nvme: catch errors from nvme_configure_metadata()
[platform/kernel/linux-starfive.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-auth.h>
28
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31
32 #define NVME_MINORS             (1U << MINORBITS)
33
34 struct nvme_ns_info {
35         struct nvme_ns_ids ids;
36         u32 nsid;
37         __le32 anagrpid;
38         bool is_shared;
39         bool is_readonly;
40         bool is_ready;
41         bool is_removed;
42 };
43
44 unsigned int admin_timeout = 60;
45 module_param(admin_timeout, uint, 0644);
46 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
47 EXPORT_SYMBOL_GPL(admin_timeout);
48
49 unsigned int nvme_io_timeout = 30;
50 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
51 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
52 EXPORT_SYMBOL_GPL(nvme_io_timeout);
53
54 static unsigned char shutdown_timeout = 5;
55 module_param(shutdown_timeout, byte, 0644);
56 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
57
58 static u8 nvme_max_retries = 5;
59 module_param_named(max_retries, nvme_max_retries, byte, 0644);
60 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
61
62 static unsigned long default_ps_max_latency_us = 100000;
63 module_param(default_ps_max_latency_us, ulong, 0644);
64 MODULE_PARM_DESC(default_ps_max_latency_us,
65                  "max power saving latency for new devices; use PM QOS to change per device");
66
67 static bool force_apst;
68 module_param(force_apst, bool, 0644);
69 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
70
71 static unsigned long apst_primary_timeout_ms = 100;
72 module_param(apst_primary_timeout_ms, ulong, 0644);
73 MODULE_PARM_DESC(apst_primary_timeout_ms,
74         "primary APST timeout in ms");
75
76 static unsigned long apst_secondary_timeout_ms = 2000;
77 module_param(apst_secondary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_secondary_timeout_ms,
79         "secondary APST timeout in ms");
80
81 static unsigned long apst_primary_latency_tol_us = 15000;
82 module_param(apst_primary_latency_tol_us, ulong, 0644);
83 MODULE_PARM_DESC(apst_primary_latency_tol_us,
84         "primary APST latency tolerance in us");
85
86 static unsigned long apst_secondary_latency_tol_us = 100000;
87 module_param(apst_secondary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
89         "secondary APST latency tolerance in us");
90
91 /*
92  * nvme_wq - hosts nvme related works that are not reset or delete
93  * nvme_reset_wq - hosts nvme reset works
94  * nvme_delete_wq - hosts nvme delete works
95  *
96  * nvme_wq will host works such as scan, aen handling, fw activation,
97  * keep-alive, periodic reconnects etc. nvme_reset_wq
98  * runs reset works which also flush works hosted on nvme_wq for
99  * serialization purposes. nvme_delete_wq host controller deletion
100  * works which flush reset works for serialization.
101  */
102 struct workqueue_struct *nvme_wq;
103 EXPORT_SYMBOL_GPL(nvme_wq);
104
105 struct workqueue_struct *nvme_reset_wq;
106 EXPORT_SYMBOL_GPL(nvme_reset_wq);
107
108 struct workqueue_struct *nvme_delete_wq;
109 EXPORT_SYMBOL_GPL(nvme_delete_wq);
110
111 static LIST_HEAD(nvme_subsystems);
112 static DEFINE_MUTEX(nvme_subsystems_lock);
113
114 static DEFINE_IDA(nvme_instance_ida);
115 static dev_t nvme_ctrl_base_chr_devt;
116 static struct class *nvme_class;
117 static struct class *nvme_subsys_class;
118
119 static DEFINE_IDA(nvme_ns_chr_minor_ida);
120 static dev_t nvme_ns_chr_devt;
121 static struct class *nvme_ns_chr_class;
122
123 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
124 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
125                                            unsigned nsid);
126 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
127                                    struct nvme_command *cmd);
128
129 void nvme_queue_scan(struct nvme_ctrl *ctrl)
130 {
131         /*
132          * Only new queue scan work when admin and IO queues are both alive
133          */
134         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
135                 queue_work(nvme_wq, &ctrl->scan_work);
136 }
137
138 /*
139  * Use this function to proceed with scheduling reset_work for a controller
140  * that had previously been set to the resetting state. This is intended for
141  * code paths that can't be interrupted by other reset attempts. A hot removal
142  * may prevent this from succeeding.
