_cid(struct request *rq)
546 {
547         return nvme_cid_install_genctr(nvme_req(rq)->genctr) | rq->tag;
548 }
549
550 static inline struct request *nvme_find_rq(struct blk_mq_tags *tags,
551                 u16 command_id)
552 {
553         u8 genctr = nvme_genctr_from_cid(command_id);
554         u16 tag = nvme_tag_from_cid(command_id);
555         struct request *rq;
556
557         rq = blk_mq_tag_to_rq(tags, tag);
558         if (unlikely(!rq)) {
559                 pr_err("could not locate request for tag %#x\n",
560                         tag);
561                 return NULL;
562         }
563         if (unlikely(nvme_genctr_mask(nvme_req(rq)->genctr) != genctr)) {
564                 dev_err(nvme_req(rq)->ctrl->device,
565                         "request %#x genctr mismatch (got %#x expected %#x)\n",
566                         tag, genctr, nvme_genctr_mask(nvme_req(rq)->genctr));
567                 return NULL;
568         }
569         return rq;
570 }
571
572 static inline struct request *nvme_cid_to_rq(struct blk_mq_tags *tags,
573                 u16 command_id)
574 {
575         return blk_mq_tag_to_rq(tags, nvme_tag_from_cid(command_id));
576 }
577
578 /*
579  * Return the length of the string without the space padding
580  */
581 static inline int nvme_strlen(char *s, int len)
582 {
583         while (s[len - 1] == ' ')
584                 len--;
585         return len;
586 }
587
588 static inline void nvme_print_device_info(struct nvme_ctrl *ctrl)
589 {
590         struct nvme_subsystem *subsys = ctrl->subsys;
591
592         if (ctrl->ops->print_device_info) {
593                 ctrl->ops->print_device_info(ctrl);
594                 return;
595         }
596
597         dev_err(ctrl->device,
598                 "VID:%04x model:%.*s firmware:%.*s\n", subsys->vendor_id,
599                 nvme_strlen(subsys->model, sizeof(subsys->model)),
600                 subsys->model, nvme_strlen(subsys->firmware_rev,
601                                            sizeof(subsys->firmware_rev)),
602                 subsys->firmware_rev);
603 }
604
605 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
606 void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
607                             const char *dev_name);
608 void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject);
609 void nvme_should_fail(struct request *req);
610 #else
611 static inline void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
612                                           const char *dev_name)
613 {
614 }
615 static inline void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inj)
616 {
617 }
618 static inline void nvme_should_fail(struct request *req) {}
619 #endif
620
621 bool nvme_wait_reset(struct nvme_ctrl *ctrl);
622 int nvme_try_sched_reset(struct nvme_ctrl *ctrl);
623
624 static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl)
625 {
626         int ret;
627
628         if (!ctrl->subsystem)
629                 return -ENOTTY;
630         if (!nvme_wait_reset(ctrl))
631                 return -EBUSY;
632
633         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65);
634         if (ret)
635                 return ret;
636
637         return nvme_try_sched_reset(ctrl);
638 }
639
640 /*
641  * Convert a 512B sector number to a device logical block number.
642  */
643 static inline u64 nvme_sect_to_lba(struct nvme_ns *ns, sector_t sector)
644 {
645         return sector >> (ns->lba_shift - SECTOR_SHIFT);
646 }
647
648 /*
649  * Convert a device logical block number to a 512B sector number.
650  */
651 static inline sector_t nvme_lba_to_sect(struct nvme_ns *ns, u64 lba)
652 {
653         return lba << (ns->lba_shift - SECTOR_SHIFT);
654 }
655
656 /*
657  * Convert byte length to nvme's 0-based num dwords
658  */
659 static inline u32 nvme_bytes_to_numd(size_t len)
660 {
661         return (len >> 2) - 1;
662 }
663
664 static inline bool nvme_is_ana_error(u16 status)
665 {
666         switch (status & 0x7ff) {
667         case NVME_SC_ANA_TRANSITION:
668         case NVME_SC_ANA_INACCESSIBLE:
669         case NVME_SC_ANA_PERSISTENT_LOSS:
670                 return true;
671         default:
672                 return false;
673         }
674 }
675
676 static inline bool nvme_is_path_error(u16 status)
677 {
678         /* check for a status code type of 'path related status' */
679         return (status & 0x700) == 0x300;
680 }
681
682 /*
683  * Fill in the status and result information from the CQE, and then figure out
684  * if blk-mq will need to use IPI magic to complete the request, and if yes do
685  * so.  If not let the caller complete the request without an indirect function
686  * call.
