Merge tag 'for-5.2/block-post-20190516' of git://git.kernel.dk/linux-block
[platform/kernel/linux-rpi.git] / drivers / nvme / host / fc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include <scsi/scsi_transport_fc.h>
18
19 /* *************************** Data Structures/Defines ****************** */
20
21
22 enum nvme_fc_queue_flags {
23         NVME_FC_Q_CONNECTED = 0,
24         NVME_FC_Q_LIVE,
25 };
26
27 #define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
28
29 struct nvme_fc_queue {
30         struct nvme_fc_ctrl     *ctrl;
31         struct device           *dev;
32         struct blk_mq_hw_ctx    *hctx;
33         void                    *lldd_handle;
34         size_t                  cmnd_capsule_len;
35         u32                     qnum;
36         u32                     rqcnt;
37         u32                     seqno;
38
39         u64                     connection_id;
40         atomic_t                csn;
41
42         unsigned long           flags;
43 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
44
45 enum nvme_fcop_flags {
46         FCOP_FLAGS_TERMIO       = (1 << 0),
47         FCOP_FLAGS_AEN          = (1 << 1),
48 };
49
50 struct nvmefc_ls_req_op {
51         struct nvmefc_ls_req    ls_req;
52
53         struct nvme_fc_rport    *rport;
54         struct nvme_fc_queue    *queue;
55         struct request          *rq;
56         u32                     flags;
57
58         int                     ls_error;
59         struct completion       ls_done;
60         struct list_head        lsreq_list;     /* rport->ls_req_list */
61         bool                    req_queued;
62 };
63
64 enum nvme_fcpop_state {
65         FCPOP_STATE_UNINIT      = 0,
66         FCPOP_STATE_IDLE        = 1,
67         FCPOP_STATE_ACTIVE      = 2,
68         FCPOP_STATE_ABORTED     = 3,
69         FCPOP_STATE_COMPLETE    = 4,
70 };
71
72 struct nvme_fc_fcp_op {
73         struct nvme_request     nreq;           /*
74                                                  * nvme/host/core.c
75                                                  * requires this to be
76                                                  * the 1st element in the
77                                                  * private structure
78                                                  * associated with the
79                                                  * request.
80                                                  */
81         struct nvmefc_fcp_req   fcp_req;
82
83         struct nvme_fc_ctrl     *ctrl;
84         struct nvme_fc_queue    *queue;
85         struct request          *rq;
86
87         atomic_t                state;
88         u32                     flags;
89         u32                     rqno;
90         u32                     nents;
91
92         struct nvme_fc_cmd_iu   cmd_iu;
93         struct nvme_fc_ersp_iu  rsp_iu;
94 };
95
96 struct nvme_fcp_op_w_sgl {
97         struct nvme_fc_fcp_op   op;
98         struct scatterlist      sgl[SG_CHUNK_SIZE];
99         uint8_t                 priv[0];
100 };
101
102 struct nvme_fc_lport {
103         struct nvme_fc_local_port       localport;
104
105         struct ida                      endp_cnt;
106         struct list_head                port_list;      /* nvme_fc_port_list */
107         struct list_head                endp_list;
108         struct device                   *dev;   /* physical device for dma */
109         struct nvme_fc_port_template    *ops;
110         struct kref                     ref;
111         atomic_t                        act_rport_cnt;
112 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
113
114 struct nvme_fc_rport {
115         struct nvme_fc_remote_port      remoteport;
116
117         struct list_head                endp_list; /* for lport->endp_list */
118         struct list_head                ctrl_list;
119         struct list_head                ls_req_list;
120         struct list_head                disc_list;
121         struct device                   *dev;   /* physical device for dma */
122         struct nvme_fc_lport            *lport;
123         spinlock_t                      lock;
124         struct kref                     ref;
125         atomic_t                        act_ctrl_cnt;
126         unsigned long                   dev_loss_end;
127 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
128
129 enum nvme_fcctrl_flags {
130         FCCTRL_TERMIO           = (1 << 0),
131 };
132
133 struct nvme_fc_ctrl {
134         spinlock_t              lock;
135         struct nvme_fc_queue    *queues;
136         struct device           *dev;
137         struct nvme_fc_lport    *lport;
138         struct nvme_fc_rport    *rport;
139         u32                     cnum;
140
141         bool                    ioq_live;
142         bool                    assoc_active;
143         atomic_t                err_work_active;
144         u64                     association_id;
145
146         struct list_head        ctrl_list;      /* rport->ctrl_list */
147
148         struct blk_mq_tag_set   admin_tag_set;
149         struct blk_mq_tag_set   tag_set;
150
151         struct delayed_work     connect_work;
152         struct work_struct      err_work;
153
154         struct kref             ref;
155         u32                     flags;
156         u32                     iocnt;
157         wait_queue_head_t       ioabort_wait;
158
159         struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
160
161         struct nvme_ctrl        ctrl;
162 };
163
164 static inline struct nvme_fc_ctrl *
165 to_fc_ctrl(struct nvme_ctrl *ctrl)
166 {
167         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
168 }
169
170 static inline struct nvme_fc_lport *
171 localport_to_lport(struct nvme_fc_local_port *portptr)
172 {
173         return container_of(portptr, struct nvme_fc_lport, localport);
174 }
175
176 static inline struct nvme_fc_rport *
177 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
178 {
179         return container_of(portptr, struct nvme_fc_rport, remoteport);
180 }
181
182 static inline struct nvmefc_ls_req_op *
183 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
184 {
185         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
186 }
187
188 static inline struct nvme_fc_fcp_op *
189 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
190 {
191         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
192 }
193
194
195
196 /* *************************** Globals **************************** */
197
198
199 static DEFINE_SPINLOCK(nvme_fc_lock);
200
201 static LIST_HEAD(nvme_fc_lport_list);
202 static DEFINE_IDA(nvme_fc_local_port_cnt);
203 static DEFINE_IDA(nvme_fc_ctrl_cnt);
204
205 static struct workqueue_struct *nvme_fc_wq;
206
207 /*
208  * These items are short-term. They will eventually be moved into
209  * a generic FC class. See comments in module init.
210  */
211 static struct device *fc_udev_device;
212
213
214 /* *********************** FC-NVME Port Management ************************ */
215
216 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
217                         struct nvme_fc_queue *, unsigned int);
218
219 static void
220 nvme_fc_free_lport(struct kref *ref)
221 {
222         struct nvme_fc_lport *lport =
223                 container_of(ref, struct nvme_fc_lport, ref);
224         unsigned long flags;
225
226         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
227         WARN_ON(!list_empty(&lport->endp_list));
228
229         /* remove from transport list */
230         spin_lock_irqsave(&nvme_fc_lock, flags);
231         list_del(&lport->port_list);
232         spin_unlock_irqrestore(&nvme_fc_lock, flags);
233
234         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
235         ida_destroy(&lport->endp_cnt);
236
237         put_device(lport->dev);
238
239         kfree(lport);
240 }
241
242 static void
243 nvme_fc_lport_put(struct nvme_fc_lport *lport)
244 {
245         kref_put(&lport->ref, nvme_fc_free_lport);
246 }
247
248 static int
249 nvme_fc_lport_get(struct nvme_fc_lport *lport)
250 {
251         return kref_get_unless_zero(&lport->ref);
252 }
253
254
255 static struct nvme_fc_lport *
256 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
257                         struct nvme_fc_port_template *ops,
258                         struct device *dev)
259 {
260         struct nvme_fc_lport *lport;
261         unsigned long flags;
262
263         spin_lock_irqsave(&nvme_fc_lock, flags);
264
265         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
266                 if (lport->localport.node_name != pinfo->node_name ||
267                     lport->localport.port_name != pinfo->port_name)
268                         continue;
269
270                 if (lport->dev != dev) {
271                         lport = ERR_PTR(-EXDEV);
272                         goto out_done;
273                 }
274
275                 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
276                         lport = ERR_PTR(-EEXIST);
277                         goto out_done;
278                 }
279
280                 if (!nvme_fc_lport_get(lport)) {
281                         /*
282                          * fails if ref cnt already 0. If so,
283                          * act as if lport already deleted
284                          */
285                         lport = NULL;
286                         goto out_done;
287                 }
288
289                 /* resume the lport */
290
291                 lport->ops = ops;
292                 lport->localport.port_role = pinfo->port_role;
293                 lport->localport.port_id = pinfo->port_id;
294                 lport->localport.port_state = FC_OBJSTATE_ONLINE;
295
296                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
297
298                 return lport;
299         }
300
301         lport = NULL;
302
303 out_done:
304         spin_unlock_irqrestore(&nvme_fc_lock, flags);
305
306         return lport;
307 }
308
309 /**
310  * nvme_fc_register_localport - transport entry point called by an
311  *                              LLDD to register the existence of a NVME
312  *                              host FC port.
313  * @pinfo:     pointer to information about the port to be registered
314  * @template:  LLDD entrypoints and operational parameters for the port
315  * @dev:       physical hardware device node port corresponds to. Will be
316  *             used for DMA mappings
317  * @portptr:   pointer to a local port pointer. Upon success, the routine
318  *             will allocate a nvme_fc_local_port structure and place its
319  *             address in the local port pointer. Upon failure, local port
320  *             pointer will be set to 0.
321  *
322  * Returns:
323  * a completion status. Must be 0 upon success; a negative errno
324  * (ex: -ENXIO) upon failure.
325  */
326 int
327 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
328                         struct nvme_fc_port_template *template,
329                         struct device *dev,
330                         struct nvme_fc_local_port **portptr)
331 {
332         struct nvme_fc_lport *newrec;
333         unsigned long flags;
334         int ret, idx;
335
336         if (!template->localport_delete || !template->remoteport_delete ||
337             !template->ls_req || !template->fcp_io ||
338             !template->ls_abort || !template->fcp_abort ||
339             !template->max_hw_queues || !template->max_sgl_segments ||
340             !template->max_dif_sgl_segments || !template->dma_boundary) {
341                 ret = -EINVAL;
342                 goto out_reghost_failed;
343         }
344
345         /*
346          * look to see if there is already a localport that had been
347          * deregistered and in the process of waiting for all the
348          * references to fully be removed.  If the references haven't
349          * expired, we can simply re-enable the localport. Remoteports
350          * and controller reconnections should resume naturally.
351          */
352         newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
353
354         /* found an lport, but something about its state is bad */
355         if (IS_ERR(newrec)) {
356                 ret = PTR_ERR(newrec);
357                 goto out_reghost_failed;
358
359         /* found existing lport, which was resumed */
360         } else if (newrec) {
361                 *portptr = &newrec->localport;
362                 return 0;
363         }
364
365         /* nothing found - allocate a new localport struct */
366
367         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
368                          GFP_KERNEL);
369         if (!newrec) {
370                 ret = -ENOMEM;
371                 goto out_reghost_failed;
372         }
373
374         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
375         if (idx < 0) {
376                 ret = -ENOSPC;
377                 goto out_fail_kfree;
378         }
379
380         if (!get_device(dev) && dev) {
381                 ret = -ENODEV;
382                 goto out_ida_put;
383         }
384
385         INIT_LIST_HEAD(&newrec->port_list);
386         INIT_LIST_HEAD(&newrec->endp_list);
387         kref_init(&newrec->ref);
388         atomic_set(&newrec->act_rport_cnt, 0);
389         newrec->ops = template;
390         newrec->dev = dev;
391         ida_init(&newrec->endp_cnt);
392         newrec->localport.private = &newrec[1];
393         newrec->localport.node_name = pinfo->node_name;
394         newrec->localport.port_name = pinfo->port_name;
395         newrec->localport.port_role = pinfo->port_role;
396         newrec->localport.port_id = pinfo->port_id;
397         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
398         newrec->localport.port_num = idx;
399
400         spin_lock_irqsave(&nvme_fc_lock, flags);
401         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
402         spin_unlock_irqrestore(&nvme_fc_lock, flags);
403
404         if (dev)
405                 dma_set_seg_boundary(dev, template->dma_boundary);
406
407         *portptr = &newrec->localport;
408         return 0;
409
410 out_ida_put:
411         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
412 out_fail_kfree:
413         kfree(newrec);
414 out_reghost_failed:
415         *portptr = NULL;
416
417         return ret;
418 }
419 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
420
421 /**
422  * nvme_fc_unregister_localport - transport entry point called by an
423  *                              LLDD to deregister/remove a previously
424  *                              registered a NVME host FC port.
425  * @portptr: pointer to the (registered) local port that is to be deregistered.
426  *
427  * Returns:
428  * a completion status. Must be 0 upon success; a negative errno
429  * (ex: -ENXIO) upon failure.
