1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
28 #define CREATE_TRACE_POINTS
31 #define NVME_MINORS (1U << MINORBITS)
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
60 static unsigned long apst_primary_timeout_ms = 100;
61 module_param(apst_primary_timeout_ms, ulong, 0644);
62 MODULE_PARM_DESC(apst_primary_timeout_ms,
63 "primary APST timeout in ms");
65 static unsigned long apst_secondary_timeout_ms = 2000;
66 module_param(apst_secondary_timeout_ms, ulong, 0644);
67 MODULE_PARM_DESC(apst_secondary_timeout_ms,
68 "secondary APST timeout in ms");
70 static unsigned long apst_primary_latency_tol_us = 15000;
71 module_param(apst_primary_latency_tol_us, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_latency_tol_us,
73 "primary APST latency tolerance in us");
75 static unsigned long apst_secondary_latency_tol_us = 100000;
76 module_param(apst_secondary_latency_tol_us, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78 "secondary APST latency tolerance in us");
81 module_param(streams, bool, 0644);
82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
85 * nvme_wq - hosts nvme related works that are not reset or delete
86 * nvme_reset_wq - hosts nvme reset works
87 * nvme_delete_wq - hosts nvme delete works
89 * nvme_wq will host works such as scan, aen handling, fw activation,
90 * keep-alive, periodic reconnects etc. nvme_reset_wq
91 * runs reset works which also flush works hosted on nvme_wq for
92 * serialization purposes. nvme_delete_wq host controller deletion
93 * works which flush reset works for serialization.
95 struct workqueue_struct *nvme_wq;
96 EXPORT_SYMBOL_GPL(nvme_wq);
98 struct workqueue_struct *nvme_reset_wq;
99 EXPORT_SYMBOL_GPL(nvme_reset_wq);
101 struct workqueue_struct *nvme_delete_wq;
102 EXPORT_SYMBOL_GPL(nvme_delete_wq);
104 static LIST_HEAD(nvme_subsystems);
105 static DEFINE_MUTEX(nvme_subsystems_lock);
107 static DEFINE_IDA(nvme_instance_ida);
108 static dev_t nvme_ctrl_base_chr_devt;
109 static struct class *nvme_class;
110 static struct class *nvme_subsys_class;
112 static DEFINE_IDA(nvme_ns_chr_minor_ida);
113 static dev_t nvme_ns_chr_devt;
114 static struct class *nvme_ns_chr_class;
116 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
119 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
120 struct nvme_command *cmd);
122 void nvme_queue_scan(struct nvme_ctrl *ctrl)
125 * Only new queue scan work when admin and IO queues are both alive
127 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
128 queue_work(nvme_wq, &ctrl->scan_work);
132 * Use this function to proceed with scheduling reset_work for a controller
133 * that had previously been set to the resetting state. This is intended for
134 * code paths that can't be interrupted by other reset attempts. A hot removal
135 * may prevent this from succeeding.
137 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
139 if (ctrl->state != NVME_CTRL_RESETTING)
141 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
145 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
147 static void nvme_failfast_work(struct work_struct *work)
149 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
150 struct nvme_ctrl, failfast_work);
152 if (ctrl->state != NVME_CTRL_CONNECTING)
155 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
156 dev_info(ctrl->device, "failfast expired\n");
157 nvme_kick_requeue_lists(ctrl);
160 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
162 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
165 schedule_delayed_work(&ctrl->failfast_work,
166 ctrl->opts->fast_io_fail_tmo * HZ);
169 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
174 cancel_delayed_work_sync(&ctrl->failfast_work);
175 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
179 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
181 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
183 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
187 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
189 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
193 ret = nvme_reset_ctrl(ctrl);
195 flush_work(&ctrl->reset_work);
196 if (ctrl->state != NVME_CTRL_LIVE)
203 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
205 dev_info(ctrl->device,
206 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
208 flush_work(&ctrl->reset_work);
209 nvme_stop_ctrl(ctrl);
210 nvme_remove_namespaces(ctrl);
211 ctrl->ops->delete_ctrl(ctrl);
212 nvme_uninit_ctrl(ctrl);
215 static void nvme_delete_ctrl_work(struct work_struct *work)
217 struct nvme_ctrl *ctrl =
218 container_of(work, struct nvme_ctrl, delete_work);
220 nvme_do_delete_ctrl(ctrl);
223 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
225 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
227 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
231 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
233 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
236 * Keep a reference until nvme_do_delete_ctrl() complete,
237 * since ->delete_ctrl can free the controller.
240 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
241 nvme_do_delete_ctrl(ctrl);
245 static blk_status_t nvme_error_status(u16 status)
247 switch (status & 0x7ff) {
248 case NVME_SC_SUCCESS:
250 case NVME_SC_CAP_EXCEEDED:
251 return BLK_STS_NOSPC;
252 case NVME_SC_LBA_RANGE:
253 case NVME_SC_CMD_INTERRUPTED:
254 case NVME_SC_NS_NOT_READY:
255 return BLK_STS_TARGET;
256 case NVME_SC_BAD_ATTRIBUTES:
257 case NVME_SC_ONCS_NOT_SUPPORTED:
258 case NVME_SC_INVALID_OPCODE:
259 case NVME_SC_INVALID_FIELD:
260 case NVME_SC_INVALID_NS:
261 return BLK_STS_NOTSUPP;
262 case NVME_SC_WRITE_FAULT:
263 case NVME_SC_READ_ERROR:
264 case NVME_SC_UNWRITTEN_BLOCK:
265 case NVME_SC_ACCESS_DENIED:
266 case NVME_SC_READ_ONLY:
267 case NVME_SC_COMPARE_FAILED:
268 return BLK_STS_MEDIUM;
269 case NVME_SC_GUARD_CHECK:
270 case NVME_SC_APPTAG_CHECK:
271 case NVME_SC_REFTAG_CHECK:
272 case NVME_SC_INVALID_PI:
273 return BLK_STS_PROTECTION;
274 case NVME_SC_RESERVATION_CONFLICT:
275 return BLK_STS_NEXUS;
276 case NVME_SC_HOST_PATH_ERROR:
277 return BLK_STS_TRANSPORT;
278 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
279 return BLK_STS_ZONE_ACTIVE_RESOURCE;
280 case NVME_SC_ZONE_TOO_MANY_OPEN:
281 return BLK_STS_ZONE_OPEN_RESOURCE;
283 return BLK_STS_IOERR;
287 static void nvme_retry_req(struct request *req)
289 unsigned long delay = 0;
292 /* The mask and shift result must be <= 3 */
293 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
295 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
297 nvme_req(req)->retries++;
298 blk_mq_requeue_request(req, false);
299 blk_mq_delay_kick_requeue_list(req->q, delay);
302 enum nvme_disposition {
308 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
310 if (likely(nvme_req(req)->status == 0))
313 if (blk_noretry_request(req) ||
314 (nvme_req(req)->status & NVME_SC_DNR) ||
315 nvme_req(req)->retries >= nvme_max_retries)
318 if (req->cmd_flags & REQ_NVME_MPATH) {
319 if (nvme_is_path_error(nvme_req(req)->status) ||
320 blk_queue_dying(req->q))
323 if (blk_queue_dying(req->q))
330 static inline void nvme_end_req_zoned(struct request *req)
332 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
333 req_op(req) == REQ_OP_ZONE_APPEND)
334 req->__sector = nvme_lba_to_sect(req->q->queuedata,
335 le64_to_cpu(nvme_req(req)->result.u64));
338 static inline void nvme_end_req(struct request *req)
340 blk_status_t status = nvme_error_status(nvme_req(req)->status);
342 nvme_end_req_zoned(req);
343 nvme_trace_bio_complete(req);
344 blk_mq_end_request(req, status);
347 void nvme_complete_rq(struct request *req)
349 trace_nvme_complete_rq(req);
350 nvme_cleanup_cmd(req);
352 if (nvme_req(req)->ctrl->kas)
353 nvme_req(req)->ctrl->comp_seen = true;
355 switch (nvme_decide_disposition(req)) {
363 nvme_failover_req(req);
367 EXPORT_SYMBOL_GPL(nvme_complete_rq);
369 void nvme_complete_batch_req(struct request *req)
371 nvme_cleanup_cmd(req);
372 nvme_end_req_zoned(req);
374 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
377 * Called to unwind from ->queue_rq on a failed command submission so that the
378 * multipathing code gets called to potentially failover to another path.
379 * The caller needs to unwind all transport specific resource allocations and
380 * must return propagate the return value.
382 blk_status_t nvme_host_path_error(struct request *req)
384 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
385 blk_mq_set_request_complete(req);
386 nvme_complete_rq(req);
389 EXPORT_SYMBOL_GPL(nvme_host_path_error);
391 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
393 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
394 "Cancelling I/O %d", req->tag);
396 /* don't abort one completed request */
397 if (blk_mq_request_completed(req))
400 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
401 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
402 blk_mq_complete_request(req);
405 EXPORT_SYMBOL_GPL(nvme_cancel_request);
407 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
410 blk_mq_tagset_busy_iter(ctrl->tagset,
411 nvme_cancel_request, ctrl);
412 blk_mq_tagset_wait_completed_request(ctrl->tagset);
415 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
417 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
419 if (ctrl->admin_tagset) {
420 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
421 nvme_cancel_request, ctrl);
422 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
425 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
427 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
428 enum nvme_ctrl_state new_state)
430 enum nvme_ctrl_state old_state;
432 bool changed = false;
434 spin_lock_irqsave(&ctrl->lock, flags);
436 old_state = ctrl->state;
441 case NVME_CTRL_RESETTING:
442 case NVME_CTRL_CONNECTING:
449 case NVME_CTRL_RESETTING:
459 case NVME_CTRL_CONNECTING:
462 case NVME_CTRL_RESETTING:
469 case NVME_CTRL_DELETING:
472 case NVME_CTRL_RESETTING:
473 case NVME_CTRL_CONNECTING:
480 case NVME_CTRL_DELETING_NOIO:
482 case NVME_CTRL_DELETING:
492 case NVME_CTRL_DELETING:
504 ctrl->state = new_state;
505 wake_up_all(&ctrl->state_wq);
508 spin_unlock_irqrestore(&ctrl->lock, flags);
512 if (ctrl->state == NVME_CTRL_LIVE) {
513 if (old_state == NVME_CTRL_CONNECTING)
514 nvme_stop_failfast_work(ctrl);
515 nvme_kick_requeue_lists(ctrl);
516 } else if (ctrl->state == NVME_CTRL_CONNECTING &&
517 old_state == NVME_CTRL_RESETTING) {
518 nvme_start_failfast_work(ctrl);
522 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
525 * Returns true for sink states that can't ever transition back to live.
527 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
529 switch (ctrl->state) {
532 case NVME_CTRL_RESETTING:
533 case NVME_CTRL_CONNECTING:
535 case NVME_CTRL_DELETING:
536 case NVME_CTRL_DELETING_NOIO:
540 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
546 * Waits for the controller state to be resetting, or returns false if it is
547 * not possible to ever transition to that state.
