2f76969408b272ad8fb950a0bfba20ba907cab81
[platform/kernel/linux-rpi.git] / drivers / nvme / host / multipath.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14         "turn on native support for multiple controllers per subsystem");
15
16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17 {
18         struct nvme_ns_head *h;
19
20         lockdep_assert_held(&subsys->lock);
21         list_for_each_entry(h, &subsys->nsheads, entry)
22                 if (h->disk)
23                         blk_mq_unfreeze_queue(h->disk->queue);
24 }
25
26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27 {
28         struct nvme_ns_head *h;
29
30         lockdep_assert_held(&subsys->lock);
31         list_for_each_entry(h, &subsys->nsheads, entry)
32                 if (h->disk)
33                         blk_mq_freeze_queue_wait(h->disk->queue);
34 }
35
36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37 {
38         struct nvme_ns_head *h;
39
40         lockdep_assert_held(&subsys->lock);
41         list_for_each_entry(h, &subsys->nsheads, entry)
42                 if (h->disk)
43                         blk_freeze_queue_start(h->disk->queue);
44 }
45
46 /*
47  * If multipathing is enabled we need to always use the subsystem instance
48  * number for numbering our devices to avoid conflicts between subsystems that
49  * have multiple controllers and thus use the multipath-aware subsystem node
50  * and those that have a single controller and use the controller node
51  * directly.
52  */
53 bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags)
54 {
55         if (!multipath)
56                 return false;
57         if (!ns->head->disk) {
58                 sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance,
59                         ns->head->instance);
60                 return true;
61         }
62         sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance,
63                 ns->ctrl->instance, ns->head->instance);
64         *flags = GENHD_FL_HIDDEN;
65         return true;
66 }
67
68 void nvme_failover_req(struct request *req)
69 {
70         struct nvme_ns *ns = req->q->queuedata;
71         u16 status = nvme_req(req)->status & 0x7ff;
72         unsigned long flags;
73         struct bio *bio;
74
75         nvme_mpath_clear_current_path(ns);
76
77         /*
78          * If we got back an ANA error, we know the controller is alive but not
79          * ready to serve this namespace.  Kick of a re-read of the ANA
80          * information page, and just try any other available path for now.
81          */
82         if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
83                 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
84                 queue_work(nvme_wq, &ns->ctrl->ana_work);
85         }
86
87         spin_lock_irqsave(&ns->head->requeue_lock, flags);
88         for (bio = req->bio; bio; bio = bio->bi_next)
89                 bio_set_dev(bio, ns->head->disk->part0);
90         blk_steal_bios(&ns->head->requeue_list, req);
91         spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
92
93         blk_mq_end_request(req, 0);
94         kblockd_schedule_work(&ns->head->requeue_work);
95 }
96
97 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
98 {
99         struct nvme_ns *ns;
100
101         down_read(&ctrl->namespaces_rwsem);
102         list_for_each_entry(ns, &ctrl->namespaces, list) {
103                 if (ns->head->disk)
104                         kblockd_schedule_work(&ns->head->requeue_work);
105         }
106         up_read(&ctrl->namespaces_rwsem);
107 }
108
109 static const char *nvme_ana_state_names[] = {
110         [0]                             = "invalid state",
111         [NVME_ANA_OPTIMIZED]            = "optimized",
112         [NVME_ANA_NONOPTIMIZED]         = "non-optimized",
113         [NVME_ANA_INACCESSIBLE]         = "inaccessible",
114         [NVME_ANA_PERSISTENT_LOSS]      = "persistent-loss",
115         [NVME_ANA_CHANGE]               = "change",
116 };
117
118 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
119 {
120         struct nvme_ns_head *head = ns->head;
121         bool changed = false;
122         int node;
123
124         if (!head)
125                 goto out;
126
127         for_each_node(node) {
128                 if (ns == rcu_access_pointer(head->current_path[node])) {
129                         rcu_assign_pointer(head->current_path[node], NULL);
130                         changed = true;
131                 }
132         }
133 out:
134         return changed;
135 }
136
137 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
138 {
139         struct nvme_ns *ns;
140
141         down_read(&ctrl->namespaces_rwsem);
142         list_for_each_entry(ns, &ctrl->namespaces, list) {
143                 nvme_mpath_clear_current_path(ns);
144                 kblockd_schedule_work(&ns->head->requeue_work);
145         }
146         up_read(&ctrl->namespaces_rwsem);
147 }
148
149 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
150 {
151         struct nvme_ns_head *head = ns->head;
152         sector_t capacity = get_capacity(head->disk);
153         int node;
154
155         list_for_each_entry_rcu(ns, &head->list, siblings) {
156                 if (capacity != get_capacity(ns->disk))
157                         clear_bit(NVME_NS_READY, &ns->flags);
158         }
159
160         for_each_node(node)
161                 rcu_assign_pointer(head->current_path[node], NULL);
162 }
163
164 static bool nvme_path_is_disabled(struct nvme_ns *ns)
165 {
166         /*
167          * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
168          * still be able to complete assuming that the controller is connected.
