ARM: 9148/1: handle CONFIG_CPU_ENDIAN_BE32 in arch/arm/kernel/head.S
[platform/kernel/linux-rpi.git] / drivers / nvme / host / multipath.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14         "turn on native support for multiple controllers per subsystem");
15
16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17 {
18         struct nvme_ns_head *h;
19
20         lockdep_assert_held(&subsys->lock);
21         list_for_each_entry(h, &subsys->nsheads, entry)
22                 if (h->disk)
23                         blk_mq_unfreeze_queue(h->disk->queue);
24 }
25
26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27 {
28         struct nvme_ns_head *h;
29
30         lockdep_assert_held(&subsys->lock);
31         list_for_each_entry(h, &subsys->nsheads, entry)
32                 if (h->disk)
33                         blk_mq_freeze_queue_wait(h->disk->queue);
34 }
35
36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37 {
38         struct nvme_ns_head *h;
39
40         lockdep_assert_held(&subsys->lock);
41         list_for_each_entry(h, &subsys->nsheads, entry)
42                 if (h->disk)
43                         blk_freeze_queue_start(h->disk->queue);
44 }
45
46 /*
47  * If multipathing is enabled we need to always use the subsystem instance
48  * number for numbering our devices to avoid conflicts between subsystems that
49  * have multiple controllers and thus use the multipath-aware subsystem node
50  * and those that have a single controller and use the controller node
51  * directly.
52  */
53 bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags)
54 {
55         if (!multipath)
56                 return false;
57         if (!ns->head->disk) {
58                 sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance,
59                         ns->head->instance);
60                 return true;
61         }
62         sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance,
63                 ns->ctrl->instance, ns->head->instance);
64         *flags = GENHD_FL_HIDDEN;
65         return true;
66 }
67
68 void nvme_failover_req(struct request *req)
69 {
70         struct nvme_ns *ns = req->q->queuedata;
71         u16 status = nvme_req(req)->status & 0x7ff;
72         unsigned long flags;
73         struct bio *bio;
74
75         nvme_mpath_clear_current_path(ns);
76
77         /*
78          * If we got back an ANA error, we know the controller is alive but not
79          * ready to serve this namespace.  Kick of a re-read of the ANA
80          * information page, and just try any other available path for now.
81          */
82         if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
83                 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
84                 queue_work(nvme_wq, &ns->ctrl->ana_work);
85         }
86
87         spin_lock_irqsave(&ns->head->requeue_lock, flags);
88         for (bio = req->bio; bio; bio = bio->bi_next)
89                 bio_set_dev(bio, ns->head->disk->part0);
90         blk_steal_bios(&ns->head->requeue_list, req);
91         spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
92
93         blk_mq_end_request(req, 0);
94         kblockd_schedule_work(&ns->head->requeue_work);
95 }
96
97 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
98 {
99         struct nvme_ns *ns;
100
101         down_read(&ctrl->namespaces_rwsem);
102         list_for_each_entry(ns, &ctrl->namespaces, list) {
103                 if (ns->head->disk)
104                         kblockd_schedule_work(&ns->head->requeue_work);
105         }
106         up_read(&ctrl->namespaces_rwsem);
107 }
108
109 static const char *nvme_ana_state_names[] = {
110         [0]                             = "invalid state",
111         [NVME_ANA_OPTIMIZED]            = "optimized",
112         [NVME_ANA_NONOPTIMIZED]         = "non-optimized",
113         [NVME_ANA_INACCESSIBLE]         = "inaccessible",
114         [NVME_ANA_PERSISTENT_LOSS]      = "persistent-loss",
115         [NVME_ANA_CHANGE]               = "change",
116 };
117
118 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
119 {
120         struct nvme_ns_head *head = ns->head;
121         bool changed = false;
122         int node;
123
124         if (!head)
125                 goto out;
126
127         for_each_node(node) {
128                 if (ns == rcu_access_pointer(head->current_path[node])) {
129                         rcu_assign_pointer(head->current_path[node], NULL);
130                         changed = true;
131                 }
132         }
133 out:
134         return changed;
135 }
136
137 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
138 {
139         struct nvme_ns *ns;
140
141         mutex_lock(&ctrl->scan_lock);
142         down_read(&ctrl->namespaces_rwsem);
143         list_for_each_entry(ns, &ctrl->namespaces, list)
144                 if (nvme_mpath_clear_current_path(ns))
145                         kblockd_schedule_work(&ns->head->requeue_work);
146         up_read(&ctrl->namespaces_rwsem);
147         mutex_unlock(&ctrl->scan_lock);
148 }
149
150 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
151 {
152         struct nvme_ns_head *head = ns->head;
153         sector_t capacity = get_capacity(head->disk);
154         int node;
155
156         list_for_each_entry_rcu(ns, &head->list, siblings) {
157                 if (capacity != get_capacity(ns->disk))
158                         clear_bit(NVME_NS_READY, &ns->flags);
159         }
160
161         for_each_node(node)
162                 rcu_assign_pointer(head->current_path[node], NULL);
163 }
164
165 static bool nvme_path_is_disabled(struct nvme_ns *ns)
166 {
167         /*
168          * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
169          * still be able to complete assuming that the controller is connected.