143  */
144 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
145 {
146         if (ctrl->state != NVME_CTRL_RESETTING)
147                 return -EBUSY;
148         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
149                 return -EBUSY;
150         return 0;
151 }
152 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
153
154 static void nvme_failfast_work(struct work_struct *work)
155 {
156         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
157                         struct nvme_ctrl, failfast_work);
158
159         if (ctrl->state != NVME_CTRL_CONNECTING)
160                 return;
161
162         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
163         dev_info(ctrl->device, "failfast expired\n");
164         nvme_kick_requeue_lists(ctrl);
165 }
166
167 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
168 {
169         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
170                 return;
171
172         schedule_delayed_work(&ctrl->failfast_work,
173                               ctrl->opts->fast_io_fail_tmo * HZ);
174 }
175
176 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
177 {
178         if (!ctrl->opts)
179                 return;
180
181         cancel_delayed_work_sync(&ctrl->failfast_work);
182         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
183 }
184
185
186 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
187 {
188         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
189                 return -EBUSY;
190         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
191                 return -EBUSY;
192         return 0;
193 }
194 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
195
196 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
197 {
198         int ret;
199
200         ret = nvme_reset_ctrl(ctrl);
201         if (!ret) {
202                 flush_work(&ctrl->reset_work);
203                 if (ctrl->state != NVME_CTRL_LIVE)
204                         ret = -ENETRESET;
205         }
206
207         return ret;
208 }
209
210 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
211 {
212         dev_info(ctrl->device,
213                  "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
214
215         flush_work(&ctrl->reset_work);
216         nvme_stop_ctrl(ctrl);
217         nvme_remove_namespaces(ctrl);
218         ctrl->ops->delete_ctrl(ctrl);
219         nvme_uninit_ctrl(ctrl);
220 }
221
222 static void nvme_delete_ctrl_work(struct work_struct *work)
223 {
224         struct nvme_ctrl *ctrl =
225                 container_of(work, struct nvme_ctrl, delete_work);
226
227         nvme_do_delete_ctrl(ctrl);
228 }
229
230 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
231 {
232         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
233                 return -EBUSY;
234         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
235                 return -EBUSY;
236         return 0;
237 }
238 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
239
240 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
241 {
242         /*
243          * Keep a reference until nvme_do_delete_ctrl() complete,
244          * since ->delete_ctrl can free the controller.
245          */
246         nvme_get_ctrl(ctrl);
247         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
248                 nvme_do_delete_ctrl(ctrl);
249         nvme_put_ctrl(ctrl);
250 }
251
252 static blk_status_t nvme_error_status(u16 status)
253 {
254         switch (status & 0x7ff) {
255         case NVME_SC_SUCCESS:
256                 return BLK_STS_OK;
257         case NVME_SC_CAP_EXCEEDED:
258                 return BLK_STS_NOSPC;
259         case NVME_SC_LBA_RANGE:
260         case NVME_SC_CMD_INTERRUPTED:
261         case NVME_SC_NS_NOT_READY:
262                 return BLK_STS_TARGET;
263         case NVME_SC_BAD_ATTRIBUTES:
264         case NVME_SC_ONCS_NOT_SUPPORTED:
265         case NVME_SC_INVALID_OPCODE:
266         case NVME_SC_INVALID_FIELD:
267         case NVME_SC_INVALID_NS:
268                 return BLK_STS_NOTSUPP;
269         case NVME_SC_WRITE_FAULT:
270         case NVME_SC_READ_ERROR:
271         case NVME_SC_UNWRITTEN_BLOCK:
272         case NVME_SC_ACCESS_DENIED:
273         case NVME_SC_READ_ONLY:
274         case NVME_SC_COMPARE_FAILED:
275                 return BLK_STS_MEDIUM;
276         case NVME_SC_GUARD_CHECK:
277         case NVME_SC_APPTAG_CHECK:
278         case NVME_SC_REFTAG_CHECK:
279         case NVME_SC_INVALID_PI:
280                 return BLK_STS_PROTECTION;
281         case NVME_SC_RESERVATION_CONFLICT:
282                 return BLK_STS_RESV_CONFLICT;
283         case NVME_SC_HOST_PATH_ERROR:
284                 return BLK_STS_TRANSPORT;
285         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
286                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
287         case NVME_SC_ZONE_TOO_MANY_OPEN:
288                 return BLK_STS_ZONE_OPEN_RESOURCE;
289         default:
290                 return BLK_STS_IOERR;
291         }
292 }
293
294 static void nvme_retry_req(struct request *req)
295 {
296         unsigned long delay = 0;
297         u16 crd;
298
299         /* The mask and shift result must be <= 3 */
300         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
301         if (crd)
302                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
303
304         nvme_req(req)->retries++;
305         blk_mq_requeue_request(req, false);
306         blk_mq_delay_kick_requeue_list(req->q, delay);
307 }
308
309 static void nvme_log_error(struct request *req)
310 {
311         struct nvme_ns *ns = req->q->queuedata;
312         struct nvme_request *nr = nvme_req(req);
313
314         if (ns) {
315                 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
316                        ns->disk ? ns->disk->disk_name : "?",
317                        nvme_get_opcode_str(nr->cmd->common.opcode),
318                        nr->cmd->common.opcode,
319                        (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
320                        (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
321                        nvme_get_error_status_str(nr->status),
322                        nr->status >> 8 & 7,     /* Status Code Type */
323                        nr->status & 0xff,       /* Status Code */
324                        nr->status & NVME_SC_MORE ? "MORE " : "",
325                        nr->status & NVME_SC_DNR  ? "DNR "  : "");
326                 return;
327         }