687  */
688 static inline bool nvme_try_complete_req(struct request *req, __le16 status,
689                 union nvme_result result)
690 {
691         struct nvme_request *rq = nvme_req(req);
692         struct nvme_ctrl *ctrl = rq->ctrl;
693
694         if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
695                 rq->genctr++;
696
697         rq->status = le16_to_cpu(status) >> 1;
698         rq->result = result;
699         /* inject error when permitted by fault injection framework */
700         nvme_should_fail(req);
701         if (unlikely(blk_should_fake_timeout(req->q)))
702                 return true;
703         return blk_mq_complete_request_remote(req);
704 }
705
706 static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl)
707 {
708         get_device(ctrl->device);
709 }
710
711 static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl)
712 {
713         put_device(ctrl->device);
714 }
715
716 static inline bool nvme_is_aen_req(u16 qid, __u16 command_id)
717 {
718         return !qid &&
719                 nvme_tag_from_cid(command_id) >= NVME_AQ_BLK_MQ_DEPTH;
720 }
721
722 void nvme_complete_rq(struct request *req);
723 void nvme_complete_batch_req(struct request *req);
724
725 static __always_inline void nvme_complete_batch(struct io_comp_batch *iob,
726                                                 void (*fn)(struct request *rq))
727 {
728         struct request *req;
729
730         rq_list_for_each(&iob->req_list, req) {
731                 fn(req);
732                 nvme_complete_batch_req(req);
733         }
734         blk_mq_end_request_batch(iob);
735 }
736
737 blk_status_t nvme_host_path_error(struct request *req);
738 bool nvme_cancel_request(struct request *req, void *data);
739 void nvme_cancel_tagset(struct nvme_ctrl *ctrl);
740 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl);
741 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
742                 enum nvme_ctrl_state new_state);
743 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown);
744 int nvme_enable_ctrl(struct nvme_ctrl *ctrl);
745 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
746                 const struct nvme_ctrl_ops *ops, unsigned long quirks);
747 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl);
748 void nvme_start_ctrl(struct nvme_ctrl *ctrl);
749 void nvme_stop_ctrl(struct nvme_ctrl *ctrl);
750 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended);
751 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
752                 const struct blk_mq_ops *ops, unsigned int cmd_size);
753 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl);
754 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
755                 const struct blk_mq_ops *ops, unsigned int nr_maps,
756                 unsigned int cmd_size);
757 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl);
758
759 void nvme_remove_namespaces(struct nvme_ctrl *ctrl);
760
761 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
762                 volatile union nvme_result *res);
763
764 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl);
765 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl);
766 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl);
767 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl);
768 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl);
769 void nvme_sync_queues(struct nvme_ctrl *ctrl);
770 void nvme_sync_io_queues(struct nvme_ctrl *ctrl);
771 void nvme_unfreeze(struct nvme_ctrl *ctrl);
772 void nvme_wait_freeze(struct nvme_ctrl *ctrl);
773 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout);
774 void nvme_start_freeze(struct nvme_ctrl *ctrl);
775
776 static inline enum req_op nvme_req_op(struct nvme_command *cmd)
777 {
778         return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
779 }
780
781 #define NVME_QID_ANY -1
782 void nvme_init_request(struct request *req, struct nvme_command *cmd);
783 void nvme_cleanup_cmd(struct request *req);
784 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req);
785 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
786                 struct request *req);
787 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
788                 bool queue_live);
789
790 static inline bool nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
791                 bool queue_live)
792 {
793         if (likely(ctrl->state == NVME_CTRL_LIVE))
794                 return true;
795         if (ctrl->ops->flags & NVME_F_FABRICS &&
796             ctrl->state == NVME_CTRL_DELETING)
797                 return queue_live;
798         return __nvme_check_ready(ctrl, rq, queue_live);
799 }
800
801 /*
802  * NSID shall be unique for all shared namespaces, or if at least one of the
803  * following conditions is met:
804  *   1. Namespace Management is supported by the controller
805  *   2. ANA is supported by the controller
806  *   3. NVM Set are supported by the controller
807  *
808  * In other case, private namespace are not required to report a unique NSID.