430  */
431 int
432 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
433 {
434         struct nvme_fc_lport *lport = localport_to_lport(portptr);
435         unsigned long flags;
436
437         if (!portptr)
438                 return -EINVAL;
439
440         spin_lock_irqsave(&nvme_fc_lock, flags);
441
442         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
443                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
444                 return -EINVAL;
445         }
446         portptr->port_state = FC_OBJSTATE_DELETED;
447
448         spin_unlock_irqrestore(&nvme_fc_lock, flags);
449
450         if (atomic_read(&lport->act_rport_cnt) == 0)
451                 lport->ops->localport_delete(&lport->localport);
452
453         nvme_fc_lport_put(lport);
454
455         return 0;
456 }
457 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
458
459 /*
460  * TRADDR strings, per FC-NVME are fixed format:
461  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
462  * udev event will only differ by prefix of what field is
463  * being specified:
464  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
465  *  19 + 43 + null_fudge = 64 characters
466  */
467 #define FCNVME_TRADDR_LENGTH            64
468
469 static void
470 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
471                 struct nvme_fc_rport *rport)
472 {
473         char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
474         char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
475         char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
476
477         if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
478                 return;
479
480         snprintf(hostaddr, sizeof(hostaddr),
481                 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
482                 lport->localport.node_name, lport->localport.port_name);
483         snprintf(tgtaddr, sizeof(tgtaddr),
484                 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
485                 rport->remoteport.node_name, rport->remoteport.port_name);
486         kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
487 }
488
489 static void
490 nvme_fc_free_rport(struct kref *ref)
491 {
492         struct nvme_fc_rport *rport =
493                 container_of(ref, struct nvme_fc_rport, ref);
494         struct nvme_fc_lport *lport =
495                         localport_to_lport(rport->remoteport.localport);
496         unsigned long flags;
497
498         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
499         WARN_ON(!list_empty(&rport->ctrl_list));
500
501         /* remove from lport list */
502         spin_lock_irqsave(&nvme_fc_lock, flags);
503         list_del(&rport->endp_list);
504         spin_unlock_irqrestore(&nvme_fc_lock, flags);
505
506         WARN_ON(!list_empty(&rport->disc_list));
507         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
508
509         kfree(rport);
510
511         nvme_fc_lport_put(lport);
512 }
513
514 static void
515 nvme_fc_rport_put(struct nvme_fc_rport *rport)
516 {
517         kref_put(&rport->ref, nvme_fc_free_rport);
518 }
519
520 static int
521 nvme_fc_rport_get(struct nvme_fc_rport *rport)
522 {
523         return kref_get_unless_zero(&rport->ref);
524 }
525
526 static void
527 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
528 {
529         switch (ctrl->ctrl.state) {
530         case NVME_CTRL_NEW:
531         case NVME_CTRL_CONNECTING:
532                 /*
533                  * As all reconnects were suppressed, schedule a
534                  * connect.
535                  */
536                 dev_info(ctrl->ctrl.device,
537                         "NVME-FC{%d}: connectivity re-established. "
538                         "Attempting reconnect\n", ctrl->cnum);
539
540                 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
541                 break;
542
543         case NVME_CTRL_RESETTING:
544                 /*
545                  * Controller is already in the process of terminating the
546                  * association. No need to do anything further. The reconnect
547                  * step will naturally occur after the reset completes.
548                  */
549                 break;
550
551         default:
552                 /* no action to take - let it delete */
553                 break;
554         }
555 }
556
557 static struct nvme_fc_rport *
558 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
559                                 struct nvme_fc_port_info *pinfo)
560 {
561         struct nvme_fc_rport *rport;
562         struct nvme_fc_ctrl *ctrl;
563         unsigned long flags;
564
565         spin_lock_irqsave(&nvme_fc_lock, flags);
566
567         list_for_each_entry(rport, &lport->endp_list, endp_list) {
568                 if (rport->remoteport.node_name != pinfo->node_name ||
569                     rport->remoteport.port_name != pinfo->port_name)
570                         continue;
571
572                 if (!nvme_fc_rport_get(rport)) {
573                         rport = ERR_PTR(-ENOLCK);
574                         goto out_done;
575                 }
576
577                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
578
579                 spin_lock_irqsave(&rport->lock, flags);
580
581                 /* has it been unregistered */
582                 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
583                         /* means lldd called us twice */
584                         spin_unlock_irqrestore(&rport->lock, flags);
585                         nvme_fc_rport_put(rport);
586                         return ERR_PTR(-ESTALE);
587                 }
588
589                 rport->remoteport.port_role = pinfo->port_role;
590                 rport->remoteport.port_id = pinfo->port_id;
591                 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
592                 rport->dev_loss_end = 0;
593
594                 /*
595                  * kick off a reconnect attempt on all associations to the
596                  * remote port. A successful reconnects will resume i/o.
597                  */
598                 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
599                         nvme_fc_resume_controller(ctrl);
600
601                 spin_unlock_irqrestore(&rport->lock, flags);
602
603                 return rport;
604         }
605
606         rport = NULL;
607
608 out_done:
609         spin_unlock_irqrestore(&nvme_fc_lock, flags);
610
611         return rport;
612 }
613
614 static inline void
615 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
616                         struct nvme_fc_port_info *pinfo)
617 {
618         if (pinfo->dev_loss_tmo)
619                 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
620         else
621                 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
622 }
623
624 /**
625  * nvme_fc_register_remoteport - transport entry point called by an
626  *                              LLDD to register the existence of a NVME
627  *                              subsystem FC port on its fabric.
628  * @localport: pointer to the (registered) local port that the remote
629  *             subsystem port is connected to.
630  * @pinfo:     pointer to information about the port to be registered
631  * @portptr:   pointer to a remote port pointer. Upon success, the routine
632  *             will allocate a nvme_fc_remote_port structure and place its
633  *             address in the remote port pointer. Upon failure, remote port
634  *             pointer will be set to 0.
635  *
636  * Returns:
637  * a completion status. Must be 0 upon success; a negative errno
638  * (ex: -ENXIO) upon failure.
639  */
640 int
641 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
642                                 struct nvme_fc_port_info *pinfo,
643                                 struct nvme_fc_remote_port **portptr)
644 {
645         struct nvme_fc_lport *lport = localport_to_lport(localport);
646         struct nvme_fc_rport *newrec;
647         unsigned long flags;
648         int ret, idx;
649
650         if (!nvme_fc_lport_get(lport)) {
651                 ret = -ESHUTDOWN;
652                 goto out_reghost_failed;
653         }
654
655         /*
656          * look to see if there is already a remoteport that is waiting
657          * for a reconnect (within dev_loss_tmo) with the same WWN's.
658          * If so, transition to it and reconnect.
659          */
660         newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
661
662         /* found an rport, but something about its state is bad */
663         if (IS_ERR(newrec)) {
664                 ret = PTR_ERR(newrec);
665                 goto out_lport_put;
666
667         /* found existing rport, which was resumed */
668         } else if (newrec) {
669                 nvme_fc_lport_put(lport);
670                 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
671                 nvme_fc_signal_discovery_scan(lport, newrec);
672                 *portptr = &newrec->remoteport;
673                 return 0;
674         }
675
676         /* nothing found - allocate a new remoteport struct */
677
678         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
679                          GFP_KERNEL);
680         if (!newrec) {
681                 ret = -ENOMEM;
682                 goto out_lport_put;
683         }
684
685         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
686         if (idx < 0) {
687                 ret = -ENOSPC;
688                 goto out_kfree_rport;
689         }
690
691         INIT_LIST_HEAD(&newrec->endp_list);
692         INIT_LIST_HEAD(&newrec->ctrl_list);
693         INIT_LIST_HEAD(&newrec->ls_req_list);
694         INIT_LIST_HEAD(&newrec->disc_list);
695         kref_init(&newrec->ref);
696         atomic_set(&newrec->act_ctrl_cnt, 0);
697         spin_lock_init(&newrec->lock);
698         newrec->remoteport.localport = &lport->localport;
699         newrec->dev = lport->dev;
700         newrec->lport = lport;
701         newrec->remoteport.private = &newrec[1];
702         newrec->remoteport.port_role = pinfo->port_role;
703         newrec->remoteport.node_name = pinfo->node_name;
704         newrec->remoteport.port_name = pinfo->port_name;
705         newrec->remoteport.port_id = pinfo->port_id;
706         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
707         newrec->remoteport.port_num = idx;
708         __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
709
710         spin_lock_irqsave(&nvme_fc_lock, flags);
711         list_add_tail(&newrec->endp_list, &lport->endp_list);
712         spin_unlock_irqrestore(&nvme_fc_lock, flags);
713
714         nvme_fc_signal_discovery_scan(lport, newrec);
715
716         *portptr = &newrec->remoteport;
717         return 0;
718
719 out_kfree_rport:
720         kfree(newrec);
721 out_lport_put:
722         nvme_fc_lport_put(lport);
723 out_reghost_failed:
724         *portptr = NULL;
725         return ret;
726 }
727 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
728
729 static int
730 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
731 {
732         struct nvmefc_ls_req_op *lsop;
733         unsigned long flags;
734
735 restart:
736         spin_lock_irqsave(&rport->lock, flags);
737
738         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
739                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
740                         lsop->flags |= FCOP_FLAGS_TERMIO;
741                         spin_unlock_irqrestore(&rport->lock, flags);
742                         rport->lport->ops->ls_abort(&rport->lport->localport,
743                                                 &rport->remoteport,
744                                                 &lsop->ls_req);
745                         goto restart;
746                 }
747         }
748         spin_unlock_irqrestore(&rport->lock, flags);
749
750         return 0;
751 }
752
753 static void
754 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
755 {
756         dev_info(ctrl->ctrl.device,
757                 "NVME-FC{%d}: controller connectivity lost. Awaiting "
758                 "Reconnect", ctrl->cnum);
759
760         switch (ctrl->ctrl.state) {
761         case NVME_CTRL_NEW:
762         case NVME_CTRL_LIVE:
763                 /*
764                  * Schedule a controller reset. The reset will terminate the
765                  * association and schedule the reconnect timer.  Reconnects
766                  * will be attempted until either the ctlr_loss_tmo
767                  * (max_retries * connect_delay) expires or the remoteport's
768                  * dev_loss_tmo expires.
769                  */
770                 if (nvme_reset_ctrl(&ctrl->ctrl)) {
771                         dev_warn(ctrl->ctrl.device,
772                                 "NVME-FC{%d}: Couldn't schedule reset.\n",
773                                 ctrl->cnum);
774                         nvme_delete_ctrl(&ctrl->ctrl);
775                 }
776                 break;
777
778         case NVME_CTRL_CONNECTING:
779                 /*
780                  * The association has already been terminated and the
781                  * controller is attempting reconnects.  No need to do anything
782                  * futher.  Reconnects will be attempted until either the
783                  * ctlr_loss_tmo (max_retries * connect_delay) expires or the
784                  * remoteport's dev_loss_tmo expires.
785                  */
786                 break;
787
788         case NVME_CTRL_RESETTING:
789                 /*
790                  * Controller is already in the process of terminating the
791                  * association.  No need to do anything further. The reconnect
792                  * step will kick in naturally after the association is
793                  * terminated.
794                  */
795                 break;
796
797         case NVME_CTRL_DELETING:
798         default:
799                 /* no action to take - let it delete */
800                 break;
801         }
802 }
803
804 /**
805  * nvme_fc_unregister_remoteport - transport entry point called by an
806  *                              LLDD to deregister/remove a previously
807  *                              registered a NVME subsystem FC port.
808  * @portptr: pointer to the (registered) remote port that is to be
809  *           deregistered.
810  *
811  * Returns:
812  * a completion status. Must be 0 upon success; a negative errno
813  * (ex: -ENXIO) upon failure.
814  */
815 int
816 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
817 {
818         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
819         struct nvme_fc_ctrl *ctrl;
820         unsigned long flags;
821
822         if (!portptr)
823                 return -EINVAL;
824
825         spin_lock_irqsave(&rport->lock, flags);
826
827         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
828                 spin_unlock_irqrestore(&rport->lock, flags);
829                 return -EINVAL;
830         }
831         portptr->port_state = FC_OBJSTATE_DELETED;
832
833         rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
834
835         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
836                 /* if dev_loss_tmo==0, dev loss is immediate */
837                 if (!portptr->dev_loss_tmo) {
838                         dev_warn(ctrl->ctrl.device,
839                                 "NVME-FC{%d}: controller connectivity lost.\n",
840                                 ctrl->cnum);
841                         nvme_delete_ctrl(&ctrl->ctrl);
842                 } else
843                         nvme_fc_ctrl_connectivity_loss(ctrl);
844         }
845
846         spin_unlock_irqrestore(&rport->lock, flags);
847
848         nvme_fc_abort_lsops(rport);
849
850         if (atomic_read(&rport->act_ctrl_cnt) == 0)
851                 rport->lport->ops->remoteport_delete(portptr);
852
853         /*
854          * release the reference, which will allow, if all controllers
855          * go away, which should only occur after dev_loss_tmo occurs,
856          * for the rport to be torn down.