169          * Otherwise it will fail immediately and return to the requeue list.
170          */
171         if (ns->ctrl->state != NVME_CTRL_LIVE &&
172             ns->ctrl->state != NVME_CTRL_DELETING)
173                 return true;
174         if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
175             !test_bit(NVME_NS_READY, &ns->flags))
176                 return true;
177         return false;
178 }
179
180 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
181 {
182         int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
183         struct nvme_ns *found = NULL, *fallback = NULL, *ns;
184
185         list_for_each_entry_rcu(ns, &head->list, siblings) {
186                 if (nvme_path_is_disabled(ns))
187                         continue;
188
189                 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
190                         distance = node_distance(node, ns->ctrl->numa_node);
191                 else
192                         distance = LOCAL_DISTANCE;
193
194                 switch (ns->ana_state) {
195                 case NVME_ANA_OPTIMIZED:
196                         if (distance < found_distance) {
197                                 found_distance = distance;
198                                 found = ns;
199                         }
200                         break;
201                 case NVME_ANA_NONOPTIMIZED:
202                         if (distance < fallback_distance) {
203                                 fallback_distance = distance;
204                                 fallback = ns;
205                         }
206                         break;
207                 default:
208                         break;
209                 }
210         }
211
212         if (!found)
213                 found = fallback;
214         if (found)
215                 rcu_assign_pointer(head->current_path[node], found);
216         return found;
217 }
218
219 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
220                 struct nvme_ns *ns)
221 {
222         ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
223                         siblings);
224         if (ns)
225                 return ns;
226         return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
227 }
228
229 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
230                 int node, struct nvme_ns *old)
231 {
232         struct nvme_ns *ns, *found = NULL;
233
234         if (list_is_singular(&head->list)) {
235                 if (nvme_path_is_disabled(old))
236                         return NULL;
237                 return old;
238         }
239
240         for (ns = nvme_next_ns(head, old);
241              ns && ns != old;
242              ns = nvme_next_ns(head, ns)) {
243                 if (nvme_path_is_disabled(ns))
244                         continue;
245
246                 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
247                         found = ns;
248                         goto out;
249                 }
250                 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
251                         found = ns;
252         }
253
254         /*
255          * The loop above skips the current path for round-robin semantics.
256          * Fall back to the current path if either:
257          *  - no other optimized path found and current is optimized,
258          *  - no other usable path found and current is usable.
259          */
260         if (!nvme_path_is_disabled(old) &&
261             (old->ana_state == NVME_ANA_OPTIMIZED ||
262              (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
263                 return old;
264
265         if (!found)
266                 return NULL;
267 out:
268         rcu_assign_pointer(head->current_path[node], found);
269         return found;
270 }
271
272 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
273 {
274         return ns->ctrl->state == NVME_CTRL_LIVE &&
275                 ns->ana_state == NVME_ANA_OPTIMIZED;
276 }
277
278 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
279 {
280         int node = numa_node_id();
281         struct nvme_ns *ns;
282
283         ns = srcu_dereference(head->current_path[node], &head->srcu);
284         if (unlikely(!ns))
285                 return __nvme_find_path(head, node);
286
287         if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
288                 return nvme_round_robin_path(head, node, ns);
289         if (unlikely(!nvme_path_is_optimized(ns)))
290                 return __nvme_find_path(head, node);
291         return ns;
292 }
293
294 static bool nvme_available_path(struct nvme_ns_head *head)
295 {
296         struct nvme_ns *ns;
297
298         list_for_each_entry_rcu(ns, &head->list, siblings) {
299                 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
300                         continue;
301                 switch (ns->ctrl->state) {
302                 case NVME_CTRL_LIVE:
303                 case NVME_CTRL_RESETTING:
304                 case NVME_CTRL_CONNECTING:
305                         /* fallthru */
306                         return true;
307                 default:
308                         break;
309                 }
310         }
311         return false;
312 }
313
314 static blk_qc_t nvme_ns_head_submit_bio(struct bio *bio)
315 {
316         struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
317         struct device *dev = disk_to_dev(head->disk);
318         struct nvme_ns *ns;
319         blk_qc_t ret = BLK_QC_T_NONE;
320         int srcu_idx;
321
322         /*
323          * The namespace might be going away and the bio might be moved to a
324          * different queue via blk_steal_bios(), so we need to use the bio_split
325          * pool from the original queue to allocate the bvecs from.
