Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[platform/kernel/linux-rpi.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/pm_qos.h>
22 #include <asm/unaligned.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29
30 #define NVME_MINORS             (1U << MINORBITS)
31
32 unsigned int admin_timeout = 60;
33 module_param(admin_timeout, uint, 0644);
34 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
35 EXPORT_SYMBOL_GPL(admin_timeout);
36
37 unsigned int nvme_io_timeout = 30;
38 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
39 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
40 EXPORT_SYMBOL_GPL(nvme_io_timeout);
41
42 static unsigned char shutdown_timeout = 5;
43 module_param(shutdown_timeout, byte, 0644);
44 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
45
46 static u8 nvme_max_retries = 5;
47 module_param_named(max_retries, nvme_max_retries, byte, 0644);
48 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
49
50 static unsigned long default_ps_max_latency_us = 100000;
51 module_param(default_ps_max_latency_us, ulong, 0644);
52 MODULE_PARM_DESC(default_ps_max_latency_us,
53                  "max power saving latency for new devices; use PM QOS to change per device");
54
55 static bool force_apst;
56 module_param(force_apst, bool, 0644);
57 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
58
59 static unsigned long apst_primary_timeout_ms = 100;
60 module_param(apst_primary_timeout_ms, ulong, 0644);
61 MODULE_PARM_DESC(apst_primary_timeout_ms,
62         "primary APST timeout in ms");
63
64 static unsigned long apst_secondary_timeout_ms = 2000;
65 module_param(apst_secondary_timeout_ms, ulong, 0644);
66 MODULE_PARM_DESC(apst_secondary_timeout_ms,
67         "secondary APST timeout in ms");
68
69 static unsigned long apst_primary_latency_tol_us = 15000;
70 module_param(apst_primary_latency_tol_us, ulong, 0644);
71 MODULE_PARM_DESC(apst_primary_latency_tol_us,
72         "primary APST latency tolerance in us");
73
74 static unsigned long apst_secondary_latency_tol_us = 100000;
75 module_param(apst_secondary_latency_tol_us, ulong, 0644);
76 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
77         "secondary APST latency tolerance in us");
78
79 static bool streams;
80 module_param(streams, bool, 0644);
81 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
82
83 /*
84  * nvme_wq - hosts nvme related works that are not reset or delete
85  * nvme_reset_wq - hosts nvme reset works
86  * nvme_delete_wq - hosts nvme delete works
87  *
88  * nvme_wq will host works such as scan, aen handling, fw activation,
89  * keep-alive, periodic reconnects etc. nvme_reset_wq
90  * runs reset works which also flush works hosted on nvme_wq for
91  * serialization purposes. nvme_delete_wq host controller deletion
92  * works which flush reset works for serialization.
93  */
94 struct workqueue_struct *nvme_wq;
95 EXPORT_SYMBOL_GPL(nvme_wq);
96
97 struct workqueue_struct *nvme_reset_wq;
98 EXPORT_SYMBOL_GPL(nvme_reset_wq);
99
100 struct workqueue_struct *nvme_delete_wq;
101 EXPORT_SYMBOL_GPL(nvme_delete_wq);
102
103 static LIST_HEAD(nvme_subsystems);
104 static DEFINE_MUTEX(nvme_subsystems_lock);
105
106 static DEFINE_IDA(nvme_instance_ida);
107 static dev_t nvme_ctrl_base_chr_devt;
108 static struct class *nvme_class;
109 static struct class *nvme_subsys_class;
110
111 static DEFINE_IDA(nvme_ns_chr_minor_ida);
112 static dev_t nvme_ns_chr_devt;
113 static struct class *nvme_ns_chr_class;
114
115 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
116 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
117                                            unsigned nsid);
118 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
119                                    struct nvme_command *cmd);
120
121 /*
122  * Prepare a queue for teardown.
123  *
124  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
125  * the capacity to 0 after that to avoid blocking dispatchers that may be
126  * holding bd_butex.  This will end buffered writers dirtying pages that can't
127  * be synced.
128  */
129 static void nvme_set_queue_dying(struct nvme_ns *ns)
130 {
131         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
132                 return;
133
134         blk_set_queue_dying(ns->queue);
135         blk_mq_unquiesce_queue(ns->queue);
136
137         set_capacity_and_notify(ns->disk, 0);
138 }
139
140 void nvme_queue_scan(struct nvme_ctrl *ctrl)
141 {
142         /*
143          * Only new queue scan work when admin and IO queues are both alive
144          */
145         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
146                 queue_work(nvme_wq, &ctrl->scan_work);
147 }
148
149 /*
150  * Use this function to proceed with scheduling reset_work for a controller
151  * that had previously been set to the resetting state. This is intended for
152  * code paths that can't be interrupted by other reset attempts. A hot removal
153  * may prevent this from succeeding.
154  */
155 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
156 {
157         if (ctrl->state != NVME_CTRL_RESETTING)
158                 return -EBUSY;
159         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
160                 return -EBUSY;
161         return 0;
162 }
163 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
164
165 static void nvme_failfast_work(struct work_struct *work)
166 {
167         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
168                         struct nvme_ctrl, failfast_work);
169
170         if (ctrl->state != NVME_CTRL_CONNECTING)
171                 return;
172
173         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
174         dev_info(ctrl->device, "failfast expired\n");
175         nvme_kick_requeue_lists(ctrl);
176 }
177
178 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
179 {
180         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
181                 return;
182
183         schedule_delayed_work(&ctrl->failfast_work,
184                               ctrl->opts->fast_io_fail_tmo * HZ);
185 }
186
187 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
188 {
189         if (!ctrl->opts)
190                 return;
191
192         cancel_delayed_work_sync(&ctrl->failfast_work);
193         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
194 }
195
196
197 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
198 {
199         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
200                 return -EBUSY;
201         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
202                 return -EBUSY;
203         return 0;
204 }
205 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
206
207 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
208 {
209         int ret;
210
211         ret = nvme_reset_ctrl(ctrl);
212         if (!ret) {
213                 flush_work(&ctrl->reset_work);
214                 if (ctrl->state != NVME_CTRL_LIVE)
215                         ret = -ENETRESET;
216         }
217
218         return ret;
219 }
220
221 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
222 {
223         dev_info(ctrl->device,
224                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
225
226         flush_work(&ctrl->reset_work);
227         nvme_stop_ctrl(ctrl);
228         nvme_remove_namespaces(ctrl);
229         ctrl->ops->delete_ctrl(ctrl);
230         nvme_uninit_ctrl(ctrl);
231 }
232
233 static void nvme_delete_ctrl_work(struct work_struct *work)
234 {
235         struct nvme_ctrl *ctrl =
236                 container_of(work, struct nvme_ctrl, delete_work);
237
238         nvme_do_delete_ctrl(ctrl);
239 }
240
241 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
242 {
243         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
244                 return -EBUSY;
245         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
246                 return -EBUSY;
247         return 0;
248 }
249 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
250
251 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
252 {
253         /*
254          * Keep a reference until nvme_do_delete_ctrl() complete,
255          * since ->delete_ctrl can free the controller.
256          */
257         nvme_get_ctrl(ctrl);
258         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
259                 nvme_do_delete_ctrl(ctrl);
260         nvme_put_ctrl(ctrl);
261 }
262
263 static blk_status_t nvme_error_status(u16 status)
264 {
265         switch (status & 0x7ff) {
266         case NVME_SC_SUCCESS:
267                 return BLK_STS_OK;
268         case NVME_SC_CAP_EXCEEDED:
269                 return BLK_STS_NOSPC;
270         case NVME_SC_LBA_RANGE:
271         case NVME_SC_CMD_INTERRUPTED:
272         case NVME_SC_NS_NOT_READY:
273                 return BLK_STS_TARGET;
274         case NVME_SC_BAD_ATTRIBUTES:
275         case NVME_SC_ONCS_NOT_SUPPORTED:
276         case NVME_SC_INVALID_OPCODE:
277         case NVME_SC_INVALID_FIELD:
278         case NVME_SC_INVALID_NS:
279                 return BLK_STS_NOTSUPP;
280         case NVME_SC_WRITE_FAULT:
281         case NVME_SC_READ_ERROR:
282         case NVME_SC_UNWRITTEN_BLOCK:
283         case NVME_SC_ACCESS_DENIED:
284         case NVME_SC_READ_ONLY:
285         case NVME_SC_COMPARE_FAILED:
286                 return BLK_STS_MEDIUM;
287         case NVME_SC_GUARD_CHECK:
288         case NVME_SC_APPTAG_CHECK:
289         case NVME_SC_REFTAG_CHECK:
290         case NVME_SC_INVALID_PI:
291                 return BLK_STS_PROTECTION;
292         case NVME_SC_RESERVATION_CONFLICT:
293                 return BLK_STS_NEXUS;
294         case NVME_SC_HOST_PATH_ERROR:
295                 return BLK_STS_TRANSPORT;
296         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
297                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
298         case NVME_SC_ZONE_TOO_MANY_OPEN:
299                 return BLK_STS_ZONE_OPEN_RESOURCE;
300         default:
301                 return BLK_STS_IOERR;
302         }
303 }
304
305 static void nvme_retry_req(struct request *req)
306 {
307         unsigned long delay = 0;
308         u16 crd;
309
310         /* The mask and shift result must be <= 3 */
311         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
312         if (crd)
313                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
314
315         nvme_req(req)->retries++;
316         blk_mq_requeue_request(req, false);
317         blk_mq_delay_kick_requeue_list(req->q, delay);
318 }
319
320 enum nvme_disposition {
321         COMPLETE,
322         RETRY,
323         FAILOVER,
324 };
325
326 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
327 {
328         if (likely(nvme_req(req)->status == 0))
329                 return COMPLETE;
330
331         if (blk_noretry_request(req) ||
332             (nvme_req(req)->status & NVME_SC_DNR) ||
333             nvme_req(req)->retries >= nvme_max_retries)
334                 return COMPLETE;
335
336         if (req->cmd_flags & REQ_NVME_MPATH) {
337                 if (nvme_is_path_error(nvme_req(req)->status) ||
338                     blk_queue_dying(req->q))
339                         return FAILOVER;
340         } else {
341                 if (blk_queue_dying(req->q))
342                         return COMPLETE;
343         }
344
345         return RETRY;
346 }
347
348 static inline void nvme_end_req(struct request *req)
349 {
350         blk_status_t status = nvme_error_status(nvme_req(req)->status);
351
352         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
353             req_op(req) == REQ_OP_ZONE_APPEND)
354                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
355                         le64_to_cpu(nvme_req(req)->result.u64));
356
357         nvme_trace_bio_complete(req);
358         blk_mq_end_request(req, status);
359 }
360
361 void nvme_complete_rq(struct request *req)
362 {
363         trace_nvme_complete_rq(req);
364         nvme_cleanup_cmd(req);
365
366         if (nvme_req(req)->ctrl->kas)
367                 nvme_req(req)->ctrl->comp_seen = true;
368
369         switch (nvme_decide_disposition(req)) {
370         case COMPLETE:
371                 nvme_end_req(req);
372                 return;
373         case RETRY:
374                 nvme_retry_req(req);
375                 return;
376         case FAILOVER:
377                 nvme_failover_req(req);
378                 return;
379         }
380 }
381 EXPORT_SYMBOL_GPL(nvme_complete_rq);
382
383 /*
384  * Called to unwind from ->queue_rq on a failed command submission so that the
385  * multipathing code gets called to potentially failover to another path.
386  * The caller needs to unwind all transport specific resource allocations and
387  * must return propagate the return value.
388  */
389 blk_status_t nvme_host_path_error(struct request *req)
390 {
391         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
392         blk_mq_set_request_complete(req);
393         nvme_complete_rq(req);
394         return BLK_STS_OK;
395 }
396 EXPORT_SYMBOL_GPL(nvme_host_path_error);
397
398 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
399 {
400         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
401                                 "Cancelling I/O %d", req->tag);
402
403         /* don't abort one completed request */
404         if (blk_mq_request_completed(req))
405                 return true;
406
407         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
408         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
409         blk_mq_complete_request(req);
410         return true;
411 }
412 EXPORT_SYMBOL_GPL(nvme_cancel_request);
413
414 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
415 {
416         if (ctrl->tagset) {
417                 blk_mq_tagset_busy_iter(ctrl->tagset,
418                                 nvme_cancel_request, ctrl);
419                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
420         }
421 }
422 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
423
424 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
425 {
426         if (ctrl->admin_tagset) {
427                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
428                                 nvme_cancel_request, ctrl);
429                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
430         }
431 }
432 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
433
434 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
435                 enum nvme_ctrl_state new_state)
436 {
437         enum nvme_ctrl_state old_state;
438         unsigned long flags;
439         bool changed = false;
440
441         spin_lock_irqsave(&ctrl->lock, flags);
442
443         old_state = ctrl->state;
444         switch (new_state) {
445         case NVME_CTRL_LIVE:
446                 switch (old_state) {
447                 case NVME_CTRL_NEW:
448                 case NVME_CTRL_RESETTING:
449                 case NVME_CTRL_CONNECTING:
450                         changed = true;
451                         fallthrough;
452                 default:
453                         break;
454                 }
455                 break;
456         case NVME_CTRL_RESETTING:
457                 switch (old_state) {
458                 case NVME_CTRL_NEW:
459                 case NVME_CTRL_LIVE:
460                         changed = true;
461                         fallthrough;
462                 default:
463                         break;
464                 }
465                 break;
466         case NVME_CTRL_CONNECTING:
467                 switch (old_state) {
468                 case NVME_CTRL_NEW:
469                 case NVME_CTRL_RESETTING:
470                         changed = true;
471                         fallthrough;
472                 default:
473                         break;
474                 }
475                 break;
476         case NVME_CTRL_DELETING:
477                 switch (old_state) {
478                 case NVME_CTRL_LIVE:
479                 case NVME_CTRL_RESETTING:
480                 case NVME_CTRL_CONNECTING:
481                         changed = true;
482                         fallthrough;
483                 default:
484                         break;
485                 }
486                 break;
487         case NVME_CTRL_DELETING_NOIO:
488                 switch (old_state) {
489                 case NVME_CTRL_DELETING:
490                 case NVME_CTRL_DEAD:
491                         changed = true;
492                         fallthrough;
493                 default:
494                         break;
495                 }
496                 break;
497         case NVME_CTRL_DEAD:
498                 switch (old_state) {
499                 case NVME_CTRL_DELETING:
500                         changed = true;
501                         fallthrough;
502                 default:
503                         break;
504                 }
505                 break;
506         default:
507                 break;
508         }
509
510         if (changed) {
511                 ctrl->state = new_state;
512                 wake_up_all(&ctrl->state_wq);
513         }
514
515         spin_unlock_irqrestore(&ctrl->lock, flags);
516         if (!changed)
517                 return false;
518
519         if (ctrl->state == NVME_CTRL_LIVE) {
520                 if (old_state == NVME_CTRL_CONNECTING)
521                         nvme_stop_failfast_work(ctrl);
522                 nvme_kick_requeue_lists(ctrl);
523         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
524                 old_state == NVME_CTRL_RESETTING) {
525                 nvme_start_failfast_work(ctrl);
526         }
527         return changed;
528 }
529 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
530
531 /*
532  * Returns true for sink states that can't ever transition back to live.
533  */
534 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
535 {
536         switch (ctrl->state) {
537         case NVME_CTRL_NEW:
538         case NVME_CTRL_LIVE:
539         case NVME_CTRL_RESETTING:
540         case NVME_CTRL_CONNECTING:
541                 return false;
542         case NVME_CTRL_DELETING:
543         case NVME_CTRL_DELETING_NOIO:
544         case NVME_CTRL_DEAD:
545                 return true;
546         default:
547                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
548                 return true;
549         }
550 }
551
552 /*
553  * Waits for the controller state to be resetting, or returns false if it is
554  * not possible to ever transition to that state.