549 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
551 wait_event(ctrl->state_wq,
552 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
553 nvme_state_terminal(ctrl));
554 return ctrl->state == NVME_CTRL_RESETTING;
556 EXPORT_SYMBOL_GPL(nvme_wait_reset);
558 static void nvme_free_ns_head(struct kref *ref)
560 struct nvme_ns_head *head =
561 container_of(ref, struct nvme_ns_head, ref);
563 nvme_mpath_remove_disk(head);
564 ida_simple_remove(&head->subsys->ns_ida, head->instance);
565 cleanup_srcu_struct(&head->srcu);
566 nvme_put_subsystem(head->subsys);
570 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
572 return kref_get_unless_zero(&head->ref);
575 void nvme_put_ns_head(struct nvme_ns_head *head)
577 kref_put(&head->ref, nvme_free_ns_head);
580 static void nvme_free_ns(struct kref *kref)
582 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
585 nvme_put_ns_head(ns->head);
586 nvme_put_ctrl(ns->ctrl);
590 static inline bool nvme_get_ns(struct nvme_ns *ns)
592 return kref_get_unless_zero(&ns->kref);
595 void nvme_put_ns(struct nvme_ns *ns)
597 kref_put(&ns->kref, nvme_free_ns);
599 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
601 static inline void nvme_clear_nvme_request(struct request *req)
603 nvme_req(req)->status = 0;
604 nvme_req(req)->retries = 0;
605 nvme_req(req)->flags = 0;
606 req->rq_flags |= RQF_DONTPREP;
609 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
611 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
614 static inline void nvme_init_request(struct request *req,
615 struct nvme_command *cmd)
617 if (req->q->queuedata)
618 req->timeout = NVME_IO_TIMEOUT;
619 else /* no queuedata implies admin queue */
620 req->timeout = NVME_ADMIN_TIMEOUT;
622 /* passthru commands should let the driver set the SGL flags */
623 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
625 req->cmd_flags |= REQ_FAILFAST_DRIVER;
626 if (req->mq_hctx->type == HCTX_TYPE_POLL)
627 req->cmd_flags |= REQ_POLLED;
628 nvme_clear_nvme_request(req);
629 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
632 struct request *nvme_alloc_request(struct request_queue *q,
633 struct nvme_command *cmd, blk_mq_req_flags_t flags)
637 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
639 nvme_init_request(req, cmd);
642 EXPORT_SYMBOL_GPL(nvme_alloc_request);
644 static struct request *nvme_alloc_request_qid(struct request_queue *q,
645 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
649 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
652 nvme_init_request(req, cmd);
657 * For something we're not in a state to send to the device the default action
658 * is to busy it and retry it after the controller state is recovered. However,
659 * if the controller is deleting or if anything is marked for failfast or
660 * nvme multipath it is immediately failed.
662 * Note: commands used to initialize the controller will be marked for failfast.
663 * Note: nvme cli/ioctl commands are marked for failfast.
665 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
668 if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
669 ctrl->state != NVME_CTRL_DEAD &&
670 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
671 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
672 return BLK_STS_RESOURCE;
673 return nvme_host_path_error(rq);
675 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
677 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
680 struct nvme_request *req = nvme_req(rq);
683 * currently we have a problem sending passthru commands
684 * on the admin_q if the controller is not LIVE because we can't
685 * make sure that they are going out after the admin connect,
686 * controller enable and/or other commands in the initialization
687 * sequence. until the controller will be LIVE, fail with
688 * BLK_STS_RESOURCE so that they will be rescheduled.
690 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
693 if (ctrl->ops->flags & NVME_F_FABRICS) {
695 * Only allow commands on a live queue, except for the connect
696 * command, which is require to set the queue live in the
697 * appropinquate states.
699 switch (ctrl->state) {
700 case NVME_CTRL_CONNECTING:
701 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
702 req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
714 EXPORT_SYMBOL_GPL(__nvme_check_ready);
716 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
718 struct nvme_command c = { };
720 c.directive.opcode = nvme_admin_directive_send;
721 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
722 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
723 c.directive.dtype = NVME_DIR_IDENTIFY;
724 c.directive.tdtype = NVME_DIR_STREAMS;
725 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
727 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
730 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
732 return nvme_toggle_streams(ctrl, false);
735 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
737 return nvme_toggle_streams(ctrl, true);
740 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
741 struct streams_directive_params *s, u32 nsid)
743 struct nvme_command c = { };
745 memset(s, 0, sizeof(*s));
747 c.directive.opcode = nvme_admin_directive_recv;
748 c.directive.nsid = cpu_to_le32(nsid);
749 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
750 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
751 c.directive.dtype = NVME_DIR_STREAMS;
753 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
756 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
758 struct streams_directive_params s;
761 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
766 ret = nvme_enable_streams(ctrl);
770 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
772 goto out_disable_stream;
774 ctrl->nssa = le16_to_cpu(s.nssa);
775 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
776 dev_info(ctrl->device, "too few streams (%u) available\n",
778 goto out_disable_stream;
781 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
782 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
786 nvme_disable_streams(ctrl);
791 * Check if 'req' has a write hint associated with it. If it does, assign
792 * a valid namespace stream to the write.
794 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
795 struct request *req, u16 *control,
798 enum rw_hint streamid = req->write_hint;
800 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
804 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
807 *control |= NVME_RW_DTYPE_STREAMS;
808 *dsmgmt |= streamid << 16;
811 if (streamid < ARRAY_SIZE(req->q->write_hints))
812 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
815 static inline void nvme_setup_flush(struct nvme_ns *ns,
816 struct nvme_command *cmnd)
818 cmnd->common.opcode = nvme_cmd_flush;
819 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
822 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
823 struct nvme_command *cmnd)
825 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
826 struct nvme_dsm_range *range;
830 * Some devices do not consider the DSM 'Number of Ranges' field when
831 * determining how much data to DMA. Always allocate memory for maximum
832 * number of segments to prevent device reading beyond end of buffer.
834 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
836 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
839 * If we fail allocation our range, fallback to the controller
840 * discard page. If that's also busy, it's safe to return
841 * busy, as we know we can make progress once that's freed.
843 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
844 return BLK_STS_RESOURCE;
846 range = page_address(ns->ctrl->discard_page);
849 __rq_for_each_bio(bio, req) {
850 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
851 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
854 range[n].cattr = cpu_to_le32(0);
855 range[n].nlb = cpu_to_le32(nlb);
856 range[n].slba = cpu_to_le64(slba);
861 if (WARN_ON_ONCE(n != segments)) {
862 if (virt_to_page(range) == ns->ctrl->discard_page)
863 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
866 return BLK_STS_IOERR;
869 cmnd->dsm.opcode = nvme_cmd_dsm;
870 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
871 cmnd->dsm.nr = cpu_to_le32(segments - 1);
872 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
874 req->special_vec.bv_page = virt_to_page(range);
875 req->special_vec.bv_offset = offset_in_page(range);
876 req->special_vec.bv_len = alloc_size;
877 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
882 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
883 struct request *req, struct nvme_command *cmnd)
885 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
886 return nvme_setup_discard(ns, req, cmnd);
888 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
889 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
890 cmnd->write_zeroes.slba =
891 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
892 cmnd->write_zeroes.length =
893 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
894 if (nvme_ns_has_pi(ns))
895 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
897 cmnd->write_zeroes.control = 0;
901 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
902 struct request *req, struct nvme_command *cmnd,
905 struct nvme_ctrl *ctrl = ns->ctrl;
909 if (req->cmd_flags & REQ_FUA)
910 control |= NVME_RW_FUA;
911 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
912 control |= NVME_RW_LR;
914 if (req->cmd_flags & REQ_RAHEAD)
915 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
917 cmnd->rw.opcode = op;
918 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
919 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
920 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
922 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
923 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
927 * If formated with metadata, the block layer always provides a
928 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
929 * we enable the PRACT bit for protection information or set the
930 * namespace capacity to zero to prevent any I/O.
932 if (!blk_integrity_rq(req)) {
933 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
934 return BLK_STS_NOTSUPP;
935 control |= NVME_RW_PRINFO_PRACT;
938 switch (ns->pi_type) {
939 case NVME_NS_DPS_PI_TYPE3:
940 control |= NVME_RW_PRINFO_PRCHK_GUARD;
942 case NVME_NS_DPS_PI_TYPE1:
943 case NVME_NS_DPS_PI_TYPE2:
944 control |= NVME_RW_PRINFO_PRCHK_GUARD |
945 NVME_RW_PRINFO_PRCHK_REF;
946 if (op == nvme_cmd_zone_append)
947 control |= NVME_RW_APPEND_PIREMAP;
948 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
953 cmnd->rw.control = cpu_to_le16(control);
954 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
958 void nvme_cleanup_cmd(struct request *req)
960 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
961 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
963 if (req->special_vec.bv_page == ctrl->discard_page)
964 clear_bit_unlock(0, &ctrl->discard_page_busy);
966 kfree(bvec_virt(&req->special_vec));
969 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
971 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
973 struct nvme_command *cmd = nvme_req(req)->cmd;
974 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
975 blk_status_t ret = BLK_STS_OK;
977 if (!(req->rq_flags & RQF_DONTPREP)) {
978 nvme_clear_nvme_request(req);
979 memset(cmd, 0, sizeof(*cmd));
982 switch (req_op(req)) {
985 /* these are setup prior to execution in nvme_init_request() */
988 nvme_setup_flush(ns, cmd);
990 case REQ_OP_ZONE_RESET_ALL:
991 case REQ_OP_ZONE_RESET:
992 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
994 case REQ_OP_ZONE_OPEN:
995 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
997 case REQ_OP_ZONE_CLOSE:
998 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1000 case REQ_OP_ZONE_FINISH:
1001 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1003 case REQ_OP_WRITE_ZEROES:
1004 ret = nvme_setup_write_zeroes(ns, req, cmd);
1006 case REQ_OP_DISCARD:
1007 ret = nvme_setup_discard(ns, req, cmd);
1010 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1013 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1015 case REQ_OP_ZONE_APPEND:
1016 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1020 return BLK_STS_IOERR;
1023 if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
1024 nvme_req(req)->genctr++;
1025 cmd->common.command_id = nvme_cid(req);
1026 trace_nvme_setup_cmd(req, cmd);
1029 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1034 * >0: nvme controller's cqe status response
1035 * <0: kernel error in lieu of controller response
1037 static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1040 blk_status_t status;
1042 status = blk_execute_rq(disk, rq, at_head);
1043 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1045 if (nvme_req(rq)->status)
1046 return nvme_req(rq)->status;
1047 return blk_status_to_errno(status);
1051 * Returns 0 on success. If the result is negative, it's a Linux error code;
1052 * if the result is positive, it's an NVM Express status code
1054 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1055 union nvme_result *result, void *buffer, unsigned bufflen,
1056 unsigned timeout, int qid, int at_head,
1057 blk_mq_req_flags_t flags)
1059 struct request *req;
1062 if (qid == NVME_QID_ANY)
1063 req = nvme_alloc_request(q, cmd, flags);
1065 req = nvme_alloc_request_qid(q, cmd, flags, qid);
1067 return PTR_ERR(req);
1070 req->timeout = timeout;
1072 if (buffer && bufflen) {
1073 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1078 ret = nvme_execute_rq(NULL, req, at_head);
1079 if (result && ret >= 0)
1080 *result = nvme_req(req)->result;
1082 blk_mq_free_request(req);
1085 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1087 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1088 void *buffer, unsigned bufflen)
1090 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1091 NVME_QID_ANY, 0, 0);
1093 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1095 static u32 nvme_known_admin_effects(u8 opcode)
1098 case nvme_admin_format_nvm:
1099 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1100 NVME_CMD_EFFECTS_CSE_MASK;
1101 case nvme_admin_sanitize_nvm:
1102 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1109 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1114 if (ns->head->effects)
1115 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1116 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1117 dev_warn_once(ctrl->device,
1118 "IO command:%02x has unhandled effects:%08x\n",
1124 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1125 effects |= nvme_known_admin_effects(opcode);
1129 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1131 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1134 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1137 * For simplicity, IO to all namespaces is quiesced even if the command
1138 * effects say only one namespace is affected.
1140 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1141 mutex_lock(&ctrl->scan_lock);
1142 mutex_lock(&ctrl->subsys->lock);
1143 nvme_mpath_start_freeze(ctrl->subsys);
1144 nvme_mpath_wait_freeze(ctrl->subsys);
1145 nvme_start_freeze(ctrl);
1146 nvme_wait_freeze(ctrl);
1151 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1152 struct nvme_command *cmd, int status)
1154 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1155 nvme_unfreeze(ctrl);
1156 nvme_mpath_unfreeze(ctrl->subsys);
1157 mutex_unlock(&ctrl->subsys->lock);
1158 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1159 mutex_unlock(&ctrl->scan_lock);
1161 if (effects & NVME_CMD_EFFECTS_CCC)
1162 nvme_init_ctrl_finish(ctrl);
1163 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1164 nvme_queue_scan(ctrl);
1165 flush_work(&ctrl->scan_work);
1168 switch (cmd->common.opcode) {
1169 case nvme_admin_set_features:
1170 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1171 case NVME_FEAT_KATO:
1173 * Keep alive commands interval on the host should be
1174 * updated when KATO is modified by Set Features
1178 nvme_update_keep_alive(ctrl, cmd);
1189 int nvme_execute_passthru_rq(struct request *rq)
1191 struct nvme_command *cmd = nvme_req(rq)->cmd;
1192 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1193 struct nvme_ns *ns = rq->q->queuedata;
1194 struct gendisk *disk = ns ? ns->disk : NULL;
1198 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1199 ret = nvme_execute_rq(disk, rq, false);
1200 if (effects) /* nothing to be done for zero cmd effects */
1201 nvme_passthru_end(ctrl, effects, cmd, ret);
1205 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1208 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1210 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1211 * accounting for transport roundtrip times [..].