170          * Otherwise it will fail immediately and return to the requeue list.
171          */
172         if (ns->ctrl->state != NVME_CTRL_LIVE &&
173             ns->ctrl->state != NVME_CTRL_DELETING)
174                 return true;
175         if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
176             !test_bit(NVME_NS_READY, &ns->flags))
177                 return true;
178         return false;
179 }
180
181 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
182 {
183         int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
184         struct nvme_ns *found = NULL, *fallback = NULL, *ns;
185
186         list_for_each_entry_rcu(ns, &head->list, siblings) {
187                 if (nvme_path_is_disabled(ns))
188                         continue;
189
190                 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
191                         distance = node_distance(node, ns->ctrl->numa_node);
192                 else
193                         distance = LOCAL_DISTANCE;
194
195                 switch (ns->ana_state) {
196                 case NVME_ANA_OPTIMIZED:
197                         if (distance < found_distance) {
198                                 found_distance = distance;
199                                 found = ns;
200                         }
201                         break;
202                 case NVME_ANA_NONOPTIMIZED:
203                         if (distance < fallback_distance) {
204                                 fallback_distance = distance;
205                                 fallback = ns;
206                         }
207                         break;
208                 default:
209                         break;
210                 }
211         }
212
213         if (!found)
214                 found = fallback;
215         if (found)
216                 rcu_assign_pointer(head->current_path[node], found);
217         return found;
218 }
219
220 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
221                 struct nvme_ns *ns)
222 {
223         ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
224                         siblings);
225         if (ns)
226                 return ns;
227         return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
228 }
229
230 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
231                 int node, struct nvme_ns *old)
232 {
233         struct nvme_ns *ns, *found = NULL;
234
235         if (list_is_singular(&head->list)) {
236                 if (nvme_path_is_disabled(old))
237                         return NULL;
238                 return old;
239         }
240
241         for (ns = nvme_next_ns(head, old);
242              ns && ns != old;
243              ns = nvme_next_ns(head, ns)) {
244                 if (nvme_path_is_disabled(ns))
245                         continue;
246
247                 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
248                         found = ns;
249                         goto out;
250                 }
251                 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
252                         found = ns;
253         }
254
255         /*
256          * The loop above skips the current path for round-robin semantics.
257          * Fall back to the current path if either:
258          *  - no other optimized path found and current is optimized,
259          *  - no other usable path found and current is usable.