555  */
556 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
557 {
558         wait_event(ctrl->state_wq,
559                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
560                    nvme_state_terminal(ctrl));
561         return ctrl->state == NVME_CTRL_RESETTING;
562 }
563 EXPORT_SYMBOL_GPL(nvme_wait_reset);
564
565 static void nvme_free_ns_head(struct kref *ref)
566 {
567         struct nvme_ns_head *head =
568                 container_of(ref, struct nvme_ns_head, ref);
569
570         nvme_mpath_remove_disk(head);
571         ida_simple_remove(&head->subsys->ns_ida, head->instance);
572         cleanup_srcu_struct(&head->srcu);
573         nvme_put_subsystem(head->subsys);
574         kfree(head);
575 }
576
577 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
578 {
579         return kref_get_unless_zero(&head->ref);
580 }
581
582 void nvme_put_ns_head(struct nvme_ns_head *head)
583 {
584         kref_put(&head->ref, nvme_free_ns_head);
585 }
586
587 static void nvme_free_ns(struct kref *kref)
588 {
589         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
590
591         put_disk(ns->disk);
592         nvme_put_ns_head(ns->head);
593         nvme_put_ctrl(ns->ctrl);
594         kfree(ns);
595 }
596
597 static inline bool nvme_get_ns(struct nvme_ns *ns)
598 {
599         return kref_get_unless_zero(&ns->kref);
600 }
601
602 void nvme_put_ns(struct nvme_ns *ns)
603 {
604         kref_put(&ns->kref, nvme_free_ns);
605 }
606 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
607
608 static inline void nvme_clear_nvme_request(struct request *req)
609 {
610         nvme_req(req)->status = 0;
611         nvme_req(req)->retries = 0;
612         nvme_req(req)->flags = 0;
613         req->rq_flags |= RQF_DONTPREP;
614 }
615
616 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
617 {
618         return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
619 }
620
621 static inline void nvme_init_request(struct request *req,
622                 struct nvme_command *cmd)
623 {
624         if (req->q->queuedata)
625                 req->timeout = NVME_IO_TIMEOUT;
626         else /* no queuedata implies admin queue */
627                 req->timeout = NVME_ADMIN_TIMEOUT;
628
629         /* passthru commands should let the driver set the SGL flags */
630         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
631
632         req->cmd_flags |= REQ_FAILFAST_DRIVER;
633         if (req->mq_hctx->type == HCTX_TYPE_POLL)
634                 req->cmd_flags |= REQ_HIPRI;
635         nvme_clear_nvme_request(req);
636         memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
637 }
638
639 struct request *nvme_alloc_request(struct request_queue *q,
640                 struct nvme_command *cmd, blk_mq_req_flags_t flags)
641 {
642         struct request *req;
643
644         req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
645         if (!IS_ERR(req))
646                 nvme_init_request(req, cmd);
647         return req;
648 }
649 EXPORT_SYMBOL_GPL(nvme_alloc_request);
650
651 static struct request *nvme_alloc_request_qid(struct request_queue *q,
652                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
653 {
654         struct request *req;
655
656         req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
657                         qid ? qid - 1 : 0);
658         if (!IS_ERR(req))
659                 nvme_init_request(req, cmd);
660         return req;
661 }
662
663 /*
664  * For something we're not in a state to send to the device the default action
665  * is to busy it and retry it after the controller state is recovered.  However,
666  * if the controller is deleting or if anything is marked for failfast or
667  * nvme multipath it is immediately failed.
668  *
669  * Note: commands used to initialize the controller will be marked for failfast.
670  * Note: nvme cli/ioctl commands are marked for failfast.
671  */
672 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
673                 struct request *rq)
674 {
675         if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
676             ctrl->state != NVME_CTRL_DEAD &&
677             !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
678             !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
679                 return BLK_STS_RESOURCE;
680         return nvme_host_path_error(rq);
681 }
682 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
683
684 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
685                 bool queue_live)
686 {
687         struct nvme_request *req = nvme_req(rq);
688
689         /*
690          * currently we have a problem sending passthru commands
691          * on the admin_q if the controller is not LIVE because we can't
692          * make sure that they are going out after the admin connect,
693          * controller enable and/or other commands in the initialization
694          * sequence. until the controller will be LIVE, fail with
695          * BLK_STS_RESOURCE so that they will be rescheduled.
696          */
697         if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
698                 return false;
699
700         if (ctrl->ops->flags & NVME_F_FABRICS) {
701                 /*
702                  * Only allow commands on a live queue, except for the connect
703                  * command, which is require to set the queue live in the
704                  * appropinquate states.
705                  */
706                 switch (ctrl->state) {
707                 case NVME_CTRL_CONNECTING:
708                         if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
709                             req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
710                                 return true;
711                         break;
712                 default:
713                         break;
714                 case NVME_CTRL_DEAD:
715                         return false;
716                 }
717         }
718
719         return queue_live;
720 }
721 EXPORT_SYMBOL_GPL(__nvme_check_ready);
722
723 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
724 {
725         struct nvme_command c = { };
726
727         c.directive.opcode = nvme_admin_directive_send;
728         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
729         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
730         c.directive.dtype = NVME_DIR_IDENTIFY;
731         c.directive.tdtype = NVME_DIR_STREAMS;
732         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
733
734         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
735 }
736
737 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
738 {
739         return nvme_toggle_streams(ctrl, false);
740 }
741
742 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
743 {
744         return nvme_toggle_streams(ctrl, true);
745 }
746
747 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
748                                   struct streams_directive_params *s, u32 nsid)
749 {
750         struct nvme_command c = { };
751
752         memset(s, 0, sizeof(*s));
753
754         c.directive.opcode = nvme_admin_directive_recv;
755         c.directive.nsid = cpu_to_le32(nsid);
756         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
757         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
758         c.directive.dtype = NVME_DIR_STREAMS;
759
760         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
761 }
762
763 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
764 {
765         struct streams_directive_params s;
766         int ret;
767
768         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
769                 return 0;
770         if (!streams)
771                 return 0;
772
773         ret = nvme_enable_streams(ctrl);
774         if (ret)
775                 return ret;
776
777         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
778         if (ret)
779                 goto out_disable_stream;
780
781         ctrl->nssa = le16_to_cpu(s.nssa);
782         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
783                 dev_info(ctrl->device, "too few streams (%u) available\n",
784                                         ctrl->nssa);
785                 goto out_disable_stream;
786         }
787
788         ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
789         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
790         return 0;
791
792 out_disable_stream:
793         nvme_disable_streams(ctrl);
794         return ret;
795 }
796
797 /*
798  * Check if 'req' has a write hint associated with it. If it does, assign
799  * a valid namespace stream to the write.
800  */
801 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
802                                      struct request *req, u16 *control,
803                                      u32 *dsmgmt)
804 {
805         enum rw_hint streamid = req->write_hint;
806
807         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
808                 streamid = 0;
809         else {
810                 streamid--;
811                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
812                         return;
813
814                 *control |= NVME_RW_DTYPE_STREAMS;
815                 *dsmgmt |= streamid << 16;
816         }
817
818         if (streamid < ARRAY_SIZE(req->q->write_hints))
819                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
820 }
821
822 static inline void nvme_setup_flush(struct nvme_ns *ns,
823                 struct nvme_command *cmnd)
824 {
825         cmnd->common.opcode = nvme_cmd_flush;
826         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
827 }
828
829 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
830                 struct nvme_command *cmnd)
831 {
832         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
833         struct nvme_dsm_range *range;
834         struct bio *bio;
835
836         /*
837          * Some devices do not consider the DSM 'Number of Ranges' field when
838          * determining how much data to DMA. Always allocate memory for maximum
839          * number of segments to prevent device reading beyond end of buffer.
840          */
841         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
842
843         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
844         if (!range) {
845                 /*
846                  * If we fail allocation our range, fallback to the controller
847                  * discard page. If that's also busy, it's safe to return
848                  * busy, as we know we can make progress once that's freed.
849                  */
850                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
851                         return BLK_STS_RESOURCE;
852
853                 range = page_address(ns->ctrl->discard_page);
854         }
855
856         __rq_for_each_bio(bio, req) {
857                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
858                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
859
860                 if (n < segments) {
861                         range[n].cattr = cpu_to_le32(0);
862                         range[n].nlb = cpu_to_le32(nlb);
863                         range[n].slba = cpu_to_le64(slba);
864                 }
865                 n++;
866         }
867
868         if (WARN_ON_ONCE(n != segments)) {
869                 if (virt_to_page(range) == ns->ctrl->discard_page)
870                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
871                 else
872                         kfree(range);
873                 return BLK_STS_IOERR;
874         }
875
876         cmnd->dsm.opcode = nvme_cmd_dsm;
877         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
878         cmnd->dsm.nr = cpu_to_le32(segments - 1);
879         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
880
881         req->special_vec.bv_page = virt_to_page(range);
882         req->special_vec.bv_offset = offset_in_page(range);
883         req->special_vec.bv_len = alloc_size;
884         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
885
886         return BLK_STS_OK;
887 }
888
889 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
890                 struct request *req, struct nvme_command *cmnd)
891 {
892         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
893                 return nvme_setup_discard(ns, req, cmnd);
894
895         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
896         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
897         cmnd->write_zeroes.slba =
898                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
899         cmnd->write_zeroes.length =
900                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
901         if (nvme_ns_has_pi(ns))
902                 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
903         else
904                 cmnd->write_zeroes.control = 0;
905         return BLK_STS_OK;
906 }
907
908 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
909                 struct request *req, struct nvme_command *cmnd,
910                 enum nvme_opcode op)
911 {
912         struct nvme_ctrl *ctrl = ns->ctrl;
913         u16 control = 0;
914         u32 dsmgmt = 0;
915
916         if (req->cmd_flags & REQ_FUA)
917                 control |= NVME_RW_FUA;
918         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
919                 control |= NVME_RW_LR;
920
921         if (req->cmd_flags & REQ_RAHEAD)
922                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
923
924         cmnd->rw.opcode = op;
925         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
926         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
927         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
928
929         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
930                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
931
932         if (ns->ms) {
933                 /*
934                  * If formated with metadata, the block layer always provides a
935                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
936                  * we enable the PRACT bit for protection information or set the
937                  * namespace capacity to zero to prevent any I/O.
938                  */
939                 if (!blk_integrity_rq(req)) {
940                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
941                                 return BLK_STS_NOTSUPP;
942                         control |= NVME_RW_PRINFO_PRACT;
943                 }
944
945                 switch (ns->pi_type) {
946                 case NVME_NS_DPS_PI_TYPE3:
947                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
948                         break;
949                 case NVME_NS_DPS_PI_TYPE1:
950                 case NVME_NS_DPS_PI_TYPE2:
951                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
952                                         NVME_RW_PRINFO_PRCHK_REF;
953                         if (op == nvme_cmd_zone_append)
954                                 control |= NVME_RW_APPEND_PIREMAP;
955                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
956                         break;
957                 }
958         }
959
960         cmnd->rw.control = cpu_to_le16(control);
961         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
962         return 0;
963 }
964
965 void nvme_cleanup_cmd(struct request *req)
966 {
967         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
968                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
969
970                 if (req->special_vec.bv_page == ctrl->discard_page)
971                         clear_bit_unlock(0, &ctrl->discard_page_busy);
972                 else
973                         kfree(bvec_virt(&req->special_vec));
974         }
975 }
976 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
977
978 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
979 {
980         struct nvme_command *cmd = nvme_req(req)->cmd;
981         struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
982         blk_status_t ret = BLK_STS_OK;
983
984         if (!(req->rq_flags & RQF_DONTPREP)) {
985                 nvme_clear_nvme_request(req);
986                 memset(cmd, 0, sizeof(*cmd));
987         }
988
989         switch (req_op(req)) {
990         case REQ_OP_DRV_IN:
991         case REQ_OP_DRV_OUT:
992                 /* these are setup prior to execution in nvme_init_request() */
993                 break;
994         case REQ_OP_FLUSH:
995                 nvme_setup_flush(ns, cmd);
996                 break;
997         case REQ_OP_ZONE_RESET_ALL:
998         case REQ_OP_ZONE_RESET:
999                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1000                 break;
1001         case REQ_OP_ZONE_OPEN:
1002                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1003                 break;
1004         case REQ_OP_ZONE_CLOSE:
1005                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1006                 break;
1007         case REQ_OP_ZONE_FINISH:
1008                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1009                 break;
1010         case REQ_OP_WRITE_ZEROES:
1011                 ret = nvme_setup_write_zeroes(ns, req, cmd);
1012                 break;
1013         case REQ_OP_DISCARD:
1014                 ret = nvme_setup_discard(ns, req, cmd);
1015                 break;
1016         case REQ_OP_READ:
1017                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1018                 break;
1019         case REQ_OP_WRITE:
1020                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1021                 break;
1022         case REQ_OP_ZONE_APPEND:
1023                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1024                 break;
1025         default:
1026                 WARN_ON_ONCE(1);
1027                 return BLK_STS_IOERR;
1028         }
1029
1030         if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
1031                 nvme_req(req)->genctr++;
1032         cmd->common.command_id = nvme_cid(req);
1033         trace_nvme_setup_cmd(req, cmd);
1034         return ret;
1035 }
1036 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1037
1038 /*
1039  * Return values:
1040  * 0:  success
1041  * >0: nvme controller's cqe status response
1042  * <0: kernel error in lieu of controller response
1043  */
1044 static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1045                 bool at_head)
1046 {
1047         blk_status_t status;
1048
1049         status = blk_execute_rq(disk, rq, at_head);
1050         if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1051                 return -EINTR;
1052         if (nvme_req(rq)->status)
1053                 return nvme_req(rq)->status;
1054         return blk_status_to_errno(status);
1055 }
1056
1057 /*
1058  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1059  * if the result is positive, it's an NVM Express status code
1060  */
1061 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1062                 union nvme_result *result, void *buffer, unsigned bufflen,
1063                 unsigned timeout, int qid, int at_head,
1064                 blk_mq_req_flags_t flags)
1065 {
1066         struct request *req;
1067         int ret;
1068
1069         if (qid == NVME_QID_ANY)
1070                 req = nvme_alloc_request(q, cmd, flags);
1071         else
1072                 req = nvme_alloc_request_qid(q, cmd, flags, qid);
1073         if (IS_ERR(req))
1074                 return PTR_ERR(req);
1075
1076         if (timeout)
1077                 req->timeout = timeout;
1078
1079         if (buffer && bufflen) {
1080                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1081                 if (ret)
1082                         goto out;
1083         }
1084
1085         ret = nvme_execute_rq(NULL, req, at_head);
1086         if (result && ret >= 0)
1087                 *result = nvme_req(req)->result;
1088  out:
1089         blk_mq_free_request(req);
1090         return ret;
1091 }
1092 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1093
1094 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1095                 void *buffer, unsigned bufflen)
1096 {
1097         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1098                         NVME_QID_ANY, 0, 0);
1099 }
1100 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1101
1102 static u32 nvme_known_admin_effects(u8 opcode)
1103 {
1104         switch (opcode) {
1105         case nvme_admin_format_nvm:
1106                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1107                         NVME_CMD_EFFECTS_CSE_MASK;
1108         case nvme_admin_sanitize_nvm:
1109                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1110         default:
1111                 break;
1112         }
1113         return 0;
1114 }
1115
1116 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1117 {
1118         u32 effects = 0;
1119
1120         if (ns) {
1121                 if (ns->head->effects)
1122                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1123                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1124                         dev_warn_once(ctrl->device,
1125                                 "IO command:%02x has unhandled effects:%08x\n",
1126                                 opcode, effects);
1127                 return 0;
1128         }
1129
1130         if (ctrl->effects)
1131                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1132         effects |= nvme_known_admin_effects(opcode);
1133
1134         return effects;
1135 }
1136 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1137
1138 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1139                                u8 opcode)
1140 {
1141         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1142
1143         /*
1144          * For simplicity, IO to all namespaces is quiesced even if the command
1145          * effects say only one namespace is affected.
1146          */
1147         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1148                 mutex_lock(&ctrl->scan_lock);
1149                 mutex_lock(&ctrl->subsys->lock);
1150                 nvme_mpath_start_freeze(ctrl->subsys);
1151                 nvme_mpath_wait_freeze(ctrl->subsys);
1152                 nvme_start_freeze(ctrl);
1153                 nvme_wait_freeze(ctrl);
1154         }
1155         return effects;
1156 }
1157
1158 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1159                               struct nvme_command *cmd, int status)
1160 {
1161         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1162                 nvme_unfreeze(ctrl);
1163                 nvme_mpath_unfreeze(ctrl->subsys);
1164                 mutex_unlock(&ctrl->subsys->lock);
1165                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1166                 mutex_unlock(&ctrl->scan_lock);
1167         }
1168         if (effects & NVME_CMD_EFFECTS_CCC)
1169                 nvme_init_ctrl_finish(ctrl);
1170         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1171                 nvme_queue_scan(ctrl);
1172                 flush_work(&ctrl->scan_work);
1173         }
1174
1175         switch (cmd->common.opcode) {
1176         case nvme_admin_set_features:
1177                 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1178                 case NVME_FEAT_KATO:
1179                         /*
1180                          * Keep alive commands interval on the host should be
1181                          * updated when KATO is modified by Set Features
1182                          * commands.