1213 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1215 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1218 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1220 struct nvme_ctrl *ctrl = rq->end_io_data;
1221 unsigned long flags;
1222 bool startka = false;
1224 blk_mq_free_request(rq);
1227 dev_err(ctrl->device,
1228 "failed nvme_keep_alive_end_io error=%d\n",
1233 ctrl->comp_seen = false;
1234 spin_lock_irqsave(&ctrl->lock, flags);
1235 if (ctrl->state == NVME_CTRL_LIVE ||
1236 ctrl->state == NVME_CTRL_CONNECTING)
1238 spin_unlock_irqrestore(&ctrl->lock, flags);
1240 nvme_queue_keep_alive_work(ctrl);
1243 static void nvme_keep_alive_work(struct work_struct *work)
1245 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1246 struct nvme_ctrl, ka_work);
1247 bool comp_seen = ctrl->comp_seen;
1250 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1251 dev_dbg(ctrl->device,
1252 "reschedule traffic based keep-alive timer\n");
1253 ctrl->comp_seen = false;
1254 nvme_queue_keep_alive_work(ctrl);
1258 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1259 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1261 /* allocation failure, reset the controller */
1262 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1263 nvme_reset_ctrl(ctrl);
1267 rq->timeout = ctrl->kato * HZ;
1268 rq->end_io_data = ctrl;
1269 blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1272 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1274 if (unlikely(ctrl->kato == 0))
1277 nvme_queue_keep_alive_work(ctrl);
1280 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1282 if (unlikely(ctrl->kato == 0))
1285 cancel_delayed_work_sync(&ctrl->ka_work);
1287 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1289 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1290 struct nvme_command *cmd)
1292 unsigned int new_kato =
1293 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1295 dev_info(ctrl->device,
1296 "keep alive interval updated from %u ms to %u ms\n",
1297 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1299 nvme_stop_keep_alive(ctrl);
1300 ctrl->kato = new_kato;
1301 nvme_start_keep_alive(ctrl);
1305 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1306 * flag, thus sending any new CNS opcodes has a big chance of not working.
1307 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1308 * (but not for any later version).
1310 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1312 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1313 return ctrl->vs < NVME_VS(1, 2, 0);
1314 return ctrl->vs < NVME_VS(1, 1, 0);
1317 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1319 struct nvme_command c = { };
1322 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1323 c.identify.opcode = nvme_admin_identify;
1324 c.identify.cns = NVME_ID_CNS_CTRL;
1326 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1330 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1331 sizeof(struct nvme_id_ctrl));
1337 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1338 struct nvme_ns_id_desc *cur, bool *csi_seen)
1340 const char *warn_str = "ctrl returned bogus length:";
1343 switch (cur->nidt) {
1344 case NVME_NIDT_EUI64:
1345 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1346 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1347 warn_str, cur->nidl);
1350 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1351 return NVME_NIDT_EUI64_LEN;
1352 case NVME_NIDT_NGUID:
1353 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1354 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1355 warn_str, cur->nidl);
1358 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1359 return NVME_NIDT_NGUID_LEN;
1360 case NVME_NIDT_UUID:
1361 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1362 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1363 warn_str, cur->nidl);
1366 uuid_copy(&ids->uuid, data + sizeof(*cur));
1367 return NVME_NIDT_UUID_LEN;
1369 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1370 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1371 warn_str, cur->nidl);
1374 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1376 return NVME_NIDT_CSI_LEN;
1378 /* Skip unknown types */
1383 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1384 struct nvme_ns_ids *ids)
1386 struct nvme_command c = { };
1387 bool csi_seen = false;
1388 int status, pos, len;
1391 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1393 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1396 c.identify.opcode = nvme_admin_identify;
1397 c.identify.nsid = cpu_to_le32(nsid);
1398 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1400 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1404 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1405 NVME_IDENTIFY_DATA_SIZE);
1407 dev_warn(ctrl->device,
1408 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1413 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1414 struct nvme_ns_id_desc *cur = data + pos;
1419 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1423 len += sizeof(*cur);
1426 if (nvme_multi_css(ctrl) && !csi_seen) {
1427 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1437 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1438 struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1440 struct nvme_command c = { };
1443 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1444 c.identify.opcode = nvme_admin_identify;
1445 c.identify.nsid = cpu_to_le32(nsid);
1446 c.identify.cns = NVME_ID_CNS_NS;
1448 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1452 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1454 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1458 error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1459 if ((*id)->ncap == 0) /* namespace not allocated or attached */
1462 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1463 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1464 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1465 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1466 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1467 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1476 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1477 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1479 union nvme_result res = { 0 };
1480 struct nvme_command c = { };
1483 c.features.opcode = op;
1484 c.features.fid = cpu_to_le32(fid);
1485 c.features.dword11 = cpu_to_le32(dword11);
1487 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1488 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1489 if (ret >= 0 && result)
1490 *result = le32_to_cpu(res.u32);
1494 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1495 unsigned int dword11, void *buffer, size_t buflen,
1498 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1501 EXPORT_SYMBOL_GPL(nvme_set_features);
1503 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1504 unsigned int dword11, void *buffer, size_t buflen,
1507 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1510 EXPORT_SYMBOL_GPL(nvme_get_features);
1512 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1514 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1516 int status, nr_io_queues;
1518 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1524 * Degraded controllers might return an error when setting the queue
1525 * count. We still want to be able to bring them online and offer
1526 * access to the admin queue, as that might be only way to fix them up.
1529 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1532 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1533 *count = min(*count, nr_io_queues);
1538 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1540 #define NVME_AEN_SUPPORTED \
1541 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1542 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1544 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1546 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1549 if (!supported_aens)
1552 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1555 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1558 queue_work(nvme_wq, &ctrl->async_event_work);
1561 static int nvme_ns_open(struct nvme_ns *ns)
1564 /* should never be called due to GENHD_FL_HIDDEN */
1565 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1567 if (!nvme_get_ns(ns))
1569 if (!try_module_get(ns->ctrl->ops->module))
1580 static void nvme_ns_release(struct nvme_ns *ns)
1583 module_put(ns->ctrl->ops->module);
1587 static int nvme_open(struct block_device *bdev, fmode_t mode)
1589 return nvme_ns_open(bdev->bd_disk->private_data);
1592 static void nvme_release(struct gendisk *disk, fmode_t mode)
1594 nvme_ns_release(disk->private_data);
1597 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1599 /* some standard values */
1600 geo->heads = 1 << 6;
1601 geo->sectors = 1 << 5;
1602 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1606 #ifdef CONFIG_BLK_DEV_INTEGRITY
1607 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1608 u32 max_integrity_segments)
1610 struct blk_integrity integrity = { };
1613 case NVME_NS_DPS_PI_TYPE3:
1614 integrity.profile = &t10_pi_type3_crc;
1615 integrity.tag_size = sizeof(u16) + sizeof(u32);
1616 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1618 case NVME_NS_DPS_PI_TYPE1:
1619 case NVME_NS_DPS_PI_TYPE2:
1620 integrity.profile = &t10_pi_type1_crc;
1621 integrity.tag_size = sizeof(u16);
1622 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1625 integrity.profile = NULL;
1628 integrity.tuple_size = ms;
1629 blk_integrity_register(disk, &integrity);
1630 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1633 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1634 u32 max_integrity_segments)
1637 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1639 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1641 struct nvme_ctrl *ctrl = ns->ctrl;
1642 struct request_queue *queue = disk->queue;
1643 u32 size = queue_logical_block_size(queue);
1645 if (ctrl->max_discard_sectors == 0) {
1646 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1650 if (ctrl->nr_streams && ns->sws && ns->sgs)
1651 size *= ns->sws * ns->sgs;
1653 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1654 NVME_DSM_MAX_RANGES);
1656 queue->limits.discard_alignment = 0;
1657 queue->limits.discard_granularity = size;
1659 /* If discard is already enabled, don't reset queue limits */
1660 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1663 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1664 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1666 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1667 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1670 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1672 return !uuid_is_null(&ids->uuid) ||
1673 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1674 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1677 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1679 return uuid_equal(&a->uuid, &b->uuid) &&
1680 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1681 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1685 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1686 u32 *phys_bs, u32 *io_opt)
1688 struct streams_directive_params s;
1691 if (!ctrl->nr_streams)
1694 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1698 ns->sws = le32_to_cpu(s.sws);
1699 ns->sgs = le16_to_cpu(s.sgs);
1702 *phys_bs = ns->sws * (1 << ns->lba_shift);
1704 *io_opt = *phys_bs * ns->sgs;
1710 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1712 struct nvme_ctrl *ctrl = ns->ctrl;
1715 * The PI implementation requires the metadata size to be equal to the
1716 * t10 pi tuple size.
1718 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1719 if (ns->ms == sizeof(struct t10_pi_tuple))
1720 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1724 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1725 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1727 if (ctrl->ops->flags & NVME_F_FABRICS) {
1729 * The NVMe over Fabrics specification only supports metadata as
1730 * part of the extended data LBA. We rely on HCA/HBA support to
1731 * remap the separate metadata buffer from the block layer.
1733 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1735 if (ctrl->max_integrity_segments)
1737 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1740 * For PCIe controllers, we can't easily remap the separate
1741 * metadata buffer from the block layer and thus require a
1742 * separate metadata buffer for block layer metadata/PI support.
1743 * We allow extended LBAs for the passthrough interface, though.
1745 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1746 ns->features |= NVME_NS_EXT_LBAS;
1748 ns->features |= NVME_NS_METADATA_SUPPORTED;
1754 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1755 struct request_queue *q)
1757 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1759 if (ctrl->max_hw_sectors) {
1761 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1763 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1764 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1765 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1767 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1768 blk_queue_dma_alignment(q, 7);
1769 blk_queue_write_cache(q, vwc, vwc);
1772 static void nvme_update_disk_info(struct gendisk *disk,
1773 struct nvme_ns *ns, struct nvme_id_ns *id)
1775 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1776 unsigned short bs = 1 << ns->lba_shift;
1777 u32 atomic_bs, phys_bs, io_opt = 0;
1780 * The block layer can't support LBA sizes larger than the page size
1781 * yet, so catch this early and don't allow block I/O.
1783 if (ns->lba_shift > PAGE_SHIFT) {
1788 blk_integrity_unregister(disk);
1790 atomic_bs = phys_bs = bs;
1791 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1792 if (id->nabo == 0) {
1794 * Bit 1 indicates whether NAWUPF is defined for this namespace
1795 * and whether it should be used instead of AWUPF. If NAWUPF ==
1796 * 0 then AWUPF must be used instead.
1798 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1799 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1801 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1804 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1805 /* NPWG = Namespace Preferred Write Granularity */
1806 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1807 /* NOWS = Namespace Optimal Write Size */
1808 io_opt = bs * (1 + le16_to_cpu(id->nows));
1811 blk_queue_logical_block_size(disk->queue, bs);
1813 * Linux filesystems assume writing a single physical block is
1814 * an atomic operation. Hence limit the physical block size to the
1815 * value of the Atomic Write Unit Power Fail parameter.
1817 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1818 blk_queue_io_min(disk->queue, phys_bs);
1819 blk_queue_io_opt(disk->queue, io_opt);
1822 * Register a metadata profile for PI, or the plain non-integrity NVMe
1823 * metadata masquerading as Type 0 if supported, otherwise reject block
1824 * I/O to namespaces with metadata except when the namespace supports
1825 * PI, as it can strip/insert in that case.