857          */
858         nvme_fc_rport_put(rport);
859
860         return 0;
861 }
862 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
863
864 /**
865  * nvme_fc_rescan_remoteport - transport entry point called by an
866  *                              LLDD to request a nvme device rescan.
867  * @remoteport: pointer to the (registered) remote port that is to be
868  *              rescanned.
869  *
870  * Returns: N/A
871  */
872 void
873 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
874 {
875         struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
876
877         nvme_fc_signal_discovery_scan(rport->lport, rport);
878 }
879 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
880
881 int
882 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
883                         u32 dev_loss_tmo)
884 {
885         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
886         unsigned long flags;
887
888         spin_lock_irqsave(&rport->lock, flags);
889
890         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
891                 spin_unlock_irqrestore(&rport->lock, flags);
892                 return -EINVAL;
893         }
894
895         /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
896         rport->remoteport.dev_loss_tmo = dev_loss_tmo;
897
898         spin_unlock_irqrestore(&rport->lock, flags);
899
900         return 0;
901 }
902 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
903
904
905 /* *********************** FC-NVME DMA Handling **************************** */
906
907 /*
908  * The fcloop device passes in a NULL device pointer. Real LLD's will
909  * pass in a valid device pointer. If NULL is passed to the dma mapping
910  * routines, depending on the platform, it may or may not succeed, and
911  * may crash.
912  *
913  * As such:
914  * Wrapper all the dma routines and check the dev pointer.
915  *
916  * If simple mappings (return just a dma address, we'll noop them,
917  * returning a dma address of 0.
918  *
919  * On more complex mappings (dma_map_sg), a pseudo routine fills
920  * in the scatter list, setting all dma addresses to 0.
921  */
922
923 static inline dma_addr_t
924 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
925                 enum dma_data_direction dir)
926 {
927         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
928 }
929
930 static inline int
931 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
932 {
933         return dev ? dma_mapping_error(dev, dma_addr) : 0;
934 }
935
936 static inline void
937 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
938         enum dma_data_direction dir)
939 {
940         if (dev)
941                 dma_unmap_single(dev, addr, size, dir);
942 }
943
944 static inline void
945 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
946                 enum dma_data_direction dir)
947 {
948         if (dev)
949                 dma_sync_single_for_cpu(dev, addr, size, dir);
950 }
951
952 static inline void
953 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
954                 enum dma_data_direction dir)
955 {
956         if (dev)
957                 dma_sync_single_for_device(dev, addr, size, dir);
958 }
959
960 /* pseudo dma_map_sg call */
961 static int
962 fc_map_sg(struct scatterlist *sg, int nents)
963 {
964         struct scatterlist *s;
965         int i;
966
967         WARN_ON(nents == 0 || sg[0].length == 0);
968
969         for_each_sg(sg, s, nents, i) {
970                 s->dma_address = 0L;
971 #ifdef CONFIG_NEED_SG_DMA_LENGTH
972                 s->dma_length = s->length;
973 #endif
974         }
975         return nents;
976 }
977
978 static inline int
979 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
980                 enum dma_data_direction dir)
981 {
982         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
983 }
984
985 static inline void
986 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
987                 enum dma_data_direction dir)
988 {
989         if (dev)
990                 dma_unmap_sg(dev, sg, nents, dir);
991 }
992
993 /* *********************** FC-NVME LS Handling **************************** */
994
995 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
996 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
997
998
999 static void
1000 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1001 {
1002         struct nvme_fc_rport *rport = lsop->rport;
1003         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1004         unsigned long flags;
1005
1006         spin_lock_irqsave(&rport->lock, flags);
1007
1008         if (!lsop->req_queued) {
1009                 spin_unlock_irqrestore(&rport->lock, flags);
1010                 return;
1011         }
1012
1013         list_del(&lsop->lsreq_list);
1014
1015         lsop->req_queued = false;
1016
1017         spin_unlock_irqrestore(&rport->lock, flags);
1018
1019         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1020                                   (lsreq->rqstlen + lsreq->rsplen),
1021                                   DMA_BIDIRECTIONAL);
1022
1023         nvme_fc_rport_put(rport);
1024 }
1025
1026 static int
1027 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1028                 struct nvmefc_ls_req_op *lsop,
1029                 void (*done)(struct nvmefc_ls_req *req, int status))
1030 {
1031         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1032         unsigned long flags;
1033         int ret = 0;
1034
1035         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1036                 return -ECONNREFUSED;
1037
1038         if (!nvme_fc_rport_get(rport))
1039                 return -ESHUTDOWN;
1040
1041         lsreq->done = done;
1042         lsop->rport = rport;
1043         lsop->req_queued = false;
1044         INIT_LIST_HEAD(&lsop->lsreq_list);
1045         init_completion(&lsop->ls_done);
1046
1047         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1048                                   lsreq->rqstlen + lsreq->rsplen,
1049                                   DMA_BIDIRECTIONAL);
1050         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1051                 ret = -EFAULT;
1052                 goto out_putrport;
1053         }
1054         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1055
1056         spin_lock_irqsave(&rport->lock, flags);
1057
1058         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1059
1060         lsop->req_queued = true;
1061
1062         spin_unlock_irqrestore(&rport->lock, flags);
1063
1064         ret = rport->lport->ops->ls_req(&rport->lport->localport,
1065                                         &rport->remoteport, lsreq);
1066         if (ret)
1067                 goto out_unlink;
1068
1069         return 0;
1070
1071 out_unlink:
1072         lsop->ls_error = ret;
1073         spin_lock_irqsave(&rport->lock, flags);
1074         lsop->req_queued = false;
1075         list_del(&lsop->lsreq_list);
1076         spin_unlock_irqrestore(&rport->lock, flags);
1077         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1078                                   (lsreq->rqstlen + lsreq->rsplen),
1079                                   DMA_BIDIRECTIONAL);
1080 out_putrport:
1081         nvme_fc_rport_put(rport);
1082
1083         return ret;
1084 }
1085
1086 static void
1087 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1088 {
1089         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1090
1091         lsop->ls_error = status;
1092         complete(&lsop->ls_done);
1093 }
1094
1095 static int
1096 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1097 {
1098         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1099         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1100         int ret;
1101
1102         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1103
1104         if (!ret) {
1105                 /*
1106                  * No timeout/not interruptible as we need the struct
1107                  * to exist until the lldd calls us back. Thus mandate
1108                  * wait until driver calls back. lldd responsible for
1109                  * the timeout action
1110                  */
1111                 wait_for_completion(&lsop->ls_done);
1112
1113                 __nvme_fc_finish_ls_req(lsop);
1114
1115                 ret = lsop->ls_error;
1116         }
1117
1118         if (ret)
1119                 return ret;
1120
1121         /* ACC or RJT payload ? */
1122         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1123                 return -ENXIO;
1124
1125         return 0;
1126 }
1127
1128 static int
1129 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1130                 struct nvmefc_ls_req_op *lsop,
1131                 void (*done)(struct nvmefc_ls_req *req, int status))
1132 {
1133         /* don't wait for completion */
1134
1135         return __nvme_fc_send_ls_req(rport, lsop, done);
1136 }
1137
1138 /* Validation Error indexes into the string table below */
1139 enum {
1140         VERR_NO_ERROR           = 0,
1141         VERR_LSACC              = 1,
1142         VERR_LSDESC_RQST        = 2,
1143         VERR_LSDESC_RQST_LEN    = 3,
1144         VERR_ASSOC_ID           = 4,
1145         VERR_ASSOC_ID_LEN       = 5,
1146         VERR_CONN_ID            = 6,
1147         VERR_CONN_ID_LEN        = 7,
1148         VERR_CR_ASSOC           = 8,
1149         VERR_CR_ASSOC_ACC_LEN   = 9,
1150         VERR_CR_CONN            = 10,
1151         VERR_CR_CONN_ACC_LEN    = 11,
1152         VERR_DISCONN            = 12,
1153         VERR_DISCONN_ACC_LEN    = 13,
1154 };
1155
1156 static char *validation_errors[] = {
1157         "OK",
1158         "Not LS_ACC",
1159         "Not LSDESC_RQST",
1160         "Bad LSDESC_RQST Length",
1161         "Not Association ID",
1162         "Bad Association ID Length",
1163         "Not Connection ID",
1164         "Bad Connection ID Length",
1165         "Not CR_ASSOC Rqst",
1166         "Bad CR_ASSOC ACC Length",
1167         "Not CR_CONN Rqst",
1168         "Bad CR_CONN ACC Length",
1169         "Not Disconnect Rqst",
1170         "Bad Disconnect ACC Length",
1171 };
1172
1173 static int
1174 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1175         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1176 {
1177         struct nvmefc_ls_req_op *lsop;
1178         struct nvmefc_ls_req *lsreq;
1179         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1180         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1181         int ret, fcret = 0;
1182
1183         lsop = kzalloc((sizeof(*lsop) +
1184                          ctrl->lport->ops->lsrqst_priv_sz +
1185                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1186         if (!lsop) {
1187                 ret = -ENOMEM;
1188                 goto out_no_memory;
1189         }
1190         lsreq = &lsop->ls_req;
1191
1192         lsreq->private = (void *)&lsop[1];
1193         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1194                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1195         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1196
1197         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1198         assoc_rqst->desc_list_len =
1199                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1200
1201         assoc_rqst->assoc_cmd.desc_tag =
1202                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1203         assoc_rqst->assoc_cmd.desc_len =
1204                         fcnvme_lsdesc_len(
1205                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1206
1207         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1208         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1209         /* Linux supports only Dynamic controllers */
1210         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1211         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1212         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1213                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1214         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1215                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1216
1217         lsop->queue = queue;
1218         lsreq->rqstaddr = assoc_rqst;
1219         lsreq->rqstlen = sizeof(*assoc_rqst);
1220         lsreq->rspaddr = assoc_acc;
1221         lsreq->rsplen = sizeof(*assoc_acc);
1222         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1223
1224         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1225         if (ret)
1226                 goto out_free_buffer;
1227
1228         /* process connect LS completion */
1229
1230         /* validate the ACC response */
1231         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1232                 fcret = VERR_LSACC;
1233         else if (assoc_acc->hdr.desc_list_len !=
1234                         fcnvme_lsdesc_len(
1235                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1236                 fcret = VERR_CR_ASSOC_ACC_LEN;
1237         else if (assoc_acc->hdr.rqst.desc_tag !=
1238                         cpu_to_be32(FCNVME_LSDESC_RQST))
1239                 fcret = VERR_LSDESC_RQST;
1240         else if (assoc_acc->hdr.rqst.desc_len !=
1241                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1242                 fcret = VERR_LSDESC_RQST_LEN;
1243         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1244                 fcret = VERR_CR_ASSOC;
1245         else if (assoc_acc->associd.desc_tag !=
1246                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1247                 fcret = VERR_ASSOC_ID;
1248         else if (assoc_acc->associd.desc_len !=
1249                         fcnvme_lsdesc_len(
1250                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1251                 fcret = VERR_ASSOC_ID_LEN;
1252         else if (assoc_acc->connectid.desc_tag !=
1253                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1254                 fcret = VERR_CONN_ID;
1255         else if (assoc_acc->connectid.desc_len !=
1256                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1257                 fcret = VERR_CONN_ID_LEN;
1258
1259         if (fcret) {
1260                 ret = -EBADF;
1261                 dev_err(ctrl->dev,
1262                         "q %d connect failed: %s\n",
1263                         queue->qnum, validation_errors[fcret]);
1264         } else {
1265                 ctrl->association_id =
1266                         be64_to_cpu(assoc_acc->associd.association_id);
1267                 queue->connection_id =
1268                         be64_to_cpu(assoc_acc->connectid.connection_id);
1269                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1270         }
1271
1272 out_free_buffer:
1273         kfree(lsop);
1274 out_no_memory:
1275         if (ret)
1276                 dev_err(ctrl->dev,
1277                         "queue %d connect admin queue failed (%d).\n",
1278                         queue->qnum, ret);
1279         return ret;
1280 }
1281
1282 static int
1283 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1284                         u16 qsize, u16 ersp_ratio)
1285 {
1286         struct nvmefc_ls_req_op *lsop;
1287         struct nvmefc_ls_req *lsreq;
1288         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1289         struct fcnvme_ls_cr_conn_acc *conn_acc;
1290         int ret, fcret = 0;
1291
1292         lsop = kzalloc((sizeof(*lsop) +
1293                          ctrl->lport->ops->lsrqst_priv_sz +
1294                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1295         if (!lsop) {
1296                 ret = -ENOMEM;
1297                 goto out_no_memory;
1298         }
1299         lsreq = &lsop->ls_req;
1300
1301         lsreq->private = (void *)&lsop[1];
1302         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1303                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1304         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1305
1306         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1307         conn_rqst->desc_list_len = cpu_to_be32(
1308                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1309                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1310
1311         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1312         conn_rqst->associd.desc_len =
1313                         fcnvme_lsdesc_len(
1314                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1315         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1316         conn_rqst->connect_cmd.desc_tag =
1317                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1318         conn_rqst->connect_cmd.desc_len =
1319                         fcnvme_lsdesc_len(
1320                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1321         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1322         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1323         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1324
1325         lsop->queue = queue;
1326         lsreq->rqstaddr = conn_rqst;
1327         lsreq->rqstlen = sizeof(*conn_rqst);
1328         lsreq->rspaddr = conn_acc;
1329         lsreq->rsplen = sizeof(*conn_acc);
1330         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1331
1332         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1333         if (ret)
1334                 goto out_free_buffer;
1335
1336         /* process connect LS completion */
1337
1338         /* validate the ACC response */
1339         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1340                 fcret = VERR_LSACC;
1341         else if (conn_acc->hdr.desc_list_len !=
1342                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1343                 fcret = VERR_CR_CONN_ACC_LEN;
1344         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1345                 fcret = VERR_LSDESC_RQST;
1346         else if (conn_acc->hdr.rqst.desc_len !=
1347                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1348                 fcret = VERR_LSDESC_RQST_LEN;
1349         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1350                 fcret = VERR_CR_CONN;
1351         else if (conn_acc->connectid.desc_tag !=
1352                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1353                 fcret = VERR_CONN_ID;
1354         else if (conn_acc->connectid.desc_len !=
1355                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1356                 fcret = VERR_CONN_ID_LEN;
1357
1358         if (fcret) {
1359                 ret = -EBADF;
1360                 dev_err(ctrl->dev,
1361                         "q %d connect failed: %s\n",
1362                         queue->qnum, validation_errors[fcret]);
1363         } else {
1364                 queue->connection_id =
1365                         be64_to_cpu(conn_acc->connectid.connection_id);
1366                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1367         }
1368
1369 out_free_buffer:
1370         kfree(lsop);
1371 out_no_memory:
1372         if (ret)
1373                 dev_err(ctrl->dev,
1374                         "queue %d connect command failed (%d).\n",
1375                         queue->qnum, ret);
1376         return ret;
1377 }
1378
1379 static void
1380 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1381 {
1382         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1383
1384         __nvme_fc_finish_ls_req(lsop);
1385
1386         /* fc-nvme initiator doesn't care about success or failure of cmd */
1387
1388         kfree(lsop);
1389 }
1390
1391 /*
1392  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1393  * the FC-NVME Association.  Terminating the association also
1394  * terminates the FC-NVME connections (per queue, both admin and io
1395  * queues) that are part of the association. E.g. things are torn
1396  * down, and the related FC-NVME Association ID and Connection IDs
1397  * become invalid.