1183                          */
1184                         if (!status)
1185                                 nvme_update_keep_alive(ctrl, cmd);
1186                         break;
1187                 default:
1188                         break;
1189                 }
1190                 break;
1191         default:
1192                 break;
1193         }
1194 }
1195
1196 int nvme_execute_passthru_rq(struct request *rq)
1197 {
1198         struct nvme_command *cmd = nvme_req(rq)->cmd;
1199         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1200         struct nvme_ns *ns = rq->q->queuedata;
1201         struct gendisk *disk = ns ? ns->disk : NULL;
1202         u32 effects;
1203         int  ret;
1204
1205         effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1206         ret = nvme_execute_rq(disk, rq, false);
1207         if (effects) /* nothing to be done for zero cmd effects */
1208                 nvme_passthru_end(ctrl, effects, cmd, ret);
1209
1210         return ret;
1211 }
1212 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1213
1214 /*
1215  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1216  * 
1217  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1218  *   accounting for transport roundtrip times [..].
1219  */
1220 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1221 {
1222         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1223 }
1224
1225 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1226 {
1227         struct nvme_ctrl *ctrl = rq->end_io_data;
1228         unsigned long flags;
1229         bool startka = false;
1230
1231         blk_mq_free_request(rq);
1232
1233         if (status) {
1234                 dev_err(ctrl->device,
1235                         "failed nvme_keep_alive_end_io error=%d\n",
1236                                 status);
1237                 return;
1238         }
1239
1240         ctrl->comp_seen = false;
1241         spin_lock_irqsave(&ctrl->lock, flags);
1242         if (ctrl->state == NVME_CTRL_LIVE ||
1243             ctrl->state == NVME_CTRL_CONNECTING)
1244                 startka = true;
1245         spin_unlock_irqrestore(&ctrl->lock, flags);
1246         if (startka)
1247                 nvme_queue_keep_alive_work(ctrl);
1248 }
1249
1250 static void nvme_keep_alive_work(struct work_struct *work)
1251 {
1252         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1253                         struct nvme_ctrl, ka_work);
1254         bool comp_seen = ctrl->comp_seen;
1255         struct request *rq;
1256
1257         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1258                 dev_dbg(ctrl->device,
1259                         "reschedule traffic based keep-alive timer\n");
1260                 ctrl->comp_seen = false;
1261                 nvme_queue_keep_alive_work(ctrl);
1262                 return;
1263         }
1264
1265         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1266                                 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1267         if (IS_ERR(rq)) {
1268                 /* allocation failure, reset the controller */
1269                 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1270                 nvme_reset_ctrl(ctrl);
1271                 return;
1272         }
1273
1274         rq->timeout = ctrl->kato * HZ;
1275         rq->end_io_data = ctrl;
1276         blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1277 }
1278
1279 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1280 {
1281         if (unlikely(ctrl->kato == 0))
1282                 return;
1283
1284         nvme_queue_keep_alive_work(ctrl);
1285 }
1286
1287 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1288 {
1289         if (unlikely(ctrl->kato == 0))
1290                 return;
1291
1292         cancel_delayed_work_sync(&ctrl->ka_work);
1293 }
1294 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1295
1296 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1297                                    struct nvme_command *cmd)
1298 {
1299         unsigned int new_kato =
1300                 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1301
1302         dev_info(ctrl->device,
1303                  "keep alive interval updated from %u ms to %u ms\n",
1304                  ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1305
1306         nvme_stop_keep_alive(ctrl);
1307         ctrl->kato = new_kato;
1308         nvme_start_keep_alive(ctrl);
1309 }
1310
1311 /*
1312  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1313  * flag, thus sending any new CNS opcodes has a big chance of not working.
1314  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1315  * (but not for any later version).
1316  */
1317 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1318 {
1319         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1320                 return ctrl->vs < NVME_VS(1, 2, 0);
1321         return ctrl->vs < NVME_VS(1, 1, 0);
1322 }
1323
1324 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1325 {
1326         struct nvme_command c = { };
1327         int error;
1328
1329         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1330         c.identify.opcode = nvme_admin_identify;
1331         c.identify.cns = NVME_ID_CNS_CTRL;
1332
1333         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1334         if (!*id)
1335                 return -ENOMEM;
1336
1337         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1338                         sizeof(struct nvme_id_ctrl));
1339         if (error)
1340                 kfree(*id);
1341         return error;
1342 }
1343
1344 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1345                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1346 {
1347         const char *warn_str = "ctrl returned bogus length:";
1348         void *data = cur;
1349
1350         switch (cur->nidt) {
1351         case NVME_NIDT_EUI64:
1352                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1353                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1354                                  warn_str, cur->nidl);
1355                         return -1;
1356                 }
1357                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1358                 return NVME_NIDT_EUI64_LEN;
1359         case NVME_NIDT_NGUID:
1360                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1361                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1362                                  warn_str, cur->nidl);
1363                         return -1;
1364                 }
1365                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1366                 return NVME_NIDT_NGUID_LEN;
1367         case NVME_NIDT_UUID:
1368                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1369                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1370                                  warn_str, cur->nidl);
1371                         return -1;
1372                 }
1373                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1374                 return NVME_NIDT_UUID_LEN;
1375         case NVME_NIDT_CSI:
1376                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1377                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1378                                  warn_str, cur->nidl);
1379                         return -1;
1380                 }
1381                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1382                 *csi_seen = true;
1383                 return NVME_NIDT_CSI_LEN;
1384         default:
1385                 /* Skip unknown types */
1386                 return cur->nidl;
1387         }
1388 }
1389
1390 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1391                 struct nvme_ns_ids *ids)
1392 {
1393         struct nvme_command c = { };
1394         bool csi_seen = false;
1395         int status, pos, len;
1396         void *data;
1397
1398         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1399                 return 0;
1400         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1401                 return 0;
1402
1403         c.identify.opcode = nvme_admin_identify;
1404         c.identify.nsid = cpu_to_le32(nsid);
1405         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1406
1407         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1408         if (!data)
1409                 return -ENOMEM;
1410
1411         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1412                                       NVME_IDENTIFY_DATA_SIZE);
1413         if (status) {
1414                 dev_warn(ctrl->device,
1415                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1416                         nsid, status);
1417                 goto free_data;
1418         }
1419
1420         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1421                 struct nvme_ns_id_desc *cur = data + pos;
1422
1423                 if (cur->nidl == 0)
1424                         break;
1425
1426                 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1427                 if (len < 0)
1428                         break;
1429
1430                 len += sizeof(*cur);
1431         }
1432
1433         if (nvme_multi_css(ctrl) && !csi_seen) {
1434                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1435                          nsid);
1436                 status = -EINVAL;
1437         }
1438
1439 free_data:
1440         kfree(data);
1441         return status;
1442 }
1443
1444 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1445                         struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1446 {
1447         struct nvme_command c = { };
1448         int error;
1449
1450         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1451         c.identify.opcode = nvme_admin_identify;
1452         c.identify.nsid = cpu_to_le32(nsid);
1453         c.identify.cns = NVME_ID_CNS_NS;
1454
1455         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1456         if (!*id)
1457                 return -ENOMEM;
1458
1459         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1460         if (error) {
1461                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1462                 goto out_free_id;
1463         }
1464
1465         error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1466         if ((*id)->ncap == 0) /* namespace not allocated or attached */
1467                 goto out_free_id;
1468
1469         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1470             !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1471                 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1472         if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1473             !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1474                 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1475
1476         return 0;
1477
1478 out_free_id:
1479         kfree(*id);
1480         return error;
1481 }
1482
1483 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1484                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1485 {
1486         union nvme_result res = { 0 };
1487         struct nvme_command c = { };
1488         int ret;
1489
1490         c.features.opcode = op;
1491         c.features.fid = cpu_to_le32(fid);
1492         c.features.dword11 = cpu_to_le32(dword11);
1493
1494         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1495                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1496         if (ret >= 0 && result)
1497                 *result = le32_to_cpu(res.u32);
1498         return ret;
1499 }
1500
1501 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1502                       unsigned int dword11, void *buffer, size_t buflen,
1503                       u32 *result)
1504 {
1505         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1506                              buflen, result);
1507 }
1508 EXPORT_SYMBOL_GPL(nvme_set_features);
1509
1510 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1511                       unsigned int dword11, void *buffer, size_t buflen,
1512                       u32 *result)
1513 {
1514         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1515                              buflen, result);
1516 }
1517 EXPORT_SYMBOL_GPL(nvme_get_features);
1518
1519 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1520 {
1521         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1522         u32 result;
1523         int status, nr_io_queues;
1524
1525         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1526                         &result);
1527         if (status < 0)
1528                 return status;
1529
1530         /*
1531          * Degraded controllers might return an error when setting the queue
1532          * count.  We still want to be able to bring them online and offer
1533          * access to the admin queue, as that might be only way to fix them up.
1534          */
1535         if (status > 0) {
1536                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1537                 *count = 0;
1538         } else {
1539                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1540                 *count = min(*count, nr_io_queues);
1541         }
1542
1543         return 0;
1544 }
1545 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1546
1547 #define NVME_AEN_SUPPORTED \
1548         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1549          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1550
1551 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1552 {
1553         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1554         int status;
1555
1556         if (!supported_aens)
1557                 return;
1558
1559         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1560                         NULL, 0, &result);
1561         if (status)
1562                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1563                          supported_aens);
1564
1565         queue_work(nvme_wq, &ctrl->async_event_work);
1566 }
1567
1568 static int nvme_ns_open(struct nvme_ns *ns)
1569 {
1570
1571         /* should never be called due to GENHD_FL_HIDDEN */
1572         if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1573                 goto fail;
1574         if (!nvme_get_ns(ns))
1575                 goto fail;
1576         if (!try_module_get(ns->ctrl->ops->module))
1577                 goto fail_put_ns;
1578
1579         return 0;
1580
1581 fail_put_ns:
1582         nvme_put_ns(ns);
1583 fail:
1584         return -ENXIO;
1585 }
1586
1587 static void nvme_ns_release(struct nvme_ns *ns)
1588 {
1589
1590         module_put(ns->ctrl->ops->module);
1591         nvme_put_ns(ns);
1592 }
1593
1594 static int nvme_open(struct block_device *bdev, fmode_t mode)
1595 {
1596         return nvme_ns_open(bdev->bd_disk->private_data);
1597 }
1598
1599 static void nvme_release(struct gendisk *disk, fmode_t mode)
1600 {
1601         nvme_ns_release(disk->private_data);
1602 }
1603
1604 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1605 {
1606         /* some standard values */
1607         geo->heads = 1 << 6;
1608         geo->sectors = 1 << 5;
1609         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1610         return 0;
1611 }
1612
1613 #ifdef CONFIG_BLK_DEV_INTEGRITY
1614 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1615                                 u32 max_integrity_segments)
1616 {
1617         struct blk_integrity integrity = { };
1618
1619         switch (pi_type) {
1620         case NVME_NS_DPS_PI_TYPE3:
1621                 integrity.profile = &t10_pi_type3_crc;
1622                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1623                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1624                 break;
1625         case NVME_NS_DPS_PI_TYPE1:
1626         case NVME_NS_DPS_PI_TYPE2:
1627                 integrity.profile = &t10_pi_type1_crc;
1628                 integrity.tag_size = sizeof(u16);
1629                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1630                 break;
1631         default:
1632                 integrity.profile = NULL;
1633                 break;
1634         }
1635         integrity.tuple_size = ms;
1636         blk_integrity_register(disk, &integrity);
1637         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1638 }
1639 #else
1640 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1641                                 u32 max_integrity_segments)
1642 {
1643 }
1644 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1645
1646 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1647 {
1648         struct nvme_ctrl *ctrl = ns->ctrl;
1649         struct request_queue *queue = disk->queue;
1650         u32 size = queue_logical_block_size(queue);
1651
1652         if (ctrl->max_discard_sectors == 0) {
1653                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1654                 return;
1655         }
1656
1657         if (ctrl->nr_streams && ns->sws && ns->sgs)
1658                 size *= ns->sws * ns->sgs;
1659
1660         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1661                         NVME_DSM_MAX_RANGES);
1662
1663         queue->limits.discard_alignment = 0;
1664         queue->limits.discard_granularity = size;
1665
1666         /* If discard is already enabled, don't reset queue limits */
1667         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1668                 return;
1669
1670         blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1671         blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1672
1673         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1674                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1675 }
1676
1677 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1678 {
1679         return !uuid_is_null(&ids->uuid) ||
1680                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1681                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1682 }
1683
1684 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1685 {
1686         return uuid_equal(&a->uuid, &b->uuid) &&
1687                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1688                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1689                 a->csi == b->csi;
1690 }
1691
1692 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1693                                  u32 *phys_bs, u32 *io_opt)
1694 {
1695         struct streams_directive_params s;
1696         int ret;
1697
1698         if (!ctrl->nr_streams)
1699                 return 0;
1700
1701         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1702         if (ret)
1703                 return ret;
1704
1705         ns->sws = le32_to_cpu(s.sws);
1706         ns->sgs = le16_to_cpu(s.sgs);
1707
1708         if (ns->sws) {
1709                 *phys_bs = ns->sws * (1 << ns->lba_shift);
1710                 if (ns->sgs)
1711                         *io_opt = *phys_bs * ns->sgs;
1712         }
1713
1714         return 0;
1715 }
1716
1717 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1718 {
1719         struct nvme_ctrl *ctrl = ns->ctrl;
1720
1721         /*
1722          * The PI implementation requires the metadata size to be equal to the
1723          * t10 pi tuple size.
1724          */
1725         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1726         if (ns->ms == sizeof(struct t10_pi_tuple))
1727                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1728         else
1729                 ns->pi_type = 0;
1730
1731         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1732         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1733                 return 0;
1734         if (ctrl->ops->flags & NVME_F_FABRICS) {
1735                 /*
1736                  * The NVMe over Fabrics specification only supports metadata as
1737                  * part of the extended data LBA.  We rely on HCA/HBA support to
1738                  * remap the separate metadata buffer from the block layer.
1739                  */
1740                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1741                         return -EINVAL;
1742                 if (ctrl->max_integrity_segments)
1743                         ns->features |=
1744                                 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1745         } else {
1746                 /*
1747                  * For PCIe controllers, we can't easily remap the separate
1748                  * metadata buffer from the block layer and thus require a
1749                  * separate metadata buffer for block layer metadata/PI support.
1750                  * We allow extended LBAs for the passthrough interface, though.
1751                  */
1752                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1753                         ns->features |= NVME_NS_EXT_LBAS;
1754                 else
1755                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1756         }
1757
1758         return 0;
1759 }
1760
1761 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1762                 struct request_queue *q)
1763 {
1764         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1765
1766         if (ctrl->max_hw_sectors) {
1767                 u32 max_segments =
1768                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1769
1770                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1771                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1772                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1773         }
1774         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1775         blk_queue_dma_alignment(q, 7);
1776         blk_queue_write_cache(q, vwc, vwc);
1777 }
1778
1779 static void nvme_update_disk_info(struct gendisk *disk,
1780                 struct nvme_ns *ns, struct nvme_id_ns *id)
1781 {
1782         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1783         unsigned short bs = 1 << ns->lba_shift;
1784         u32 atomic_bs, phys_bs, io_opt = 0;
1785
1786         /*
1787          * The block layer can't support LBA sizes larger than the page size
1788          * yet, so catch this early and don't allow block I/O.
1789          */
1790         if (ns->lba_shift > PAGE_SHIFT) {
1791                 capacity = 0;
1792                 bs = (1 << 9);
1793         }
1794
1795         blk_integrity_unregister(disk);
1796
1797         atomic_bs = phys_bs = bs;
1798         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1799         if (id->nabo == 0) {
1800                 /*
1801                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1802                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1803                  * 0 then AWUPF must be used instead.
1804                  */
1805                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1806                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1807                 else
1808                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1809         }
1810
1811         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1812                 /* NPWG = Namespace Preferred Write Granularity */
1813                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1814                 /* NOWS = Namespace Optimal Write Size */
1815                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1816         }
1817
1818         blk_queue_logical_block_size(disk->queue, bs);
1819         /*
1820          * Linux filesystems assume writing a single physical block is
1821          * an atomic operation. Hence limit the physical block size to the
1822          * value of the Atomic Write Unit Power Fail parameter.