260          */
261         if (!nvme_path_is_disabled(old) &&
262             (old->ana_state == NVME_ANA_OPTIMIZED ||
263              (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
264                 return old;
265
266         if (!found)
267                 return NULL;
268 out:
269         rcu_assign_pointer(head->current_path[node], found);
270         return found;
271 }
272
273 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
274 {
275         return ns->ctrl->state == NVME_CTRL_LIVE &&
276                 ns->ana_state == NVME_ANA_OPTIMIZED;
277 }
278
279 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
280 {
281         int node = numa_node_id();
282         struct nvme_ns *ns;
283
284         ns = srcu_dereference(head->current_path[node], &head->srcu);
285         if (unlikely(!ns))
286                 return __nvme_find_path(head, node);
287
288         if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
289                 return nvme_round_robin_path(head, node, ns);
290         if (unlikely(!nvme_path_is_optimized(ns)))
291                 return __nvme_find_path(head, node);
292         return ns;
293 }
294
295 static bool nvme_available_path(struct nvme_ns_head *head)
296 {
297         struct nvme_ns *ns;
298
299         list_for_each_entry_rcu(ns, &head->list, siblings) {
300                 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
301                         continue;
302                 switch (ns->ctrl->state) {
303                 case NVME_CTRL_LIVE:
304                 case NVME_CTRL_RESETTING:
305                 case NVME_CTRL_CONNECTING:
306                         /* fallthru */
307                         return true;
308                 default:
309                         break;
310                 }
311         }
312         return false;
313 }
314
315 static blk_qc_t nvme_ns_head_submit_bio(struct bio *bio)
316 {
317         struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
318         struct device *dev = disk_to_dev(head->disk);
319         struct nvme_ns *ns;
320         blk_qc_t ret = BLK_QC_T_NONE;
321         int srcu_idx;
322
323         /*
324          * The namespace might be going away and the bio might be moved to a
325          * different queue via blk_steal_bios(), so we need to use the bio_split
326          * pool from the original queue to allocate the bvecs from.
327          */
328         blk_queue_split(&bio);
329
330         srcu_idx = srcu_read_lock(&head->srcu);
331         ns = nvme_find_path(head);
332         if (likely(ns)) {
333                 bio_set_dev(bio, ns->disk->part0);
334                 bio->bi_opf |= REQ_NVME_MPATH;
335                 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
336                                       bio->bi_iter.bi_sector);
337                 ret = submit_bio_noacct(bio);
338         } else if (nvme_available_path(head)) {
339                 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
340
341                 spin_lock_irq(&head->requeue_lock);
342                 bio_list_add(&head->requeue_list, bio);
343                 spin_unlock_irq(&head->requeue_lock);
344         } else {
345                 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
346
347                 bio->bi_status = BLK_STS_IOERR;
348                 bio_endio(bio);
349         }
350
351         srcu_read_unlock(&head->srcu, srcu_idx);
352         return ret;
353 }
354
355 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
356 {
357         if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
358                 return -ENXIO;
359         return 0;
360 }
361
362 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
363 {
364         nvme_put_ns_head(disk->private_data);
365 }
366
367 #ifdef CONFIG_BLK_DEV_ZONED
368 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
369                 unsigned int nr_zones, report_zones_cb cb, void *data)
370 {
371         struct nvme_ns_head *head = disk->private_data;
372         struct nvme_ns *ns;
373         int srcu_idx, ret = -EWOULDBLOCK;
374
375         srcu_idx = srcu_read_lock(&head->srcu);
376         ns = nvme_find_path(head);
377         if (ns)
378                 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
379         srcu_read_unlock(&head->srcu, srcu_idx);
380         return ret;
381 }
382 #else
383 #define nvme_ns_head_report_zones       NULL
384 #endif /* CONFIG_BLK_DEV_ZONED */
385
386 const struct block_device_operations nvme_ns_head_ops = {
387         .owner          = THIS_MODULE,
388         .submit_bio     = nvme_ns_head_submit_bio,
389         .open           = nvme_ns_head_open,
390         .release        = nvme_ns_head_release,
391         .ioctl          = nvme_ns_head_ioctl,
392         .getgeo         = nvme_getgeo,
393         .report_zones   = nvme_ns_head_report_zones,
394         .pr_ops         = &nvme_pr_ops,
395 };
396
397 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
398 {
399         return container_of(cdev, struct nvme_ns_head, cdev);
400 }
401
402 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
403 {
404         if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
405                 return -ENXIO;
406         return 0;
407 }
408
409 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
410 {
411         nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
412         return 0;
413 }
414
415 static const struct file_operations nvme_ns_head_chr_fops = {
416         .owner          = THIS_MODULE,
417         .open           = nvme_ns_head_chr_open,
418         .release        = nvme_ns_head_chr_release,
419         .unlocked_ioctl = nvme_ns_head_chr_ioctl,
420         .compat_ioctl   = compat_ptr_ioctl,
421 };
422
423 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
424 {
425         int ret;
426
427         head->cdev_device.parent = &head->subsys->dev;
428         ret = dev_set_name(&head->cdev_device, "ng%dn%d",
429                            head->subsys->instance, head->instance);
430         if (ret)
431                 return ret;
432         ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
433                             &nvme_ns_head_chr_fops, THIS_MODULE);
434         if (ret)
435                 kfree_const(head->cdev_device.kobj.name);
436         return ret;
437 }
438
439 static void nvme_requeue_work(struct work_struct *work)
440 {
441         struct nvme_ns_head *head =
442                 container_of(work, struct nvme_ns_head, requeue_work);
443         struct bio *bio, *next;
444
445         spin_lock_irq(&head->requeue_lock);
446         next = bio_list_get(&head->requeue_list);
447         spin_unlock_irq(&head->requeue_lock);
448
449         while ((bio = next) != NULL) {
450                 next = bio->bi_next;
451                 bio->bi_next = NULL;
452
453                 submit_bio_noacct(bio);
454         }
455 }
456
457 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
458 {
459         bool vwc = false;
460
461         mutex_init(&head->lock);
462         bio_list_init(&head->requeue_list);
463         spin_lock_init(&head->requeue_lock);
464         INIT_WORK(&head->requeue_work, nvme_requeue_work);
465
466         /*
467          * Add a multipath node if the subsystems supports multiple controllers.