1398  *
1399  * The behavior of the fc-nvme initiator is such that it's
1400  * understanding of the association and connections will implicitly
1401  * be torn down. The action is implicit as it may be due to a loss of
1402  * connectivity with the fc-nvme target, so you may never get a
1403  * response even if you tried.  As such, the action of this routine
1404  * is to asynchronously send the LS, ignore any results of the LS, and
1405  * continue on with terminating the association. If the fc-nvme target
1406  * is present and receives the LS, it too can tear down.
1407  */
1408 static void
1409 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1410 {
1411         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1412         struct fcnvme_ls_disconnect_acc *discon_acc;
1413         struct nvmefc_ls_req_op *lsop;
1414         struct nvmefc_ls_req *lsreq;
1415         int ret;
1416
1417         lsop = kzalloc((sizeof(*lsop) +
1418                          ctrl->lport->ops->lsrqst_priv_sz +
1419                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1420                         GFP_KERNEL);
1421         if (!lsop)
1422                 /* couldn't sent it... too bad */
1423                 return;
1424
1425         lsreq = &lsop->ls_req;
1426
1427         lsreq->private = (void *)&lsop[1];
1428         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1429                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1430         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1431
1432         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1433         discon_rqst->desc_list_len = cpu_to_be32(
1434                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1435                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1436
1437         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1438         discon_rqst->associd.desc_len =
1439                         fcnvme_lsdesc_len(
1440                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1441
1442         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1443
1444         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1445                                                 FCNVME_LSDESC_DISCONN_CMD);
1446         discon_rqst->discon_cmd.desc_len =
1447                         fcnvme_lsdesc_len(
1448                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1449         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1450         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1451
1452         lsreq->rqstaddr = discon_rqst;
1453         lsreq->rqstlen = sizeof(*discon_rqst);
1454         lsreq->rspaddr = discon_acc;
1455         lsreq->rsplen = sizeof(*discon_acc);
1456         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1457
1458         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1459                                 nvme_fc_disconnect_assoc_done);
1460         if (ret)
1461                 kfree(lsop);
1462
1463         /* only meaningful part to terminating the association */
1464         ctrl->association_id = 0;
1465 }
1466
1467
1468 /* *********************** NVME Ctrl Routines **************************** */
1469
1470 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1471
1472 static void
1473 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1474                 struct nvme_fc_fcp_op *op)
1475 {
1476         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1477                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1478         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1479                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1480
1481         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1482 }
1483
1484 static void
1485 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1486                 unsigned int hctx_idx)
1487 {
1488         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1489
1490         return __nvme_fc_exit_request(set->driver_data, op);
1491 }
1492
1493 static int
1494 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1495 {
1496         unsigned long flags;
1497         int opstate;
1498
1499         spin_lock_irqsave(&ctrl->lock, flags);
1500         opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1501         if (opstate != FCPOP_STATE_ACTIVE)
1502                 atomic_set(&op->state, opstate);
1503         else if (ctrl->flags & FCCTRL_TERMIO)
1504                 ctrl->iocnt++;
1505         spin_unlock_irqrestore(&ctrl->lock, flags);
1506
1507         if (opstate != FCPOP_STATE_ACTIVE)
1508                 return -ECANCELED;
1509
1510         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1511                                         &ctrl->rport->remoteport,
1512                                         op->queue->lldd_handle,
1513                                         &op->fcp_req);
1514
1515         return 0;
1516 }
1517
1518 static void
1519 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1520 {
1521         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1522         int i;
1523
1524         /* ensure we've initialized the ops once */
1525         if (!(aen_op->flags & FCOP_FLAGS_AEN))
1526                 return;
1527
1528         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1529                 __nvme_fc_abort_op(ctrl, aen_op);
1530 }
1531
1532 static inline void
1533 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1534                 struct nvme_fc_fcp_op *op, int opstate)
1535 {
1536         unsigned long flags;
1537
1538         if (opstate == FCPOP_STATE_ABORTED) {
1539                 spin_lock_irqsave(&ctrl->lock, flags);
1540                 if (ctrl->flags & FCCTRL_TERMIO) {
1541                         if (!--ctrl->iocnt)
1542                                 wake_up(&ctrl->ioabort_wait);
1543                 }
1544                 spin_unlock_irqrestore(&ctrl->lock, flags);
1545         }
1546 }
1547
1548 static void
1549 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1550 {
1551         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1552         struct request *rq = op->rq;
1553         struct nvmefc_fcp_req *freq = &op->fcp_req;
1554         struct nvme_fc_ctrl *ctrl = op->ctrl;
1555         struct nvme_fc_queue *queue = op->queue;
1556         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1557         struct nvme_command *sqe = &op->cmd_iu.sqe;
1558         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1559         union nvme_result result;
1560         bool terminate_assoc = true;
1561         int opstate;
1562
1563         /*
1564          * WARNING:
1565          * The current linux implementation of a nvme controller
1566          * allocates a single tag set for all io queues and sizes
1567          * the io queues to fully hold all possible tags. Thus, the
1568          * implementation does not reference or care about the sqhd
1569          * value as it never needs to use the sqhd/sqtail pointers
1570          * for submission pacing.
1571          *
1572          * This affects the FC-NVME implementation in two ways:
1573          * 1) As the value doesn't matter, we don't need to waste
1574          *    cycles extracting it from ERSPs and stamping it in the
1575          *    cases where the transport fabricates CQEs on successful
1576          *    completions.
1577          * 2) The FC-NVME implementation requires that delivery of
1578          *    ERSP completions are to go back to the nvme layer in order
1579          *    relative to the rsn, such that the sqhd value will always
1580          *    be "in order" for the nvme layer. As the nvme layer in
1581          *    linux doesn't care about sqhd, there's no need to return
1582          *    them in order.
1583          *
1584          * Additionally:
1585          * As the core nvme layer in linux currently does not look at
1586          * every field in the cqe - in cases where the FC transport must
1587          * fabricate a CQE, the following fields will not be set as they
1588          * are not referenced:
1589          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1590          *
1591          * Failure or error of an individual i/o, in a transport
1592          * detected fashion unrelated to the nvme completion status,
1593          * potentially cause the initiator and target sides to get out
1594          * of sync on SQ head/tail (aka outstanding io count allowed).
1595          * Per FC-NVME spec, failure of an individual command requires
1596          * the connection to be terminated, which in turn requires the
1597          * association to be terminated.
1598          */
1599
1600         opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1601
1602         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1603                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1604
1605         if (opstate == FCPOP_STATE_ABORTED)
1606                 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1607         else if (freq->status)
1608                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1609
1610         /*
1611          * For the linux implementation, if we have an unsuccesful
1612          * status, they blk-mq layer can typically be called with the
1613          * non-zero status and the content of the cqe isn't important.
1614          */
1615         if (status)
1616                 goto done;
1617
1618         /*
1619          * command completed successfully relative to the wire
1620          * protocol. However, validate anything received and
1621          * extract the status and result from the cqe (create it
1622          * where necessary).
1623          */
1624
1625         switch (freq->rcv_rsplen) {
1626
1627         case 0:
1628         case NVME_FC_SIZEOF_ZEROS_RSP:
1629                 /*
1630                  * No response payload or 12 bytes of payload (which
1631                  * should all be zeros) are considered successful and
1632                  * no payload in the CQE by the transport.
1633                  */
1634                 if (freq->transferred_length !=
1635                         be32_to_cpu(op->cmd_iu.data_len)) {
1636                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1637                         goto done;
1638                 }
1639                 result.u64 = 0;
1640                 break;
1641
1642         case sizeof(struct nvme_fc_ersp_iu):
1643                 /*
1644                  * The ERSP IU contains a full completion with CQE.
1645                  * Validate ERSP IU and look at cqe.