1823          */
1824         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1825         blk_queue_io_min(disk->queue, phys_bs);
1826         blk_queue_io_opt(disk->queue, io_opt);
1827
1828         /*
1829          * Register a metadata profile for PI, or the plain non-integrity NVMe
1830          * metadata masquerading as Type 0 if supported, otherwise reject block
1831          * I/O to namespaces with metadata except when the namespace supports
1832          * PI, as it can strip/insert in that case.
1833          */
1834         if (ns->ms) {
1835                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1836                     (ns->features & NVME_NS_METADATA_SUPPORTED))
1837                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
1838                                             ns->ctrl->max_integrity_segments);
1839                 else if (!nvme_ns_has_pi(ns))
1840                         capacity = 0;
1841         }
1842
1843         set_capacity_and_notify(disk, capacity);
1844
1845         nvme_config_discard(disk, ns);
1846         blk_queue_max_write_zeroes_sectors(disk->queue,
1847                                            ns->ctrl->max_zeroes_sectors);
1848
1849         set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1850                 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1851 }
1852
1853 static inline bool nvme_first_scan(struct gendisk *disk)
1854 {
1855         /* nvme_alloc_ns() scans the disk prior to adding it */
1856         return !disk_live(disk);
1857 }
1858
1859 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1860 {
1861         struct nvme_ctrl *ctrl = ns->ctrl;
1862         u32 iob;
1863
1864         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1865             is_power_of_2(ctrl->max_hw_sectors))
1866                 iob = ctrl->max_hw_sectors;
1867         else
1868                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1869
1870         if (!iob)
1871                 return;
1872
1873         if (!is_power_of_2(iob)) {
1874                 if (nvme_first_scan(ns->disk))
1875                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1876                                 ns->disk->disk_name, iob);
1877                 return;
1878         }
1879
1880         if (blk_queue_is_zoned(ns->disk->queue)) {
1881                 if (nvme_first_scan(ns->disk))
1882                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
1883                                 ns->disk->disk_name);
1884                 return;
1885         }
1886
1887         blk_queue_chunk_sectors(ns->queue, iob);
1888 }
1889
1890 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1891 {
1892         unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1893         int ret;
1894
1895         blk_mq_freeze_queue(ns->disk->queue);
1896         ns->lba_shift = id->lbaf[lbaf].ds;
1897         nvme_set_queue_limits(ns->ctrl, ns->queue);
1898
1899         ret = nvme_configure_metadata(ns, id);
1900         if (ret)
1901                 goto out_unfreeze;
1902         nvme_set_chunk_sectors(ns, id);
1903         nvme_update_disk_info(ns->disk, ns, id);
1904
1905         if (ns->head->ids.csi == NVME_CSI_ZNS) {
1906                 ret = nvme_update_zone_info(ns, lbaf);
1907                 if (ret)
1908                         goto out_unfreeze;
1909         }
1910
1911         set_bit(NVME_NS_READY, &ns->flags);
1912         blk_mq_unfreeze_queue(ns->disk->queue);
1913
1914         if (blk_queue_is_zoned(ns->queue)) {
1915                 ret = nvme_revalidate_zones(ns);
1916                 if (ret && !nvme_first_scan(ns->disk))
1917                         goto out;
1918         }
1919
1920         if (nvme_ns_head_multipath(ns->head)) {
1921                 blk_mq_freeze_queue(ns->head->disk->queue);
1922                 nvme_update_disk_info(ns->head->disk, ns, id);
1923                 nvme_mpath_revalidate_paths(ns);
1924                 blk_stack_limits(&ns->head->disk->queue->limits,
1925                                  &ns->queue->limits, 0);
1926                 disk_update_readahead(ns->head->disk);
1927                 blk_mq_unfreeze_queue(ns->head->disk->queue);
1928         }
1929         return 0;
1930
1931 out_unfreeze:
1932         blk_mq_unfreeze_queue(ns->disk->queue);
1933 out:
1934         /*
1935          * If probing fails due an unsupported feature, hide the block device,
1936          * but still allow other access.
1937          */
1938         if (ret == -ENODEV) {
1939                 ns->disk->flags |= GENHD_FL_HIDDEN;
1940                 ret = 0;
1941         }
1942         return ret;
1943 }
1944
1945 static char nvme_pr_type(enum pr_type type)
1946 {
1947         switch (type) {
1948         case PR_WRITE_EXCLUSIVE:
1949                 return 1;
1950         case PR_EXCLUSIVE_ACCESS:
1951                 return 2;
1952         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1953                 return 3;
1954         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1955                 return 4;
1956         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1957                 return 5;
1958         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1959                 return 6;
1960         default:
1961                 return 0;
1962         }
1963 };
1964
1965 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1966                 struct nvme_command *c, u8 data[16])
1967 {
1968         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1969         int srcu_idx = srcu_read_lock(&head->srcu);
1970         struct nvme_ns *ns = nvme_find_path(head);
1971         int ret = -EWOULDBLOCK;
1972
1973         if (ns) {
1974                 c->common.nsid = cpu_to_le32(ns->head->ns_id);
1975                 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1976         }
1977         srcu_read_unlock(&head->srcu, srcu_idx);
1978         return ret;
1979 }
1980         
1981 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
1982                 u8 data[16])
1983 {
1984         c->common.nsid = cpu_to_le32(ns->head->ns_id);
1985         return nvme_submit_sync_cmd(ns->queue, c, data, 16);
1986 }
1987
1988 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1989                                 u64 key, u64 sa_key, u8 op)
1990 {
1991         struct nvme_command c = { };
1992         u8 data[16] = { 0, };
1993
1994         put_unaligned_le64(key, &data[0]);
1995         put_unaligned_le64(sa_key, &data[8]);
1996
1997         c.common.opcode = op;
1998         c.common.cdw10 = cpu_to_le32(cdw10);
1999
2000         if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2001             bdev->bd_disk->fops == &nvme_ns_head_ops)
2002                 return nvme_send_ns_head_pr_command(bdev, &c, data);
2003         return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2004 }
2005
2006 static int nvme_pr_register(struct block_device *bdev, u64 old,
2007                 u64 new, unsigned flags)
2008 {
2009         u32 cdw10;
2010
2011         if (flags & ~PR_FL_IGNORE_KEY)
2012                 return -EOPNOTSUPP;
2013
2014         cdw10 = old ? 2 : 0;
2015         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2016         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2017         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2018 }
2019
2020 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2021                 enum pr_type type, unsigned flags)
2022 {
2023         u32 cdw10;
2024
2025         if (flags & ~PR_FL_IGNORE_KEY)
2026                 return -EOPNOTSUPP;
2027
2028         cdw10 = nvme_pr_type(type) << 8;
2029         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2030         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2031 }
2032
2033 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2034                 enum pr_type type, bool abort)
2035 {
2036         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2037
2038         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2039 }
2040
2041 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2042 {
2043         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2044
2045         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2046 }
2047
2048 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2049 {
2050         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2051
2052         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2053 }
2054
2055 const struct pr_ops nvme_pr_ops = {
2056         .pr_register    = nvme_pr_register,
2057         .pr_reserve     = nvme_pr_reserve,
2058         .pr_release     = nvme_pr_release,
2059         .pr_preempt     = nvme_pr_preempt,
2060         .pr_clear       = nvme_pr_clear,
2061 };
2062
2063 #ifdef CONFIG_BLK_SED_OPAL
2064 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2065                 bool send)
2066 {
2067         struct nvme_ctrl *ctrl = data;
2068         struct nvme_command cmd = { };
2069
2070         if (send)
2071                 cmd.common.opcode = nvme_admin_security_send;
2072         else
2073                 cmd.common.opcode = nvme_admin_security_recv;
2074         cmd.common.nsid = 0;
2075         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2076         cmd.common.cdw11 = cpu_to_le32(len);
2077
2078         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2079                         NVME_QID_ANY, 1, 0);
2080 }
2081 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2082 #endif /* CONFIG_BLK_SED_OPAL */
2083
2084 #ifdef CONFIG_BLK_DEV_ZONED
2085 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2086                 unsigned int nr_zones, report_zones_cb cb, void *data)
2087 {
2088         return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2089                         data);
2090 }
2091 #else
2092 #define nvme_report_zones       NULL
2093 #endif /* CONFIG_BLK_DEV_ZONED */
2094
2095 static const struct block_device_operations nvme_bdev_ops = {
2096         .owner          = THIS_MODULE,
2097         .ioctl          = nvme_ioctl,
2098         .open           = nvme_open,
2099         .release        = nvme_release,
2100         .getgeo         = nvme_getgeo,
2101         .report_zones   = nvme_report_zones,
2102         .pr_ops         = &nvme_pr_ops,
2103 };
2104
2105 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2106 {
2107         unsigned long timeout =
2108                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2109         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2110         int ret;
2111
2112         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2113                 if (csts == ~0)
2114                         return -ENODEV;
2115                 if ((csts & NVME_CSTS_RDY) == bit)
2116                         break;
2117
2118                 usleep_range(1000, 2000);
2119                 if (fatal_signal_pending(current))
2120                         return -EINTR;
2121                 if (time_after(jiffies, timeout)) {
2122                         dev_err(ctrl->device,
2123                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2124                                 enabled ? "initialisation" : "reset", csts);
2125                         return -ENODEV;
2126                 }
2127         }
2128
2129         return ret;
2130 }
2131
2132 /*
2133  * If the device has been passed off to us in an enabled state, just clear
2134  * the enabled bit.  The spec says we should set the 'shutdown notification
2135  * bits', but doing so may cause the device to complete commands to the
2136  * admin queue ... and we don't know what memory that might be pointing at!
2137  */
2138 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2139 {
2140         int ret;
2141
2142         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2143         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2144
2145         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2146         if (ret)
2147                 return ret;
2148
2149         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2150                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2151
2152         return nvme_wait_ready(ctrl, ctrl->cap, false);
2153 }
2154 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2155
2156 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2157 {
2158         unsigned dev_page_min;
2159         int ret;
2160
2161         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2162         if (ret) {
2163                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2164                 return ret;
2165         }
2166         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2167
2168         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2169                 dev_err(ctrl->device,
2170                         "Minimum device page size %u too large for host (%u)\n",
2171                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2172                 return -ENODEV;
2173         }
2174
2175         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2176                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2177         else
2178                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2179         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2180         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2181         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2182         ctrl->ctrl_config |= NVME_CC_ENABLE;
2183
2184         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2185         if (ret)
2186                 return ret;
2187         return nvme_wait_ready(ctrl, ctrl->cap, true);
2188 }
2189 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2190
2191 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2192 {
2193         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2194         u32 csts;
2195         int ret;
2196
2197         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2198         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2199
2200         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2201         if (ret)
2202                 return ret;
2203
2204         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2205                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2206                         break;
2207
2208                 msleep(100);
2209                 if (fatal_signal_pending(current))
2210                         return -EINTR;
2211                 if (time_after(jiffies, timeout)) {
2212                         dev_err(ctrl->device,
2213                                 "Device shutdown incomplete; abort shutdown\n");
2214                         return -ENODEV;
2215                 }
2216         }
2217
2218         return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2221
2222 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2223 {
2224         __le64 ts;
2225         int ret;
2226
2227         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2228                 return 0;
2229
2230         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2231         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2232                         NULL);
2233         if (ret)
2234                 dev_warn_once(ctrl->device,
2235                         "could not set timestamp (%d)\n", ret);
2236         return ret;
2237 }
2238
2239 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2240 {
2241         struct nvme_feat_host_behavior *host;
2242         int ret;
2243
2244         /* Don't bother enabling the feature if retry delay is not reported */
2245         if (!ctrl->crdt[0])
2246                 return 0;
2247
2248         host = kzalloc(sizeof(*host), GFP_KERNEL);
2249         if (!host)
2250                 return 0;
2251
2252         host->acre = NVME_ENABLE_ACRE;
2253         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2254                                 host, sizeof(*host), NULL);
2255         kfree(host);
2256         return ret;
2257 }
2258
2259 /*
2260  * The function checks whether the given total (exlat + enlat) latency of
2261  * a power state allows the latter to be used as an APST transition target.
2262  * It does so by comparing the latency to the primary and secondary latency
2263  * tolerances defined by module params. If there's a match, the corresponding
2264  * timeout value is returned and the matching tolerance index (1 or 2) is
2265  * reported.
2266  */
2267 static bool nvme_apst_get_transition_time(u64 total_latency,
2268                 u64 *transition_time, unsigned *last_index)
2269 {
2270         if (total_latency <= apst_primary_latency_tol_us) {
2271                 if (*last_index == 1)
2272                         return false;
2273                 *last_index = 1;
2274                 *transition_time = apst_primary_timeout_ms;
2275                 return true;
2276         }
2277         if (apst_secondary_timeout_ms &&
2278                 total_latency <= apst_secondary_latency_tol_us) {
2279                 if (*last_index <= 2)
2280                         return false;
2281                 *last_index = 2;
2282                 *transition_time = apst_secondary_timeout_ms;
2283                 return true;
2284         }
2285         return false;
2286 }
2287
2288 /*
2289  * APST (Autonomous Power State Transition) lets us program a table of power
2290  * state transitions that the controller will perform automatically.
2291  *
2292  * Depending on module params, one of the two supported techniques will be used:
2293  *
2294  * - If the parameters provide explicit timeouts and tolerances, they will be
2295  *   used to build a table with up to 2 non-operational states to transition to.
2296  *   The default parameter values were selected based on the values used by
2297  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2298  *   regeneration of the APST table in the event of switching between external
2299  *   and battery power, the timeouts and tolerances reflect a compromise
2300  *   between values used by Microsoft for AC and battery scenarios.
2301  * - If not, we'll configure the table with a simple heuristic: we are willing
2302  *   to spend at most 2% of the time transitioning between power states.
2303  *   Therefore, when running in any given state, we will enter the next
2304  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2305  *   microseconds, as long as that state's exit latency is under the requested
2306  *   maximum latency.
2307  *
2308  * We will not autonomously enter any non-operational state for which the total
2309  * latency exceeds ps_max_latency_us.
2310  *
2311  * Users can set ps_max_latency_us to zero to turn off APST.
2312  */
2313 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2314 {
2315         struct nvme_feat_auto_pst *table;
2316         unsigned apste = 0;
2317         u64 max_lat_us = 0;
2318         __le64 target = 0;
2319         int max_ps = -1;
2320         int state;
2321         int ret;
2322         unsigned last_lt_index = UINT_MAX;
2323
2324         /*
2325          * If APST isn't supported or if we haven't been initialized yet,
2326          * then don't do anything.
2327          */
2328         if (!ctrl->apsta)
2329                 return 0;
2330
2331         if (ctrl->npss > 31) {
2332                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2333                 return 0;
2334         }
2335
2336         table = kzalloc(sizeof(*table), GFP_KERNEL);
2337         if (!table)
2338                 return 0;
2339
2340         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2341                 /* Turn off APST. */
2342                 dev_dbg(ctrl->device, "APST disabled\n");
2343                 goto done;
2344         }
2345
2346         /*
2347          * Walk through all states from lowest- to highest-power.
2348          * According to the spec, lower-numbered states use more power.  NPSS,
2349          * despite the name, is the index of the lowest-power state, not the
2350          * number of states.
2351          */
2352         for (state = (int)ctrl->npss; state >= 0; state--) {
2353                 u64 total_latency_us, exit_latency_us, transition_ms;
2354
2355                 if (target)
2356                         table->entries[state] = target;
2357
2358                 /*
2359                  * Don't allow transitions to the deepest state if it's quirked
2360                  * off.
2361                  */
2362                 if (state == ctrl->npss &&
2363                     (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2364                         continue;
2365
2366                 /*
2367                  * Is this state a useful non-operational state for higher-power
2368                  * states to autonomously transition to?
2369                  */
2370                 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2371                         continue;
2372
2373                 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2374                 if (exit_latency_us > ctrl->ps_max_latency_us)
2375                         continue;
2376
2377                 total_latency_us = exit_latency_us +
2378                         le32_to_cpu(ctrl->psd[state].entry_lat);
2379
2380                 /*
2381                  * This state is good. It can be used as the APST idle target
2382                  * for higher power states.