468          * We also do this for private namespaces as the namespace sharing data could
469          * change after a rescan.
470          */
471         if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
472                 return 0;
473
474         head->disk = blk_alloc_disk(ctrl->numa_node);
475         if (!head->disk)
476                 return -ENOMEM;
477         head->disk->fops = &nvme_ns_head_ops;
478         head->disk->private_data = head;
479         sprintf(head->disk->disk_name, "nvme%dn%d",
480                         ctrl->subsys->instance, head->instance);
481
482         blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
483         blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
484
485         /* set to a default value of 512 until the disk is validated */
486         blk_queue_logical_block_size(head->disk->queue, 512);
487         blk_set_stacking_limits(&head->disk->queue->limits);
488
489         /* we need to propagate up the VMC settings */
490         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
491                 vwc = true;
492         blk_queue_write_cache(head->disk->queue, vwc, vwc);
493         return 0;
494 }
495
496 static void nvme_mpath_set_live(struct nvme_ns *ns)
497 {
498         struct nvme_ns_head *head = ns->head;
499
500         if (!head->disk)
501                 return;
502
503         if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
504                 device_add_disk(&head->subsys->dev, head->disk,
505                                 nvme_ns_id_attr_groups);
506                 nvme_add_ns_head_cdev(head);
507         }
508
509         mutex_lock(&head->lock);
510         if (nvme_path_is_optimized(ns)) {
511                 int node, srcu_idx;
512
513                 srcu_idx = srcu_read_lock(&head->srcu);
514                 for_each_node(node)
515                         __nvme_find_path(head, node);
516                 srcu_read_unlock(&head->srcu, srcu_idx);
517         }
518         mutex_unlock(&head->lock);
519
520         synchronize_srcu(&head->srcu);
521         kblockd_schedule_work(&head->requeue_work);
522 }
523
524 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
525                 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
526                         void *))
527 {
528         void *base = ctrl->ana_log_buf;
529         size_t offset = sizeof(struct nvme_ana_rsp_hdr);
530         int error, i;
531
532         lockdep_assert_held(&ctrl->ana_lock);
533
534         for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
535                 struct nvme_ana_group_desc *desc = base + offset;
536                 u32 nr_nsids;
537                 size_t nsid_buf_size;
538
539                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
540                         return -EINVAL;
541
542                 nr_nsids = le32_to_cpu(desc->nnsids);
543                 nsid_buf_size = nr_nsids * sizeof(__le32);
544
545                 if (WARN_ON_ONCE(desc->grpid == 0))
546                         return -EINVAL;
547                 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
548                         return -EINVAL;
549                 if (WARN_ON_ONCE(desc->state == 0))
550                         return -EINVAL;
551                 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
552                         return -EINVAL;
553
554                 offset += sizeof(*desc);
555                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
556                         return -EINVAL;
557
558                 error = cb(ctrl, desc, data);
559                 if (error)
560                         return error;
561
562                 offset += nsid_buf_size;
563         }
564
565         return 0;
566 }
567
568 static inline bool nvme_state_is_live(enum nvme_ana_state state)
569 {
570         return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
571 }
572
573 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
574                 struct nvme_ns *ns)
575 {
576         ns->ana_grpid = le32_to_cpu(desc->grpid);
577         ns->ana_state = desc->state;
578         clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
579
580         if (nvme_state_is_live(ns->ana_state))
581                 nvme_mpath_set_live(ns);
582 }
583
584 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
585                 struct nvme_ana_group_desc *desc, void *data)
586 {
587         u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
588         unsigned *nr_change_groups = data;
589         struct nvme_ns *ns;
590
591         dev_dbg(ctrl->device, "ANA group %d: %s.\n",
592                         le32_to_cpu(desc->grpid),
593                         nvme_ana_state_names[desc->state]);
594
595         if (desc->state == NVME_ANA_CHANGE)
596                 (*nr_change_groups)++;
597
598         if (!nr_nsids)