326          */
327         blk_queue_split(&bio);
328
329         srcu_idx = srcu_read_lock(&head->srcu);
330         ns = nvme_find_path(head);
331         if (likely(ns)) {
332                 bio_set_dev(bio, ns->disk->part0);
333                 bio->bi_opf |= REQ_NVME_MPATH;
334                 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
335                                       bio->bi_iter.bi_sector);
336                 ret = submit_bio_noacct(bio);
337         } else if (nvme_available_path(head)) {
338                 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
339
340                 spin_lock_irq(&head->requeue_lock);
341                 bio_list_add(&head->requeue_list, bio);
342                 spin_unlock_irq(&head->requeue_lock);
343         } else {
344                 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
345
346                 bio->bi_status = BLK_STS_IOERR;
347                 bio_endio(bio);
348         }
349
350         srcu_read_unlock(&head->srcu, srcu_idx);
351         return ret;
352 }
353
354 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
355 {
356         if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
357                 return -ENXIO;
358         return 0;
359 }
360
361 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
362 {
363         nvme_put_ns_head(disk->private_data);
364 }
365
366 #ifdef CONFIG_BLK_DEV_ZONED
367 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
368                 unsigned int nr_zones, report_zones_cb cb, void *data)
369 {
370         struct nvme_ns_head *head = disk->private_data;
371         struct nvme_ns *ns;
372         int srcu_idx, ret = -EWOULDBLOCK;
373
374         srcu_idx = srcu_read_lock(&head->srcu);
375         ns = nvme_find_path(head);
376         if (ns)
377                 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
378         srcu_read_unlock(&head->srcu, srcu_idx);
379         return ret;
380 }
381 #else
382 #define nvme_ns_head_report_zones       NULL
383 #endif /* CONFIG_BLK_DEV_ZONED */
384
385 const struct block_device_operations nvme_ns_head_ops = {
386         .owner          = THIS_MODULE,
387         .submit_bio     = nvme_ns_head_submit_bio,
388         .open           = nvme_ns_head_open,
389         .release        = nvme_ns_head_release,
390         .ioctl          = nvme_ns_head_ioctl,
391         .getgeo         = nvme_getgeo,
392         .report_zones   = nvme_ns_head_report_zones,
393         .pr_ops         = &nvme_pr_ops,
394 };
395
396 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
397 {
398         return container_of(cdev, struct nvme_ns_head, cdev);
399 }
400
401 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
402 {
403         if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
404                 return -ENXIO;
405         return 0;
406 }
407
408 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
409 {
410         nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
411         return 0;
412 }
413
414 static const struct file_operations nvme_ns_head_chr_fops = {
415         .owner          = THIS_MODULE,
416         .open           = nvme_ns_head_chr_open,
417         .release        = nvme_ns_head_chr_release,
418         .unlocked_ioctl = nvme_ns_head_chr_ioctl,
419         .compat_ioctl   = compat_ptr_ioctl,
420 };
421
422 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
423 {
424         int ret;
425
426         head->cdev_device.parent = &head->subsys->dev;
427         ret = dev_set_name(&head->cdev_device, "ng%dn%d",
428                            head->subsys->instance, head->instance);
429         if (ret)
430                 return ret;
431         ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
432                             &nvme_ns_head_chr_fops, THIS_MODULE);
433         return ret;
434 }
435
436 static void nvme_requeue_work(struct work_struct *work)
437 {
438         struct nvme_ns_head *head =
439                 container_of(work, struct nvme_ns_head, requeue_work);
440         struct bio *bio, *next;
441
442         spin_lock_irq(&head->requeue_lock);
443         next = bio_list_get(&head->requeue_list);
444         spin_unlock_irq(&head->requeue_lock);
445
446         while ((bio = next) != NULL) {
447                 next = bio->bi_next;
448                 bio->bi_next = NULL;
449
450                 submit_bio_noacct(bio);
451         }
452 }
453
454 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
455 {
456         bool vwc = false;
457
458         mutex_init(&head->lock);
459         bio_list_init(&head->requeue_list);
460         spin_lock_init(&head->requeue_lock);
461         INIT_WORK(&head->requeue_work, nvme_requeue_work);
462
463         /*
464          * Add a multipath node if the subsystems supports multiple controllers.