328
329         pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
330                            dev_name(nr->ctrl->device),
331                            nvme_get_admin_opcode_str(nr->cmd->common.opcode),
332                            nr->cmd->common.opcode,
333                            nvme_get_error_status_str(nr->status),
334                            nr->status >> 8 & 7, /* Status Code Type */
335                            nr->status & 0xff,   /* Status Code */
336                            nr->status & NVME_SC_MORE ? "MORE " : "",
337                            nr->status & NVME_SC_DNR  ? "DNR "  : "");
338 }
339
340 enum nvme_disposition {
341         COMPLETE,
342         RETRY,
343         FAILOVER,
344         AUTHENTICATE,
345 };
346
347 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
348 {
349         if (likely(nvme_req(req)->status == 0))
350                 return COMPLETE;
351
352         if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
353                 return AUTHENTICATE;
354
355         if (blk_noretry_request(req) ||
356             (nvme_req(req)->status & NVME_SC_DNR) ||
357             nvme_req(req)->retries >= nvme_max_retries)
358                 return COMPLETE;
359
360         if (req->cmd_flags & REQ_NVME_MPATH) {
361                 if (nvme_is_path_error(nvme_req(req)->status) ||
362                     blk_queue_dying(req->q))
363                         return FAILOVER;
364         } else {
365                 if (blk_queue_dying(req->q))
366                         return COMPLETE;
367         }
368
369         return RETRY;
370 }
371
372 static inline void nvme_end_req_zoned(struct request *req)
373 {
374         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
375             req_op(req) == REQ_OP_ZONE_APPEND)
376                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
377                         le64_to_cpu(nvme_req(req)->result.u64));
378 }
379
380 static inline void nvme_end_req(struct request *req)
381 {
382         blk_status_t status = nvme_error_status(nvme_req(req)->status);
383
384         if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
385                 nvme_log_error(req);
386         nvme_end_req_zoned(req);
387         nvme_trace_bio_complete(req);
388         if (req->cmd_flags & REQ_NVME_MPATH)
389                 nvme_mpath_end_request(req);
390         blk_mq_end_request(req, status);
391 }
392
393 void nvme_complete_rq(struct request *req)
394 {
395         struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
396
397         trace_nvme_complete_rq(req);
398         nvme_cleanup_cmd(req);
399
400         /*
401          * Completions of long-running commands should not be able to
402          * defer sending of periodic keep alives, since the controller
403          * may have completed processing such commands a long time ago
404          * (arbitrarily close to command submission time).
405          * req->deadline - req->timeout is the command submission time
406          * in jiffies.
407          */
408         if (ctrl->kas &&
409             req->deadline - req->timeout >= ctrl->ka_last_check_time)
410                 ctrl->comp_seen = true;
411
412         switch (nvme_decide_disposition(req)) {
413         case COMPLETE:
414                 nvme_end_req(req);
415                 return;
416         case RETRY:
417                 nvme_retry_req(req);
418                 return;
419         case FAILOVER:
420                 nvme_failover_req(req);
421                 return;
422         case AUTHENTICATE:
423 #ifdef CONFIG_NVME_AUTH
424                 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
425                 nvme_retry_req(req);
426 #else
427                 nvme_end_req(req);
428 #endif
429                 return;
430         }
431 }
432 EXPORT_SYMBOL_GPL(nvme_complete_rq);
433
434 void nvme_complete_batch_req(struct request *req)
435 {
436         trace_nvme_complete_rq(req);
437         nvme_cleanup_cmd(req);
438         nvme_end_req_zoned(req);
439 }
440 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
441
442 /*
443  * Called to unwind from ->queue_rq on a failed command submission so that the
444  * multipathing code gets called to potentially failover to another path.
445  * The caller needs to unwind all transport specific resource allocations and
446  * must return propagate the return value.
447  */
448 blk_status_t nvme_host_path_error(struct request *req)
449 {
450         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
451         blk_mq_set_request_complete(req);
452         nvme_complete_rq(req);
453         return BLK_STS_OK;
454 }
455 EXPORT_SYMBOL_GPL(nvme_host_path_error);
456
457 bool nvme_cancel_request(struct request *req, void *data)
458 {
459         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
460                                 "Cancelling I/O %d", req->tag);
461
462         /* don't abort one completed or idle request */
463         if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
464                 return true;
465
466         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
467         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
468         blk_mq_complete_request(req);
469         return true;
470 }
471 EXPORT_SYMBOL_GPL(nvme_cancel_request);
472
473 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
474 {
475         if (ctrl->tagset) {
476                 blk_mq_tagset_busy_iter(ctrl->tagset,
477                                 nvme_cancel_request, ctrl);
478                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
479         }
480 }
481 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
482
483 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
484 {
485         if (ctrl->admin_tagset) {
486                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
487                                 nvme_cancel_request, ctrl);
488                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
489         }
490 }
491 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
492
493 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
494                 enum nvme_ctrl_state new_state)
495 {
496         enum nvme_ctrl_state old_state;
497         unsigned long flags;
498         bool changed = false;
499
500         spin_lock_irqsave(&ctrl->lock, flags);
501
502         old_state = ctrl->state;
503         switch (new_state) {
504         case NVME_CTRL_LIVE:
505                 switch (old_state) {
506                 case NVME_CTRL_NEW:
507                 case NVME_CTRL_RESETTING:
508                 case NVME_CTRL_CONNECTING:
509                         changed = true;
510                         fallthrough;
511                 default:
512                         break;
513                 }
514                 break;
515         case NVME_CTRL_RESETTING:
516                 switch (old_state) {
517                 case NVME_CTRL_NEW:
518                 case NVME_CTRL_LIVE:
519                         changed = true;
520                         fallthrough;
521                 default:
522                         break;
523                 }
524                 break;
525         case NVME_CTRL_CONNECTING:
526                 switch (old_state) {
527                 case NVME_CTRL_NEW:
528                 case NVME_CTRL_RESETTING:
529                         changed = true;
530                         fallthrough;
531                 default:
532                         break;
533                 }
534                 break;
535         case NVME_CTRL_DELETING:
536                 switch (old_state) {
537                 case NVME_CTRL_LIVE:
538                 case NVME_CTRL_RESETTING:
539                 case NVME_CTRL_CONNECTING:
540                         changed = true;
541                         fallthrough;
542                 default:
543                         break;
544                 }
545                 break;
546         case NVME_CTRL_DELETING_NOIO:
547                 switch (old_state) {
548                 case NVME_CTRL_DELETING:
549                 case NVME_CTRL_DEAD:
550                         changed = true;
551                         fallthrough;
552                 default:
553                         break;
554                 }
555                 break;
556         case NVME_CTRL_DEAD:
557                 switch (old_state) {
558                 case NVME_CTRL_DELETING:
559                         changed = true;
560                         fallthrough;
561                 default:
562                         break;
563                 }
564                 break;
565         default:
566                 break;
567         }
568
569         if (changed) {
570                 ctrl->state = new_state;
571                 wake_up_all(&ctrl->state_wq);
572         }
573
574         spin_unlock_irqrestore(&ctrl->lock, flags);
575         if (!changed)
576                 return false;
577
578         if (ctrl->state == NVME_CTRL_LIVE) {
579                 if (old_state == NVME_CTRL_CONNECTING)
580                         nvme_stop_failfast_work(ctrl);
581                 nvme_kick_requeue_lists(ctrl);
582         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
583                 old_state == NVME_CTRL_RESETTING) {
584                 nvme_start_failfast_work(ctrl);
585         }
586         return changed;
587 }
588 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
589
590 /*
591  * Returns true for sink states that can't ever transition back to live.
592  */
593 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
594 {
595         switch (ctrl->state) {
596         case NVME_CTRL_NEW:
597         case NVME_CTRL_LIVE:
598         case NVME_CTRL_RESETTING:
599         case NVME_CTRL_CONNECTING:
600                 return false;
601         case NVME_CTRL_DELETING:
602         case NVME_CTRL_DELETING_NOIO:
603         case NVME_CTRL_DEAD:
604                 return true;
605         default:
606                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
607                 return true;
608         }
609 }
610
611 /*
612  * Waits for the controller state to be resetting, or returns false if it is
613  * not possible to ever transition to that state.
614  */
615 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
616 {
617         wait_event(ctrl->state_wq,
618                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
619                    nvme_state_terminal(ctrl));
620         return ctrl->state == NVME_CTRL_RESETTING;
621 }
622 EXPORT_SYMBOL_GPL(nvme_wait_reset);
623
624 static void nvme_free_ns_head(struct kref *ref)
625 {
626         struct nvme_ns_head *head =
627                 container_of(ref, struct nvme_ns_head, ref);
628
629         nvme_mpath_remove_disk(head);
630         ida_free(&head->subsys->ns_ida, head->instance);
631         cleanup_srcu_struct(&head->srcu);
632         nvme_put_subsystem(head->subsys);
633         kfree(head);
634 }
635
636 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
637 {
638         return kref_get_unless_zero(&head->ref);
639 }
640
641 void nvme_put_ns_head(struct nvme_ns_head *head)
642 {
643         kref_put(&head->ref, nvme_free_ns_head);
644 }
645
646 static void nvme_free_ns(struct kref *kref)
647 {
648         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
649
650         put_disk(ns->disk);
651         nvme_put_ns_head(ns->head);
652         nvme_put_ctrl(ns->ctrl);
653         kfree(ns);
654 }
655
656 static inline bool nvme_get_ns(struct nvme_ns *ns)
657 {
658         return kref_get_unless_zero(&ns->kref);
659 }
660
661 void nvme_put_ns(struct nvme_ns *ns)
662 {
663         kref_put(&ns->kref, nvme_free_ns);
664 }
665 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
666
667 static inline void nvme_clear_nvme_request(struct request *req)
668 {
669         nvme_req(req)->status = 0;
670         nvme_req(req)->retries = 0;
671         nvme_req(req)->flags = 0;
672         req->rq_flags |= RQF_DONTPREP;
673 }
674
675 /* initialize a passthrough request */
676 void nvme_init_request(struct request *req, struct nvme_command *cmd)
677 {
678         if (req->q->queuedata)
679                 req->timeout = NVME_IO_TIMEOUT;
680         else /* no queuedata implies admin queue */
681                 req->timeout = NVME_ADMIN_TIMEOUT;
682
683         /* passthru commands should let the driver set the SGL flags */
684         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
685
686         req->cmd_flags |= REQ_FAILFAST_DRIVER;
687         if (req->mq_hctx->type == HCTX_TYPE_POLL)
688                 req->cmd_flags |= REQ_POLLED;
689         nvme_clear_nvme_request(req);
690         req->rq_flags |= RQF_QUIET;
691         memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
692 }
693 EXPORT_SYMBOL_GPL(nvme_init_request);
694
695 /*
696  * For something we're not in a state to send to the device the default action
697  * is to busy it and retry it after the controller state is recovered.  However,
698  * if the controller is deleting or if anything is marked for failfast or
699  * nvme multipath it is immediately failed.