1828 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1829 (ns->features & NVME_NS_METADATA_SUPPORTED))
1830 nvme_init_integrity(disk, ns->ms, ns->pi_type,
1831 ns->ctrl->max_integrity_segments);
1832 else if (!nvme_ns_has_pi(ns))
1836 set_capacity_and_notify(disk, capacity);
1838 nvme_config_discard(disk, ns);
1839 blk_queue_max_write_zeroes_sectors(disk->queue,
1840 ns->ctrl->max_zeroes_sectors);
1842 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1843 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1846 static inline bool nvme_first_scan(struct gendisk *disk)
1848 /* nvme_alloc_ns() scans the disk prior to adding it */
1849 return !disk_live(disk);
1852 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1854 struct nvme_ctrl *ctrl = ns->ctrl;
1857 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1858 is_power_of_2(ctrl->max_hw_sectors))
1859 iob = ctrl->max_hw_sectors;
1861 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1866 if (!is_power_of_2(iob)) {
1867 if (nvme_first_scan(ns->disk))
1868 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1869 ns->disk->disk_name, iob);
1873 if (blk_queue_is_zoned(ns->disk->queue)) {
1874 if (nvme_first_scan(ns->disk))
1875 pr_warn("%s: ignoring zoned namespace IO boundary\n",
1876 ns->disk->disk_name);
1880 blk_queue_chunk_sectors(ns->queue, iob);
1883 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1885 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1888 blk_mq_freeze_queue(ns->disk->queue);
1889 ns->lba_shift = id->lbaf[lbaf].ds;
1890 nvme_set_queue_limits(ns->ctrl, ns->queue);
1892 ret = nvme_configure_metadata(ns, id);
1895 nvme_set_chunk_sectors(ns, id);
1896 nvme_update_disk_info(ns->disk, ns, id);
1898 if (ns->head->ids.csi == NVME_CSI_ZNS) {
1899 ret = nvme_update_zone_info(ns, lbaf);
1904 set_bit(NVME_NS_READY, &ns->flags);
1905 blk_mq_unfreeze_queue(ns->disk->queue);
1907 if (blk_queue_is_zoned(ns->queue)) {
1908 ret = nvme_revalidate_zones(ns);
1909 if (ret && !nvme_first_scan(ns->disk))
1913 if (nvme_ns_head_multipath(ns->head)) {
1914 blk_mq_freeze_queue(ns->head->disk->queue);
1915 nvme_update_disk_info(ns->head->disk, ns, id);
1916 nvme_mpath_revalidate_paths(ns);
1917 blk_stack_limits(&ns->head->disk->queue->limits,
1918 &ns->queue->limits, 0);
1919 disk_update_readahead(ns->head->disk);
1920 blk_mq_unfreeze_queue(ns->head->disk->queue);
1925 blk_mq_unfreeze_queue(ns->disk->queue);
1928 * If probing fails due an unsupported feature, hide the block device,
1929 * but still allow other access.
1931 if (ret == -ENODEV) {
1932 ns->disk->flags |= GENHD_FL_HIDDEN;
1938 static char nvme_pr_type(enum pr_type type)
1941 case PR_WRITE_EXCLUSIVE:
1943 case PR_EXCLUSIVE_ACCESS:
1945 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1947 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1949 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1951 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1958 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1959 struct nvme_command *c, u8 data[16])
1961 struct nvme_ns_head *head = bdev->bd_disk->private_data;
1962 int srcu_idx = srcu_read_lock(&head->srcu);
1963 struct nvme_ns *ns = nvme_find_path(head);
1964 int ret = -EWOULDBLOCK;
1967 c->common.nsid = cpu_to_le32(ns->head->ns_id);
1968 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1970 srcu_read_unlock(&head->srcu, srcu_idx);
1974 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
1977 c->common.nsid = cpu_to_le32(ns->head->ns_id);
1978 return nvme_submit_sync_cmd(ns->queue, c, data, 16);
1981 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1982 u64 key, u64 sa_key, u8 op)
1984 struct nvme_command c = { };
1985 u8 data[16] = { 0, };
1987 put_unaligned_le64(key, &data[0]);
1988 put_unaligned_le64(sa_key, &data[8]);
1990 c.common.opcode = op;
1991 c.common.cdw10 = cpu_to_le32(cdw10);
1993 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
1994 bdev->bd_disk->fops == &nvme_ns_head_ops)
1995 return nvme_send_ns_head_pr_command(bdev, &c, data);
1996 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
1999 static int nvme_pr_register(struct block_device *bdev, u64 old,
2000 u64 new, unsigned flags)
2004 if (flags & ~PR_FL_IGNORE_KEY)
2007 cdw10 = old ? 2 : 0;
2008 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2009 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2010 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2013 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2014 enum pr_type type, unsigned flags)
2018 if (flags & ~PR_FL_IGNORE_KEY)
2021 cdw10 = nvme_pr_type(type) << 8;
2022 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2023 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2026 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2027 enum pr_type type, bool abort)
2029 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2031 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2034 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2036 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2038 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2041 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2043 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2045 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2048 const struct pr_ops nvme_pr_ops = {
2049 .pr_register = nvme_pr_register,
2050 .pr_reserve = nvme_pr_reserve,
2051 .pr_release = nvme_pr_release,
2052 .pr_preempt = nvme_pr_preempt,
2053 .pr_clear = nvme_pr_clear,
2056 #ifdef CONFIG_BLK_SED_OPAL
2057 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2060 struct nvme_ctrl *ctrl = data;
2061 struct nvme_command cmd = { };
2064 cmd.common.opcode = nvme_admin_security_send;
2066 cmd.common.opcode = nvme_admin_security_recv;
2067 cmd.common.nsid = 0;
2068 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2069 cmd.common.cdw11 = cpu_to_le32(len);
2071 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2072 NVME_QID_ANY, 1, 0);
2074 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2075 #endif /* CONFIG_BLK_SED_OPAL */
2077 #ifdef CONFIG_BLK_DEV_ZONED
2078 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2079 unsigned int nr_zones, report_zones_cb cb, void *data)
2081 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2085 #define nvme_report_zones NULL
2086 #endif /* CONFIG_BLK_DEV_ZONED */
2088 static const struct block_device_operations nvme_bdev_ops = {
2089 .owner = THIS_MODULE,
2090 .ioctl = nvme_ioctl,
2092 .release = nvme_release,
2093 .getgeo = nvme_getgeo,
2094 .report_zones = nvme_report_zones,
2095 .pr_ops = &nvme_pr_ops,
2098 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2100 unsigned long timeout =
2101 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2102 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2105 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2108 if ((csts & NVME_CSTS_RDY) == bit)
2111 usleep_range(1000, 2000);
2112 if (fatal_signal_pending(current))
2114 if (time_after(jiffies, timeout)) {
2115 dev_err(ctrl->device,
2116 "Device not ready; aborting %s, CSTS=0x%x\n",
2117 enabled ? "initialisation" : "reset", csts);
2126 * If the device has been passed off to us in an enabled state, just clear
2127 * the enabled bit. The spec says we should set the 'shutdown notification
2128 * bits', but doing so may cause the device to complete commands to the
2129 * admin queue ... and we don't know what memory that might be pointing at!
2131 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2135 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2136 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2138 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2142 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2143 msleep(NVME_QUIRK_DELAY_AMOUNT);
2145 return nvme_wait_ready(ctrl, ctrl->cap, false);
2147 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2149 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2151 unsigned dev_page_min;
2154 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2156 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2159 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2161 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2162 dev_err(ctrl->device,
2163 "Minimum device page size %u too large for host (%u)\n",
2164 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2168 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2169 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2171 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2172 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2173 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2174 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2175 ctrl->ctrl_config |= NVME_CC_ENABLE;
2177 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2180 return nvme_wait_ready(ctrl, ctrl->cap, true);
2182 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2184 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2186 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2190 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2191 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2193 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2197 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2198 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2202 if (fatal_signal_pending(current))
2204 if (time_after(jiffies, timeout)) {
2205 dev_err(ctrl->device,
2206 "Device shutdown incomplete; abort shutdown\n");
2213 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2215 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2220 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2223 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2224 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2227 dev_warn_once(ctrl->device,
2228 "could not set timestamp (%d)\n", ret);
2232 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2234 struct nvme_feat_host_behavior *host;
2237 /* Don't bother enabling the feature if retry delay is not reported */
2241 host = kzalloc(sizeof(*host), GFP_KERNEL);
2245 host->acre = NVME_ENABLE_ACRE;
2246 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2247 host, sizeof(*host), NULL);
2253 * The function checks whether the given total (exlat + enlat) latency of
2254 * a power state allows the latter to be used as an APST transition target.
2255 * It does so by comparing the latency to the primary and secondary latency
2256 * tolerances defined by module params. If there's a match, the corresponding
2257 * timeout value is returned and the matching tolerance index (1 or 2) is
2260 static bool nvme_apst_get_transition_time(u64 total_latency,
2261 u64 *transition_time, unsigned *last_index)
2263 if (total_latency <= apst_primary_latency_tol_us) {
2264 if (*last_index == 1)
2267 *transition_time = apst_primary_timeout_ms;
2270 if (apst_secondary_timeout_ms &&
2271 total_latency <= apst_secondary_latency_tol_us) {
2272 if (*last_index <= 2)
2275 *transition_time = apst_secondary_timeout_ms;
2282 * APST (Autonomous Power State Transition) lets us program a table of power
2283 * state transitions that the controller will perform automatically.
2285 * Depending on module params, one of the two supported techniques will be used:
2287 * - If the parameters provide explicit timeouts and tolerances, they will be
2288 * used to build a table with up to 2 non-operational states to transition to.
2289 * The default parameter values were selected based on the values used by
2290 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2291 * regeneration of the APST table in the event of switching between external
2292 * and battery power, the timeouts and tolerances reflect a compromise
2293 * between values used by Microsoft for AC and battery scenarios.
2294 * - If not, we'll configure the table with a simple heuristic: we are willing
2295 * to spend at most 2% of the time transitioning between power states.
2296 * Therefore, when running in any given state, we will enter the next
2297 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2298 * microseconds, as long as that state's exit latency is under the requested
2301 * We will not autonomously enter any non-operational state for which the total
2302 * latency exceeds ps_max_latency_us.
2304 * Users can set ps_max_latency_us to zero to turn off APST.
2306 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2308 struct nvme_feat_auto_pst *table;
2315 unsigned last_lt_index = UINT_MAX;
2318 * If APST isn't supported or if we haven't been initialized yet,
2319 * then don't do anything.
2324 if (ctrl->npss > 31) {
2325 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2329 table = kzalloc(sizeof(*table), GFP_KERNEL);
2333 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2334 /* Turn off APST. */
2335 dev_dbg(ctrl->device, "APST disabled\n");
2340 * Walk through all states from lowest- to highest-power.
2341 * According to the spec, lower-numbered states use more power. NPSS,
2342 * despite the name, is the index of the lowest-power state, not the
2345 for (state = (int)ctrl->npss; state >= 0; state--) {
2346 u64 total_latency_us, exit_latency_us, transition_ms;
2349 table->entries[state] = target;
2352 * Don't allow transitions to the deepest state if it's quirked
2355 if (state == ctrl->npss &&
2356 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2360 * Is this state a useful non-operational state for higher-power
2361 * states to autonomously transition to?
2363 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2366 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2367 if (exit_latency_us > ctrl->ps_max_latency_us)
2370 total_latency_us = exit_latency_us +
2371 le32_to_cpu(ctrl->psd[state].entry_lat);
2374 * This state is good. It can be used as the APST idle target
2375 * for higher power states.