2383                  */
2384                 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2385                         if (!nvme_apst_get_transition_time(total_latency_us,
2386                                         &transition_ms, &last_lt_index))
2387                                 continue;
2388                 } else {
2389                         transition_ms = total_latency_us + 19;
2390                         do_div(transition_ms, 20);
2391                         if (transition_ms > (1 << 24) - 1)
2392                                 transition_ms = (1 << 24) - 1;
2393                 }
2394
2395                 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2396                 if (max_ps == -1)
2397                         max_ps = state;
2398                 if (total_latency_us > max_lat_us)
2399                         max_lat_us = total_latency_us;
2400         }
2401
2402         if (max_ps == -1)
2403                 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2404         else
2405                 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2406                         max_ps, max_lat_us, (int)sizeof(*table), table);
2407         apste = 1;
2408
2409 done:
2410         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2411                                 table, sizeof(*table), NULL);
2412         if (ret)
2413                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2414         kfree(table);
2415         return ret;
2416 }
2417
2418 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2419 {
2420         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2421         u64 latency;
2422
2423         switch (val) {
2424         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2425         case PM_QOS_LATENCY_ANY:
2426                 latency = U64_MAX;
2427                 break;
2428
2429         default:
2430                 latency = val;
2431         }
2432
2433         if (ctrl->ps_max_latency_us != latency) {
2434                 ctrl->ps_max_latency_us = latency;
2435                 if (ctrl->state == NVME_CTRL_LIVE)
2436                         nvme_configure_apst(ctrl);
2437         }
2438 }
2439
2440 struct nvme_core_quirk_entry {
2441         /*
2442          * NVMe model and firmware strings are padded with spaces.  For
2443          * simplicity, strings in the quirk table are padded with NULLs
2444          * instead.
2445          */
2446         u16 vid;
2447         const char *mn;
2448         const char *fr;
2449         unsigned long quirks;
2450 };
2451
2452 static const struct nvme_core_quirk_entry core_quirks[] = {
2453         {
2454                 /*
2455                  * This Toshiba device seems to die using any APST states.  See:
2456                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2457                  */
2458                 .vid = 0x1179,
2459                 .mn = "THNSF5256GPUK TOSHIBA",
2460                 .quirks = NVME_QUIRK_NO_APST,
2461         },
2462         {
2463                 /*
2464                  * This LiteON CL1-3D*-Q11 firmware version has a race
2465                  * condition associated with actions related to suspend to idle
2466                  * LiteON has resolved the problem in future firmware
2467                  */
2468                 .vid = 0x14a4,
2469                 .fr = "22301111",
2470                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2471         }
2472 };
2473
2474 /* match is null-terminated but idstr is space-padded. */
2475 static bool string_matches(const char *idstr, const char *match, size_t len)
2476 {
2477         size_t matchlen;
2478
2479         if (!match)
2480                 return true;
2481
2482         matchlen = strlen(match);
2483         WARN_ON_ONCE(matchlen > len);
2484
2485         if (memcmp(idstr, match, matchlen))
2486                 return false;
2487
2488         for (; matchlen < len; matchlen++)
2489                 if (idstr[matchlen] != ' ')
2490                         return false;
2491
2492         return true;
2493 }
2494
2495 static bool quirk_matches(const struct nvme_id_ctrl *id,
2496                           const struct nvme_core_quirk_entry *q)
2497 {
2498         return q->vid == le16_to_cpu(id->vid) &&
2499                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2500                 string_matches(id->fr, q->fr, sizeof(id->fr));
2501 }
2502
2503 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2504                 struct nvme_id_ctrl *id)
2505 {
2506         size_t nqnlen;
2507         int off;
2508
2509         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2510                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2511                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2512                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2513                         return;
2514                 }
2515
2516                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2517                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2518         }
2519
2520         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2521         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2522                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2523                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2524         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2525         off += sizeof(id->sn);
2526         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2527         off += sizeof(id->mn);
2528         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2529 }
2530
2531 static void nvme_release_subsystem(struct device *dev)
2532 {
2533         struct nvme_subsystem *subsys =
2534                 container_of(dev, struct nvme_subsystem, dev);
2535
2536         if (subsys->instance >= 0)
2537                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2538         kfree(subsys);
2539 }
2540
2541 static void nvme_destroy_subsystem(struct kref *ref)
2542 {
2543         struct nvme_subsystem *subsys =
2544                         container_of(ref, struct nvme_subsystem, ref);
2545
2546         mutex_lock(&nvme_subsystems_lock);
2547         list_del(&subsys->entry);
2548         mutex_unlock(&nvme_subsystems_lock);
2549
2550         ida_destroy(&subsys->ns_ida);
2551         device_del(&subsys->dev);
2552         put_device(&subsys->dev);
2553 }
2554
2555 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2556 {
2557         kref_put(&subsys->ref, nvme_destroy_subsystem);
2558 }
2559
2560 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2561 {
2562         struct nvme_subsystem *subsys;
2563
2564         lockdep_assert_held(&nvme_subsystems_lock);
2565
2566         /*
2567          * Fail matches for discovery subsystems. This results
2568          * in each discovery controller bound to a unique subsystem.
2569          * This avoids issues with validating controller values
2570          * that can only be true when there is a single unique subsystem.
2571          * There may be multiple and completely independent entities
2572          * that provide discovery controllers.
2573          */
2574         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2575                 return NULL;
2576
2577         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2578                 if (strcmp(subsys->subnqn, subsysnqn))
2579                         continue;
2580                 if (!kref_get_unless_zero(&subsys->ref))
2581                         continue;
2582                 return subsys;
2583         }
2584
2585         return NULL;
2586 }
2587
2588 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2589         struct device_attribute subsys_attr_##_name = \
2590                 __ATTR(_name, _mode, _show, NULL)
2591
2592 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2593                                     struct device_attribute *attr,
2594                                     char *buf)
2595 {
2596         struct nvme_subsystem *subsys =
2597                 container_of(dev, struct nvme_subsystem, dev);
2598
2599         return sysfs_emit(buf, "%s\n", subsys->subnqn);
2600 }
2601 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2602
2603 #define nvme_subsys_show_str_function(field)                            \
2604 static ssize_t subsys_##field##_show(struct device *dev,                \
2605                             struct device_attribute *attr, char *buf)   \
2606 {                                                                       \
2607         struct nvme_subsystem *subsys =                                 \
2608                 container_of(dev, struct nvme_subsystem, dev);          \
2609         return sysfs_emit(buf, "%.*s\n",                                \
2610                            (int)sizeof(subsys->field), subsys->field);  \
2611 }                                                                       \
2612 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2613
2614 nvme_subsys_show_str_function(model);
2615 nvme_subsys_show_str_function(serial);
2616 nvme_subsys_show_str_function(firmware_rev);
2617
2618 static struct attribute *nvme_subsys_attrs[] = {
2619         &subsys_attr_model.attr,
2620         &subsys_attr_serial.attr,
2621         &subsys_attr_firmware_rev.attr,
2622         &subsys_attr_subsysnqn.attr,
2623 #ifdef CONFIG_NVME_MULTIPATH
2624         &subsys_attr_iopolicy.attr,
2625 #endif
2626         NULL,
2627 };
2628
2629 static const struct attribute_group nvme_subsys_attrs_group = {
2630         .attrs = nvme_subsys_attrs,
2631 };
2632
2633 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2634         &nvme_subsys_attrs_group,
2635         NULL,
2636 };
2637
2638 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2639 {
2640         return ctrl->opts && ctrl->opts->discovery_nqn;
2641 }
2642
2643 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2644                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2645 {
2646         struct nvme_ctrl *tmp;
2647
2648         lockdep_assert_held(&nvme_subsystems_lock);
2649
2650         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2651                 if (nvme_state_terminal(tmp))
2652                         continue;
2653
2654                 if (tmp->cntlid == ctrl->cntlid) {
2655                         dev_err(ctrl->device,
2656                                 "Duplicate cntlid %u with %s, rejecting\n",
2657                                 ctrl->cntlid, dev_name(tmp->device));
2658                         return false;
2659                 }
2660
2661                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2662                     nvme_discovery_ctrl(ctrl))
2663                         continue;
2664
2665                 dev_err(ctrl->device,
2666                         "Subsystem does not support multiple controllers\n");
2667                 return false;
2668         }
2669
2670         return true;
2671 }
2672
2673 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2674 {
2675         struct nvme_subsystem *subsys, *found;
2676         int ret;
2677
2678         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2679         if (!subsys)
2680                 return -ENOMEM;
2681
2682         subsys->instance = -1;
2683         mutex_init(&subsys->lock);
2684         kref_init(&subsys->ref);
2685         INIT_LIST_HEAD(&subsys->ctrls);
2686         INIT_LIST_HEAD(&subsys->nsheads);
2687         nvme_init_subnqn(subsys, ctrl, id);
2688         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2689         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2690         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2691         subsys->vendor_id = le16_to_cpu(id->vid);
2692         subsys->cmic = id->cmic;
2693         subsys->awupf = le16_to_cpu(id->awupf);
2694 #ifdef CONFIG_NVME_MULTIPATH
2695         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2696 #endif
2697
2698         subsys->dev.class = nvme_subsys_class;
2699         subsys->dev.release = nvme_release_subsystem;
2700         subsys->dev.groups = nvme_subsys_attrs_groups;
2701         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2702         device_initialize(&subsys->dev);
2703
2704         mutex_lock(&nvme_subsystems_lock);
2705         found = __nvme_find_get_subsystem(subsys->subnqn);
2706         if (found) {
2707                 put_device(&subsys->dev);
2708                 subsys = found;
2709
2710                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2711                         ret = -EINVAL;
2712                         goto out_put_subsystem;
2713                 }
2714         } else {
2715                 ret = device_add(&subsys->dev);
2716                 if (ret) {
2717                         dev_err(ctrl->device,
2718                                 "failed to register subsystem device.\n");
2719                         put_device(&subsys->dev);
2720                         goto out_unlock;
2721                 }
2722                 ida_init(&subsys->ns_ida);
2723                 list_add_tail(&subsys->entry, &nvme_subsystems);
2724         }
2725
2726         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2727                                 dev_name(ctrl->device));
2728         if (ret) {
2729                 dev_err(ctrl->device,
2730                         "failed to create sysfs link from subsystem.\n");
2731                 goto out_put_subsystem;
2732         }
2733
2734         if (!found)
2735                 subsys->instance = ctrl->instance;
2736         ctrl->subsys = subsys;
2737         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2738         mutex_unlock(&nvme_subsystems_lock);
2739         return 0;
2740
2741 out_put_subsystem:
2742         nvme_put_subsystem(subsys);
2743 out_unlock:
2744         mutex_unlock(&nvme_subsystems_lock);
2745         return ret;
2746 }
2747
2748 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2749                 void *log, size_t size, u64 offset)
2750 {
2751         struct nvme_command c = { };
2752         u32 dwlen = nvme_bytes_to_numd(size);
2753
2754         c.get_log_page.opcode = nvme_admin_get_log_page;
2755         c.get_log_page.nsid = cpu_to_le32(nsid);
2756         c.get_log_page.lid = log_page;
2757         c.get_log_page.lsp = lsp;
2758         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2759         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2760         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2761         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2762         c.get_log_page.csi = csi;
2763
2764         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2765 }
2766
2767 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2768                                 struct nvme_effects_log **log)
2769 {
2770         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2771         int ret;
2772
2773         if (cel)
2774                 goto out;
2775
2776         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2777         if (!cel)
2778                 return -ENOMEM;
2779
2780         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2781                         cel, sizeof(*cel), 0);
2782         if (ret) {
2783                 kfree(cel);
2784                 return ret;
2785         }
2786
2787         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2788 out:
2789         *log = cel;
2790         return 0;
2791 }
2792
2793 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2794 {
2795         u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2796
2797         if (check_shl_overflow(1U, units + page_shift - 9, &val))
2798                 return UINT_MAX;
2799         return val;
2800 }
2801
2802 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2803 {
2804         struct nvme_command c = { };
2805         struct nvme_id_ctrl_nvm *id;
2806         int ret;
2807
2808         if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2809                 ctrl->max_discard_sectors = UINT_MAX;
2810                 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2811         } else {
2812                 ctrl->max_discard_sectors = 0;
2813                 ctrl->max_discard_segments = 0;
2814         }
2815
2816         /*
2817          * Even though NVMe spec explicitly states that MDTS is not applicable
2818          * to the write-zeroes, we are cautious and limit the size to the
2819          * controllers max_hw_sectors value, which is based on the MDTS field
2820          * and possibly other limiting factors.
2821          */
2822         if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2823             !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2824                 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2825         else
2826                 ctrl->max_zeroes_sectors = 0;
2827
2828         if (nvme_ctrl_limited_cns(ctrl))
2829                 return 0;
2830
2831         id = kzalloc(sizeof(*id), GFP_KERNEL);
2832         if (!id)
2833                 return 0;
2834
2835         c.identify.opcode = nvme_admin_identify;
2836         c.identify.cns = NVME_ID_CNS_CS_CTRL;
2837         c.identify.csi = NVME_CSI_NVM;
2838
2839         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2840         if (ret)
2841                 goto free_data;
2842
2843         if (id->dmrl)
2844                 ctrl->max_discard_segments = id->dmrl;
2845         if (id->dmrsl)
2846                 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2847         if (id->wzsl)
2848                 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2849
2850 free_data:
2851         kfree(id);
2852         return ret;
2853 }
2854
2855 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2856 {
2857         struct nvme_id_ctrl *id;
2858         u32 max_hw_sectors;
2859         bool prev_apst_enabled;
2860         int ret;
2861
2862         ret = nvme_identify_ctrl(ctrl, &id);
2863         if (ret) {
2864                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2865                 return -EIO;
2866         }
2867
2868         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2869                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2870                 if (ret < 0)
2871                         goto out_free;
2872         }
2873
2874         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2875                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2876
2877         if (!ctrl->identified) {
2878                 unsigned int i;
2879
2880                 ret = nvme_init_subsystem(ctrl, id);
2881                 if (ret)
2882                         goto out_free;
2883
2884                 /*
2885                  * Check for quirks.  Quirk can depend on firmware version,
2886                  * so, in principle, the set of quirks present can change
2887                  * across a reset.  As a possible future enhancement, we
2888                  * could re-scan for quirks every time we reinitialize
2889                  * the device, but we'd have to make sure that the driver
2890                  * behaves intelligently if the quirks change.
2891                  */
2892                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2893                         if (quirk_matches(id, &core_quirks[i]))
2894                                 ctrl->quirks |= core_quirks[i].quirks;
2895                 }
2896         }
2897
2898         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2899                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2900                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2901         }
2902
2903         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2904         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2905         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2906
2907         ctrl->oacs = le16_to_cpu(id->oacs);
2908         ctrl->oncs = le16_to_cpu(id->oncs);
2909         ctrl->mtfa = le16_to_cpu(id->mtfa);
2910         ctrl->oaes = le32_to_cpu(id->oaes);
2911         ctrl->wctemp = le16_to_cpu(id->wctemp);
2912         ctrl->cctemp = le16_to_cpu(id->cctemp);
2913
2914         atomic_set(&ctrl->abort_limit, id->acl + 1);
2915         ctrl->vwc = id->vwc;
2916         if (id->mdts)
2917                 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2918         else
2919                 max_hw_sectors = UINT_MAX;
2920         ctrl->max_hw_sectors =
2921                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2922
2923         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2924         ctrl->sgls = le32_to_cpu(id->sgls);
2925         ctrl->kas = le16_to_cpu(id->kas);
2926         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2927         ctrl->ctratt = le32_to_cpu(id->ctratt);
2928
2929         if (id->rtd3e) {
2930                 /* us -> s */
2931                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2932
2933                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2934                                                  shutdown_timeout, 60);
2935
2936                 if (ctrl->shutdown_timeout != shutdown_timeout)
2937                         dev_info(ctrl->device,
2938                                  "Shutdown timeout set to %u seconds\n",
2939                                  ctrl->shutdown_timeout);
2940         } else
2941                 ctrl->shutdown_timeout = shutdown_timeout;
2942
2943         ctrl->npss = id->npss;
2944         ctrl->apsta = id->apsta;
2945         prev_apst_enabled = ctrl->apst_enabled;
2946         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2947                 if (force_apst && id->apsta) {
2948                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2949                         ctrl->apst_enabled = true;
2950                 } else {
2951                         ctrl->apst_enabled = false;
2952                 }
2953         } else {
2954                 ctrl->apst_enabled = id->apsta;
2955         }
2956         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2957
2958         if (ctrl->ops->flags & NVME_F_FABRICS) {
2959                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2960                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2961                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2962                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2963
2964                 /*
2965                  * In fabrics we need to verify the cntlid matches the
2966                  * admin connect
2967                  */
2968                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2969                         dev_err(ctrl->device,
2970                                 "Mismatching cntlid: Connect %u vs Identify "
2971                                 "%u, rejecting\n",
2972                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
2973                         ret = -EINVAL;
2974                         goto out_free;
2975                 }
2976
2977                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2978                         dev_err(ctrl->device,
2979                                 "keep-alive support is mandatory for fabrics\n");
2980                         ret = -EINVAL;
2981                         goto out_free;
2982                 }
2983         } else {
2984                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2985                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2986                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2987                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2988         }
2989
2990         ret = nvme_mpath_init_identify(ctrl, id);
2991         if (ret < 0)
2992                 goto out_free;
2993
2994         if (ctrl->apst_enabled && !prev_apst_enabled)
2995                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2996         else if (!ctrl->apst_enabled && prev_apst_enabled)
2997                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2998
2999 out_free:
3000         kfree(id);
3001         return ret;
3002 }
3003
3004 /*
3005  * Initialize the cached copies of the Identify data and various controller
3006  * register in our nvme_ctrl structure.  This should be called as soon as
3007  * the admin queue is fully up and running.