1646                  */
1647                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1648                                         (freq->rcv_rsplen / 4) ||
1649                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1650                                         freq->transferred_length ||
1651                              op->rsp_iu.status_code ||
1652                              sqe->common.command_id != cqe->command_id)) {
1653                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1654                         goto done;
1655                 }
1656                 result = cqe->result;
1657                 status = cqe->status;
1658                 break;
1659
1660         default:
1661                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1662                 goto done;
1663         }
1664
1665         terminate_assoc = false;
1666
1667 done:
1668         if (op->flags & FCOP_FLAGS_AEN) {
1669                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1670                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1671                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1672                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1673                 nvme_fc_ctrl_put(ctrl);
1674                 goto check_error;
1675         }
1676
1677         __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1678         nvme_end_request(rq, status, result);
1679
1680 check_error:
1681         if (terminate_assoc)
1682                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1683 }
1684
1685 static int
1686 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1687                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1688                 struct request *rq, u32 rqno)
1689 {
1690         struct nvme_fcp_op_w_sgl *op_w_sgl =
1691                 container_of(op, typeof(*op_w_sgl), op);
1692         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1693         int ret = 0;
1694
1695         memset(op, 0, sizeof(*op));
1696         op->fcp_req.cmdaddr = &op->cmd_iu;
1697         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1698         op->fcp_req.rspaddr = &op->rsp_iu;
1699         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1700         op->fcp_req.done = nvme_fc_fcpio_done;
1701         op->ctrl = ctrl;
1702         op->queue = queue;
1703         op->rq = rq;
1704         op->rqno = rqno;
1705
1706         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1707         cmdiu->fc_id = NVME_CMD_FC_ID;
1708         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1709
1710         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1711                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1712         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1713                 dev_err(ctrl->dev,
1714                         "FCP Op failed - cmdiu dma mapping failed.\n");
1715                 ret = EFAULT;
1716                 goto out_on_error;
1717         }
1718
1719         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1720                                 &op->rsp_iu, sizeof(op->rsp_iu),
1721                                 DMA_FROM_DEVICE);
1722         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1723                 dev_err(ctrl->dev,
1724                         "FCP Op failed - rspiu dma mapping failed.\n");
1725                 ret = EFAULT;
1726         }
1727
1728         atomic_set(&op->state, FCPOP_STATE_IDLE);
1729 out_on_error:
1730         return ret;
1731 }
1732
1733 static int
1734 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1735                 unsigned int hctx_idx, unsigned int numa_node)
1736 {
1737         struct nvme_fc_ctrl *ctrl = set->driver_data;
1738         struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1739         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1740         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1741         int res;
1742
1743         res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1744         if (res)
1745                 return res;
1746         op->op.fcp_req.first_sgl = &op->sgl[0];
1747         op->op.fcp_req.private = &op->priv[0];
1748         nvme_req(rq)->ctrl = &ctrl->ctrl;
1749         return res;
1750 }
1751
1752 static int
1753 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1754 {
1755         struct nvme_fc_fcp_op *aen_op;
1756         struct nvme_fc_cmd_iu *cmdiu;
1757         struct nvme_command *sqe;
1758         void *private;
1759         int i, ret;
1760
1761         aen_op = ctrl->aen_ops;
1762         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1763                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1764                                                 GFP_KERNEL);
1765                 if (!private)
1766                         return -ENOMEM;
1767
1768                 cmdiu = &aen_op->cmd_iu;
1769                 sqe = &cmdiu->sqe;
1770                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1771                                 aen_op, (struct request *)NULL,
1772                                 (NVME_AQ_BLK_MQ_DEPTH + i));
1773                 if (ret) {
1774                         kfree(private);
1775                         return ret;
1776                 }
1777
1778                 aen_op->flags = FCOP_FLAGS_AEN;
1779                 aen_op->fcp_req.private = private;
1780
1781                 memset(sqe, 0, sizeof(*sqe));
1782                 sqe->common.opcode = nvme_admin_async_event;
1783                 /* Note: core layer may overwrite the sqe.command_id value */
1784                 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1785         }
1786         return 0;
1787 }
1788
1789 static void
1790 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1791 {
1792         struct nvme_fc_fcp_op *aen_op;
1793         int i;
1794
1795         aen_op = ctrl->aen_ops;
1796         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1797                 if (!aen_op->fcp_req.private)
1798                         continue;
1799
1800                 __nvme_fc_exit_request(ctrl, aen_op);
1801
1802                 kfree(aen_op->fcp_req.private);
1803                 aen_op->fcp_req.private = NULL;
1804         }
1805 }
1806
1807 static inline void
1808 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1809                 unsigned int qidx)
1810 {
1811         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1812
1813         hctx->driver_data = queue;
1814         queue->hctx = hctx;
1815 }
1816
1817 static int
1818 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1819                 unsigned int hctx_idx)
1820 {
1821         struct nvme_fc_ctrl *ctrl = data;
1822
1823         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1824
1825         return 0;
1826 }
1827
1828 static int
1829 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1830                 unsigned int hctx_idx)
1831 {
1832         struct nvme_fc_ctrl *ctrl = data;
1833
1834         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1835
1836         return 0;
1837 }
1838
1839 static void
1840 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1841 {
1842         struct nvme_fc_queue *queue;
1843
1844         queue = &ctrl->queues[idx];
1845         memset(queue, 0, sizeof(*queue));
1846         queue->ctrl = ctrl;
1847         queue->qnum = idx;
1848         atomic_set(&queue->csn, 0);
1849         queue->dev = ctrl->dev;
1850
1851         if (idx > 0)
1852                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1853         else
1854                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1855
1856         /*
1857          * Considered whether we should allocate buffers for all SQEs
1858          * and CQEs and dma map them - mapping their respective entries
1859          * into the request structures (kernel vm addr and dma address)
1860          * thus the driver could use the buffers/mappings directly.
1861          * It only makes sense if the LLDD would use them for its
1862          * messaging api. It's very unlikely most adapter api's would use
1863          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1864          * structures were used instead.
1865          */
1866 }
1867
1868 /*
1869  * This routine terminates a queue at the transport level.
1870  * The transport has already ensured that all outstanding ios on
1871  * the queue have been terminated.
1872  * The transport will send a Disconnect LS request to terminate
1873  * the queue's connection. Termination of the admin queue will also
1874  * terminate the association at the target.
1875  */
1876 static void
1877 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1878 {
1879         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1880                 return;
1881
1882         clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1883         /*
1884          * Current implementation never disconnects a single queue.
1885          * It always terminates a whole association. So there is never
1886          * a disconnect(queue) LS sent to the target.
1887          */
1888
1889         queue->connection_id = 0;
1890         atomic_set(&queue->csn, 0);
1891 }
1892
1893 static void
1894 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1895         struct nvme_fc_queue *queue, unsigned int qidx)
1896 {
1897         if (ctrl->lport->ops->delete_queue)
1898                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1899                                 queue->lldd_handle);
1900         queue->lldd_handle = NULL;
1901 }
1902
1903 static void
1904 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1905 {
1906         int i;
1907
1908         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1909                 nvme_fc_free_queue(&ctrl->queues[i]);
1910 }
1911
1912 static int
1913 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1914         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1915 {
1916         int ret = 0;
1917
1918         queue->lldd_handle = NULL;
1919         if (ctrl->lport->ops->create_queue)
1920                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1921                                 qidx, qsize, &queue->lldd_handle);
1922
1923         return ret;
1924 }
1925
1926 static void
1927 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1928 {
1929         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1930         int i;
1931
1932         for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1933                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1934 }
1935
1936 static int
1937 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1938 {
1939         struct nvme_fc_queue *queue = &ctrl->queues[1];
1940         int i, ret;
1941
1942         for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1943                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1944                 if (ret)
1945                         goto delete_queues;
1946         }
1947
1948         return 0;
1949
1950 delete_queues:
1951         for (; i >= 0; i--)
1952                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1953         return ret;
1954 }
1955
1956 static int
1957 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1958 {
1959         int i, ret = 0;
1960
1961         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1962                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1963                                         (qsize / 5));
1964                 if (ret)
1965                         break;
1966                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1967                 if (ret)
1968                         break;
1969
1970                 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1971         }
1972
1973         return ret;
1974 }
1975
1976 static void
1977 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1978 {
1979         int i;
1980
1981         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1982                 nvme_fc_init_queue(ctrl, i);
1983 }
1984
1985 static void
1986 nvme_fc_ctrl_free(struct kref *ref)
1987 {
1988         struct nvme_fc_ctrl *ctrl =
1989                 container_of(ref, struct nvme_fc_ctrl, ref);
1990         unsigned long flags;
1991
1992         if (ctrl->ctrl.tagset) {
1993                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1994                 blk_mq_free_tag_set(&ctrl->tag_set);
1995         }
1996
1997         /* remove from rport list */
1998         spin_lock_irqsave(&ctrl->rport->lock, flags);
1999         list_del(&ctrl->ctrl_list);
2000         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2001
2002         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2003         blk_cleanup_queue(ctrl->ctrl.admin_q);
2004         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2005
2006         kfree(ctrl->queues);
2007
2008         put_device(ctrl->dev);
2009         nvme_fc_rport_put(ctrl->rport);
2010
2011         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2012         if (ctrl->ctrl.opts)
2013                 nvmf_free_options(ctrl->ctrl.opts);
2014         kfree(ctrl);
2015 }
2016
2017 static void
2018 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2019 {
2020         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2021 }
2022
2023 static int
2024 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2025 {
2026         return kref_get_unless_zero(&ctrl->ref);
2027 }
2028
2029 /*
2030  * All accesses from nvme core layer done - can now free the
2031  * controller. Called after last nvme_put_ctrl() call
2032  */
2033 static void
2034 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2035 {
2036         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2037
2038         WARN_ON(nctrl != &ctrl->ctrl);
2039
2040         nvme_fc_ctrl_put(ctrl);
2041 }
2042
2043 static void
2044 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2045 {
2046         int active;
2047
2048         /*
2049          * if an error (io timeout, etc) while (re)connecting,
2050          * it's an error on creating the new association.
2051          * Start the error recovery thread if it hasn't already
2052          * been started. It is expected there could be multiple
2053          * ios hitting this path before things are cleaned up.
2054          */
2055         if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2056                 active = atomic_xchg(&ctrl->err_work_active, 1);
2057                 if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2058                         atomic_set(&ctrl->err_work_active, 0);
2059                         WARN_ON(1);
2060                 }
2061                 return;
2062         }
2063
2064         /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2065         if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2066                 return;
2067
2068         dev_warn(ctrl->ctrl.device,
2069                 "NVME-FC{%d}: transport association error detected: %s\n",
2070                 ctrl->cnum, errmsg);
2071         dev_warn(ctrl->ctrl.device,
2072                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2073
2074         nvme_reset_ctrl(&ctrl->ctrl);
2075 }
2076
2077 static enum blk_eh_timer_return
2078 nvme_fc_timeout(struct request *rq, bool reserved)
2079 {
2080         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2081         struct nvme_fc_ctrl *ctrl = op->ctrl;
2082
2083         /*
2084          * we can't individually ABTS an io without affecting the queue,
2085          * thus killing the queue, and thus the association.
2086          * So resolve by performing a controller reset, which will stop
2087          * the host/io stack, terminate the association on the link,
2088          * and recreate an association on the link.
2089          */
2090         nvme_fc_error_recovery(ctrl, "io timeout error");
2091
2092         /*
2093          * the io abort has been initiated. Have the reset timer
2094          * restarted and the abort completion will complete the io
2095          * shortly. Avoids a synchronous wait while the abort finishes.
2096          */
2097         return BLK_EH_RESET_TIMER;
2098 }
2099
2100 static int
2101 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2102                 struct nvme_fc_fcp_op *op)
2103 {
2104         struct nvmefc_fcp_req *freq = &op->fcp_req;
2105         enum dma_data_direction dir;
2106         int ret;
2107
2108         freq->sg_cnt = 0;
2109
2110         if (!blk_rq_nr_phys_segments(rq))
2111                 return 0;
2112
2113         freq->sg_table.sgl = freq->first_sgl;
2114         ret = sg_alloc_table_chained(&freq->sg_table,
2115                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2116         if (ret)
2117                 return -ENOMEM;
2118
2119         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2120         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2121         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2122         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2123                                 op->nents, dir);
2124         if (unlikely(freq->sg_cnt <= 0)) {
2125                 sg_free_table_chained(&freq->sg_table, true);
2126                 freq->sg_cnt = 0;
2127                 return -EFAULT;
2128         }
2129
2130         /*
2131          * TODO: blk_integrity_rq(rq)  for DIF
2132          */
2133         return 0;
2134 }
2135
2136 static void
2137 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2138                 struct nvme_fc_fcp_op *op)
2139 {
2140         struct nvmefc_fcp_req *freq = &op->fcp_req;
2141
2142         if (!freq->sg_cnt)
2143                 return;
2144
2145         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2146                                 ((rq_data_dir(rq) == WRITE) ?
2147                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
2148
2149         nvme_cleanup_cmd(rq);
2150
2151         sg_free_table_chained(&freq->sg_table, true);
2152
2153         freq->sg_cnt = 0;
2154 }
2155
2156 /*
2157  * In FC, the queue is a logical thing. At transport connect, the target
2158  * creates its "queue" and returns a handle that is to be given to the
2159  * target whenever it posts something to the corresponding SQ.  When an
2160  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2161  * command contained within the SQE, an io, and assigns a FC exchange
2162  * to it. The SQE and the associated SQ handle are sent in the initial
2163  * CMD IU sents on the exchange. All transfers relative to the io occur
2164  * as part of the exchange.  The CQE is the last thing for the io,
2165  * which is transferred (explicitly or implicitly) with the RSP IU
2166  * sent on the exchange. After the CQE is received, the FC exchange is
2167  * terminaed and the Exchange may be used on a different io.
2168  *
2169  * The transport to LLDD api has the transport making a request for a
2170  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2171  * resource and transfers the command. The LLDD will then process all
2172  * steps to complete the io. Upon completion, the transport done routine
2173  * is called.
2174  *
2175  * So - while the operation is outstanding to the LLDD, there is a link
2176  * level FC exchange resource that is also outstanding. This must be
2177  * considered in all cleanup operations.
2178  */
2179 static blk_status_t
2180 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2181         struct nvme_fc_fcp_op *op, u32 data_len,
2182         enum nvmefc_fcp_datadir io_dir)
2183 {
2184         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2185         struct nvme_command *sqe = &cmdiu->sqe;
2186         int ret, opstate;
2187
2188         /*
2189          * before attempting to send the io, check to see if we believe
2190          * the target device is present
2191          */
2192         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2193                 return BLK_STS_RESOURCE;
2194
2195         if (!nvme_fc_ctrl_get(ctrl))
2196                 return BLK_STS_IOERR;
2197
2198         /* format the FC-NVME CMD IU and fcp_req */
2199         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2200         cmdiu->data_len = cpu_to_be32(data_len);
2201         switch (io_dir) {
2202         case NVMEFC_FCP_WRITE:
2203                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2204                 break;
2205         case NVMEFC_FCP_READ:
2206                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2207                 break;
2208         case NVMEFC_FCP_NODATA:
2209                 cmdiu->flags = 0;
2210                 break;
2211         }
2212         op->fcp_req.payload_length = data_len;
2213         op->fcp_req.io_dir = io_dir;
2214         op->fcp_req.transferred_length = 0;
2215         op->fcp_req.rcv_rsplen = 0;
2216         op->fcp_req.status = NVME_SC_SUCCESS;
2217         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2218
2219         /*
2220          * validate per fabric rules, set fields mandated by fabric spec
2221          * as well as those by FC-NVME spec.