2377 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2378 if (!nvme_apst_get_transition_time(total_latency_us,
2379 &transition_ms, &last_lt_index))
2382 transition_ms = total_latency_us + 19;
2383 do_div(transition_ms, 20);
2384 if (transition_ms > (1 << 24) - 1)
2385 transition_ms = (1 << 24) - 1;
2388 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2391 if (total_latency_us > max_lat_us)
2392 max_lat_us = total_latency_us;
2396 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2398 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2399 max_ps, max_lat_us, (int)sizeof(*table), table);
2403 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2404 table, sizeof(*table), NULL);
2406 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2411 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2413 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2417 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2418 case PM_QOS_LATENCY_ANY:
2426 if (ctrl->ps_max_latency_us != latency) {
2427 ctrl->ps_max_latency_us = latency;
2428 if (ctrl->state == NVME_CTRL_LIVE)
2429 nvme_configure_apst(ctrl);
2433 struct nvme_core_quirk_entry {
2435 * NVMe model and firmware strings are padded with spaces. For
2436 * simplicity, strings in the quirk table are padded with NULLs
2442 unsigned long quirks;
2445 static const struct nvme_core_quirk_entry core_quirks[] = {
2448 * This Toshiba device seems to die using any APST states. See:
2449 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2452 .mn = "THNSF5256GPUK TOSHIBA",
2453 .quirks = NVME_QUIRK_NO_APST,
2457 * This LiteON CL1-3D*-Q11 firmware version has a race
2458 * condition associated with actions related to suspend to idle
2459 * LiteON has resolved the problem in future firmware
2463 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2467 /* match is null-terminated but idstr is space-padded. */
2468 static bool string_matches(const char *idstr, const char *match, size_t len)
2475 matchlen = strlen(match);
2476 WARN_ON_ONCE(matchlen > len);
2478 if (memcmp(idstr, match, matchlen))
2481 for (; matchlen < len; matchlen++)
2482 if (idstr[matchlen] != ' ')
2488 static bool quirk_matches(const struct nvme_id_ctrl *id,
2489 const struct nvme_core_quirk_entry *q)
2491 return q->vid == le16_to_cpu(id->vid) &&
2492 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2493 string_matches(id->fr, q->fr, sizeof(id->fr));
2496 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2497 struct nvme_id_ctrl *id)
2502 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2503 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2504 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2505 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2509 if (ctrl->vs >= NVME_VS(1, 2, 1))
2510 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2513 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2514 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2515 "nqn.2014.08.org.nvmexpress:%04x%04x",
2516 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2517 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2518 off += sizeof(id->sn);
2519 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2520 off += sizeof(id->mn);
2521 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2524 static void nvme_release_subsystem(struct device *dev)
2526 struct nvme_subsystem *subsys =
2527 container_of(dev, struct nvme_subsystem, dev);
2529 if (subsys->instance >= 0)
2530 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2534 static void nvme_destroy_subsystem(struct kref *ref)
2536 struct nvme_subsystem *subsys =
2537 container_of(ref, struct nvme_subsystem, ref);
2539 mutex_lock(&nvme_subsystems_lock);
2540 list_del(&subsys->entry);
2541 mutex_unlock(&nvme_subsystems_lock);
2543 ida_destroy(&subsys->ns_ida);
2544 device_del(&subsys->dev);
2545 put_device(&subsys->dev);
2548 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2550 kref_put(&subsys->ref, nvme_destroy_subsystem);
2553 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2555 struct nvme_subsystem *subsys;
2557 lockdep_assert_held(&nvme_subsystems_lock);
2560 * Fail matches for discovery subsystems. This results
2561 * in each discovery controller bound to a unique subsystem.
2562 * This avoids issues with validating controller values
2563 * that can only be true when there is a single unique subsystem.
2564 * There may be multiple and completely independent entities
2565 * that provide discovery controllers.
2567 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2570 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2571 if (strcmp(subsys->subnqn, subsysnqn))
2573 if (!kref_get_unless_zero(&subsys->ref))
2581 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2582 struct device_attribute subsys_attr_##_name = \
2583 __ATTR(_name, _mode, _show, NULL)
2585 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2586 struct device_attribute *attr,
2589 struct nvme_subsystem *subsys =
2590 container_of(dev, struct nvme_subsystem, dev);
2592 return sysfs_emit(buf, "%s\n", subsys->subnqn);
2594 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2596 #define nvme_subsys_show_str_function(field) \
2597 static ssize_t subsys_##field##_show(struct device *dev, \
2598 struct device_attribute *attr, char *buf) \
2600 struct nvme_subsystem *subsys = \
2601 container_of(dev, struct nvme_subsystem, dev); \
2602 return sysfs_emit(buf, "%.*s\n", \
2603 (int)sizeof(subsys->field), subsys->field); \
2605 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2607 nvme_subsys_show_str_function(model);
2608 nvme_subsys_show_str_function(serial);
2609 nvme_subsys_show_str_function(firmware_rev);
2611 static struct attribute *nvme_subsys_attrs[] = {
2612 &subsys_attr_model.attr,
2613 &subsys_attr_serial.attr,
2614 &subsys_attr_firmware_rev.attr,
2615 &subsys_attr_subsysnqn.attr,
2616 #ifdef CONFIG_NVME_MULTIPATH
2617 &subsys_attr_iopolicy.attr,
2622 static const struct attribute_group nvme_subsys_attrs_group = {
2623 .attrs = nvme_subsys_attrs,
2626 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2627 &nvme_subsys_attrs_group,
2631 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2633 return ctrl->opts && ctrl->opts->discovery_nqn;
2636 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2637 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2639 struct nvme_ctrl *tmp;
2641 lockdep_assert_held(&nvme_subsystems_lock);
2643 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2644 if (nvme_state_terminal(tmp))
2647 if (tmp->cntlid == ctrl->cntlid) {
2648 dev_err(ctrl->device,
2649 "Duplicate cntlid %u with %s, rejecting\n",
2650 ctrl->cntlid, dev_name(tmp->device));
2654 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2655 nvme_discovery_ctrl(ctrl))
2658 dev_err(ctrl->device,
2659 "Subsystem does not support multiple controllers\n");
2666 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2668 struct nvme_subsystem *subsys, *found;
2671 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2675 subsys->instance = -1;
2676 mutex_init(&subsys->lock);
2677 kref_init(&subsys->ref);
2678 INIT_LIST_HEAD(&subsys->ctrls);
2679 INIT_LIST_HEAD(&subsys->nsheads);
2680 nvme_init_subnqn(subsys, ctrl, id);
2681 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2682 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2683 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2684 subsys->vendor_id = le16_to_cpu(id->vid);
2685 subsys->cmic = id->cmic;
2686 subsys->awupf = le16_to_cpu(id->awupf);
2687 #ifdef CONFIG_NVME_MULTIPATH
2688 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2691 subsys->dev.class = nvme_subsys_class;
2692 subsys->dev.release = nvme_release_subsystem;
2693 subsys->dev.groups = nvme_subsys_attrs_groups;
2694 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2695 device_initialize(&subsys->dev);
2697 mutex_lock(&nvme_subsystems_lock);
2698 found = __nvme_find_get_subsystem(subsys->subnqn);
2700 put_device(&subsys->dev);
2703 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2705 goto out_put_subsystem;
2708 ret = device_add(&subsys->dev);
2710 dev_err(ctrl->device,
2711 "failed to register subsystem device.\n");
2712 put_device(&subsys->dev);
2715 ida_init(&subsys->ns_ida);
2716 list_add_tail(&subsys->entry, &nvme_subsystems);
2719 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2720 dev_name(ctrl->device));
2722 dev_err(ctrl->device,
2723 "failed to create sysfs link from subsystem.\n");
2724 goto out_put_subsystem;
2728 subsys->instance = ctrl->instance;
2729 ctrl->subsys = subsys;
2730 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2731 mutex_unlock(&nvme_subsystems_lock);
2735 nvme_put_subsystem(subsys);
2737 mutex_unlock(&nvme_subsystems_lock);
2741 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2742 void *log, size_t size, u64 offset)
2744 struct nvme_command c = { };
2745 u32 dwlen = nvme_bytes_to_numd(size);
2747 c.get_log_page.opcode = nvme_admin_get_log_page;
2748 c.get_log_page.nsid = cpu_to_le32(nsid);
2749 c.get_log_page.lid = log_page;
2750 c.get_log_page.lsp = lsp;
2751 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2752 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2753 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2754 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2755 c.get_log_page.csi = csi;
2757 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2760 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2761 struct nvme_effects_log **log)
2763 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2769 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2773 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2774 cel, sizeof(*cel), 0);
2780 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2786 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2788 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2790 if (check_shl_overflow(1U, units + page_shift - 9, &val))
2795 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2797 struct nvme_command c = { };
2798 struct nvme_id_ctrl_nvm *id;
2801 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2802 ctrl->max_discard_sectors = UINT_MAX;
2803 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2805 ctrl->max_discard_sectors = 0;
2806 ctrl->max_discard_segments = 0;
2810 * Even though NVMe spec explicitly states that MDTS is not applicable
2811 * to the write-zeroes, we are cautious and limit the size to the
2812 * controllers max_hw_sectors value, which is based on the MDTS field
2813 * and possibly other limiting factors.
2815 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2816 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2817 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2819 ctrl->max_zeroes_sectors = 0;
2821 if (nvme_ctrl_limited_cns(ctrl))
2824 id = kzalloc(sizeof(*id), GFP_KERNEL);
2828 c.identify.opcode = nvme_admin_identify;
2829 c.identify.cns = NVME_ID_CNS_CS_CTRL;
2830 c.identify.csi = NVME_CSI_NVM;
2832 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2837 ctrl->max_discard_segments = id->dmrl;
2839 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2841 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2848 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2850 struct nvme_id_ctrl *id;
2852 bool prev_apst_enabled;
2855 ret = nvme_identify_ctrl(ctrl, &id);
2857 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2861 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2862 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2867 if (!(ctrl->ops->flags & NVME_F_FABRICS))
2868 ctrl->cntlid = le16_to_cpu(id->cntlid);
2870 if (!ctrl->identified) {
2873 ret = nvme_init_subsystem(ctrl, id);
2878 * Check for quirks. Quirk can depend on firmware version,
2879 * so, in principle, the set of quirks present can change
2880 * across a reset. As a possible future enhancement, we
2881 * could re-scan for quirks every time we reinitialize
2882 * the device, but we'd have to make sure that the driver
2883 * behaves intelligently if the quirks change.
2885 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2886 if (quirk_matches(id, &core_quirks[i]))
2887 ctrl->quirks |= core_quirks[i].quirks;
2891 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2892 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2893 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2896 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2897 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2898 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2900 ctrl->oacs = le16_to_cpu(id->oacs);
2901 ctrl->oncs = le16_to_cpu(id->oncs);
2902 ctrl->mtfa = le16_to_cpu(id->mtfa);
2903 ctrl->oaes = le32_to_cpu(id->oaes);
2904 ctrl->wctemp = le16_to_cpu(id->wctemp);
2905 ctrl->cctemp = le16_to_cpu(id->cctemp);
2907 atomic_set(&ctrl->abort_limit, id->acl + 1);
2908 ctrl->vwc = id->vwc;
2910 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2912 max_hw_sectors = UINT_MAX;
2913 ctrl->max_hw_sectors =
2914 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2916 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2917 ctrl->sgls = le32_to_cpu(id->sgls);
2918 ctrl->kas = le16_to_cpu(id->kas);
2919 ctrl->max_namespaces = le32_to_cpu(id->mnan);
2920 ctrl->ctratt = le32_to_cpu(id->ctratt);
2924 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2926 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2927 shutdown_timeout, 60);
2929 if (ctrl->shutdown_timeout != shutdown_timeout)
2930 dev_info(ctrl->device,
2931 "Shutdown timeout set to %u seconds\n",
2932 ctrl->shutdown_timeout);
2934 ctrl->shutdown_timeout = shutdown_timeout;
2936 ctrl->npss = id->npss;
2937 ctrl->apsta = id->apsta;
2938 prev_apst_enabled = ctrl->apst_enabled;
2939 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2940 if (force_apst && id->apsta) {
2941 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2942 ctrl->apst_enabled = true;
2944 ctrl->apst_enabled = false;
2947 ctrl->apst_enabled = id->apsta;
2949 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2951 if (ctrl->ops->flags & NVME_F_FABRICS) {
2952 ctrl->icdoff = le16_to_cpu(id->icdoff);
2953 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2954 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2955 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2958 * In fabrics we need to verify the cntlid matches the
2961 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2962 dev_err(ctrl->device,
2963 "Mismatching cntlid: Connect %u vs Identify "
2965 ctrl->cntlid, le16_to_cpu(id->cntlid));
2970 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2971 dev_err(ctrl->device,
2972 "keep-alive support is mandatory for fabrics\n");
2977 ctrl->hmpre = le32_to_cpu(id->hmpre);
2978 ctrl->hmmin = le32_to_cpu(id->hmmin);
2979 ctrl->hmminds = le32_to_cpu(id->hmminds);
2980 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2983 ret = nvme_mpath_init_identify(ctrl, id);
2987 if (ctrl->apst_enabled && !prev_apst_enabled)
2988 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2989 else if (!ctrl->apst_enabled && prev_apst_enabled)
2990 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2998 * Initialize the cached copies of the Identify data and various controller
2999 * register in our nvme_ctrl structure. This should be called as soon as
3000 * the admin queue is fully up and running.