700  *
701  * Note: commands used to initialize the controller will be marked for failfast.
702  * Note: nvme cli/ioctl commands are marked for failfast.
703  */
704 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
705                 struct request *rq)
706 {
707         if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
708             ctrl->state != NVME_CTRL_DELETING &&
709             ctrl->state != NVME_CTRL_DEAD &&
710             !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
711             !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
712                 return BLK_STS_RESOURCE;
713         return nvme_host_path_error(rq);
714 }
715 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
716
717 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
718                 bool queue_live)
719 {
720         struct nvme_request *req = nvme_req(rq);
721
722         /*
723          * currently we have a problem sending passthru commands
724          * on the admin_q if the controller is not LIVE because we can't
725          * make sure that they are going out after the admin connect,
726          * controller enable and/or other commands in the initialization
727          * sequence. until the controller will be LIVE, fail with
728          * BLK_STS_RESOURCE so that they will be rescheduled.
729          */
730         if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
731                 return false;
732
733         if (ctrl->ops->flags & NVME_F_FABRICS) {
734                 /*
735                  * Only allow commands on a live queue, except for the connect
736                  * command, which is require to set the queue live in the
737                  * appropinquate states.
738                  */
739                 switch (ctrl->state) {
740                 case NVME_CTRL_CONNECTING:
741                         if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
742                             (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
743                              req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
744                              req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
745                                 return true;
746                         break;
747                 default:
748                         break;
749                 case NVME_CTRL_DEAD:
750                         return false;
751                 }
752         }
753
754         return queue_live;
755 }
756 EXPORT_SYMBOL_GPL(__nvme_check_ready);
757
758 static inline void nvme_setup_flush(struct nvme_ns *ns,
759                 struct nvme_command *cmnd)
760 {
761         memset(cmnd, 0, sizeof(*cmnd));
762         cmnd->common.opcode = nvme_cmd_flush;
763         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
764 }
765
766 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
767                 struct nvme_command *cmnd)
768 {
769         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
770         struct nvme_dsm_range *range;
771         struct bio *bio;
772
773         /*
774          * Some devices do not consider the DSM 'Number of Ranges' field when
775          * determining how much data to DMA. Always allocate memory for maximum
776          * number of segments to prevent device reading beyond end of buffer.
777          */
778         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
779
780         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
781         if (!range) {
782                 /*
783                  * If we fail allocation our range, fallback to the controller
784                  * discard page. If that's also busy, it's safe to return
785                  * busy, as we know we can make progress once that's freed.
786                  */
787                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
788                         return BLK_STS_RESOURCE;
789
790                 range = page_address(ns->ctrl->discard_page);
791         }
792
793         if (queue_max_discard_segments(req->q) == 1) {
794                 u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req));
795                 u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9);
796
797                 range[0].cattr = cpu_to_le32(0);
798                 range[0].nlb = cpu_to_le32(nlb);
799                 range[0].slba = cpu_to_le64(slba);
800                 n = 1;
801         } else {
802                 __rq_for_each_bio(bio, req) {
803                         u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
804                         u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
805
806                         if (n < segments) {
807                                 range[n].cattr = cpu_to_le32(0);
808                                 range[n].nlb = cpu_to_le32(nlb);
809                                 range[n].slba = cpu_to_le64(slba);
810                         }
811                         n++;
812                 }
813         }
814
815         if (WARN_ON_ONCE(n != segments)) {
816                 if (virt_to_page(range) == ns->ctrl->discard_page)
817                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
818                 else
819                         kfree(range);
820                 return BLK_STS_IOERR;
821         }
822
823         memset(cmnd, 0, sizeof(*cmnd));
824         cmnd->dsm.opcode = nvme_cmd_dsm;
825         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
826         cmnd->dsm.nr = cpu_to_le32(segments - 1);
827         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
828
829         bvec_set_virt(&req->special_vec, range, alloc_size);
830         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
831
832         return BLK_STS_OK;
833 }
834
835 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
836                               struct request *req)
837 {
838         u32 upper, lower;
839         u64 ref48;
840
841         /* both rw and write zeroes share the same reftag format */
842         switch (ns->guard_type) {
843         case NVME_NVM_NS_16B_GUARD:
844                 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
845                 break;
846         case NVME_NVM_NS_64B_GUARD:
847                 ref48 = ext_pi_ref_tag(req);
848                 lower = lower_32_bits(ref48);
849                 upper = upper_32_bits(ref48);
850
851                 cmnd->rw.reftag = cpu_to_le32(lower);
852                 cmnd->rw.cdw3 = cpu_to_le32(upper);
853                 break;
854         default:
855                 break;
856         }
857 }
858
859 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
860                 struct request *req, struct nvme_command *cmnd)
861 {
862         memset(cmnd, 0, sizeof(*cmnd));
863
864         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
865                 return nvme_setup_discard(ns, req, cmnd);
866
867         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
868         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
869         cmnd->write_zeroes.slba =
870                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
871         cmnd->write_zeroes.length =
872                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
873
874         if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
875                 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
876
877         if (nvme_ns_has_pi(ns)) {
878                 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
879
880                 switch (ns->pi_type) {
881                 case NVME_NS_DPS_PI_TYPE1:
882                 case NVME_NS_DPS_PI_TYPE2:
883                         nvme_set_ref_tag(ns, cmnd, req);
884                         break;
885                 }
886         }
887
888         return BLK_STS_OK;
889 }
890
891 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
892                 struct request *req, struct nvme_command *cmnd,
893                 enum nvme_opcode op)
894 {
895         u16 control = 0;
896         u32 dsmgmt = 0;
897
898         if (req->cmd_flags & REQ_FUA)
899                 control |= NVME_RW_FUA;
900         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
901                 control |= NVME_RW_LR;
902
903         if (req->cmd_flags & REQ_RAHEAD)
904                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
905
906         cmnd->rw.opcode = op;
907         cmnd->rw.flags = 0;
908         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
909         cmnd->rw.cdw2 = 0;
910         cmnd->rw.cdw3 = 0;
911         cmnd->rw.metadata = 0;
912         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
913         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
914         cmnd->rw.reftag = 0;
915         cmnd->rw.apptag = 0;
916         cmnd->rw.appmask = 0;
917
918         if (ns->ms) {
919                 /*
920                  * If formated with metadata, the block layer always provides a
921                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
922                  * we enable the PRACT bit for protection information or set the
923                  * namespace capacity to zero to prevent any I/O.