465          * We also do this for private namespaces as the namespace sharing data could
466          * change after a rescan.
467          */
468         if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
469                 return 0;
470
471         head->disk = blk_alloc_disk(ctrl->numa_node);
472         if (!head->disk)
473                 return -ENOMEM;
474         head->disk->fops = &nvme_ns_head_ops;
475         head->disk->private_data = head;
476         sprintf(head->disk->disk_name, "nvme%dn%d",
477                         ctrl->subsys->instance, head->instance);
478
479         blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
480         blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
481
482         /* set to a default value of 512 until the disk is validated */
483         blk_queue_logical_block_size(head->disk->queue, 512);
484         blk_set_stacking_limits(&head->disk->queue->limits);
485
486         /* we need to propagate up the VMC settings */
487         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
488                 vwc = true;
489         blk_queue_write_cache(head->disk->queue, vwc, vwc);
490         return 0;
491 }
492
493 static void nvme_mpath_set_live(struct nvme_ns *ns)
494 {
495         struct nvme_ns_head *head = ns->head;
496
497         if (!head->disk)
498                 return;
499
500         if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
501                 device_add_disk(&head->subsys->dev, head->disk,
502                                 nvme_ns_id_attr_groups);
503                 nvme_add_ns_head_cdev(head);
504         }
505
506         mutex_lock(&head->lock);
507         if (nvme_path_is_optimized(ns)) {
508                 int node, srcu_idx;
509
510                 srcu_idx = srcu_read_lock(&head->srcu);
511                 for_each_node(node)
512                         __nvme_find_path(head, node);
513                 srcu_read_unlock(&head->srcu, srcu_idx);
514         }
515         mutex_unlock(&head->lock);
516
517         synchronize_srcu(&head->srcu);
518         kblockd_schedule_work(&head->requeue_work);
519 }
520
521 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
522                 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
523                         void *))
524 {
525         void *base = ctrl->ana_log_buf;
526         size_t offset = sizeof(struct nvme_ana_rsp_hdr);
527         int error, i;
528
529         lockdep_assert_held(&ctrl->ana_lock);
530
531         for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
532                 struct nvme_ana_group_desc *desc = base + offset;
533                 u32 nr_nsids;
534                 size_t nsid_buf_size;
535
536                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
537                         return -EINVAL;
538
539                 nr_nsids = le32_to_cpu(desc->nnsids);
540                 nsid_buf_size = nr_nsids * sizeof(__le32);
541
542                 if (WARN_ON_ONCE(desc->grpid == 0))
543                         return -EINVAL;
544                 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
545                         return -EINVAL;
546                 if (WARN_ON_ONCE(desc->state == 0))
547                         return -EINVAL;
548                 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
549                         return -EINVAL;
550
551                 offset += sizeof(*desc);
552                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
553                         return -EINVAL;
554
555                 error = cb(ctrl, desc, data);
556                 if (error)
557                         return error;
558
559                 offset += nsid_buf_size;
560         }
561
562         return 0;
563 }
564
565 static inline bool nvme_state_is_live(enum nvme_ana_state state)
566 {
567         return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
568 }
569
570 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
571                 struct nvme_ns *ns)
572 {
573         ns->ana_grpid = le32_to_cpu(desc->grpid);
574         ns->ana_state = desc->state;
575         clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
576
577         if (nvme_state_is_live(ns->ana_state))
578                 nvme_mpath_set_live(ns);
579 }
580
581 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
582                 struct nvme_ana_group_desc *desc, void *data)
583 {
584         u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
585         unsigned *nr_change_groups = data;
586         struct nvme_ns *ns;
587
588         dev_dbg(ctrl->device, "ANA group %d: %s.\n",
589                         le32_to_cpu(desc->grpid),
590                         nvme_ana_state_names[desc->state]);
591
592         if (desc->state == NVME_ANA_CHANGE)
593                 (*nr_change_groups)++;
594
595         if (!nr_nsids)
596                 return 0;
597