3002 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3006 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3008 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3012 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3014 if (ctrl->vs >= NVME_VS(1, 1, 0))
3015 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3017 ret = nvme_init_identify(ctrl);
3021 ret = nvme_init_non_mdts_limits(ctrl);
3025 ret = nvme_configure_apst(ctrl);
3029 ret = nvme_configure_timestamp(ctrl);
3033 ret = nvme_configure_directives(ctrl);
3037 ret = nvme_configure_acre(ctrl);
3041 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3042 ret = nvme_hwmon_init(ctrl);
3047 ctrl->identified = true;
3051 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3053 static int nvme_dev_open(struct inode *inode, struct file *file)
3055 struct nvme_ctrl *ctrl =
3056 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3058 switch (ctrl->state) {
3059 case NVME_CTRL_LIVE:
3062 return -EWOULDBLOCK;
3065 nvme_get_ctrl(ctrl);
3066 if (!try_module_get(ctrl->ops->module)) {
3067 nvme_put_ctrl(ctrl);
3071 file->private_data = ctrl;
3075 static int nvme_dev_release(struct inode *inode, struct file *file)
3077 struct nvme_ctrl *ctrl =
3078 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3080 module_put(ctrl->ops->module);
3081 nvme_put_ctrl(ctrl);
3085 static const struct file_operations nvme_dev_fops = {
3086 .owner = THIS_MODULE,
3087 .open = nvme_dev_open,
3088 .release = nvme_dev_release,
3089 .unlocked_ioctl = nvme_dev_ioctl,
3090 .compat_ioctl = compat_ptr_ioctl,
3093 static ssize_t nvme_sysfs_reset(struct device *dev,
3094 struct device_attribute *attr, const char *buf,
3097 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3100 ret = nvme_reset_ctrl_sync(ctrl);
3105 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3107 static ssize_t nvme_sysfs_rescan(struct device *dev,
3108 struct device_attribute *attr, const char *buf,
3111 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3113 nvme_queue_scan(ctrl);
3116 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3118 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3120 struct gendisk *disk = dev_to_disk(dev);
3122 if (disk->fops == &nvme_bdev_ops)
3123 return nvme_get_ns_from_dev(dev)->head;
3125 return disk->private_data;
3128 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3131 struct nvme_ns_head *head = dev_to_ns_head(dev);
3132 struct nvme_ns_ids *ids = &head->ids;
3133 struct nvme_subsystem *subsys = head->subsys;
3134 int serial_len = sizeof(subsys->serial);
3135 int model_len = sizeof(subsys->model);
3137 if (!uuid_is_null(&ids->uuid))
3138 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3140 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3141 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3143 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3144 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3146 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3147 subsys->serial[serial_len - 1] == '\0'))
3149 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3150 subsys->model[model_len - 1] == '\0'))
3153 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3154 serial_len, subsys->serial, model_len, subsys->model,
3157 static DEVICE_ATTR_RO(wwid);
3159 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3162 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3164 static DEVICE_ATTR_RO(nguid);
3166 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3169 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3171 /* For backward compatibility expose the NGUID to userspace if
3172 * we have no UUID set
3174 if (uuid_is_null(&ids->uuid)) {
3175 printk_ratelimited(KERN_WARNING
3176 "No UUID available providing old NGUID\n");
3177 return sysfs_emit(buf, "%pU\n", ids->nguid);
3179 return sysfs_emit(buf, "%pU\n", &ids->uuid);
3181 static DEVICE_ATTR_RO(uuid);
3183 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3186 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3188 static DEVICE_ATTR_RO(eui);
3190 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3193 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3195 static DEVICE_ATTR_RO(nsid);
3197 static struct attribute *nvme_ns_id_attrs[] = {
3198 &dev_attr_wwid.attr,
3199 &dev_attr_uuid.attr,
3200 &dev_attr_nguid.attr,
3202 &dev_attr_nsid.attr,
3203 #ifdef CONFIG_NVME_MULTIPATH
3204 &dev_attr_ana_grpid.attr,
3205 &dev_attr_ana_state.attr,
3210 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3211 struct attribute *a, int n)
3213 struct device *dev = container_of(kobj, struct device, kobj);
3214 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3216 if (a == &dev_attr_uuid.attr) {
3217 if (uuid_is_null(&ids->uuid) &&
3218 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3221 if (a == &dev_attr_nguid.attr) {
3222 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3225 if (a == &dev_attr_eui.attr) {
3226 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3229 #ifdef CONFIG_NVME_MULTIPATH
3230 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3231 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3233 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3240 static const struct attribute_group nvme_ns_id_attr_group = {
3241 .attrs = nvme_ns_id_attrs,
3242 .is_visible = nvme_ns_id_attrs_are_visible,
3245 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3246 &nvme_ns_id_attr_group,
3250 #define nvme_show_str_function(field) \
3251 static ssize_t field##_show(struct device *dev, \
3252 struct device_attribute *attr, char *buf) \
3254 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3255 return sysfs_emit(buf, "%.*s\n", \
3256 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3258 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3260 nvme_show_str_function(model);
3261 nvme_show_str_function(serial);
3262 nvme_show_str_function(firmware_rev);
3264 #define nvme_show_int_function(field) \
3265 static ssize_t field##_show(struct device *dev, \
3266 struct device_attribute *attr, char *buf) \
3268 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3269 return sysfs_emit(buf, "%d\n", ctrl->field); \
3271 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3273 nvme_show_int_function(cntlid);
3274 nvme_show_int_function(numa_node);
3275 nvme_show_int_function(queue_count);
3276 nvme_show_int_function(sqsize);
3277 nvme_show_int_function(kato);
3279 static ssize_t nvme_sysfs_delete(struct device *dev,
3280 struct device_attribute *attr, const char *buf,
3283 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3285 if (device_remove_file_self(dev, attr))
3286 nvme_delete_ctrl_sync(ctrl);
3289 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3291 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3292 struct device_attribute *attr,
3295 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3297 return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3299 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3301 static ssize_t nvme_sysfs_show_state(struct device *dev,
3302 struct device_attribute *attr,
3305 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3306 static const char *const state_name[] = {
3307 [NVME_CTRL_NEW] = "new",
3308 [NVME_CTRL_LIVE] = "live",
3309 [NVME_CTRL_RESETTING] = "resetting",
3310 [NVME_CTRL_CONNECTING] = "connecting",
3311 [NVME_CTRL_DELETING] = "deleting",
3312 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3313 [NVME_CTRL_DEAD] = "dead",
3316 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3317 state_name[ctrl->state])
3318 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3320 return sysfs_emit(buf, "unknown state\n");
3323 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3325 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3326 struct device_attribute *attr,
3329 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3331 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3333 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3335 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3336 struct device_attribute *attr,
3339 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3341 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3343 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3345 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3346 struct device_attribute *attr,
3349 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3351 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3353 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3355 static ssize_t nvme_sysfs_show_address(struct device *dev,
3356 struct device_attribute *attr,
3359 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3361 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3363 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3365 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3366 struct device_attribute *attr, char *buf)
3368 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3369 struct nvmf_ctrl_options *opts = ctrl->opts;
3371 if (ctrl->opts->max_reconnects == -1)
3372 return sysfs_emit(buf, "off\n");
3373 return sysfs_emit(buf, "%d\n",
3374 opts->max_reconnects * opts->reconnect_delay);
3377 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3378 struct device_attribute *attr, const char *buf, size_t count)
3380 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3381 struct nvmf_ctrl_options *opts = ctrl->opts;
3382 int ctrl_loss_tmo, err;
3384 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3388 if (ctrl_loss_tmo < 0)
3389 opts->max_reconnects = -1;
3391 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3392 opts->reconnect_delay);
3395 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3396 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3398 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3399 struct device_attribute *attr, char *buf)
3401 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3403 if (ctrl->opts->reconnect_delay == -1)
3404 return sysfs_emit(buf, "off\n");
3405 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3408 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3409 struct device_attribute *attr, const char *buf, size_t count)
3411 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3415 err = kstrtou32(buf, 10, &v);
3419 ctrl->opts->reconnect_delay = v;
3422 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3423 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3425 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3426 struct device_attribute *attr, char *buf)
3428 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3430 if (ctrl->opts->fast_io_fail_tmo == -1)
3431 return sysfs_emit(buf, "off\n");
3432 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3435 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3436 struct device_attribute *attr, const char *buf, size_t count)
3438 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3439 struct nvmf_ctrl_options *opts = ctrl->opts;
3440 int fast_io_fail_tmo, err;
3442 err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3446 if (fast_io_fail_tmo < 0)
3447 opts->fast_io_fail_tmo = -1;
3449 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3452 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3453 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3455 static struct attribute *nvme_dev_attrs[] = {
3456 &dev_attr_reset_controller.attr,
3457 &dev_attr_rescan_controller.attr,
3458 &dev_attr_model.attr,
3459 &dev_attr_serial.attr,
3460 &dev_attr_firmware_rev.attr,
3461 &dev_attr_cntlid.attr,
3462 &dev_attr_delete_controller.attr,
3463 &dev_attr_transport.attr,
3464 &dev_attr_subsysnqn.attr,
3465 &dev_attr_address.attr,
3466 &dev_attr_state.attr,
3467 &dev_attr_numa_node.attr,
3468 &dev_attr_queue_count.attr,
3469 &dev_attr_sqsize.attr,
3470 &dev_attr_hostnqn.attr,
3471 &dev_attr_hostid.attr,
3472 &dev_attr_ctrl_loss_tmo.attr,
3473 &dev_attr_reconnect_delay.attr,
3474 &dev_attr_fast_io_fail_tmo.attr,
3475 &dev_attr_kato.attr,
3479 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3480 struct attribute *a, int n)
3482 struct device *dev = container_of(kobj, struct device, kobj);
3483 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3485 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3487 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3489 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3491 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3493 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3495 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3497 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3503 static const struct attribute_group nvme_dev_attrs_group = {
3504 .attrs = nvme_dev_attrs,
3505 .is_visible = nvme_dev_attrs_are_visible,
3508 static const struct attribute_group *nvme_dev_attr_groups[] = {
3509 &nvme_dev_attrs_group,
3513 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3516 struct nvme_ns_head *h;
3518 lockdep_assert_held(&subsys->lock);
3520 list_for_each_entry(h, &subsys->nsheads, entry) {
3521 if (h->ns_id != nsid)
3523 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3530 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3531 struct nvme_ns_head *new)
3533 struct nvme_ns_head *h;
3535 lockdep_assert_held(&subsys->lock);
3537 list_for_each_entry(h, &subsys->nsheads, entry) {
3538 if (nvme_ns_ids_valid(&new->ids) &&
3539 nvme_ns_ids_equal(&new->ids, &h->ids))
3546 static void nvme_cdev_rel(struct device *dev)
3548 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3551 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3553 cdev_device_del(cdev, cdev_device);
3554 put_device(cdev_device);
3557 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3558 const struct file_operations *fops, struct module *owner)
3562 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3565 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3566 cdev_device->class = nvme_ns_chr_class;
3567 cdev_device->release = nvme_cdev_rel;
3568 device_initialize(cdev_device);
3569 cdev_init(cdev, fops);
3570 cdev->owner = owner;
3571 ret = cdev_device_add(cdev, cdev_device);
3573 put_device(cdev_device);
3578 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3580 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3583 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3585 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3589 static const struct file_operations nvme_ns_chr_fops = {
3590 .owner = THIS_MODULE,
3591 .open = nvme_ns_chr_open,
3592 .release = nvme_ns_chr_release,
3593 .unlocked_ioctl = nvme_ns_chr_ioctl,
3594 .compat_ioctl = compat_ptr_ioctl,
3597 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3601 ns->cdev_device.parent = ns->ctrl->device;
3602 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3603 ns->ctrl->instance, ns->head->instance);
3607 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3608 ns->ctrl->ops->module);
3611 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3612 unsigned nsid, struct nvme_ns_ids *ids)
3614 struct nvme_ns_head *head;
3615 size_t size = sizeof(*head);
3618 #ifdef CONFIG_NVME_MULTIPATH
3619 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3622 head = kzalloc(size, GFP_KERNEL);
3625 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3628 head->instance = ret;
3629 INIT_LIST_HEAD(&head->list);
3630 ret = init_srcu_struct(&head->srcu);
3632 goto out_ida_remove;
3633 head->subsys = ctrl->subsys;
3636 kref_init(&head->ref);
3638 ret = __nvme_check_ids(ctrl->subsys, head);
3640 dev_err(ctrl->device,
3641 "duplicate IDs for nsid %d\n", nsid);
3642 goto out_cleanup_srcu;
3645 if (head->ids.csi) {
3646 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3648 goto out_cleanup_srcu;
3650 head->effects = ctrl->effects;
3652 ret = nvme_mpath_alloc_disk(ctrl, head);
3654 goto out_cleanup_srcu;
3656 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3658 kref_get(&ctrl->subsys->ref);
3662 cleanup_srcu_struct(&head->srcu);
3664 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3669 ret = blk_status_to_errno(nvme_error_status(ret));
3670 return ERR_PTR(ret);
3673 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3674 struct nvme_ns_ids *ids, bool is_shared)
3676 struct nvme_ctrl *ctrl = ns->ctrl;
3677 struct nvme_ns_head *head = NULL;
3680 mutex_lock(&ctrl->subsys->lock);
3681 head = nvme_find_ns_head(ctrl->subsys, nsid);
3683 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3685 ret = PTR_ERR(head);
3688 head->shared = is_shared;
3691 if (!is_shared || !head->shared) {
3692 dev_err(ctrl->device,
3693 "Duplicate unshared namespace %d\n", nsid);
3694 goto out_put_ns_head;
3696 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3697 dev_err(ctrl->device,
3698 "IDs don't match for shared namespace %d\n",
3700 goto out_put_ns_head;
3704 list_add_tail_rcu(&ns->siblings, &head->list);
3706 mutex_unlock(&ctrl->subsys->lock);
3710 nvme_put_ns_head(head);
3712 mutex_unlock(&ctrl->subsys->lock);
3716 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3718 struct nvme_ns *ns, *ret = NULL;
3720 down_read(&ctrl->namespaces_rwsem);
3721 list_for_each_entry(ns, &ctrl->namespaces, list) {
3722 if (ns->head->ns_id == nsid) {
3723 if (!nvme_get_ns(ns))
3728 if (ns->head->ns_id > nsid)
3731 up_read(&ctrl->namespaces_rwsem);
3734 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3737 * Add the namespace to the controller list while keeping the list ordered.