924                  */
925                 if (!blk_integrity_rq(req)) {
926                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
927                                 return BLK_STS_NOTSUPP;
928                         control |= NVME_RW_PRINFO_PRACT;
929                 }
930
931                 switch (ns->pi_type) {
932                 case NVME_NS_DPS_PI_TYPE3:
933                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
934                         break;
935                 case NVME_NS_DPS_PI_TYPE1:
936                 case NVME_NS_DPS_PI_TYPE2:
937                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
938                                         NVME_RW_PRINFO_PRCHK_REF;
939                         if (op == nvme_cmd_zone_append)
940                                 control |= NVME_RW_APPEND_PIREMAP;
941                         nvme_set_ref_tag(ns, cmnd, req);
942                         break;
943                 }
944         }
945
946         cmnd->rw.control = cpu_to_le16(control);
947         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
948         return 0;
949 }
950
951 void nvme_cleanup_cmd(struct request *req)
952 {
953         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
954                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
955
956                 if (req->special_vec.bv_page == ctrl->discard_page)
957                         clear_bit_unlock(0, &ctrl->discard_page_busy);
958                 else
959                         kfree(bvec_virt(&req->special_vec));
960         }
961 }
962 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
963
964 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
965 {
966         struct nvme_command *cmd = nvme_req(req)->cmd;
967         blk_status_t ret = BLK_STS_OK;
968
969         if (!(req->rq_flags & RQF_DONTPREP))
970                 nvme_clear_nvme_request(req);
971
972         switch (req_op(req)) {
973         case REQ_OP_DRV_IN:
974         case REQ_OP_DRV_OUT:
975                 /* these are setup prior to execution in nvme_init_request() */
976                 break;
977         case REQ_OP_FLUSH:
978                 nvme_setup_flush(ns, cmd);
979                 break;
980         case REQ_OP_ZONE_RESET_ALL:
981         case REQ_OP_ZONE_RESET:
982                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
983                 break;
984         case REQ_OP_ZONE_OPEN:
985                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
986                 break;
987         case REQ_OP_ZONE_CLOSE:
988                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
989                 break;
990         case REQ_OP_ZONE_FINISH:
991                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
992                 break;
993         case REQ_OP_WRITE_ZEROES:
994                 ret = nvme_setup_write_zeroes(ns, req, cmd);
995                 break;
996         case REQ_OP_DISCARD:
997                 ret = nvme_setup_discard(ns, req, cmd);
998                 break;
999         case REQ_OP_READ:
1000                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1001                 break;
1002         case REQ_OP_WRITE:
1003                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1004                 break;
1005         case REQ_OP_ZONE_APPEND:
1006                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1007                 break;
1008         default:
1009                 WARN_ON_ONCE(1);
1010                 return BLK_STS_IOERR;
1011         }
1012
1013         cmd->common.command_id = nvme_cid(req);
1014         trace_nvme_setup_cmd(req, cmd);
1015         return ret;
1016 }
1017 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1018
1019 /*
1020  * Return values:
1021  * 0:  success
1022  * >0: nvme controller's cqe status response
1023  * <0: kernel error in lieu of controller response
1024  */
1025 int nvme_execute_rq(struct request *rq, bool at_head)
1026 {
1027         blk_status_t status;
1028
1029         status = blk_execute_rq(rq, at_head);
1030         if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1031                 return -EINTR;
1032         if (nvme_req(rq)->status)
1033                 return nvme_req(rq)->status;
1034         return blk_status_to_errno(status);
1035 }
1036 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1037
1038 /*
1039  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1040  * if the result is positive, it's an NVM Express status code
1041  */
1042 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1043                 union nvme_result *result, void *buffer, unsigned bufflen,
1044                 int qid, int at_head, blk_mq_req_flags_t flags)
1045 {
1046         struct request *req;
1047         int ret;
1048
1049         if (qid == NVME_QID_ANY)
1050                 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1051         else
1052                 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1053                                                 qid - 1);
1054
1055         if (IS_ERR(req))
1056                 return PTR_ERR(req);
1057         nvme_init_request(req, cmd);
1058
1059         if (buffer && bufflen) {
1060                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1061                 if (ret)
1062                         goto out;
1063         }
1064
1065         ret = nvme_execute_rq(req, at_head);
1066         if (result && ret >= 0)
1067                 *result = nvme_req(req)->result;
1068  out:
1069         blk_mq_free_request(req);
1070         return ret;
1071 }
1072 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1073
1074 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1075                 void *buffer, unsigned bufflen)
1076 {
1077         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1078                         NVME_QID_ANY, 0, 0);
1079 }
1080 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1081
1082 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1083 {
1084         u32 effects = 0;
1085
1086         if (ns) {
1087                 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1088                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1089                         dev_warn_once(ctrl->device,
1090                                 "IO command:%02x has unusual effects:%08x\n",
1091                                 opcode, effects);
1092
1093                 /*
1094                  * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1095                  * which would deadlock when done on an I/O command.  Note that
1096                  * We already warn about an unusual effect above.