599                 return 0;
600
601         down_read(&ctrl->namespaces_rwsem);
602         list_for_each_entry(ns, &ctrl->namespaces, list) {
603                 unsigned nsid = le32_to_cpu(desc->nsids[n]);
604
605                 if (ns->head->ns_id < nsid)
606                         continue;
607                 if (ns->head->ns_id == nsid)
608                         nvme_update_ns_ana_state(desc, ns);
609                 if (++n == nr_nsids)
610                         break;
611         }
612         up_read(&ctrl->namespaces_rwsem);
613         return 0;
614 }
615
616 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
617 {
618         u32 nr_change_groups = 0;
619         int error;
620
621         mutex_lock(&ctrl->ana_lock);
622         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
623                         ctrl->ana_log_buf, ctrl->ana_log_size, 0);
624         if (error) {
625                 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
626                 goto out_unlock;
627         }
628
629         error = nvme_parse_ana_log(ctrl, &nr_change_groups,
630                         nvme_update_ana_state);
631         if (error)
632                 goto out_unlock;
633
634         /*
635          * In theory we should have an ANATT timer per group as they might enter
636          * the change state at different times.  But that is a lot of overhead
637          * just to protect against a target that keeps entering new changes
638          * states while never finishing previous ones.  But we'll still
639          * eventually time out once all groups are in change state, so this
640          * isn't a big deal.
641          *
642          * We also double the ANATT value to provide some slack for transports
643          * or AEN processing overhead.
644          */
645         if (nr_change_groups)
646                 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
647         else
648                 del_timer_sync(&ctrl->anatt_timer);
649 out_unlock:
650         mutex_unlock(&ctrl->ana_lock);
651         return error;
652 }
653
654 static void nvme_ana_work(struct work_struct *work)
655 {
656         struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
657
658         if (ctrl->state != NVME_CTRL_LIVE)
659                 return;
660
661         nvme_read_ana_log(ctrl);
662 }
663
664 static void nvme_anatt_timeout(struct timer_list *t)
665 {
666         struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
667
668         dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
669         nvme_reset_ctrl(ctrl);
670 }
671
672 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
673 {
674         if (!nvme_ctrl_use_ana(ctrl))
675                 return;
676         del_timer_sync(&ctrl->anatt_timer);
677         cancel_work_sync(&ctrl->ana_work);
678 }
679
680 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
681         struct device_attribute subsys_attr_##_name =   \
682                 __ATTR(_name, _mode, _show, _store)
683
684 static const char *nvme_iopolicy_names[] = {
685         [NVME_IOPOLICY_NUMA]    = "numa",
686         [NVME_IOPOLICY_RR]      = "round-robin",
687 };
688
689 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
690                 struct device_attribute *attr, char *buf)
691 {
692         struct nvme_subsystem *subsys =
693                 container_of(dev, struct nvme_subsystem, dev);
694
695         return sysfs_emit(buf, "%s\n",
696                           nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
697 }
698
699 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
700                 struct device_attribute *attr, const char *buf, size_t count)
701 {
702         struct nvme_subsystem *subsys =
703                 container_of(dev, struct nvme_subsystem, dev);
704         int i;
705
706         for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
707                 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
708                         WRITE_ONCE(subsys->iopolicy, i);
709                         return count;
710                 }
711         }
712
713         return -EINVAL;
714 }
715 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
716                       nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
717
718 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
719                 char *buf)
720 {
721         return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
722 }
723 DEVICE_ATTR_RO(ana_grpid);
724
725 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
726                 char *buf)
727 {
728         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
729
730         return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
731 }
732 DEVICE_ATTR_RO(ana_state);
733
734 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
735                 struct nvme_ana_group_desc *desc, void *data)
736 {