3739 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3741 struct nvme_ns *tmp;
3743 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3744 if (tmp->head->ns_id < ns->head->ns_id) {
3745 list_add(&ns->list, &tmp->list);
3749 list_add(&ns->list, &ns->ctrl->namespaces);
3752 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3753 struct nvme_ns_ids *ids)
3756 struct gendisk *disk;
3757 struct nvme_id_ns *id;
3758 int node = ctrl->numa_node;
3760 if (nvme_identify_ns(ctrl, nsid, ids, &id))
3763 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3767 disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3770 disk->fops = &nvme_bdev_ops;
3771 disk->private_data = ns;
3774 ns->queue = disk->queue;
3776 if (ctrl->opts && ctrl->opts->data_digest)
3777 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3779 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3780 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3781 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3784 kref_init(&ns->kref);
3786 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3787 goto out_cleanup_disk;
3790 * Without the multipath code enabled, multiple controller per
3791 * subsystems are visible as devices and thus we cannot use the
3792 * subsystem instance.
3794 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3795 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3796 ns->head->instance);
3798 if (nvme_update_ns_info(ns, id))
3801 down_write(&ctrl->namespaces_rwsem);
3802 nvme_ns_add_to_ctrl_list(ns);
3803 up_write(&ctrl->namespaces_rwsem);
3804 nvme_get_ctrl(ctrl);
3806 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3807 goto out_cleanup_ns_from_list;
3809 if (!nvme_ns_head_multipath(ns->head))
3810 nvme_add_ns_cdev(ns);
3812 nvme_mpath_add_disk(ns, id);
3813 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3818 out_cleanup_ns_from_list:
3819 nvme_put_ctrl(ctrl);
3820 down_write(&ctrl->namespaces_rwsem);
3821 list_del_init(&ns->list);
3822 up_write(&ctrl->namespaces_rwsem);
3824 mutex_lock(&ctrl->subsys->lock);
3825 list_del_rcu(&ns->siblings);
3826 if (list_empty(&ns->head->list))
3827 list_del_init(&ns->head->entry);
3828 mutex_unlock(&ctrl->subsys->lock);
3829 nvme_put_ns_head(ns->head);
3831 blk_cleanup_disk(disk);
3838 static void nvme_ns_remove(struct nvme_ns *ns)
3840 bool last_path = false;
3842 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3845 clear_bit(NVME_NS_READY, &ns->flags);
3846 set_capacity(ns->disk, 0);
3847 nvme_fault_inject_fini(&ns->fault_inject);
3849 mutex_lock(&ns->ctrl->subsys->lock);
3850 list_del_rcu(&ns->siblings);
3851 if (list_empty(&ns->head->list)) {
3852 list_del_init(&ns->head->entry);
3855 mutex_unlock(&ns->ctrl->subsys->lock);
3857 /* guarantee not available in head->list */
3860 /* wait for concurrent submissions */
3861 if (nvme_mpath_clear_current_path(ns))
3862 synchronize_srcu(&ns->head->srcu);
3864 if (!nvme_ns_head_multipath(ns->head))
3865 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3866 del_gendisk(ns->disk);
3867 blk_cleanup_queue(ns->queue);
3869 down_write(&ns->ctrl->namespaces_rwsem);
3870 list_del_init(&ns->list);
3871 up_write(&ns->ctrl->namespaces_rwsem);
3874 nvme_mpath_shutdown_disk(ns->head);
3878 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3880 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3888 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3890 struct nvme_id_ns *id;
3891 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3893 if (test_bit(NVME_NS_DEAD, &ns->flags))
3896 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3900 ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3901 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3902 dev_err(ns->ctrl->device,
3903 "identifiers changed for nsid %d\n", ns->head->ns_id);
3907 ret = nvme_update_ns_info(ns, id);
3913 * Only remove the namespace if we got a fatal error back from the
3914 * device, otherwise ignore the error and just move on.
3916 * TODO: we should probably schedule a delayed retry here.
3918 if (ret > 0 && (ret & NVME_SC_DNR))
3922 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3924 struct nvme_ns_ids ids = { };
3927 if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3930 ns = nvme_find_get_ns(ctrl, nsid);
3932 nvme_validate_ns(ns, &ids);
3939 nvme_alloc_ns(ctrl, nsid, &ids);
3942 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3943 dev_warn(ctrl->device,
3944 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3948 if (!nvme_multi_css(ctrl)) {
3949 dev_warn(ctrl->device,
3950 "command set not reported for nsid: %d\n",
3954 nvme_alloc_ns(ctrl, nsid, &ids);
3957 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3963 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3966 struct nvme_ns *ns, *next;
3969 down_write(&ctrl->namespaces_rwsem);
3970 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3971 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3972 list_move_tail(&ns->list, &rm_list);
3974 up_write(&ctrl->namespaces_rwsem);
3976 list_for_each_entry_safe(ns, next, &rm_list, list)
3981 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3983 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3988 if (nvme_ctrl_limited_cns(ctrl))
3991 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3996 struct nvme_command cmd = {
3997 .identify.opcode = nvme_admin_identify,
3998 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
3999 .identify.nsid = cpu_to_le32(prev),
4002 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4003 NVME_IDENTIFY_DATA_SIZE);
4005 dev_warn(ctrl->device,
4006 "Identify NS List failed (status=0x%x)\n", ret);
4010 for (i = 0; i < nr_entries; i++) {
4011 u32 nsid = le32_to_cpu(ns_list[i]);
4013 if (!nsid) /* end of the list? */
4015 nvme_validate_or_alloc_ns(ctrl, nsid);
4016 while (++prev < nsid)
4017 nvme_ns_remove_by_nsid(ctrl, prev);
4021 nvme_remove_invalid_namespaces(ctrl, prev);
4027 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4029 struct nvme_id_ctrl *id;
4032 if (nvme_identify_ctrl(ctrl, &id))
4034 nn = le32_to_cpu(id->nn);
4037 for (i = 1; i <= nn; i++)
4038 nvme_validate_or_alloc_ns(ctrl, i);
4040 nvme_remove_invalid_namespaces(ctrl, nn);
4043 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4045 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4049 log = kzalloc(log_size, GFP_KERNEL);
4054 * We need to read the log to clear the AEN, but we don't want to rely
4055 * on it for the changed namespace information as userspace could have
4056 * raced with us in reading the log page, which could cause us to miss
4059 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4060 NVME_CSI_NVM, log, log_size, 0);
4062 dev_warn(ctrl->device,
4063 "reading changed ns log failed: %d\n", error);
4068 static void nvme_scan_work(struct work_struct *work)
4070 struct nvme_ctrl *ctrl =
4071 container_of(work, struct nvme_ctrl, scan_work);
4073 /* No tagset on a live ctrl means IO queues could not created */
4074 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4077 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4078 dev_info(ctrl->device, "rescanning namespaces.\n");
4079 nvme_clear_changed_ns_log(ctrl);
4082 mutex_lock(&ctrl->scan_lock);
4083 if (nvme_scan_ns_list(ctrl) != 0)
4084 nvme_scan_ns_sequential(ctrl);
4085 mutex_unlock(&ctrl->scan_lock);
4089 * This function iterates the namespace list unlocked to allow recovery from
4090 * controller failure. It is up to the caller to ensure the namespace list is
4091 * not modified by scan work while this function is executing.
4093 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4095 struct nvme_ns *ns, *next;
4099 * make sure to requeue I/O to all namespaces as these
4100 * might result from the scan itself and must complete
4101 * for the scan_work to make progress
4103 nvme_mpath_clear_ctrl_paths(ctrl);
4105 /* prevent racing with ns scanning */
4106 flush_work(&ctrl->scan_work);
4109 * The dead states indicates the controller was not gracefully
4110 * disconnected. In that case, we won't be able to flush any data while
4111 * removing the namespaces' disks; fail all the queues now to avoid
4112 * potentially having to clean up the failed sync later.
4114 if (ctrl->state == NVME_CTRL_DEAD)
4115 nvme_kill_queues(ctrl);
4117 /* this is a no-op when called from the controller reset handler */
4118 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4120 down_write(&ctrl->namespaces_rwsem);
4121 list_splice_init(&ctrl->namespaces, &ns_list);
4122 up_write(&ctrl->namespaces_rwsem);
4124 list_for_each_entry_safe(ns, next, &ns_list, list)
4127 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4129 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4131 struct nvme_ctrl *ctrl =
4132 container_of(dev, struct nvme_ctrl, ctrl_device);
4133 struct nvmf_ctrl_options *opts = ctrl->opts;
4136 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4141 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4145 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4146 opts->trsvcid ?: "none");
4150 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4151 opts->host_traddr ?: "none");
4155 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4156 opts->host_iface ?: "none");
4161 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4163 char *envp[2] = { NULL, NULL };
4164 u32 aen_result = ctrl->aen_result;
4166 ctrl->aen_result = 0;
4170 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4173 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4177 static void nvme_async_event_work(struct work_struct *work)
4179 struct nvme_ctrl *ctrl =
4180 container_of(work, struct nvme_ctrl, async_event_work);
4182 nvme_aen_uevent(ctrl);
4183 ctrl->ops->submit_async_event(ctrl);
4186 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4191 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4197 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4200 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4202 struct nvme_fw_slot_info_log *log;
4204 log = kmalloc(sizeof(*log), GFP_KERNEL);
4208 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4209 log, sizeof(*log), 0))
4210 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4214 static void nvme_fw_act_work(struct work_struct *work)
4216 struct nvme_ctrl *ctrl = container_of(work,
4217 struct nvme_ctrl, fw_act_work);
4218 unsigned long fw_act_timeout;
4221 fw_act_timeout = jiffies +
4222 msecs_to_jiffies(ctrl->mtfa * 100);
4224 fw_act_timeout = jiffies +
4225 msecs_to_jiffies(admin_timeout * 1000);
4227 nvme_stop_queues(ctrl);
4228 while (nvme_ctrl_pp_status(ctrl)) {
4229 if (time_after(jiffies, fw_act_timeout)) {
4230 dev_warn(ctrl->device,
4231 "Fw activation timeout, reset controller\n");
4232 nvme_try_sched_reset(ctrl);
4238 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4241 nvme_start_queues(ctrl);
4242 /* read FW slot information to clear the AER */
4243 nvme_get_fw_slot_info(ctrl);
4246 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4248 u32 aer_notice_type = (result & 0xff00) >> 8;
4250 trace_nvme_async_event(ctrl, aer_notice_type);
4252 switch (aer_notice_type) {
4253 case NVME_AER_NOTICE_NS_CHANGED:
4254 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4255 nvme_queue_scan(ctrl);
4257 case NVME_AER_NOTICE_FW_ACT_STARTING:
4259 * We are (ab)using the RESETTING state to prevent subsequent
4260 * recovery actions from interfering with the controller's
4261 * firmware activation.