2222          */
2223         WARN_ON_ONCE(sqe->common.metadata);
2224         sqe->common.flags |= NVME_CMD_SGL_METABUF;
2225
2226         /*
2227          * format SQE DPTR field per FC-NVME rules:
2228          *    type=0x5     Transport SGL Data Block Descriptor
2229          *    subtype=0xA  Transport-specific value
2230          *    address=0
2231          *    length=length of the data series
2232          */
2233         sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2234                                         NVME_SGL_FMT_TRANSPORT_A;
2235         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2236         sqe->rw.dptr.sgl.addr = 0;
2237
2238         if (!(op->flags & FCOP_FLAGS_AEN)) {
2239                 ret = nvme_fc_map_data(ctrl, op->rq, op);
2240                 if (ret < 0) {
2241                         nvme_cleanup_cmd(op->rq);
2242                         nvme_fc_ctrl_put(ctrl);
2243                         if (ret == -ENOMEM || ret == -EAGAIN)
2244                                 return BLK_STS_RESOURCE;
2245                         return BLK_STS_IOERR;
2246                 }
2247         }
2248
2249         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2250                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
2251
2252         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2253
2254         if (!(op->flags & FCOP_FLAGS_AEN))
2255                 blk_mq_start_request(op->rq);
2256
2257         cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2258         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2259                                         &ctrl->rport->remoteport,
2260                                         queue->lldd_handle, &op->fcp_req);
2261
2262         if (ret) {
2263                 /*
2264                  * If the lld fails to send the command is there an issue with
2265                  * the csn value?  If the command that fails is the Connect,
2266                  * no - as the connection won't be live.  If it is a command
2267                  * post-connect, it's possible a gap in csn may be created.
2268                  * Does this matter?  As Linux initiators don't send fused
2269                  * commands, no.  The gap would exist, but as there's nothing
2270                  * that depends on csn order to be delivered on the target
2271                  * side, it shouldn't hurt.  It would be difficult for a
2272                  * target to even detect the csn gap as it has no idea when the
2273                  * cmd with the csn was supposed to arrive.
2274                  */
2275                 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2276                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2277
2278                 if (!(op->flags & FCOP_FLAGS_AEN))
2279                         nvme_fc_unmap_data(ctrl, op->rq, op);
2280
2281                 nvme_fc_ctrl_put(ctrl);
2282
2283                 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2284                                 ret != -EBUSY)
2285                         return BLK_STS_IOERR;
2286
2287                 return BLK_STS_RESOURCE;
2288         }
2289
2290         return BLK_STS_OK;
2291 }
2292
2293 static blk_status_t
2294 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2295                         const struct blk_mq_queue_data *bd)
2296 {
2297         struct nvme_ns *ns = hctx->queue->queuedata;
2298         struct nvme_fc_queue *queue = hctx->driver_data;
2299         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2300         struct request *rq = bd->rq;
2301         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2302         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2303         struct nvme_command *sqe = &cmdiu->sqe;
2304         enum nvmefc_fcp_datadir io_dir;
2305         bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2306         u32 data_len;
2307         blk_status_t ret;
2308
2309         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2310             !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2311                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2312
2313         ret = nvme_setup_cmd(ns, rq, sqe);
2314         if (ret)
2315                 return ret;
2316
2317         /*
2318          * nvme core doesn't quite treat the rq opaquely. Commands such
2319          * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2320          * there is no actual payload to be transferred.
2321          * To get it right, key data transmission on there being 1 or
2322          * more physical segments in the sg list. If there is no
2323          * physical segments, there is no payload.
2324          */
2325         if (blk_rq_nr_phys_segments(rq)) {
2326                 data_len = blk_rq_payload_bytes(rq);
2327                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2328                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2329         } else {
2330                 data_len = 0;
2331                 io_dir = NVMEFC_FCP_NODATA;
2332         }
2333
2334
2335         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2336 }
2337
2338 static void
2339 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2340 {
2341         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2342         struct nvme_fc_fcp_op *aen_op;
2343         unsigned long flags;
2344         bool terminating = false;
2345         blk_status_t ret;
2346
2347         spin_lock_irqsave(&ctrl->lock, flags);
2348         if (ctrl->flags & FCCTRL_TERMIO)
2349                 terminating = true;
2350         spin_unlock_irqrestore(&ctrl->lock, flags);
2351
2352         if (terminating)
2353                 return;
2354
2355         aen_op = &ctrl->aen_ops[0];
2356
2357         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2358                                         NVMEFC_FCP_NODATA);
2359         if (ret)
2360                 dev_err(ctrl->ctrl.device,
2361                         "failed async event work\n");
2362 }
2363
2364 static void
2365 nvme_fc_complete_rq(struct request *rq)
2366 {
2367         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2368         struct nvme_fc_ctrl *ctrl = op->ctrl;
2369
2370         atomic_set(&op->state, FCPOP_STATE_IDLE);
2371
2372         nvme_fc_unmap_data(ctrl, rq, op);
2373         nvme_complete_rq(rq);
2374         nvme_fc_ctrl_put(ctrl);
2375 }
2376
2377 /*
2378  * This routine is used by the transport when it needs to find active
2379  * io on a queue that is to be terminated. The transport uses
2380  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2381  * this routine to kill them on a 1 by 1 basis.
2382  *
2383  * As FC allocates FC exchange for each io, the transport must contact
2384  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2385  * After terminating the exchange the LLDD will call the transport's
2386  * normal io done path for the request, but it will have an aborted
2387  * status. The done path will return the io request back to the block
2388  * layer with an error status.
2389  */
2390 static bool
2391 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2392 {
2393         struct nvme_ctrl *nctrl = data;
2394         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2395         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2396
2397         __nvme_fc_abort_op(ctrl, op);
2398         return true;
2399 }
2400
2401
2402 static const struct blk_mq_ops nvme_fc_mq_ops = {
2403         .queue_rq       = nvme_fc_queue_rq,
2404         .complete       = nvme_fc_complete_rq,
2405         .init_request   = nvme_fc_init_request,
2406         .exit_request   = nvme_fc_exit_request,
2407         .init_hctx      = nvme_fc_init_hctx,
2408         .timeout        = nvme_fc_timeout,
2409 };
2410
2411 static int
2412 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2413 {
2414         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2415         unsigned int nr_io_queues;
2416         int ret;
2417
2418         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2419                                 ctrl->lport->ops->max_hw_queues);
2420         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2421         if (ret) {
2422                 dev_info(ctrl->ctrl.device,
2423                         "set_queue_count failed: %d\n", ret);
2424                 return ret;
2425         }
2426
2427         ctrl->ctrl.queue_count = nr_io_queues + 1;
2428         if (!nr_io_queues)
2429                 return 0;
2430
2431         nvme_fc_init_io_queues(ctrl);
2432
2433         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2434         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2435         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2436         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2437         ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2438         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2439         ctrl->tag_set.cmd_size =
2440                 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2441                             ctrl->lport->ops->fcprqst_priv_sz);
2442         ctrl->tag_set.driver_data = ctrl;
2443         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2444         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2445
2446         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2447         if (ret)
2448                 return ret;
2449
2450         ctrl->ctrl.tagset = &ctrl->tag_set;
2451
2452         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2453         if (IS_ERR(ctrl->ctrl.connect_q)) {
2454                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2455                 goto out_free_tag_set;
2456         }
2457
2458         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2459         if (ret)
2460                 goto out_cleanup_blk_queue;
2461
2462         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2463         if (ret)
2464                 goto out_delete_hw_queues;
2465
2466         ctrl->ioq_live = true;
2467
2468         return 0;
2469
2470 out_delete_hw_queues:
2471         nvme_fc_delete_hw_io_queues(ctrl);
2472 out_cleanup_blk_queue:
2473         blk_cleanup_queue(ctrl->ctrl.connect_q);
2474 out_free_tag_set:
2475         blk_mq_free_tag_set(&ctrl->tag_set);
2476         nvme_fc_free_io_queues(ctrl);
2477
2478         /* force put free routine to ignore io queues */
2479         ctrl->ctrl.tagset = NULL;
2480
2481         return ret;
2482 }
2483
2484 static int
2485 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2486 {
2487         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2488         u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2489         unsigned int nr_io_queues;
2490         int ret;
2491
2492         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2493                                 ctrl->lport->ops->max_hw_queues);
2494         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2495         if (ret) {
2496                 dev_info(ctrl->ctrl.device,
2497                         "set_queue_count failed: %d\n", ret);
2498                 return ret;
2499         }
2500
2501         if (!nr_io_queues && prior_ioq_cnt) {
2502                 dev_info(ctrl->ctrl.device,
2503                         "Fail Reconnect: At least 1 io queue "
2504                         "required (was %d)\n", prior_ioq_cnt);
2505                 return -ENOSPC;
2506         }
2507
2508         ctrl->ctrl.queue_count = nr_io_queues + 1;
2509         /* check for io queues existing */
2510         if (ctrl->ctrl.queue_count == 1)
2511                 return 0;
2512
2513         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2514         if (ret)
2515                 goto out_free_io_queues;
2516
2517         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2518         if (ret)
2519                 goto out_delete_hw_queues;
2520
2521         if (prior_ioq_cnt != nr_io_queues)
2522                 dev_info(ctrl->ctrl.device,
2523                         "reconnect: revising io queue count from %d to %d\n",
2524                         prior_ioq_cnt, nr_io_queues);
2525         blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2526
2527         return 0;
2528
2529 out_delete_hw_queues:
2530         nvme_fc_delete_hw_io_queues(ctrl);
2531 out_free_io_queues:
2532         nvme_fc_free_io_queues(ctrl);
2533         return ret;
2534 }
2535
2536 static void
2537 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2538 {
2539         struct nvme_fc_lport *lport = rport->lport;
2540
2541         atomic_inc(&lport->act_rport_cnt);
2542 }
2543
2544 static void
2545 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2546 {
2547         struct nvme_fc_lport *lport = rport->lport;
2548         u32 cnt;
2549
2550         cnt = atomic_dec_return(&lport->act_rport_cnt);
2551         if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2552                 lport->ops->localport_delete(&lport->localport);
2553 }
2554
2555 static int
2556 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2557 {
2558         struct nvme_fc_rport *rport = ctrl->rport;
2559         u32 cnt;
2560
2561         if (ctrl->assoc_active)
2562                 return 1;
2563
2564         ctrl->assoc_active = true;
2565         cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2566         if (cnt == 1)
2567                 nvme_fc_rport_active_on_lport(rport);
2568
2569         return 0;
2570 }
2571
2572 static int
2573 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2574 {
2575         struct nvme_fc_rport *rport = ctrl->rport;
2576         struct nvme_fc_lport *lport = rport->lport;
2577         u32 cnt;
2578
2579         /* ctrl->assoc_active=false will be set independently */
2580
2581         cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2582         if (cnt == 0) {
2583                 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2584                         lport->ops->remoteport_delete(&rport->remoteport);
2585                 nvme_fc_rport_inactive_on_lport(rport);
2586         }
2587
2588         return 0;
2589 }
2590
2591 /*
2592  * This routine restarts the controller on the host side, and
2593  * on the link side, recreates the controller association.