737         struct nvme_ana_group_desc *dst = data;
738
739         if (desc->grpid != dst->grpid)
740                 return 0;
741
742         *dst = *desc;
743         return -ENXIO; /* just break out of the loop */
744 }
745
746 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
747 {
748         if (nvme_ctrl_use_ana(ns->ctrl)) {
749                 struct nvme_ana_group_desc desc = {
750                         .grpid = id->anagrpid,
751                         .state = 0,
752                 };
753
754                 mutex_lock(&ns->ctrl->ana_lock);
755                 ns->ana_grpid = le32_to_cpu(id->anagrpid);
756                 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
757                 mutex_unlock(&ns->ctrl->ana_lock);
758                 if (desc.state) {
759                         /* found the group desc: update */
760                         nvme_update_ns_ana_state(&desc, ns);
761                 } else {
762                         /* group desc not found: trigger a re-read */
763                         set_bit(NVME_NS_ANA_PENDING, &ns->flags);
764                         queue_work(nvme_wq, &ns->ctrl->ana_work);
765                 }
766         } else {
767                 ns->ana_state = NVME_ANA_OPTIMIZED;
768                 nvme_mpath_set_live(ns);
769         }
770
771         if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
772                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
773                                    ns->head->disk->queue);
774 #ifdef CONFIG_BLK_DEV_ZONED
775         if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
776                 ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
777 #endif
778 }
779
780 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
781 {
782         if (!head->disk)
783                 return;
784         kblockd_schedule_work(&head->requeue_work);
785         if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
786                 nvme_cdev_del(&head->cdev, &head->cdev_device);
787                 del_gendisk(head->disk);
788         }
789 }
790
791 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
792 {
793         if (!head->disk)
794                 return;
795         blk_set_queue_dying(head->disk->queue);
796         /* make sure all pending bios are cleaned up */
797         kblockd_schedule_work(&head->requeue_work);
798         flush_work(&head->requeue_work);
799         blk_cleanup_disk(head->disk);
800 }
801
802 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
803 {
804         mutex_init(&ctrl->ana_lock);
805         timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
806         INIT_WORK(&ctrl->ana_work, nvme_ana_work);
807 }
808
809 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
810 {
811         size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
812         size_t ana_log_size;
813         int error = 0;
814
815         /* check if multipath is enabled and we have the capability */
816         if (!multipath || !ctrl->subsys ||
817             !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
818                 return 0;
819
820         if (!ctrl->max_namespaces ||
821             ctrl->max_namespaces > le32_to_cpu(id->nn)) {
822                 dev_err(ctrl->device,
823                         "Invalid MNAN value %u\n", ctrl->max_namespaces);
824                 return -EINVAL;
825         }
826
827         ctrl->anacap = id->anacap;
828         ctrl->anatt = id->anatt;
829         ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
830         ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
831
832         ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
833                 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
834                 ctrl->max_namespaces * sizeof(__le32);
835         if (ana_log_size > max_transfer_size) {
836                 dev_err(ctrl->device,
837                         "ANA log page size (%zd) larger than MDTS (%zd).\n",
838                         ana_log_size, max_transfer_size);
839                 dev_err(ctrl->device, "disabling ANA support.\n");
840                 goto out_uninit;
841         }
842         if (ana_log_size > ctrl->ana_log_size) {
843                 nvme_mpath_stop(ctrl);
844                 kfree(ctrl->ana_log_buf);
845                 ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL);
846                 if (!ctrl->ana_log_buf)
847                         return -ENOMEM;
848         }
849         ctrl->ana_log_size = ana_log_size;
850         error = nvme_read_ana_log(ctrl);
851         if (error)
852                 goto out_uninit;
853         return 0;
854
855 out_uninit:
856         nvme_mpath_uninit(ctrl);
857         return error;
858 }
859
860 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
861 {
862         kfree(ctrl->ana_log_buf);
863         ctrl->ana_log_buf = NULL;
864 }