3008  */
3009 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3010 {
3011         int ret;
3012
3013         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3014         if (ret) {
3015                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3016                 return ret;
3017         }
3018
3019         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3020
3021         if (ctrl->vs >= NVME_VS(1, 1, 0))
3022                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3023
3024         ret = nvme_init_identify(ctrl);
3025         if (ret)
3026                 return ret;
3027
3028         ret = nvme_init_non_mdts_limits(ctrl);
3029         if (ret < 0)
3030                 return ret;
3031
3032         ret = nvme_configure_apst(ctrl);
3033         if (ret < 0)
3034                 return ret;
3035
3036         ret = nvme_configure_timestamp(ctrl);
3037         if (ret < 0)
3038                 return ret;
3039
3040         ret = nvme_configure_directives(ctrl);
3041         if (ret < 0)
3042                 return ret;
3043
3044         ret = nvme_configure_acre(ctrl);
3045         if (ret < 0)
3046                 return ret;
3047
3048         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3049                 ret = nvme_hwmon_init(ctrl);
3050                 if (ret < 0)
3051                         return ret;
3052         }
3053
3054         ctrl->identified = true;
3055
3056         return 0;
3057 }
3058 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3059
3060 static int nvme_dev_open(struct inode *inode, struct file *file)
3061 {
3062         struct nvme_ctrl *ctrl =
3063                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3064
3065         switch (ctrl->state) {
3066         case NVME_CTRL_LIVE:
3067                 break;
3068         default:
3069                 return -EWOULDBLOCK;
3070         }
3071
3072         nvme_get_ctrl(ctrl);
3073         if (!try_module_get(ctrl->ops->module)) {
3074                 nvme_put_ctrl(ctrl);
3075                 return -EINVAL;
3076         }
3077
3078         file->private_data = ctrl;
3079         return 0;
3080 }
3081
3082 static int nvme_dev_release(struct inode *inode, struct file *file)
3083 {
3084         struct nvme_ctrl *ctrl =
3085                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3086
3087         module_put(ctrl->ops->module);
3088         nvme_put_ctrl(ctrl);
3089         return 0;
3090 }
3091
3092 static const struct file_operations nvme_dev_fops = {
3093         .owner          = THIS_MODULE,
3094         .open           = nvme_dev_open,
3095         .release        = nvme_dev_release,
3096         .unlocked_ioctl = nvme_dev_ioctl,
3097         .compat_ioctl   = compat_ptr_ioctl,
3098 };
3099
3100 static ssize_t nvme_sysfs_reset(struct device *dev,
3101                                 struct device_attribute *attr, const char *buf,
3102                                 size_t count)
3103 {
3104         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3105         int ret;
3106
3107         ret = nvme_reset_ctrl_sync(ctrl);
3108         if (ret < 0)
3109                 return ret;
3110         return count;
3111 }
3112 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3113
3114 static ssize_t nvme_sysfs_rescan(struct device *dev,
3115                                 struct device_attribute *attr, const char *buf,
3116                                 size_t count)
3117 {
3118         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3119
3120         nvme_queue_scan(ctrl);
3121         return count;
3122 }
3123 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3124
3125 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3126 {
3127         struct gendisk *disk = dev_to_disk(dev);
3128
3129         if (disk->fops == &nvme_bdev_ops)
3130                 return nvme_get_ns_from_dev(dev)->head;
3131         else
3132                 return disk->private_data;
3133 }
3134
3135 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3136                 char *buf)
3137 {
3138         struct nvme_ns_head *head = dev_to_ns_head(dev);
3139         struct nvme_ns_ids *ids = &head->ids;
3140         struct nvme_subsystem *subsys = head->subsys;
3141         int serial_len = sizeof(subsys->serial);
3142         int model_len = sizeof(subsys->model);
3143
3144         if (!uuid_is_null(&ids->uuid))
3145                 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3146
3147         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3148                 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3149
3150         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3151                 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3152
3153         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3154                                   subsys->serial[serial_len - 1] == '\0'))
3155                 serial_len--;
3156         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3157                                  subsys->model[model_len - 1] == '\0'))
3158                 model_len--;
3159
3160         return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3161                 serial_len, subsys->serial, model_len, subsys->model,
3162                 head->ns_id);
3163 }
3164 static DEVICE_ATTR_RO(wwid);
3165
3166 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3167                 char *buf)
3168 {
3169         return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3170 }
3171 static DEVICE_ATTR_RO(nguid);
3172
3173 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3174                 char *buf)
3175 {
3176         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3177
3178         /* For backward compatibility expose the NGUID to userspace if
3179          * we have no UUID set
3180          */
3181         if (uuid_is_null(&ids->uuid)) {
3182                 printk_ratelimited(KERN_WARNING
3183                                    "No UUID available providing old NGUID\n");
3184                 return sysfs_emit(buf, "%pU\n", ids->nguid);
3185         }
3186         return sysfs_emit(buf, "%pU\n", &ids->uuid);
3187 }
3188 static DEVICE_ATTR_RO(uuid);
3189
3190 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3191                 char *buf)
3192 {
3193         return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3194 }
3195 static DEVICE_ATTR_RO(eui);
3196
3197 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3198                 char *buf)
3199 {
3200         return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3201 }
3202 static DEVICE_ATTR_RO(nsid);
3203
3204 static struct attribute *nvme_ns_id_attrs[] = {
3205         &dev_attr_wwid.attr,
3206         &dev_attr_uuid.attr,
3207         &dev_attr_nguid.attr,
3208         &dev_attr_eui.attr,
3209         &dev_attr_nsid.attr,
3210 #ifdef CONFIG_NVME_MULTIPATH
3211         &dev_attr_ana_grpid.attr,
3212         &dev_attr_ana_state.attr,
3213 #endif
3214         NULL,
3215 };
3216
3217 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3218                 struct attribute *a, int n)
3219 {
3220         struct device *dev = container_of(kobj, struct device, kobj);
3221         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3222
3223         if (a == &dev_attr_uuid.attr) {
3224                 if (uuid_is_null(&ids->uuid) &&
3225                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3226                         return 0;
3227         }
3228         if (a == &dev_attr_nguid.attr) {
3229                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3230                         return 0;
3231         }
3232         if (a == &dev_attr_eui.attr) {
3233                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3234                         return 0;
3235         }
3236 #ifdef CONFIG_NVME_MULTIPATH
3237         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3238                 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3239                         return 0;
3240                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3241                         return 0;
3242         }
3243 #endif
3244         return a->mode;
3245 }
3246
3247 static const struct attribute_group nvme_ns_id_attr_group = {
3248         .attrs          = nvme_ns_id_attrs,
3249         .is_visible     = nvme_ns_id_attrs_are_visible,
3250 };
3251
3252 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3253         &nvme_ns_id_attr_group,
3254         NULL,
3255 };
3256
3257 #define nvme_show_str_function(field)                                           \
3258 static ssize_t  field##_show(struct device *dev,                                \
3259                             struct device_attribute *attr, char *buf)           \
3260 {                                                                               \
3261         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3262         return sysfs_emit(buf, "%.*s\n",                                        \
3263                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3264 }                                                                               \
3265 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3266
3267 nvme_show_str_function(model);
3268 nvme_show_str_function(serial);
3269 nvme_show_str_function(firmware_rev);
3270
3271 #define nvme_show_int_function(field)                                           \
3272 static ssize_t  field##_show(struct device *dev,                                \
3273                             struct device_attribute *attr, char *buf)           \
3274 {                                                                               \
3275         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3276         return sysfs_emit(buf, "%d\n", ctrl->field);                            \
3277 }                                                                               \
3278 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3279
3280 nvme_show_int_function(cntlid);
3281 nvme_show_int_function(numa_node);
3282 nvme_show_int_function(queue_count);
3283 nvme_show_int_function(sqsize);
3284 nvme_show_int_function(kato);
3285
3286 static ssize_t nvme_sysfs_delete(struct device *dev,
3287                                 struct device_attribute *attr, const char *buf,
3288                                 size_t count)
3289 {
3290         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3291
3292         if (device_remove_file_self(dev, attr))
3293                 nvme_delete_ctrl_sync(ctrl);
3294         return count;
3295 }
3296 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3297
3298 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3299                                          struct device_attribute *attr,
3300                                          char *buf)
3301 {
3302         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3303
3304         return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3305 }
3306 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3307
3308 static ssize_t nvme_sysfs_show_state(struct device *dev,
3309                                      struct device_attribute *attr,
3310                                      char *buf)
3311 {
3312         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3313         static const char *const state_name[] = {
3314                 [NVME_CTRL_NEW]         = "new",
3315                 [NVME_CTRL_LIVE]        = "live",
3316                 [NVME_CTRL_RESETTING]   = "resetting",
3317                 [NVME_CTRL_CONNECTING]  = "connecting",
3318                 [NVME_CTRL_DELETING]    = "deleting",
3319                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3320                 [NVME_CTRL_DEAD]        = "dead",
3321         };
3322
3323         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3324             state_name[ctrl->state])
3325                 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3326
3327         return sysfs_emit(buf, "unknown state\n");
3328 }
3329
3330 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3331
3332 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3333                                          struct device_attribute *attr,
3334                                          char *buf)
3335 {
3336         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3337
3338         return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3339 }
3340 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3341
3342 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3343                                         struct device_attribute *attr,
3344                                         char *buf)
3345 {
3346         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3347
3348         return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3349 }
3350 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3351
3352 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3353                                         struct device_attribute *attr,
3354                                         char *buf)
3355 {
3356         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3357
3358         return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3359 }
3360 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3361
3362 static ssize_t nvme_sysfs_show_address(struct device *dev,
3363                                          struct device_attribute *attr,
3364                                          char *buf)
3365 {
3366         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3367
3368         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3369 }
3370 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3371
3372 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3373                 struct device_attribute *attr, char *buf)
3374 {
3375         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3376         struct nvmf_ctrl_options *opts = ctrl->opts;
3377
3378         if (ctrl->opts->max_reconnects == -1)
3379                 return sysfs_emit(buf, "off\n");
3380         return sysfs_emit(buf, "%d\n",
3381                           opts->max_reconnects * opts->reconnect_delay);
3382 }
3383
3384 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3385                 struct device_attribute *attr, const char *buf, size_t count)
3386 {
3387         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3388         struct nvmf_ctrl_options *opts = ctrl->opts;
3389         int ctrl_loss_tmo, err;
3390
3391         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3392         if (err)
3393                 return -EINVAL;
3394
3395         if (ctrl_loss_tmo < 0)
3396                 opts->max_reconnects = -1;
3397         else
3398                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3399                                                 opts->reconnect_delay);
3400         return count;
3401 }
3402 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3403         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3404
3405 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3406                 struct device_attribute *attr, char *buf)
3407 {
3408         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3409
3410         if (ctrl->opts->reconnect_delay == -1)
3411                 return sysfs_emit(buf, "off\n");
3412         return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3413 }
3414
3415 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3416                 struct device_attribute *attr, const char *buf, size_t count)
3417 {
3418         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3419         unsigned int v;
3420         int err;
3421
3422         err = kstrtou32(buf, 10, &v);
3423         if (err)
3424                 return err;
3425
3426         ctrl->opts->reconnect_delay = v;
3427         return count;
3428 }
3429 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3430         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3431
3432 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3433                 struct device_attribute *attr, char *buf)
3434 {
3435         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3436
3437         if (ctrl->opts->fast_io_fail_tmo == -1)
3438                 return sysfs_emit(buf, "off\n");
3439         return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3440 }
3441
3442 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3443                 struct device_attribute *attr, const char *buf, size_t count)
3444 {
3445         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3446         struct nvmf_ctrl_options *opts = ctrl->opts;
3447         int fast_io_fail_tmo, err;
3448
3449         err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3450         if (err)
3451                 return -EINVAL;
3452
3453         if (fast_io_fail_tmo < 0)
3454                 opts->fast_io_fail_tmo = -1;
3455         else
3456                 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3457         return count;
3458 }
3459 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3460         nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3461
3462 static struct attribute *nvme_dev_attrs[] = {
3463         &dev_attr_reset_controller.attr,
3464         &dev_attr_rescan_controller.attr,
3465         &dev_attr_model.attr,
3466         &dev_attr_serial.attr,
3467         &dev_attr_firmware_rev.attr,
3468         &dev_attr_cntlid.attr,
3469         &dev_attr_delete_controller.attr,
3470         &dev_attr_transport.attr,
3471         &dev_attr_subsysnqn.attr,
3472         &dev_attr_address.attr,
3473         &dev_attr_state.attr,
3474         &dev_attr_numa_node.attr,
3475         &dev_attr_queue_count.attr,
3476         &dev_attr_sqsize.attr,
3477         &dev_attr_hostnqn.attr,
3478         &dev_attr_hostid.attr,
3479         &dev_attr_ctrl_loss_tmo.attr,
3480         &dev_attr_reconnect_delay.attr,
3481         &dev_attr_fast_io_fail_tmo.attr,
3482         &dev_attr_kato.attr,
3483         NULL
3484 };
3485
3486 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3487                 struct attribute *a, int n)
3488 {
3489         struct device *dev = container_of(kobj, struct device, kobj);
3490         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3491
3492         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3493                 return 0;
3494         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3495                 return 0;
3496         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3497                 return 0;
3498         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3499                 return 0;
3500         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3501                 return 0;
3502         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3503                 return 0;
3504         if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3505                 return 0;
3506
3507         return a->mode;
3508 }
3509
3510 static const struct attribute_group nvme_dev_attrs_group = {
3511         .attrs          = nvme_dev_attrs,
3512         .is_visible     = nvme_dev_attrs_are_visible,
3513 };
3514
3515 static const struct attribute_group *nvme_dev_attr_groups[] = {
3516         &nvme_dev_attrs_group,
3517         NULL,
3518 };
3519
3520 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3521                 unsigned nsid)
3522 {
3523         struct nvme_ns_head *h;
3524
3525         lockdep_assert_held(&subsys->lock);
3526
3527         list_for_each_entry(h, &subsys->nsheads, entry) {
3528                 if (h->ns_id != nsid)
3529                         continue;
3530                 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3531                         return h;
3532         }
3533
3534         return NULL;
3535 }
3536
3537 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3538                 struct nvme_ns_head *new)
3539 {
3540         struct nvme_ns_head *h;
3541
3542         lockdep_assert_held(&subsys->lock);
3543
3544         list_for_each_entry(h, &subsys->nsheads, entry) {
3545                 if (nvme_ns_ids_valid(&new->ids) &&
3546                     nvme_ns_ids_equal(&new->ids, &h->ids))
3547                         return -EINVAL;
3548         }
3549
3550         return 0;
3551 }
3552
3553 static void nvme_cdev_rel(struct device *dev)
3554 {
3555         ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3556 }
3557
3558 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3559 {
3560         cdev_device_del(cdev, cdev_device);
3561         put_device(cdev_device);
3562 }
3563
3564 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3565                 const struct file_operations *fops, struct module *owner)
3566 {
3567         int minor, ret;
3568
3569         minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3570         if (minor < 0)
3571                 return minor;
3572         cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3573         cdev_device->class = nvme_ns_chr_class;
3574         cdev_device->release = nvme_cdev_rel;
3575         device_initialize(cdev_device);
3576         cdev_init(cdev, fops);
3577         cdev->owner = owner;
3578         ret = cdev_device_add(cdev, cdev_device);
3579         if (ret)
3580                 put_device(cdev_device);
3581
3582         return ret;
3583 }
3584
3585 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3586 {
3587         return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3588 }
3589
3590 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3591 {
3592         nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3593         return 0;
3594 }
3595
3596 static const struct file_operations nvme_ns_chr_fops = {
3597         .owner          = THIS_MODULE,
3598         .open           = nvme_ns_chr_open,
3599         .release        = nvme_ns_chr_release,
3600         .unlocked_ioctl = nvme_ns_chr_ioctl,
3601         .compat_ioctl   = compat_ptr_ioctl,
3602 };
3603
3604 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3605 {
3606         int ret;
3607
3608         ns->cdev_device.parent = ns->ctrl->device;
3609         ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3610                            ns->ctrl->instance, ns->head->instance);
3611         if (ret)
3612                 return ret;
3613
3614         return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3615                              ns->ctrl->ops->module);
3616 }
3617
3618 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3619                 unsigned nsid, struct nvme_ns_ids *ids)
3620 {
3621         struct nvme_ns_head *head;
3622         size_t size = sizeof(*head);
3623         int ret = -ENOMEM;
3624
3625 #ifdef CONFIG_NVME_MULTIPATH
3626         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3627 #endif
3628
3629         head = kzalloc(size, GFP_KERNEL);
3630         if (!head)
3631                 goto out;
3632         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3633         if (ret < 0)
3634                 goto out_free_head;
3635         head->instance = ret;
3636         INIT_LIST_HEAD(&head->list);
3637         ret = init_srcu_struct(&head->srcu);
3638         if (ret)
3639                 goto out_ida_remove;
3640         head->subsys = ctrl->subsys;
3641         head->ns_id = nsid;
3642         head->ids = *ids;
3643         kref_init(&head->ref);
3644
3645         ret = __nvme_check_ids(ctrl->subsys, head);
3646         if (ret) {
3647                 dev_err(ctrl->device,
3648                         "duplicate IDs for nsid %d\n", nsid);
3649                 goto out_cleanup_srcu;
3650         }
3651
3652         if (head->ids.csi) {
3653                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3654                 if (ret)
3655                         goto out_cleanup_srcu;
3656         } else
3657                 head->effects = ctrl->effects;
3658
3659         ret = nvme_mpath_alloc_disk(ctrl, head);
3660         if (ret)
3661                 goto out_cleanup_srcu;
3662
3663         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3664
3665         kref_get(&ctrl->subsys->ref);
3666
3667         return head;
3668 out_cleanup_srcu:
3669         cleanup_srcu_struct(&head->srcu);
3670 out_ida_remove:
3671         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3672 out_free_head:
3673         kfree(head);
3674 out:
3675         if (ret > 0)
3676                 ret = blk_status_to_errno(nvme_error_status(ret));
3677         return ERR_PTR(ret);
3678 }
3679
3680 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3681                 struct nvme_ns_ids *ids, bool is_shared)
3682 {
3683         struct nvme_ctrl *ctrl = ns->ctrl;
3684         struct nvme_ns_head *head = NULL;
3685         int ret = 0;
3686
3687         mutex_lock(&ctrl->subsys->lock);
3688         head = nvme_find_ns_head(ctrl->subsys, nsid);
3689         if (!head) {
3690                 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3691                 if (IS_ERR(head)) {
3692                         ret = PTR_ERR(head);
3693                         goto out_unlock;
3694                 }
3695                 head->shared = is_shared;
3696         } else {
3697                 ret = -EINVAL;
3698                 if (!is_shared || !head->shared) {
3699                         dev_err(ctrl->device,
3700                                 "Duplicate unshared namespace %d\n", nsid);
3701                         goto out_put_ns_head;
3702                 }
3703                 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3704                         dev_err(ctrl->device,
3705                                 "IDs don't match for shared namespace %d\n",
3706                                         nsid);
3707                         goto out_put_ns_head;
3708                 }
3709         }
3710
3711         list_add_tail_rcu(&ns->siblings, &head->list);
3712         ns->head = head;
3713         mutex_unlock(&ctrl->subsys->lock);
3714         return 0;
3715
3716 out_put_ns_head:
3717         nvme_put_ns_head(head);
3718 out_unlock:
3719         mutex_unlock(&ctrl->subsys->lock);
3720         return ret;
3721 }
3722
3723 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3724 {
3725         struct nvme_ns *ns, *ret = NULL;
3726
3727         down_read(&ctrl->namespaces_rwsem);
3728         list_for_each_entry(ns, &ctrl->namespaces, list) {
3729                 if (ns->head->ns_id == nsid) {
3730                         if (!nvme_get_ns(ns))
3731                                 continue;
3732                         ret = ns;
3733                         break;
3734                 }
3735                 if (ns->head->ns_id > nsid)
3736                         break;
3737         }
3738         up_read(&ctrl->namespaces_rwsem);
3739         return ret;
3740 }
3741 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3742
3743 /*
3744  * Add the namespace to the controller list while keeping the list ordered.