4263 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4264 queue_work(nvme_wq, &ctrl->fw_act_work);
4266 #ifdef CONFIG_NVME_MULTIPATH
4267 case NVME_AER_NOTICE_ANA:
4268 if (!ctrl->ana_log_buf)
4270 queue_work(nvme_wq, &ctrl->ana_work);
4273 case NVME_AER_NOTICE_DISC_CHANGED:
4274 ctrl->aen_result = result;
4277 dev_warn(ctrl->device, "async event result %08x\n", result);
4281 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4282 volatile union nvme_result *res)
4284 u32 result = le32_to_cpu(res->u32);
4285 u32 aer_type = result & 0x07;
4287 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4291 case NVME_AER_NOTICE:
4292 nvme_handle_aen_notice(ctrl, result);
4294 case NVME_AER_ERROR:
4295 case NVME_AER_SMART:
4298 trace_nvme_async_event(ctrl, aer_type);
4299 ctrl->aen_result = result;
4304 queue_work(nvme_wq, &ctrl->async_event_work);
4306 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4308 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4310 nvme_mpath_stop(ctrl);
4311 nvme_stop_keep_alive(ctrl);
4312 nvme_stop_failfast_work(ctrl);
4313 flush_work(&ctrl->async_event_work);
4314 cancel_work_sync(&ctrl->fw_act_work);
4316 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4318 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4320 nvme_start_keep_alive(ctrl);
4322 nvme_enable_aen(ctrl);
4324 if (ctrl->queue_count > 1) {
4325 nvme_queue_scan(ctrl);
4326 nvme_start_queues(ctrl);
4329 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4331 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4333 nvme_hwmon_exit(ctrl);
4334 nvme_fault_inject_fini(&ctrl->fault_inject);
4335 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4336 cdev_device_del(&ctrl->cdev, ctrl->device);
4337 nvme_put_ctrl(ctrl);
4339 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4341 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4343 struct nvme_effects_log *cel;
4346 xa_for_each(&ctrl->cels, i, cel) {
4347 xa_erase(&ctrl->cels, i);
4351 xa_destroy(&ctrl->cels);
4354 static void nvme_free_ctrl(struct device *dev)
4356 struct nvme_ctrl *ctrl =
4357 container_of(dev, struct nvme_ctrl, ctrl_device);
4358 struct nvme_subsystem *subsys = ctrl->subsys;
4360 if (!subsys || ctrl->instance != subsys->instance)
4361 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4363 nvme_free_cels(ctrl);
4364 nvme_mpath_uninit(ctrl);
4365 __free_page(ctrl->discard_page);
4368 mutex_lock(&nvme_subsystems_lock);
4369 list_del(&ctrl->subsys_entry);
4370 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4371 mutex_unlock(&nvme_subsystems_lock);
4374 ctrl->ops->free_ctrl(ctrl);
4377 nvme_put_subsystem(subsys);
4381 * Initialize a NVMe controller structures. This needs to be called during
4382 * earliest initialization so that we have the initialized structured around
4385 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4386 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4390 ctrl->state = NVME_CTRL_NEW;
4391 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4392 spin_lock_init(&ctrl->lock);
4393 mutex_init(&ctrl->scan_lock);
4394 INIT_LIST_HEAD(&ctrl->namespaces);
4395 xa_init(&ctrl->cels);
4396 init_rwsem(&ctrl->namespaces_rwsem);
4399 ctrl->quirks = quirks;
4400 ctrl->numa_node = NUMA_NO_NODE;
4401 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4402 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4403 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4404 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4405 init_waitqueue_head(&ctrl->state_wq);
4407 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4408 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4409 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4410 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4412 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4414 ctrl->discard_page = alloc_page(GFP_KERNEL);
4415 if (!ctrl->discard_page) {
4420 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4423 ctrl->instance = ret;
4425 device_initialize(&ctrl->ctrl_device);
4426 ctrl->device = &ctrl->ctrl_device;
4427 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4429 ctrl->device->class = nvme_class;
4430 ctrl->device->parent = ctrl->dev;
4431 ctrl->device->groups = nvme_dev_attr_groups;
4432 ctrl->device->release = nvme_free_ctrl;
4433 dev_set_drvdata(ctrl->device, ctrl);
4434 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4436 goto out_release_instance;
4438 nvme_get_ctrl(ctrl);
4439 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4440 ctrl->cdev.owner = ops->module;
4441 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4446 * Initialize latency tolerance controls. The sysfs files won't
4447 * be visible to userspace unless the device actually supports APST.
4449 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4450 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4451 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4453 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4454 nvme_mpath_init_ctrl(ctrl);
4458 nvme_put_ctrl(ctrl);
4459 kfree_const(ctrl->device->kobj.name);
4460 out_release_instance:
4461 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4463 if (ctrl->discard_page)
4464 __free_page(ctrl->discard_page);
4467 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4469 static void nvme_start_ns_queue(struct nvme_ns *ns)
4471 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4472 blk_mq_unquiesce_queue(ns->queue);
4475 static void nvme_stop_ns_queue(struct nvme_ns *ns)
4477 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4478 blk_mq_quiesce_queue(ns->queue);
4482 * Prepare a queue for teardown.
4484 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4485 * the capacity to 0 after that to avoid blocking dispatchers that may be
4486 * holding bd_butex. This will end buffered writers dirtying pages that can't
4489 static void nvme_set_queue_dying(struct nvme_ns *ns)
4491 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
4494 blk_set_queue_dying(ns->queue);
4495 nvme_start_ns_queue(ns);
4497 set_capacity_and_notify(ns->disk, 0);
4501 * nvme_kill_queues(): Ends all namespace queues
4502 * @ctrl: the dead controller that needs to end
4504 * Call this function when the driver determines it is unable to get the
4505 * controller in a state capable of servicing IO.
4507 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4511 down_read(&ctrl->namespaces_rwsem);
4513 /* Forcibly unquiesce queues to avoid blocking dispatch */
4514 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4515 nvme_start_admin_queue(ctrl);
4517 list_for_each_entry(ns, &ctrl->namespaces, list)
4518 nvme_set_queue_dying(ns);
4520 up_read(&ctrl->namespaces_rwsem);
4522 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4524 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4528 down_read(&ctrl->namespaces_rwsem);
4529 list_for_each_entry(ns, &ctrl->namespaces, list)
4530 blk_mq_unfreeze_queue(ns->queue);
4531 up_read(&ctrl->namespaces_rwsem);
4533 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4535 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4539 down_read(&ctrl->namespaces_rwsem);
4540 list_for_each_entry(ns, &ctrl->namespaces, list) {
4541 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4545 up_read(&ctrl->namespaces_rwsem);
4548 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4550 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4554 down_read(&ctrl->namespaces_rwsem);
4555 list_for_each_entry(ns, &ctrl->namespaces, list)
4556 blk_mq_freeze_queue_wait(ns->queue);
4557 up_read(&ctrl->namespaces_rwsem);
4559 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4561 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4565 down_read(&ctrl->namespaces_rwsem);
4566 list_for_each_entry(ns, &ctrl->namespaces, list)
4567 blk_freeze_queue_start(ns->queue);
4568 up_read(&ctrl->namespaces_rwsem);
4570 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4572 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4576 down_read(&ctrl->namespaces_rwsem);
4577 list_for_each_entry(ns, &ctrl->namespaces, list)
4578 nvme_stop_ns_queue(ns);
4579 up_read(&ctrl->namespaces_rwsem);
4581 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4583 void nvme_start_queues(struct nvme_ctrl *ctrl)
4587 down_read(&ctrl->namespaces_rwsem);
4588 list_for_each_entry(ns, &ctrl->namespaces, list)
4589 nvme_start_ns_queue(ns);
4590 up_read(&ctrl->namespaces_rwsem);
4592 EXPORT_SYMBOL_GPL(nvme_start_queues);
4594 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
4596 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4597 blk_mq_quiesce_queue(ctrl->admin_q);
4599 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
4601 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
4603 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4604 blk_mq_unquiesce_queue(ctrl->admin_q);
4606 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
4608 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4612 down_read(&ctrl->namespaces_rwsem);
4613 list_for_each_entry(ns, &ctrl->namespaces, list)
4614 blk_sync_queue(ns->queue);
4615 up_read(&ctrl->namespaces_rwsem);
4617 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4619 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4621 nvme_sync_io_queues(ctrl);
4623 blk_sync_queue(ctrl->admin_q);
4625 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4627 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4629 if (file->f_op != &nvme_dev_fops)
4631 return file->private_data;
4633 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4636 * Check we didn't inadvertently grow the command structure sizes:
4638 static inline void _nvme_check_size(void)
4640 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4641 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4642 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4643 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4644 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4645 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4646 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4647 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4648 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4649 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4650 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4651 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4652 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4653 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4654 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4655 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4656 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4657 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4658 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4659 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4663 static int __init nvme_core_init(void)
4665 int result = -ENOMEM;
4669 nvme_wq = alloc_workqueue("nvme-wq",
4670 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4674 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4675 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4679 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4680 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4681 if (!nvme_delete_wq)
4682 goto destroy_reset_wq;
4684 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4685 NVME_MINORS, "nvme");
4687 goto destroy_delete_wq;
4689 nvme_class = class_create(THIS_MODULE, "nvme");
4690 if (IS_ERR(nvme_class)) {
4691 result = PTR_ERR(nvme_class);
4692 goto unregister_chrdev;
4694 nvme_class->dev_uevent = nvme_class_uevent;
4696 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4697 if (IS_ERR(nvme_subsys_class)) {
4698 result = PTR_ERR(nvme_subsys_class);
4702 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4705 goto destroy_subsys_class;
4707 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4708 if (IS_ERR(nvme_ns_chr_class)) {
4709 result = PTR_ERR(nvme_ns_chr_class);
4710 goto unregister_generic_ns;
4715 unregister_generic_ns:
4716 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4717 destroy_subsys_class:
4718 class_destroy(nvme_subsys_class);
4720 class_destroy(nvme_class);
4722 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4724 destroy_workqueue(nvme_delete_wq);
4726 destroy_workqueue(nvme_reset_wq);
4728 destroy_workqueue(nvme_wq);
4733 static void __exit nvme_core_exit(void)
4735 class_destroy(nvme_ns_chr_class);
4736 class_destroy(nvme_subsys_class);
4737 class_destroy(nvme_class);
4738 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4739 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4740 destroy_workqueue(nvme_delete_wq);
4741 destroy_workqueue(nvme_reset_wq);
4742 destroy_workqueue(nvme_wq);
4743 ida_destroy(&nvme_ns_chr_minor_ida);
4744 ida_destroy(&nvme_instance_ida);
4747 MODULE_LICENSE("GPL");
4748 MODULE_VERSION("1.0");
4749 module_init(nvme_core_init);
4750 module_exit(nvme_core_exit);