1097                  */
1098                 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1099         } else {
1100                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1101         }
1102
1103         return effects;
1104 }
1105 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1106
1107 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1108 {
1109         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1110
1111         /*
1112          * For simplicity, IO to all namespaces is quiesced even if the command
1113          * effects say only one namespace is affected.
1114          */
1115         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1116                 mutex_lock(&ctrl->scan_lock);
1117                 mutex_lock(&ctrl->subsys->lock);
1118                 nvme_mpath_start_freeze(ctrl->subsys);
1119                 nvme_mpath_wait_freeze(ctrl->subsys);
1120                 nvme_start_freeze(ctrl);
1121                 nvme_wait_freeze(ctrl);
1122         }
1123         return effects;
1124 }
1125 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1126
1127 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1128                        struct nvme_command *cmd, int status)
1129 {
1130         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1131                 nvme_unfreeze(ctrl);
1132                 nvme_mpath_unfreeze(ctrl->subsys);
1133                 mutex_unlock(&ctrl->subsys->lock);
1134                 mutex_unlock(&ctrl->scan_lock);
1135         }
1136         if (effects & NVME_CMD_EFFECTS_CCC) {
1137                 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1138                                       &ctrl->flags)) {
1139                         dev_info(ctrl->device,
1140 "controller capabilities changed, reset may be required to take effect.\n");
1141                 }
1142         }
1143         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1144                 nvme_queue_scan(ctrl);
1145                 flush_work(&ctrl->scan_work);
1146         }
1147         if (ns)
1148                 return;
1149
1150         switch (cmd->common.opcode) {
1151         case nvme_admin_set_features:
1152                 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1153                 case NVME_FEAT_KATO:
1154                         /*
1155                          * Keep alive commands interval on the host should be
1156                          * updated when KATO is modified by Set Features
1157                          * commands.
1158                          */
1159                         if (!status)
1160                                 nvme_update_keep_alive(ctrl, cmd);
1161                         break;
1162                 default:
1163                         break;
1164                 }
1165                 break;
1166         default:
1167                 break;
1168         }
1169 }
1170 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1171
1172 /*
1173  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1174  * 
1175  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1176  *   accounting for transport roundtrip times [..].
1177  */
1178 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1179 {
1180         unsigned long delay = ctrl->kato * HZ / 2;
1181
1182         /*
1183          * When using Traffic Based Keep Alive, we need to run
1184          * nvme_keep_alive_work at twice the normal frequency, as one
1185          * command completion can postpone sending a keep alive command
1186          * by up to twice the delay between runs.
1187          */
1188         if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1189                 delay /= 2;
1190         return delay;
1191 }
1192
1193 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1194 {
1195         queue_delayed_work(nvme_wq, &ctrl->ka_work,
1196                            nvme_keep_alive_work_period(ctrl));
1197 }
1198
1199 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1200                                                  blk_status_t status)
1201 {
1202         struct nvme_ctrl *ctrl = rq->end_io_data;
1203         unsigned long flags;
1204         bool startka = false;
1205         unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1206         unsigned long delay = nvme_keep_alive_work_period(ctrl);
1207
1208         /*
1209          * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1210          * at the desired frequency.