3745  */
3746 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3747 {
3748         struct nvme_ns *tmp;
3749
3750         list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3751                 if (tmp->head->ns_id < ns->head->ns_id) {
3752                         list_add(&ns->list, &tmp->list);
3753                         return;
3754                 }
3755         }
3756         list_add(&ns->list, &ns->ctrl->namespaces);
3757 }
3758
3759 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3760                 struct nvme_ns_ids *ids)
3761 {
3762         struct nvme_ns *ns;
3763         struct gendisk *disk;
3764         struct nvme_id_ns *id;
3765         int node = ctrl->numa_node;
3766
3767         if (nvme_identify_ns(ctrl, nsid, ids, &id))
3768                 return;
3769
3770         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3771         if (!ns)
3772                 goto out_free_id;
3773
3774         disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3775         if (IS_ERR(disk))
3776                 goto out_free_ns;
3777         disk->fops = &nvme_bdev_ops;
3778         disk->private_data = ns;
3779
3780         ns->disk = disk;
3781         ns->queue = disk->queue;
3782
3783         if (ctrl->opts && ctrl->opts->data_digest)
3784                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3785
3786         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3787         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3788                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3789
3790         ns->ctrl = ctrl;
3791         kref_init(&ns->kref);
3792
3793         if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3794                 goto out_cleanup_disk;
3795
3796         /*
3797          * Without the multipath code enabled, multiple controller per
3798          * subsystems are visible as devices and thus we cannot use the
3799          * subsystem instance.
3800          */
3801         if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3802                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3803                         ns->head->instance);
3804
3805         if (nvme_update_ns_info(ns, id))
3806                 goto out_unlink_ns;
3807
3808         down_write(&ctrl->namespaces_rwsem);
3809         nvme_ns_add_to_ctrl_list(ns);
3810         up_write(&ctrl->namespaces_rwsem);
3811         nvme_get_ctrl(ctrl);
3812
3813         if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3814                 goto out_cleanup_ns_from_list;
3815
3816         if (!nvme_ns_head_multipath(ns->head))
3817                 nvme_add_ns_cdev(ns);
3818
3819         nvme_mpath_add_disk(ns, id);
3820         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3821         kfree(id);
3822
3823         return;
3824
3825  out_cleanup_ns_from_list:
3826         nvme_put_ctrl(ctrl);
3827         down_write(&ctrl->namespaces_rwsem);
3828         list_del_init(&ns->list);
3829         up_write(&ctrl->namespaces_rwsem);
3830  out_unlink_ns:
3831         mutex_lock(&ctrl->subsys->lock);
3832         list_del_rcu(&ns->siblings);
3833         if (list_empty(&ns->head->list))
3834                 list_del_init(&ns->head->entry);
3835         mutex_unlock(&ctrl->subsys->lock);
3836         nvme_put_ns_head(ns->head);
3837  out_cleanup_disk:
3838         blk_cleanup_disk(disk);
3839  out_free_ns:
3840         kfree(ns);
3841  out_free_id:
3842         kfree(id);
3843 }
3844
3845 static void nvme_ns_remove(struct nvme_ns *ns)
3846 {
3847         bool last_path = false;
3848
3849         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3850                 return;
3851
3852         clear_bit(NVME_NS_READY, &ns->flags);
3853         set_capacity(ns->disk, 0);
3854         nvme_fault_inject_fini(&ns->fault_inject);
3855
3856         mutex_lock(&ns->ctrl->subsys->lock);
3857         list_del_rcu(&ns->siblings);
3858         if (list_empty(&ns->head->list)) {
3859                 list_del_init(&ns->head->entry);
3860                 last_path = true;
3861         }
3862         mutex_unlock(&ns->ctrl->subsys->lock);
3863
3864         /* guarantee not available in head->list */
3865         synchronize_rcu();
3866
3867         /* wait for concurrent submissions */
3868         if (nvme_mpath_clear_current_path(ns))
3869                 synchronize_srcu(&ns->head->srcu);
3870
3871         if (!nvme_ns_head_multipath(ns->head))
3872                 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3873         del_gendisk(ns->disk);
3874         blk_cleanup_queue(ns->queue);
3875
3876         down_write(&ns->ctrl->namespaces_rwsem);
3877         list_del_init(&ns->list);
3878         up_write(&ns->ctrl->namespaces_rwsem);
3879
3880         if (last_path)
3881                 nvme_mpath_shutdown_disk(ns->head);
3882         nvme_put_ns(ns);
3883 }
3884
3885 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3886 {
3887         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3888
3889         if (ns) {
3890                 nvme_ns_remove(ns);
3891                 nvme_put_ns(ns);
3892         }
3893 }
3894
3895 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3896 {
3897         struct nvme_id_ns *id;
3898         int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3899
3900         if (test_bit(NVME_NS_DEAD, &ns->flags))
3901                 goto out;
3902
3903         ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3904         if (ret)
3905                 goto out;
3906
3907         ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3908         if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3909                 dev_err(ns->ctrl->device,
3910                         "identifiers changed for nsid %d\n", ns->head->ns_id);
3911                 goto out_free_id;
3912         }
3913
3914         ret = nvme_update_ns_info(ns, id);
3915
3916 out_free_id:
3917         kfree(id);
3918 out:
3919         /*
3920          * Only remove the namespace if we got a fatal error back from the
3921          * device, otherwise ignore the error and just move on.
3922          *
3923          * TODO: we should probably schedule a delayed retry here.
3924          */
3925         if (ret > 0 && (ret & NVME_SC_DNR))
3926                 nvme_ns_remove(ns);
3927 }
3928
3929 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3930 {
3931         struct nvme_ns_ids ids = { };
3932         struct nvme_ns *ns;
3933
3934         if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3935                 return;
3936
3937         ns = nvme_find_get_ns(ctrl, nsid);
3938         if (ns) {
3939                 nvme_validate_ns(ns, &ids);
3940                 nvme_put_ns(ns);
3941                 return;
3942         }
3943
3944         switch (ids.csi) {
3945         case NVME_CSI_NVM:
3946                 nvme_alloc_ns(ctrl, nsid, &ids);
3947                 break;
3948         case NVME_CSI_ZNS:
3949                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3950                         dev_warn(ctrl->device,
3951                                 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3952                                 nsid);
3953                         break;
3954                 }
3955                 if (!nvme_multi_css(ctrl)) {
3956                         dev_warn(ctrl->device,
3957                                 "command set not reported for nsid: %d\n",
3958                                 nsid);
3959                         break;
3960                 }
3961                 nvme_alloc_ns(ctrl, nsid, &ids);
3962                 break;
3963         default:
3964                 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3965                         ids.csi, nsid);
3966                 break;
3967         }
3968 }
3969
3970 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3971                                         unsigned nsid)
3972 {
3973         struct nvme_ns *ns, *next;
3974         LIST_HEAD(rm_list);
3975
3976         down_write(&ctrl->namespaces_rwsem);
3977         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3978                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3979                         list_move_tail(&ns->list, &rm_list);
3980         }
3981         up_write(&ctrl->namespaces_rwsem);
3982
3983         list_for_each_entry_safe(ns, next, &rm_list, list)
3984                 nvme_ns_remove(ns);
3985
3986 }
3987
3988 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3989 {
3990         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3991         __le32 *ns_list;
3992         u32 prev = 0;
3993         int ret = 0, i;
3994
3995         if (nvme_ctrl_limited_cns(ctrl))
3996                 return -EOPNOTSUPP;
3997
3998         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3999         if (!ns_list)
4000                 return -ENOMEM;
4001
4002         for (;;) {
4003                 struct nvme_command cmd = {
4004                         .identify.opcode        = nvme_admin_identify,
4005                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
4006                         .identify.nsid          = cpu_to_le32(prev),
4007                 };
4008
4009                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4010                                             NVME_IDENTIFY_DATA_SIZE);
4011                 if (ret) {
4012                         dev_warn(ctrl->device,
4013                                 "Identify NS List failed (status=0x%x)\n", ret);
4014                         goto free;
4015                 }
4016
4017                 for (i = 0; i < nr_entries; i++) {
4018                         u32 nsid = le32_to_cpu(ns_list[i]);
4019
4020                         if (!nsid)      /* end of the list? */
4021                                 goto out;
4022                         nvme_validate_or_alloc_ns(ctrl, nsid);
4023                         while (++prev < nsid)
4024                                 nvme_ns_remove_by_nsid(ctrl, prev);
4025                 }
4026         }
4027  out:
4028         nvme_remove_invalid_namespaces(ctrl, prev);
4029  free:
4030         kfree(ns_list);
4031         return ret;
4032 }
4033
4034 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4035 {
4036         struct nvme_id_ctrl *id;
4037         u32 nn, i;
4038
4039         if (nvme_identify_ctrl(ctrl, &id))
4040                 return;
4041         nn = le32_to_cpu(id->nn);
4042         kfree(id);
4043
4044         for (i = 1; i <= nn; i++)
4045                 nvme_validate_or_alloc_ns(ctrl, i);
4046
4047         nvme_remove_invalid_namespaces(ctrl, nn);
4048 }
4049
4050 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4051 {
4052         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4053         __le32 *log;
4054         int error;
4055
4056         log = kzalloc(log_size, GFP_KERNEL);
4057         if (!log)
4058                 return;
4059
4060         /*
4061          * We need to read the log to clear the AEN, but we don't want to rely
4062          * on it for the changed namespace information as userspace could have
4063          * raced with us in reading the log page, which could cause us to miss
4064          * updates.
4065          */
4066         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4067                         NVME_CSI_NVM, log, log_size, 0);
4068         if (error)
4069                 dev_warn(ctrl->device,
4070                         "reading changed ns log failed: %d\n", error);
4071
4072         kfree(log);
4073 }
4074
4075 static void nvme_scan_work(struct work_struct *work)
4076 {
4077         struct nvme_ctrl *ctrl =
4078                 container_of(work, struct nvme_ctrl, scan_work);
4079
4080         /* No tagset on a live ctrl means IO queues could not created */
4081         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4082                 return;
4083
4084         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4085                 dev_info(ctrl->device, "rescanning namespaces.\n");
4086                 nvme_clear_changed_ns_log(ctrl);
4087         }
4088
4089         mutex_lock(&ctrl->scan_lock);
4090         if (nvme_scan_ns_list(ctrl) != 0)
4091                 nvme_scan_ns_sequential(ctrl);
4092         mutex_unlock(&ctrl->scan_lock);
4093 }
4094
4095 /*
4096  * This function iterates the namespace list unlocked to allow recovery from
4097  * controller failure. It is up to the caller to ensure the namespace list is
4098  * not modified by scan work while this function is executing.
4099  */
4100 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4101 {
4102         struct nvme_ns *ns, *next;
4103         LIST_HEAD(ns_list);
4104
4105         /*
4106          * make sure to requeue I/O to all namespaces as these
4107          * might result from the scan itself and must complete
4108          * for the scan_work to make progress
4109          */
4110         nvme_mpath_clear_ctrl_paths(ctrl);
4111
4112         /* prevent racing with ns scanning */
4113         flush_work(&ctrl->scan_work);
4114
4115         /*
4116          * The dead states indicates the controller was not gracefully
4117          * disconnected. In that case, we won't be able to flush any data while
4118          * removing the namespaces' disks; fail all the queues now to avoid
4119          * potentially having to clean up the failed sync later.