809  */
810 static inline bool nvme_is_unique_nsid(struct nvme_ctrl *ctrl,
811                 struct nvme_ns_head *head)
812 {
813         return head->shared ||
814                 (ctrl->oacs & NVME_CTRL_OACS_NS_MNGT_SUPP) ||
815                 (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA) ||
816                 (ctrl->ctratt & NVME_CTRL_CTRATT_NVM_SETS);
817 }
818
819 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
820                 void *buf, unsigned bufflen);
821 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
822                 union nvme_result *result, void *buffer, unsigned bufflen,
823                 int qid, int at_head,
824                 blk_mq_req_flags_t flags);
825 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
826                       unsigned int dword11, void *buffer, size_t buflen,
827                       u32 *result);
828 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
829                       unsigned int dword11, void *buffer, size_t buflen,
830                       u32 *result);
831 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count);
832 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl);
833 int nvme_reset_ctrl(struct nvme_ctrl *ctrl);
834 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl);
835 int nvme_delete_ctrl(struct nvme_ctrl *ctrl);
836 void nvme_queue_scan(struct nvme_ctrl *ctrl);
837 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
838                 void *log, size_t size, u64 offset);
839 bool nvme_tryget_ns_head(struct nvme_ns_head *head);
840 void nvme_put_ns_head(struct nvme_ns_head *head);
841 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
842                 const struct file_operations *fops, struct module *owner);
843 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device);
844 int nvme_ioctl(struct block_device *bdev, fmode_t mode,
845                 unsigned int cmd, unsigned long arg);
846 long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
847 int nvme_ns_head_ioctl(struct block_device *bdev, fmode_t mode,
848                 unsigned int cmd, unsigned long arg);
849 long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd,
850                 unsigned long arg);
851 long nvme_dev_ioctl(struct file *file, unsigned int cmd,
852                 unsigned long arg);
853 int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
854                 struct io_comp_batch *iob, unsigned int poll_flags);
855 int nvme_ns_head_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
856                 struct io_comp_batch *iob, unsigned int poll_flags);
857 int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd,
858                 unsigned int issue_flags);
859 int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd,
860                 unsigned int issue_flags);
861 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo);
862 int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
863
864 extern const struct attribute_group *nvme_ns_id_attr_groups[];
865 extern const struct pr_ops nvme_pr_ops;
866 extern const struct block_device_operations nvme_ns_head_ops;
867 extern const struct attribute_group nvme_dev_attrs_group;
868
869 struct nvme_ns *nvme_find_path(struct nvme_ns_head *head);
870 #ifdef CONFIG_NVME_MULTIPATH
871 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
872 {
873         return ctrl->ana_log_buf != NULL;
874 }
875
876 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys);
877 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys);
878 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys);
879 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys);
880 void nvme_failover_req(struct request *req);
881 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl);
882 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head);
883 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid);
884 void nvme_mpath_remove_disk(struct nvme_ns_head *head);
885 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id);
886 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl);
887 void nvme_mpath_update(struct nvme_ctrl *ctrl);
888 void nvme_mpath_uninit(struct nvme_ctrl *ctrl);
889 void nvme_mpath_stop(struct nvme_ctrl *ctrl);
890 bool nvme_mpath_clear_current_path(struct nvme_ns *ns);
891 void nvme_mpath_revalidate_paths(struct nvme_ns *ns);
892 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl);
893 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head);
894 void nvme_mpath_start_request(struct request *rq);
895 void nvme_mpath_end_request(struct request *rq);
896
897 static inline void nvme_trace_bio_complete(struct request *req)
898 {
899         struct nvme_ns *ns = req->q->queuedata;
900
901         if ((req->cmd_flags & REQ_NVME_MPATH) && req->bio)
902                 trace_block_bio_complete(ns->head->disk->queue, req->bio);
903 }
904
905 extern bool multipath;
906 extern struct device_attribute dev_attr_ana_grpid;
907 extern struct device_attribute dev_attr_ana_state;
908 extern struct device_attribute subsys_attr_iopolicy;
909
910 #else
911 #define multipath false
912 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
913 {
914         return false;
915 }
916 static inline void nvme_failover_req(struct request *req)
917 {
918 }
919 static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
920 {
921 }
922 static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,
923                 struct nvme_ns_head *head)
924 {
925         return 0;
926 }
927 static inline void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
928 {
929 }
930 static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head)
931 {
932 }
933 static inline bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
934 {
935         return false;
936 }
937 static inline void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
938 {
939 }
940 static inline void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
941 {
942 }
943 static inline void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
944 {
945 }
946 static inline void nvme_trace_bio_complete(struct request *req)