2594  */
2595 static int
2596 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2597 {
2598         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2599         int ret;
2600         bool changed;
2601
2602         ++ctrl->ctrl.nr_reconnects;
2603
2604         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2605                 return -ENODEV;
2606
2607         if (nvme_fc_ctlr_active_on_rport(ctrl))
2608                 return -ENOTUNIQ;
2609
2610         /*
2611          * Create the admin queue
2612          */
2613
2614         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2615                                 NVME_AQ_DEPTH);
2616         if (ret)
2617                 goto out_free_queue;
2618
2619         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2620                                 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2621         if (ret)
2622                 goto out_delete_hw_queue;
2623
2624         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2625
2626         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2627         if (ret)
2628                 goto out_disconnect_admin_queue;
2629
2630         set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2631
2632         /*
2633          * Check controller capabilities
2634          *
2635          * todo:- add code to check if ctrl attributes changed from
2636          * prior connection values
2637          */
2638
2639         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2640         if (ret) {
2641                 dev_err(ctrl->ctrl.device,
2642                         "prop_get NVME_REG_CAP failed\n");
2643                 goto out_disconnect_admin_queue;
2644         }
2645
2646         ctrl->ctrl.sqsize =
2647                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
2648
2649         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2650         if (ret)
2651                 goto out_disconnect_admin_queue;
2652
2653         ctrl->ctrl.max_hw_sectors =
2654                 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2655
2656         ret = nvme_init_identify(&ctrl->ctrl);
2657         if (ret)
2658                 goto out_disconnect_admin_queue;
2659
2660         /* sanity checks */
2661
2662         /* FC-NVME does not have other data in the capsule */
2663         if (ctrl->ctrl.icdoff) {
2664                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2665                                 ctrl->ctrl.icdoff);
2666                 goto out_disconnect_admin_queue;
2667         }
2668
2669         /* FC-NVME supports normal SGL Data Block Descriptors */
2670
2671         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2672                 /* warn if maxcmd is lower than queue_size */
2673                 dev_warn(ctrl->ctrl.device,
2674                         "queue_size %zu > ctrl maxcmd %u, reducing "
2675                         "to queue_size\n",
2676                         opts->queue_size, ctrl->ctrl.maxcmd);
2677                 opts->queue_size = ctrl->ctrl.maxcmd;
2678         }
2679
2680         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2681                 /* warn if sqsize is lower than queue_size */
2682                 dev_warn(ctrl->ctrl.device,
2683                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
2684                         opts->queue_size, ctrl->ctrl.sqsize + 1);
2685                 opts->queue_size = ctrl->ctrl.sqsize + 1;
2686         }
2687
2688         ret = nvme_fc_init_aen_ops(ctrl);
2689         if (ret)
2690                 goto out_term_aen_ops;
2691
2692         /*
2693          * Create the io queues
2694          */
2695
2696         if (ctrl->ctrl.queue_count > 1) {
2697                 if (!ctrl->ioq_live)
2698                         ret = nvme_fc_create_io_queues(ctrl);
2699                 else
2700                         ret = nvme_fc_recreate_io_queues(ctrl);
2701                 if (ret)
2702                         goto out_term_aen_ops;
2703         }
2704
2705         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2706
2707         ctrl->ctrl.nr_reconnects = 0;
2708
2709         if (changed)
2710                 nvme_start_ctrl(&ctrl->ctrl);
2711
2712         return 0;       /* Success */
2713
2714 out_term_aen_ops:
2715         nvme_fc_term_aen_ops(ctrl);
2716 out_disconnect_admin_queue:
2717         /* send a Disconnect(association) LS to fc-nvme target */
2718         nvme_fc_xmt_disconnect_assoc(ctrl);
2719 out_delete_hw_queue:
2720         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2721 out_free_queue:
2722         nvme_fc_free_queue(&ctrl->queues[0]);
2723         ctrl->assoc_active = false;
2724         nvme_fc_ctlr_inactive_on_rport(ctrl);
2725
2726         return ret;
2727 }
2728
2729 /*
2730  * This routine stops operation of the controller on the host side.
2731  * On the host os stack side: Admin and IO queues are stopped,
2732  *   outstanding ios on them terminated via FC ABTS.
2733  * On the link side: the association is terminated.
2734  */
2735 static void
2736 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2737 {
2738         unsigned long flags;
2739
2740         if (!ctrl->assoc_active)
2741                 return;
2742         ctrl->assoc_active = false;
2743
2744         spin_lock_irqsave(&ctrl->lock, flags);
2745         ctrl->flags |= FCCTRL_TERMIO;
2746         ctrl->iocnt = 0;
2747         spin_unlock_irqrestore(&ctrl->lock, flags);
2748
2749         /*
2750          * If io queues are present, stop them and terminate all outstanding
2751          * ios on them. As FC allocates FC exchange for each io, the
2752          * transport must contact the LLDD to terminate the exchange,
2753          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2754          * to tell us what io's are busy and invoke a transport routine
2755          * to kill them with the LLDD.  After terminating the exchange
2756          * the LLDD will call the transport's normal io done path, but it
2757          * will have an aborted status. The done path will return the
2758          * io requests back to the block layer as part of normal completions
2759          * (but with error status).
2760          */
2761         if (ctrl->ctrl.queue_count > 1) {
2762                 nvme_stop_queues(&ctrl->ctrl);
2763                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2764                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2765         }
2766
2767         /*
2768          * Other transports, which don't have link-level contexts bound
2769          * to sqe's, would try to gracefully shutdown the controller by
2770          * writing the registers for shutdown and polling (call
2771          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2772          * just aborted and we will wait on those contexts, and given
2773          * there was no indication of how live the controlelr is on the
2774          * link, don't send more io to create more contexts for the
2775          * shutdown. Let the controller fail via keepalive failure if
2776          * its still present.
2777          */
2778
2779         /*
2780          * clean up the admin queue. Same thing as above.
2781          * use blk_mq_tagset_busy_itr() and the transport routine to
2782          * terminate the exchanges.
2783          */
2784         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2785         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2786                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2787
2788         /* kill the aens as they are a separate path */
2789         nvme_fc_abort_aen_ops(ctrl);
2790
2791         /* wait for all io that had to be aborted */
2792         spin_lock_irq(&ctrl->lock);
2793         wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2794         ctrl->flags &= ~FCCTRL_TERMIO;
2795         spin_unlock_irq(&ctrl->lock);
2796
2797         nvme_fc_term_aen_ops(ctrl);
2798
2799         /*
2800          * send a Disconnect(association) LS to fc-nvme target
2801          * Note: could have been sent at top of process, but
2802          * cleaner on link traffic if after the aborts complete.
2803          * Note: if association doesn't exist, association_id will be 0
2804          */
2805         if (ctrl->association_id)
2806                 nvme_fc_xmt_disconnect_assoc(ctrl);
2807
2808         if (ctrl->ctrl.tagset) {
2809                 nvme_fc_delete_hw_io_queues(ctrl);
2810                 nvme_fc_free_io_queues(ctrl);
2811         }
2812
2813         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2814         nvme_fc_free_queue(&ctrl->queues[0]);
2815
2816         /* re-enable the admin_q so anything new can fast fail */
2817         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2818
2819         /* resume the io queues so that things will fast fail */
2820         nvme_start_queues(&ctrl->ctrl);
2821
2822         nvme_fc_ctlr_inactive_on_rport(ctrl);
2823 }
2824
2825 static void
2826 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2827 {
2828         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2829
2830         cancel_work_sync(&ctrl->err_work);
2831         cancel_delayed_work_sync(&ctrl->connect_work);
2832         /*
2833          * kill the association on the link side.  this will block
2834          * waiting for io to terminate
2835          */
2836         nvme_fc_delete_association(ctrl);
2837 }
2838
2839 static void
2840 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2841 {
2842         struct nvme_fc_rport *rport = ctrl->rport;
2843         struct nvme_fc_remote_port *portptr = &rport->remoteport;
2844         unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2845         bool recon = true;
2846
2847         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2848                 return;
2849
2850         if (portptr->port_state == FC_OBJSTATE_ONLINE)
2851                 dev_info(ctrl->ctrl.device,
2852                         "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2853                         ctrl->cnum, status);
2854         else if (time_after_eq(jiffies, rport->dev_loss_end))
2855                 recon = false;
2856
2857         if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2858                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2859                         dev_info(ctrl->ctrl.device,
2860                                 "NVME-FC{%d}: Reconnect attempt in %ld "
2861                                 "seconds\n",
2862                                 ctrl->cnum, recon_delay / HZ);
2863                 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2864                         recon_delay = rport->dev_loss_end - jiffies;
2865
2866                 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2867         } else {
2868                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2869                         dev_warn(ctrl->ctrl.device,
2870                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2871                                 "reached.\n",
2872                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2873                 else
2874                         dev_warn(ctrl->ctrl.device,
2875                                 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2876                                 "while waiting for remoteport connectivity.\n",
2877                                 ctrl->cnum, portptr->dev_loss_tmo);
2878                 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2879         }
2880 }
2881
2882 static void
2883 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2884 {
2885         nvme_stop_keep_alive(&ctrl->ctrl);
2886
2887         /* will block will waiting for io to terminate */
2888         nvme_fc_delete_association(ctrl);
2889
2890         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2891             !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2892                 dev_err(ctrl->ctrl.device,
2893                         "NVME-FC{%d}: error_recovery: Couldn't change state "
2894                         "to CONNECTING\n", ctrl->cnum);
2895 }
2896
2897 static void
2898 nvme_fc_reset_ctrl_work(struct work_struct *work)
2899 {
2900         struct nvme_fc_ctrl *ctrl =
2901                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2902         int ret;
2903
2904         __nvme_fc_terminate_io(ctrl);
2905
2906         nvme_stop_ctrl(&ctrl->ctrl);
2907
2908         if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2909                 ret = nvme_fc_create_association(ctrl);
2910         else
2911                 ret = -ENOTCONN;
2912
2913         if (ret)
2914                 nvme_fc_reconnect_or_delete(ctrl, ret);
2915         else
2916                 dev_info(ctrl->ctrl.device,
2917                         "NVME-FC{%d}: controller reset complete\n",
2918                         ctrl->cnum);
2919 }
2920
2921 static void
2922 nvme_fc_connect_err_work(struct work_struct *work)
2923 {
2924         struct nvme_fc_ctrl *ctrl =
2925                         container_of(work, struct nvme_fc_ctrl, err_work);
2926
2927         __nvme_fc_terminate_io(ctrl);
2928
2929         atomic_set(&ctrl->err_work_active, 0);
2930
2931         /*
2932          * Rescheduling the connection after recovering
2933          * from the io error is left to the reconnect work
2934          * item, which is what should have stalled waiting on
2935          * the io that had the error that scheduled this work.
2936          */
2937 }
2938
2939 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2940         .name                   = "fc",
2941         .module                 = THIS_MODULE,
2942         .flags                  = NVME_F_FABRICS,
2943         .reg_read32             = nvmf_reg_read32,
2944         .reg_read64             = nvmf_reg_read64,
2945         .reg_write32            = nvmf_reg_write32,
2946         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2947         .submit_async_event     = nvme_fc_submit_async_event,
2948         .delete_ctrl            = nvme_fc_delete_ctrl,
2949         .get_address            = nvmf_get_address,
2950 };
2951
2952 static void
2953 nvme_fc_connect_ctrl_work(struct work_struct *work)
2954 {
2955         int ret;
2956
2957         struct nvme_fc_ctrl *ctrl =
2958                         container_of(to_delayed_work(work),
2959                                 struct nvme_fc_ctrl, connect_work);
2960
2961         ret = nvme_fc_create_association(ctrl);
2962         if (ret)
2963                 nvme_fc_reconnect_or_delete(ctrl, ret);
2964         else
2965                 dev_info(ctrl->ctrl.device,
2966                         "NVME-FC{%d}: controller connect complete\n",
2967                         ctrl->cnum);
2968 }
2969
2970
2971 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2972         .queue_rq       = nvme_fc_queue_rq,
2973         .complete       = nvme_fc_complete_rq,
2974         .init_request   = nvme_fc_init_request,
2975         .exit_request   = nvme_fc_exit_request,
2976         .init_hctx      = nvme_fc_init_admin_hctx,
2977         .timeout        = nvme_fc_timeout,
2978 };
2979
2980
2981 /*
2982  * Fails a controller request if it matches an existing controller
2983  * (association) with the same tuple:
2984  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
2985  *
2986  * The ports don't need to be compared as they are intrinsically
2987  * already matched by the port pointers supplied.
2988  */
2989 static bool
2990 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
2991                 struct nvmf_ctrl_options *opts)
2992 {
2993         struct nvme_fc_ctrl *ctrl;
2994         unsigned long flags;
2995         bool found = false;
2996
2997         spin_lock_irqsave(&rport->lock, flags);
2998         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
2999                 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3000                 if (found)
3001                         break;
3002         }
3003         spin_unlock_irqrestore(&rport->lock, flags);
3004
3005         return found;
3006 }
3007
3008 static struct nvme_ctrl *
3009 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3010         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3011 {
3012         struct nvme_fc_ctrl *ctrl;
3013         unsigned long flags;
3014         int ret, idx;
3015
3016         if (!(rport->remoteport.port_role &
3017             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3018                 ret = -EBADR;
3019                 goto out_fail;
3020         }
3021
3022         if (!opts->duplicate_connect &&
3023             nvme_fc_existing_controller(rport, opts)) {
3024                 ret = -EALREADY;
3025                 goto out_fail;
3026         }
3027
3028         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3029         if (!ctrl) {
3030                 ret = -ENOMEM;
3031                 goto out_fail;
3032         }
3033
3034         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3035         if (idx < 0) {
3036                 ret = -ENOSPC;
3037                 goto out_free_ctrl;
3038         }
3039
3040         ctrl->ctrl.opts = opts;
3041         ctrl->ctrl.nr_reconnects = 0;
3042         if (lport->dev)
3043                 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3044         else
3045                 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3046         INIT_LIST_HEAD(&ctrl->ctrl_list);
3047         ctrl->lport = lport;
3048         ctrl->rport = rport;
3049         ctrl->dev = lport->dev;
3050         ctrl->cnum = idx;
3051         ctrl->ioq_live = false;
3052         ctrl->assoc_active = false;
3053         atomic_set(&ctrl->err_work_active, 0);
3054         init_waitqueue_head(&ctrl->ioabort_wait);
3055
3056         get_device(ctrl->dev);
3057         kref_init(&ctrl->ref);
3058
3059         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3060         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3061         INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3062         spin_lock_init(&ctrl->lock);
3063
3064         /* io queue count */
3065         ctrl->ctrl.queue_count = min_t(unsigned int,
3066                                 opts->nr_io_queues,
3067                                 lport->ops->max_hw_queues);
3068         ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3069
3070         ctrl->ctrl.sqsize = opts->queue_size - 1;
3071         ctrl->ctrl.kato = opts->kato;
3072         ctrl->ctrl.cntlid = 0xffff;
3073
3074         ret = -ENOMEM;
3075         ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3076                                 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3077         if (!ctrl->queues)
3078                 goto out_free_ida;
3079
3080         nvme_fc_init_queue(ctrl, 0);
3081
3082         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3083         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3084         ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3085         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3086         ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3087         ctrl->admin_tag_set.cmd_size =
3088                 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3089                             ctrl->lport->ops->fcprqst_priv_sz);
3090         ctrl->admin_tag_set.driver_data = ctrl;
3091         ctrl->admin_tag_set.nr_hw_queues = 1;
3092         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3093         ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3094
3095         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3096         if (ret)
3097                 goto out_free_queues;
3098         ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3099
3100         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3101         if (IS_ERR(ctrl->ctrl.admin_q)) {
3102                 ret = PTR_ERR(ctrl->ctrl.admin_q);
3103                 goto out_free_admin_tag_set;
3104         }
3105
3106         /*
3107          * Would have been nice to init io queues tag set as well.