598         down_read(&ctrl->namespaces_rwsem);
599         list_for_each_entry(ns, &ctrl->namespaces, list) {
600                 unsigned nsid;
601 again:
602                 nsid = le32_to_cpu(desc->nsids[n]);
603                 if (ns->head->ns_id < nsid)
604                         continue;
605                 if (ns->head->ns_id == nsid)
606                         nvme_update_ns_ana_state(desc, ns);
607                 if (++n == nr_nsids)
608                         break;
609                 if (ns->head->ns_id > nsid)
610                         goto again;
611         }
612         up_read(&ctrl->namespaces_rwsem);
613         return 0;
614 }
615
616 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
617 {
618         u32 nr_change_groups = 0;
619         int error;
620
621         mutex_lock(&ctrl->ana_lock);
622         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
623                         ctrl->ana_log_buf, ctrl->ana_log_size, 0);
624         if (error) {
625                 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
626                 goto out_unlock;
627         }
628
629         error = nvme_parse_ana_log(ctrl, &nr_change_groups,
630                         nvme_update_ana_state);
631         if (error)
632                 goto out_unlock;
633
634         /*
635          * In theory we should have an ANATT timer per group as they might enter
636          * the change state at different times.  But that is a lot of overhead
637          * just to protect against a target that keeps entering new changes
638          * states while never finishing previous ones.  But we'll still
639          * eventually time out once all groups are in change state, so this
640          * isn't a big deal.
641          *
642          * We also double the ANATT value to provide some slack for transports
643          * or AEN processing overhead.
644          */
645         if (nr_change_groups)
646                 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
647         else
648                 del_timer_sync(&ctrl->anatt_timer);
649 out_unlock:
650         mutex_unlock(&ctrl->ana_lock);
651         return error;
652 }
653
654 static void nvme_ana_work(struct work_struct *work)
655 {
656         struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
657
658         if (ctrl->state != NVME_CTRL_LIVE)
659                 return;
660
661         nvme_read_ana_log(ctrl);
662 }
663
664 static void nvme_anatt_timeout(struct timer_list *t)
665 {
666         struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
667
668         dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
669         nvme_reset_ctrl(ctrl);
670 }
671
672 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
673 {
674         if (!nvme_ctrl_use_ana(ctrl))
675                 return;
676         del_timer_sync(&ctrl->anatt_timer);
677         cancel_work_sync(&ctrl->ana_work);
678 }
679
680 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
681         struct device_attribute subsys_attr_##_name =   \
682                 __ATTR(_name, _mode, _show, _store)
683
684 static const char *nvme_iopolicy_names[] = {
685         [NVME_IOPOLICY_NUMA]    = "numa",
686         [NVME_IOPOLICY_RR]      = "round-robin",
687 };
688
689 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
690                 struct device_attribute *attr, char *buf)
691 {
692         struct nvme_subsystem *subsys =
693                 container_of(dev, struct nvme_subsystem, dev);
694
695         return sysfs_emit(buf, "%s\n",
696                           nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
697 }
698
699 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
700                 struct device_attribute *attr, const char *buf, size_t count)
701 {
702         struct nvme_subsystem *subsys =
703                 container_of(dev, struct nvme_subsystem, dev);
704         int i;
705
706         for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
707                 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
708                         WRITE_ONCE(subsys->iopolicy, i);
709                         return count;
710                 }
711         }
712
713         return -EINVAL;
714 }
715 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
716                       nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
717
718 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
719                 char *buf)
720 {
721         return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
722 }
723 DEVICE_ATTR_RO(ana_grpid);
724
725 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
726                 char *buf)
727 {
728         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
729
730         return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
731 }
732 DEVICE_ATTR_RO(ana_state);
733
734 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
735                 struct nvme_ana_group_desc *desc, void *data)