4120          */
4121         if (ctrl->state == NVME_CTRL_DEAD)
4122                 nvme_kill_queues(ctrl);
4123
4124         /* this is a no-op when called from the controller reset handler */
4125         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4126
4127         down_write(&ctrl->namespaces_rwsem);
4128         list_splice_init(&ctrl->namespaces, &ns_list);
4129         up_write(&ctrl->namespaces_rwsem);
4130
4131         list_for_each_entry_safe(ns, next, &ns_list, list)
4132                 nvme_ns_remove(ns);
4133 }
4134 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4135
4136 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4137 {
4138         struct nvme_ctrl *ctrl =
4139                 container_of(dev, struct nvme_ctrl, ctrl_device);
4140         struct nvmf_ctrl_options *opts = ctrl->opts;
4141         int ret;
4142
4143         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4144         if (ret)
4145                 return ret;
4146
4147         if (opts) {
4148                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4149                 if (ret)
4150                         return ret;
4151
4152                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4153                                 opts->trsvcid ?: "none");
4154                 if (ret)
4155                         return ret;
4156
4157                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4158                                 opts->host_traddr ?: "none");
4159                 if (ret)
4160                         return ret;
4161
4162                 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4163                                 opts->host_iface ?: "none");
4164         }
4165         return ret;
4166 }
4167
4168 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4169 {
4170         char *envp[2] = { NULL, NULL };
4171         u32 aen_result = ctrl->aen_result;
4172
4173         ctrl->aen_result = 0;
4174         if (!aen_result)
4175                 return;
4176
4177         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4178         if (!envp[0])
4179                 return;
4180         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4181         kfree(envp[0]);
4182 }
4183
4184 static void nvme_async_event_work(struct work_struct *work)
4185 {
4186         struct nvme_ctrl *ctrl =
4187                 container_of(work, struct nvme_ctrl, async_event_work);
4188
4189         nvme_aen_uevent(ctrl);
4190         ctrl->ops->submit_async_event(ctrl);
4191 }
4192
4193 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4194 {
4195
4196         u32 csts;
4197
4198         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4199                 return false;
4200
4201         if (csts == ~0)
4202                 return false;
4203
4204         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4205 }
4206
4207 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4208 {
4209         struct nvme_fw_slot_info_log *log;
4210
4211         log = kmalloc(sizeof(*log), GFP_KERNEL);
4212         if (!log)
4213                 return;
4214
4215         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4216                         log, sizeof(*log), 0))
4217                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4218         kfree(log);
4219 }
4220
4221 static void nvme_fw_act_work(struct work_struct *work)
4222 {
4223         struct nvme_ctrl *ctrl = container_of(work,
4224                                 struct nvme_ctrl, fw_act_work);
4225         unsigned long fw_act_timeout;
4226
4227         if (ctrl->mtfa)
4228                 fw_act_timeout = jiffies +
4229                                 msecs_to_jiffies(ctrl->mtfa * 100);
4230         else
4231                 fw_act_timeout = jiffies +
4232                                 msecs_to_jiffies(admin_timeout * 1000);
4233
4234         nvme_stop_queues(ctrl);
4235         while (nvme_ctrl_pp_status(ctrl)) {
4236                 if (time_after(jiffies, fw_act_timeout)) {
4237                         dev_warn(ctrl->device,
4238                                 "Fw activation timeout, reset controller\n");
4239                         nvme_try_sched_reset(ctrl);
4240                         return;
4241                 }
4242                 msleep(100);
4243         }
4244
4245         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4246                 return;
4247
4248         nvme_start_queues(ctrl);
4249         /* read FW slot information to clear the AER */
4250         nvme_get_fw_slot_info(ctrl);
4251 }
4252
4253 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4254 {
4255         u32 aer_notice_type = (result & 0xff00) >> 8;
4256
4257         trace_nvme_async_event(ctrl, aer_notice_type);
4258
4259         switch (aer_notice_type) {
4260         case NVME_AER_NOTICE_NS_CHANGED:
4261                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4262                 nvme_queue_scan(ctrl);
4263                 break;
4264         case NVME_AER_NOTICE_FW_ACT_STARTING:
4265                 /*
4266                  * We are (ab)using the RESETTING state to prevent subsequent
4267                  * recovery actions from interfering with the controller's
4268                  * firmware activation.
4269                  */
4270                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4271                         queue_work(nvme_wq, &ctrl->fw_act_work);
4272                 break;
4273 #ifdef CONFIG_NVME_MULTIPATH
4274         case NVME_AER_NOTICE_ANA:
4275                 if (!ctrl->ana_log_buf)
4276                         break;
4277                 queue_work(nvme_wq, &ctrl->ana_work);
4278                 break;
4279 #endif
4280         case NVME_AER_NOTICE_DISC_CHANGED:
4281                 ctrl->aen_result = result;
4282                 break;
4283         default:
4284                 dev_warn(ctrl->device, "async event result %08x\n", result);
4285         }
4286 }
4287
4288 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4289                 volatile union nvme_result *res)
4290 {
4291         u32 result = le32_to_cpu(res->u32);
4292         u32 aer_type = result & 0x07;
4293
4294         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4295                 return;
4296
4297         switch (aer_type) {
4298         case NVME_AER_NOTICE:
4299                 nvme_handle_aen_notice(ctrl, result);
4300                 break;
4301         case NVME_AER_ERROR:
4302         case NVME_AER_SMART:
4303         case NVME_AER_CSS:
4304         case NVME_AER_VS:
4305                 trace_nvme_async_event(ctrl, aer_type);
4306                 ctrl->aen_result = result;
4307                 break;
4308         default:
4309                 break;
4310         }
4311         queue_work(nvme_wq, &ctrl->async_event_work);
4312 }
4313 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4314
4315 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4316 {
4317         nvme_mpath_stop(ctrl);
4318         nvme_stop_keep_alive(ctrl);
4319         nvme_stop_failfast_work(ctrl);
4320         flush_work(&ctrl->async_event_work);
4321         cancel_work_sync(&ctrl->fw_act_work);
4322 }
4323 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4324
4325 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4326 {
4327         nvme_start_keep_alive(ctrl);
4328
4329         nvme_enable_aen(ctrl);
4330
4331         if (ctrl->queue_count > 1) {
4332                 nvme_queue_scan(ctrl);
4333                 nvme_start_queues(ctrl);
4334         }
4335 }
4336 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4337
4338 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4339 {
4340         nvme_hwmon_exit(ctrl);
4341         nvme_fault_inject_fini(&ctrl->fault_inject);
4342         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4343         cdev_device_del(&ctrl->cdev, ctrl->device);
4344         nvme_put_ctrl(ctrl);
4345 }
4346 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4347
4348 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4349 {
4350         struct nvme_effects_log *cel;
4351         unsigned long i;
4352
4353         xa_for_each(&ctrl->cels, i, cel) {
4354                 xa_erase(&ctrl->cels, i);
4355                 kfree(cel);
4356         }
4357
4358         xa_destroy(&ctrl->cels);
4359 }
4360
4361 static void nvme_free_ctrl(struct device *dev)
4362 {
4363         struct nvme_ctrl *ctrl =
4364                 container_of(dev, struct nvme_ctrl, ctrl_device);
4365         struct nvme_subsystem *subsys = ctrl->subsys;
4366
4367         if (!subsys || ctrl->instance != subsys->instance)
4368                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4369
4370         nvme_free_cels(ctrl);
4371         nvme_mpath_uninit(ctrl);
4372         __free_page(ctrl->discard_page);
4373
4374         if (subsys) {
4375                 mutex_lock(&nvme_subsystems_lock);
4376                 list_del(&ctrl->subsys_entry);
4377                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4378                 mutex_unlock(&nvme_subsystems_lock);
4379         }
4380
4381         ctrl->ops->free_ctrl(ctrl);
4382
4383         if (subsys)
4384                 nvme_put_subsystem(subsys);
4385 }
4386
4387 /*
4388  * Initialize a NVMe controller structures.  This needs to be called during
4389  * earliest initialization so that we have the initialized structured around
4390  * during probing.
4391  */
4392 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4393                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4394 {
4395         int ret;
4396
4397         ctrl->state = NVME_CTRL_NEW;
4398         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4399         spin_lock_init(&ctrl->lock);
4400         mutex_init(&ctrl->scan_lock);
4401         INIT_LIST_HEAD(&ctrl->namespaces);
4402         xa_init(&ctrl->cels);
4403         init_rwsem(&ctrl->namespaces_rwsem);
4404         ctrl->dev = dev;
4405         ctrl->ops = ops;
4406         ctrl->quirks = quirks;
4407         ctrl->numa_node = NUMA_NO_NODE;
4408         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4409         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4410         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4411         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4412         init_waitqueue_head(&ctrl->state_wq);
4413
4414         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4415         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4416         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4417         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4418
4419         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4420                         PAGE_SIZE);
4421         ctrl->discard_page = alloc_page(GFP_KERNEL);
4422         if (!ctrl->discard_page) {
4423                 ret = -ENOMEM;
4424                 goto out;
4425         }
4426
4427         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4428         if (ret < 0)
4429                 goto out;
4430         ctrl->instance = ret;
4431
4432         device_initialize(&ctrl->ctrl_device);
4433         ctrl->device = &ctrl->ctrl_device;
4434         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4435                         ctrl->instance);
4436         ctrl->device->class = nvme_class;
4437         ctrl->device->parent = ctrl->dev;
4438         ctrl->device->groups = nvme_dev_attr_groups;
4439         ctrl->device->release = nvme_free_ctrl;
4440         dev_set_drvdata(ctrl->device, ctrl);
4441         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4442         if (ret)
4443                 goto out_release_instance;
4444
4445         nvme_get_ctrl(ctrl);
4446         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4447         ctrl->cdev.owner = ops->module;
4448         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4449         if (ret)
4450                 goto out_free_name;
4451
4452         /*
4453          * Initialize latency tolerance controls.  The sysfs files won't
4454          * be visible to userspace unless the device actually supports APST.
4455          */
4456         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4457         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4458                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4459
4460         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4461         nvme_mpath_init_ctrl(ctrl);
4462
4463         return 0;
4464 out_free_name:
4465         nvme_put_ctrl(ctrl);
4466         kfree_const(ctrl->device->kobj.name);
4467 out_release_instance:
4468         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4469 out:
4470         if (ctrl->discard_page)
4471                 __free_page(ctrl->discard_page);
4472         return ret;
4473 }
4474 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4475
4476 /**
4477  * nvme_kill_queues(): Ends all namespace queues
4478  * @ctrl: the dead controller that needs to end
4479  *
4480  * Call this function when the driver determines it is unable to get the
4481  * controller in a state capable of servicing IO.
4482  */
4483 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4484 {
4485         struct nvme_ns *ns;
4486
4487         down_read(&ctrl->namespaces_rwsem);
4488
4489         /* Forcibly unquiesce queues to avoid blocking dispatch */
4490         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4491                 blk_mq_unquiesce_queue(ctrl->admin_q);
4492
4493         list_for_each_entry(ns, &ctrl->namespaces, list)
4494                 nvme_set_queue_dying(ns);
4495
4496         up_read(&ctrl->namespaces_rwsem);
4497 }
4498 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4499
4500 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4501 {
4502         struct nvme_ns *ns;
4503
4504         down_read(&ctrl->namespaces_rwsem);
4505         list_for_each_entry(ns, &ctrl->namespaces, list)
4506                 blk_mq_unfreeze_queue(ns->queue);
4507         up_read(&ctrl->namespaces_rwsem);
4508 }
4509 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4510
4511 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4512 {
4513         struct nvme_ns *ns;
4514
4515         down_read(&ctrl->namespaces_rwsem);
4516         list_for_each_entry(ns, &ctrl->namespaces, list) {
4517                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4518                 if (timeout <= 0)
4519                         break;
4520         }
4521         up_read(&ctrl->namespaces_rwsem);
4522         return timeout;
4523 }
4524 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4525
4526 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4527 {
4528         struct nvme_ns *ns;
4529
4530         down_read(&ctrl->namespaces_rwsem);
4531         list_for_each_entry(ns, &ctrl->namespaces, list)
4532                 blk_mq_freeze_queue_wait(ns->queue);
4533         up_read(&ctrl->namespaces_rwsem);
4534 }
4535 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4536
4537 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4538 {
4539         struct nvme_ns *ns;
4540
4541         down_read(&ctrl->namespaces_rwsem);
4542         list_for_each_entry(ns, &ctrl->namespaces, list)
4543                 blk_freeze_queue_start(ns->queue);
4544         up_read(&ctrl->namespaces_rwsem);
4545 }
4546 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4547
4548 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4549 {
4550         struct nvme_ns *ns;
4551
4552         down_read(&ctrl->namespaces_rwsem);
4553         list_for_each_entry(ns, &ctrl->namespaces, list)
4554                 blk_mq_quiesce_queue(ns->queue);
4555         up_read(&ctrl->namespaces_rwsem);
4556 }
4557 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4558
4559 void nvme_start_queues(struct nvme_ctrl *ctrl)
4560 {
4561         struct nvme_ns *ns;
4562
4563         down_read(&ctrl->namespaces_rwsem);
4564         list_for_each_entry(ns, &ctrl->namespaces, list)
4565                 blk_mq_unquiesce_queue(ns->queue);
4566         up_read(&ctrl->namespaces_rwsem);
4567 }
4568 EXPORT_SYMBOL_GPL(nvme_start_queues);
4569
4570 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4571 {
4572         struct nvme_ns *ns;
4573
4574         down_read(&ctrl->namespaces_rwsem);
4575         list_for_each_entry(ns, &ctrl->namespaces, list)
4576                 blk_sync_queue(ns->queue);
4577         up_read(&ctrl->namespaces_rwsem);
4578 }
4579 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4580
4581 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4582 {
4583         nvme_sync_io_queues(ctrl);
4584         if (ctrl->admin_q)
4585                 blk_sync_queue(ctrl->admin_q);
4586 }
4587 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4588
4589 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4590 {
4591         if (file->f_op != &nvme_dev_fops)
4592                 return NULL;
4593         return file->private_data;
4594 }
4595 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4596
4597 /*
4598  * Check we didn't inadvertently grow the command structure sizes:
4599  */
4600 static inline void _nvme_check_size(void)
4601 {
4602         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4603         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4604         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4605         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4606         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4607         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4608         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4609         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4610         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4611         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4612         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4613         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4614         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4615         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4616         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4617         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4618         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4619         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4620         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4621         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4622 }
4623
4624
4625 static int __init nvme_core_init(void)
4626 {
4627         int result = -ENOMEM;
4628
4629         _nvme_check_size();
4630
4631         nvme_wq = alloc_workqueue("nvme-wq",
4632                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4633         if (!nvme_wq)
4634                 goto out;
4635
4636         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4637                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4638         if (!nvme_reset_wq)
4639                 goto destroy_wq;
4640
4641         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4642                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4643         if (!nvme_delete_wq)
4644                 goto destroy_reset_wq;
4645
4646         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4647                         NVME_MINORS, "nvme");
4648         if (result < 0)
4649                 goto destroy_delete_wq;
4650
4651         nvme_class = class_create(THIS_MODULE, "nvme");
4652         if (IS_ERR(nvme_class)) {
4653                 result = PTR_ERR(nvme_class);
4654                 goto unregister_chrdev;
4655         }
4656         nvme_class->dev_uevent = nvme_class_uevent;
4657
4658         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4659         if (IS_ERR(nvme_subsys_class)) {
4660                 result = PTR_ERR(nvme_subsys_class);
4661                 goto destroy_class;
4662         }
4663
4664         result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4665                                      "nvme-generic");
4666         if (result < 0)
4667                 goto destroy_subsys_class;
4668
4669         nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4670         if (IS_ERR(nvme_ns_chr_class)) {
4671                 result = PTR_ERR(nvme_ns_chr_class);
4672                 goto unregister_generic_ns;
4673         }
4674
4675         return 0;
4676
4677 unregister_generic_ns:
4678         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4679 destroy_subsys_class:
4680         class_destroy(nvme_subsys_class);
4681 destroy_class:
4682         class_destroy(nvme_class);
4683 unregister_chrdev:
4684         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4685 destroy_delete_wq:
4686         destroy_workqueue(nvme_delete_wq);
4687 destroy_reset_wq:
4688         destroy_workqueue(nvme_reset_wq);
4689 destroy_wq:
4690         destroy_workqueue(nvme_wq);
4691 out:
4692         return result;
4693 }
4694
4695 static void __exit nvme_core_exit(void)
4696 {
4697         class_destroy(nvme_ns_chr_class);
4698         class_destroy(nvme_subsys_class);
4699         class_destroy(nvme_class);
4700         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4701         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4702         destroy_workqueue(nvme_delete_wq);
4703         destroy_workqueue(nvme_reset_wq);
4704         destroy_workqueue(nvme_wq);
4705         ida_destroy(&nvme_ns_chr_minor_ida);
4706         ida_destroy(&nvme_instance_ida);
4707 }
4708
4709 MODULE_LICENSE("GPL");
4710 MODULE_VERSION("1.0");
4711 module_init(nvme_core_init);
4712 module_exit(nvme_core_exit);