3108          * However, we require interaction from the controller
3109          * for max io queue count before we can do so.
3110          * Defer this to the connect path.
3111          */
3112
3113         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3114         if (ret)
3115                 goto out_cleanup_admin_q;
3116
3117         /* at this point, teardown path changes to ref counting on nvme ctrl */
3118
3119         spin_lock_irqsave(&rport->lock, flags);
3120         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3121         spin_unlock_irqrestore(&rport->lock, flags);
3122
3123         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3124             !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3125                 dev_err(ctrl->ctrl.device,
3126                         "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3127                 goto fail_ctrl;
3128         }
3129
3130         nvme_get_ctrl(&ctrl->ctrl);
3131
3132         if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3133                 nvme_put_ctrl(&ctrl->ctrl);
3134                 dev_err(ctrl->ctrl.device,
3135                         "NVME-FC{%d}: failed to schedule initial connect\n",
3136                         ctrl->cnum);
3137                 goto fail_ctrl;
3138         }
3139
3140         flush_delayed_work(&ctrl->connect_work);
3141
3142         dev_info(ctrl->ctrl.device,
3143                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3144                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3145
3146         return &ctrl->ctrl;
3147
3148 fail_ctrl:
3149         nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3150         cancel_work_sync(&ctrl->ctrl.reset_work);
3151         cancel_work_sync(&ctrl->err_work);
3152         cancel_delayed_work_sync(&ctrl->connect_work);
3153
3154         ctrl->ctrl.opts = NULL;
3155
3156         /* initiate nvme ctrl ref counting teardown */
3157         nvme_uninit_ctrl(&ctrl->ctrl);
3158
3159         /* Remove core ctrl ref. */
3160         nvme_put_ctrl(&ctrl->ctrl);
3161
3162         /* as we're past the point where we transition to the ref
3163          * counting teardown path, if we return a bad pointer here,
3164          * the calling routine, thinking it's prior to the
3165          * transition, will do an rport put. Since the teardown
3166          * path also does a rport put, we do an extra get here to
3167          * so proper order/teardown happens.
3168          */
3169         nvme_fc_rport_get(rport);
3170
3171         return ERR_PTR(-EIO);
3172
3173 out_cleanup_admin_q:
3174         blk_cleanup_queue(ctrl->ctrl.admin_q);
3175 out_free_admin_tag_set:
3176         blk_mq_free_tag_set(&ctrl->admin_tag_set);
3177 out_free_queues:
3178         kfree(ctrl->queues);
3179 out_free_ida:
3180         put_device(ctrl->dev);
3181         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3182 out_free_ctrl:
3183         kfree(ctrl);
3184 out_fail:
3185         /* exit via here doesn't follow ctlr ref points */
3186         return ERR_PTR(ret);
3187 }
3188
3189
3190 struct nvmet_fc_traddr {
3191         u64     nn;
3192         u64     pn;
3193 };
3194
3195 static int
3196 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3197 {
3198         u64 token64;
3199
3200         if (match_u64(sstr, &token64))
3201                 return -EINVAL;
3202         *val = token64;
3203
3204         return 0;
3205 }
3206
3207 /*
3208  * This routine validates and extracts the WWN's from the TRADDR string.
3209  * As kernel parsers need the 0x to determine number base, universally
3210  * build string to parse with 0x prefix before parsing name strings.
3211  */
3212 static int
3213 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3214 {
3215         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3216         substring_t wwn = { name, &name[sizeof(name)-1] };
3217         int nnoffset, pnoffset;
3218
3219         /* validate if string is one of the 2 allowed formats */
3220         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3221                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3222                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3223                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3224                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3225                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3226                                                 NVME_FC_TRADDR_OXNNLEN;
3227         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3228                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3229                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3230                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
3231                 nnoffset = NVME_FC_TRADDR_NNLEN;
3232                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3233         } else
3234                 goto out_einval;
3235
3236         name[0] = '0';
3237         name[1] = 'x';
3238         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3239
3240         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3241         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3242                 goto out_einval;
3243
3244         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3245         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3246                 goto out_einval;
3247
3248         return 0;
3249
3250 out_einval:
3251         pr_warn("%s: bad traddr string\n", __func__);
3252         return -EINVAL;
3253 }
3254
3255 static struct nvme_ctrl *
3256 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3257 {
3258         struct nvme_fc_lport *lport;
3259         struct nvme_fc_rport *rport;
3260         struct nvme_ctrl *ctrl;
3261         struct nvmet_fc_traddr laddr = { 0L, 0L };
3262         struct nvmet_fc_traddr raddr = { 0L, 0L };
3263         unsigned long flags;
3264         int ret;
3265
3266         ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3267         if (ret || !raddr.nn || !raddr.pn)
3268                 return ERR_PTR(-EINVAL);
3269
3270         ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3271         if (ret || !laddr.nn || !laddr.pn)
3272                 return ERR_PTR(-EINVAL);
3273
3274         /* find the host and remote ports to connect together */
3275         spin_lock_irqsave(&nvme_fc_lock, flags);
3276         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3277                 if (lport->localport.node_name != laddr.nn ||
3278                     lport->localport.port_name != laddr.pn)
3279                         continue;
3280
3281                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3282                         if (rport->remoteport.node_name != raddr.nn ||
3283                             rport->remoteport.port_name != raddr.pn)
3284                                 continue;
3285
3286                         /* if fail to get reference fall through. Will error */
3287                         if (!nvme_fc_rport_get(rport))
3288                                 break;
3289
3290                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3291
3292                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3293                         if (IS_ERR(ctrl))
3294                                 nvme_fc_rport_put(rport);
3295                         return ctrl;
3296                 }
3297         }
3298         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3299
3300         pr_warn("%s: %s - %s combination not found\n",
3301                 __func__, opts->traddr, opts->host_traddr);
3302         return ERR_PTR(-ENOENT);
3303 }
3304
3305
3306 static struct nvmf_transport_ops nvme_fc_transport = {
3307         .name           = "fc",
3308         .module         = THIS_MODULE,
3309         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3310         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3311         .create_ctrl    = nvme_fc_create_ctrl,
3312 };
3313
3314 /* Arbitrary successive failures max. With lots of subsystems could be high */
3315 #define DISCOVERY_MAX_FAIL      20
3316
3317 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3318                 struct device_attribute *attr, const char *buf, size_t count)
3319 {
3320         unsigned long flags;
3321         LIST_HEAD(local_disc_list);
3322         struct nvme_fc_lport *lport;
3323         struct nvme_fc_rport *rport;
3324         int failcnt = 0;
3325
3326         spin_lock_irqsave(&nvme_fc_lock, flags);
3327 restart:
3328         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3329                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3330                         if (!nvme_fc_lport_get(lport))
3331                                 continue;
3332                         if (!nvme_fc_rport_get(rport)) {
3333                                 /*
3334                                  * This is a temporary condition. Upon restart
3335                                  * this rport will be gone from the list.
3336                                  *
3337                                  * Revert the lport put and retry.  Anything
3338                                  * added to the list already will be skipped (as
3339                                  * they are no longer list_empty).  Loops should
3340                                  * resume at rports that were not yet seen.
3341                                  */
3342                                 nvme_fc_lport_put(lport);
3343
3344                                 if (failcnt++ < DISCOVERY_MAX_FAIL)
3345                                         goto restart;
3346
3347                                 pr_err("nvme_discovery: too many reference "
3348                                        "failures\n");
3349                                 goto process_local_list;
3350                         }
3351                         if (list_empty(&rport->disc_list))
3352                                 list_add_tail(&rport->disc_list,
3353                                               &local_disc_list);
3354                 }
3355         }
3356
3357 process_local_list:
3358         while (!list_empty(&local_disc_list)) {
3359                 rport = list_first_entry(&local_disc_list,
3360                                          struct nvme_fc_rport, disc_list);
3361                 list_del_init(&rport->disc_list);
3362                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3363
3364                 lport = rport->lport;
3365                 /* signal discovery. Won't hurt if it repeats */
3366                 nvme_fc_signal_discovery_scan(lport, rport);
3367                 nvme_fc_rport_put(rport);
3368                 nvme_fc_lport_put(lport);
3369
3370                 spin_lock_irqsave(&nvme_fc_lock, flags);
3371         }
3372         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3373
3374         return count;
3375 }
3376 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3377
3378 static struct attribute *nvme_fc_attrs[] = {
3379         &dev_attr_nvme_discovery.attr,
3380         NULL
3381 };
3382
3383 static struct attribute_group nvme_fc_attr_group = {
3384         .attrs = nvme_fc_attrs,
3385 };
3386
3387 static const struct attribute_group *nvme_fc_attr_groups[] = {
3388         &nvme_fc_attr_group,
3389         NULL
3390 };
3391
3392 static struct class fc_class = {
3393         .name = "fc",
3394         .dev_groups = nvme_fc_attr_groups,
3395         .owner = THIS_MODULE,
3396 };
3397
3398 static int __init nvme_fc_init_module(void)
3399 {
3400         int ret;
3401
3402         nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3403         if (!nvme_fc_wq)
3404                 return -ENOMEM;
3405
3406         /*
3407          * NOTE:
3408          * It is expected that in the future the kernel will combine
3409          * the FC-isms that are currently under scsi and now being
3410          * added to by NVME into a new standalone FC class. The SCSI
3411          * and NVME protocols and their devices would be under this
3412          * new FC class.
3413          *
3414          * As we need something to post FC-specific udev events to,
3415          * specifically for nvme probe events, start by creating the
3416          * new device class.  When the new standalone FC class is
3417          * put in place, this code will move to a more generic
3418          * location for the class.
3419          */
3420         ret = class_register(&fc_class);
3421         if (ret) {
3422                 pr_err("couldn't register class fc\n");
3423                 goto out_destroy_wq;
3424         }
3425
3426         /*
3427          * Create a device for the FC-centric udev events
3428          */
3429         fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3430                                 "fc_udev_device");
3431         if (IS_ERR(fc_udev_device)) {
3432                 pr_err("couldn't create fc_udev device!\n");
3433                 ret = PTR_ERR(fc_udev_device);
3434                 goto out_destroy_class;
3435         }
3436
3437         ret = nvmf_register_transport(&nvme_fc_transport);
3438         if (ret)
3439                 goto out_destroy_device;
3440
3441         return 0;
3442
3443 out_destroy_device:
3444         device_destroy(&fc_class, MKDEV(0, 0));
3445 out_destroy_class:
3446         class_unregister(&fc_class);
3447 out_destroy_wq:
3448         destroy_workqueue(nvme_fc_wq);
3449
3450         return ret;
3451 }
3452
3453 static void __exit nvme_fc_exit_module(void)
3454 {
3455         /* sanity check - all lports should be removed */
3456         if (!list_empty(&nvme_fc_lport_list))
3457                 pr_warn("%s: localport list not empty\n", __func__);
3458
3459         nvmf_unregister_transport(&nvme_fc_transport);
3460
3461         ida_destroy(&nvme_fc_local_port_cnt);
3462         ida_destroy(&nvme_fc_ctrl_cnt);
3463
3464         device_destroy(&fc_class, MKDEV(0, 0));
3465         class_unregister(&fc_class);
3466         destroy_workqueue(nvme_fc_wq);
3467 }
3468
3469 module_init(nvme_fc_init_module);
3470 module_exit(nvme_fc_exit_module);
3471
3472 MODULE_LICENSE("GPL v2");