736 {
737         struct nvme_ana_group_desc *dst = data;
738
739         if (desc->grpid != dst->grpid)
740                 return 0;
741
742         *dst = *desc;
743         return -ENXIO; /* just break out of the loop */
744 }
745
746 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
747 {
748         if (nvme_ctrl_use_ana(ns->ctrl)) {
749                 struct nvme_ana_group_desc desc = {
750                         .grpid = id->anagrpid,
751                         .state = 0,
752                 };
753
754                 mutex_lock(&ns->ctrl->ana_lock);
755                 ns->ana_grpid = le32_to_cpu(id->anagrpid);
756                 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
757                 mutex_unlock(&ns->ctrl->ana_lock);
758                 if (desc.state) {
759                         /* found the group desc: update */
760                         nvme_update_ns_ana_state(&desc, ns);
761                 } else {
762                         /* group desc not found: trigger a re-read */
763                         set_bit(NVME_NS_ANA_PENDING, &ns->flags);
764                         queue_work(nvme_wq, &ns->ctrl->ana_work);
765                 }
766         } else {
767                 ns->ana_state = NVME_ANA_OPTIMIZED;
768                 nvme_mpath_set_live(ns);
769         }
770
771         if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
772                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
773                                    ns->head->disk->queue);
774 #ifdef CONFIG_BLK_DEV_ZONED
775         if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
776                 ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
777 #endif
778 }
779
780 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
781 {
782         if (!head->disk)
783                 return;
784         kblockd_schedule_work(&head->requeue_work);
785         if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
786                 nvme_cdev_del(&head->cdev, &head->cdev_device);
787                 del_gendisk(head->disk);
788         }
789 }
790
791 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
792 {
793         if (!head->disk)
794                 return;
795         blk_set_queue_dying(head->disk->queue);
796         /* make sure all pending bios are cleaned up */
797         kblockd_schedule_work(&head->requeue_work);
798         flush_work(&head->requeue_work);
799         blk_cleanup_disk(head->disk);
800 }
801
802 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
803 {
804         mutex_init(&ctrl->ana_lock);
805         timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
806         INIT_WORK(&ctrl->ana_work, nvme_ana_work);
807 }
808
809 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
810 {
811         size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
812         size_t ana_log_size;
813         int error = 0;
814
815         /* check if multipath is enabled and we have the capability */
816         if (!multipath || !ctrl->subsys ||
817             !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
818                 return 0;
819
820         if (!ctrl->max_namespaces ||
821             ctrl->max_namespaces > le32_to_cpu(id->nn)) {
822                 dev_err(ctrl->device,
823                         "Invalid MNAN value %u\n", ctrl->max_namespaces);
824                 return -EINVAL;
825         }
826
827         ctrl->anacap = id->anacap;
828         ctrl->anatt = id->anatt;
829         ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
830         ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
831
832         ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
833                 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
834                 ctrl->max_namespaces * sizeof(__le32);
835         if (ana_log_size > max_transfer_size) {
836                 dev_err(ctrl->device,
837                         "ANA log page size (%zd) larger than MDTS (%zd).\n",
838                         ana_log_size, max_transfer_size);
839                 dev_err(ctrl->device, "disabling ANA support.\n");
840                 goto out_uninit;
841         }
842         if (ana_log_size > ctrl->ana_log_size) {
843                 nvme_mpath_stop(ctrl);
844                 kfree(ctrl->ana_log_buf);
845                 ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL);
846                 if (!ctrl->ana_log_buf)
847                         return -ENOMEM;
848         }
849         ctrl->ana_log_size = ana_log_size;
850         error = nvme_read_ana_log(ctrl);
851         if (error)
852                 goto out_uninit;
853         return 0;
854
855 out_uninit:
856         nvme_mpath_uninit(ctrl);
857         return error;
858 }
859
860 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
861 {
862         kfree(ctrl->ana_log_buf);
863         ctrl->ana_log_buf = NULL;
864 }