947 {
948 }
949 static inline void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
950 {
951 }
952 static inline int nvme_mpath_init_identify(struct nvme_ctrl *ctrl,
953                 struct nvme_id_ctrl *id)
954 {
955         if (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)
956                 dev_warn(ctrl->device,
957 "Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n");
958         return 0;
959 }
960 static inline void nvme_mpath_update(struct nvme_ctrl *ctrl)
961 {
962 }
963 static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
964 {
965 }
966 static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl)
967 {
968 }
969 static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
970 {
971 }
972 static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
973 {
974 }
975 static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
976 {
977 }
978 static inline void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
979 {
980 }
981 static inline void nvme_mpath_start_request(struct request *rq)
982 {
983 }
984 static inline void nvme_mpath_end_request(struct request *rq)
985 {
986 }
987 #endif /* CONFIG_NVME_MULTIPATH */
988
989 int nvme_revalidate_zones(struct nvme_ns *ns);
990 int nvme_ns_report_zones(struct nvme_ns *ns, sector_t sector,
991                 unsigned int nr_zones, report_zones_cb cb, void *data);
992 #ifdef CONFIG_BLK_DEV_ZONED
993 int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf);
994 blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req,
995                                        struct nvme_command *cmnd,
996                                        enum nvme_zone_mgmt_action action);
997 #else
998 static inline blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns,
999                 struct request *req, struct nvme_command *cmnd,
1000                 enum nvme_zone_mgmt_action action)
1001 {
1002         return BLK_STS_NOTSUPP;
1003 }
1004
1005 static inline int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf)
1006 {
1007         dev_warn(ns->ctrl->device,
1008                  "Please enable CONFIG_BLK_DEV_ZONED to support ZNS devices\n");
1009         return -EPROTONOSUPPORT;
1010 }
1011 #endif
1012
1013 static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev)
1014 {
1015         return dev_to_disk(dev)->private_data;
1016 }
1017
1018 #ifdef CONFIG_NVME_HWMON
1019 int nvme_hwmon_init(struct nvme_ctrl *ctrl);
1020 void nvme_hwmon_exit(struct nvme_ctrl *ctrl);
1021 #else
1022 static inline int nvme_hwmon_init(struct nvme_ctrl *ctrl)
1023 {
1024         return 0;
1025 }
1026
1027 static inline void nvme_hwmon_exit(struct nvme_ctrl *ctrl)
1028 {
1029 }
1030 #endif
1031
1032 static inline void nvme_start_request(struct request *rq)
1033 {
1034         if (rq->cmd_flags & REQ_NVME_MPATH)
1035                 nvme_mpath_start_request(rq);
1036         blk_mq_start_request(rq);
1037 }
1038
1039 static inline bool nvme_ctrl_sgl_supported(struct nvme_ctrl *ctrl)
1040 {
1041         return ctrl->sgls & ((1 << 0) | (1 << 1));
1042 }
1043
1044 #ifdef CONFIG_NVME_AUTH
1045 int __init nvme_init_auth(void);
1046 void __exit nvme_exit_auth(void);
1047 int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl);
1048 void nvme_auth_stop(struct nvme_ctrl *ctrl);
1049 int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid);
1050 int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid);
1051 void nvme_auth_free(struct nvme_ctrl *ctrl);
1052 #else
1053 static inline int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl)
1054 {
1055         return 0;
1056 }
1057 static inline int __init nvme_init_auth(void)
1058 {
1059         return 0;
1060 }
1061 static inline void __exit nvme_exit_auth(void)
1062 {
1063 }
1064 static inline void nvme_auth_stop(struct nvme_ctrl *ctrl) {};
1065 static inline int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid)
1066 {
1067         return -EPROTONOSUPPORT;
1068 }
1069 static inline int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid)
1070 {
1071         return NVME_SC_AUTH_REQUIRED;
1072 }
1073 static inline void nvme_auth_free(struct nvme_ctrl *ctrl) {};
1074 #endif
1075
1076 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1077                          u8 opcode);
1078 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode);
1079 int nvme_execute_rq(struct request *rq, bool at_head);
1080 void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1081                        struct nvme_command *cmd, int status);
1082 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file);
1083 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid);
1084 void nvme_put_ns(struct nvme_ns *ns);
1085
1086 static inline bool nvme_multi_css(struct nvme_ctrl *ctrl)
1087 {
1088         return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1089 }
1090
1091 #ifdef CONFIG_NVME_VERBOSE_ERRORS
1092 const unsigned char *nvme_get_error_status_str(u16 status);
1093 const unsigned char *nvme_get_opcode_str(u8 opcode);
1094 const unsigned char *nvme_get_admin_opcode_str(u8 opcode);
1095 const unsigned char *nvme_get_fabrics_opcode_str(u8 opcode);
1096 #else /* CONFIG_NVME_VERBOSE_ERRORS */
1097 static inline const unsigned char *nvme_get_error_status_str(u16 status)
1098 {
1099         return "I/O Error";
1100 }
1101 static inline const unsigned char *nvme_get_opcode_str(u8 opcode)
1102 {
1103         return "I/O Cmd";
1104 }
1105 static inline const unsigned char *nvme_get_admin_opcode_str(u8 opcode)
1106 {
1107         return "Admin Cmd";
1108 }
1109
1110 static inline const unsigned char *nvme_get_fabrics_opcode_str(u8 opcode)
1111 {
1112         return "Fabrics Cmd";
1113 }
1114 #endif /* CONFIG_NVME_VERBOSE_ERRORS */
1115
1116 static inline const unsigned char *nvme_opcode_str(int qid, u8 opcode, u8 fctype)
1117 {
1118         if (opcode == nvme_fabrics_command)
1119                 return nvme_get_fabrics_opcode_str(fctype);
1120         return qid ? nvme_get_opcode_str(opcode) :
1121                 nvme_get_admin_opcode_str(opcode);
1122 }
1123 #endif /* _NVME_H */