1211          */
1212         if (rtt <= delay) {
1213                 delay -= rtt;
1214         } else {
1215                 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1216                          jiffies_to_msecs(rtt));
1217                 delay = 0;
1218         }
1219
1220         blk_mq_free_request(rq);
1221
1222         if (status) {
1223                 dev_err(ctrl->device,
1224                         "failed nvme_keep_alive_end_io error=%d\n",
1225                                 status);
1226                 return RQ_END_IO_NONE;
1227         }
1228
1229         ctrl->ka_last_check_time = jiffies;
1230         ctrl->comp_seen = false;
1231         spin_lock_irqsave(&ctrl->lock, flags);
1232         if (ctrl->state == NVME_CTRL_LIVE ||
1233             ctrl->state == NVME_CTRL_CONNECTING)
1234                 startka = true;
1235         spin_unlock_irqrestore(&ctrl->lock, flags);
1236         if (startka)
1237                 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1238         return RQ_END_IO_NONE;
1239 }
1240
1241 static void nvme_keep_alive_work(struct work_struct *work)
1242 {
1243         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1244                         struct nvme_ctrl, ka_work);
1245         bool comp_seen = ctrl->comp_seen;
1246         struct request *rq;
1247
1248         ctrl->ka_last_check_time = jiffies;
1249
1250         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1251                 dev_dbg(ctrl->device,
1252                         "reschedule traffic based keep-alive timer\n");
1253                 ctrl->comp_seen = false;
1254                 nvme_queue_keep_alive_work(ctrl);
1255                 return;
1256         }
1257
1258         rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1259                                   BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1260         if (IS_ERR(rq)) {
1261                 /* allocation failure, reset the controller */
1262                 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1263                 nvme_reset_ctrl(ctrl);
1264                 return;
1265         }
1266         nvme_init_request(rq, &ctrl->ka_cmd);
1267
1268         rq->timeout = ctrl->kato * HZ;
1269         rq->end_io = nvme_keep_alive_end_io;
1270         rq->end_io_data = ctrl;
1271         blk_execute_rq_nowait(rq, false);
1272 }
1273
1274 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1275 {
1276         if (unlikely(ctrl->kato == 0))
1277                 return;
1278
1279         nvme_queue_keep_alive_work(ctrl);
1280 }
1281
1282 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1283 {
1284         if (unlikely(ctrl->kato == 0))
1285                 return;
1286
1287         cancel_delayed_work_sync(&ctrl->ka_work);
1288 }
1289 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1290
1291 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1292                                    struct nvme_command *cmd)
1293 {
1294         unsigned int new_kato =
1295                 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1296
1297         dev_info(ctrl->device,
1298                  "keep alive interval updated from %u ms to %u ms\n",
1299                  ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1300
1301         nvme_stop_keep_alive(ctrl);
1302         ctrl->kato = new_kato;
1303         nvme_start_keep_alive(ctrl);
1304 }
1305
1306 /*
1307  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1308  * flag, thus sending any new CNS opcodes has a big chance of not working.
1309  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1310  * (but not for any later version).
1311  */
1312 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1313 {
1314         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1315                 return ctrl->vs < NVME_VS(1, 2, 0);
1316         return ctrl->vs < NVME_VS(1, 1, 0);
1317 }
1318
1319 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1320 {
1321         struct nvme_command c = { };
1322         int error;
1323
1324         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1325         c.identify.opcode = nvme_admin_identify;
1326         c.identify.cns = NVME_ID_CNS_CTRL;
1327
1328         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1329         if (!*id)
1330                 return -ENOMEM;
1331
1332         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1333                         sizeof(struct nvme_id_ctrl));
1334         if (error)
1335                 kfree(*id);
1336         return error;
1337 }
1338
1339 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1340                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1341 {
1342         const char *warn_str = "ctrl returned bogus length:";
1343         void *data = cur;
1344
1345         switch (cur->nidt) {
1346         case NVME_NIDT_EUI64:
1347                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1348                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1349                                  warn_str, cur->nidl);
1350                         return -1;
1351                 }
1352                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1353                         return NVME_NIDT_EUI64_LEN;
1354                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1355                 return NVME_NIDT_EUI64_LEN;
1356         case NVME_NIDT_NGUID:
1357                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1358                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1359                                  warn_str, cur->nidl);
1360                         return -1;
1361                 }
1362                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1363                         return NVME_NIDT_NGUID_LEN;
1364                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1365                 return NVME_NIDT_NGUID_LEN;
1366         case NVME_NIDT_UUID:
1367                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1368                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1369                                  warn_str, cur->nidl);
1370                         return -1;
1371                 }
1372                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1373                         return NVME_NIDT_UUID_LEN;
1374                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1375                 return NVME_NIDT_UUID_LEN;
1376         case NVME_NIDT_CSI:
1377                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1378                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1379                                  warn_str, cur->nidl);
1380                         return -1;
1381                 }
1382                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1383                 *csi_seen = true;
1384                 return NVME_NIDT_CSI_LEN;
1385         default:
1386                 /* Skip unknown types */
1387                 return cur->nidl;
1388         }
1389 }
1390
1391 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1392                 struct nvme_ns_info *info)
1393 {
1394         struct nvme_command c = { };
1395         bool csi_seen = false;
1396         int status, pos, len;
1397         void *data;
1398
1399         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1400                 return 0;
1401         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1402                 return 0;
1403
1404         c.identify.opcode = nvme_admin_identify;
1405         c.identify.nsid = cpu_to_le32(info->nsid);
1406         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1407
1408         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1409         if (!data)
1410                 return -ENOMEM;
1411
1412         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1413                                       NVME_IDENTIFY_DATA_SIZE);
1414         if (status) {
1415                 dev_warn(ctrl->device,
1416                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1417                         info->nsid, status);
1418                 goto free_data;
1419         }
1420
1421         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1422                 struct nvme_ns_id_desc *cur = data + pos;
1423
1424                 if (cur->nidl == 0)
1425                         break;
1426
1427                 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1428                 if (len < 0)
1429                         break;
1430
1431                 len += sizeof(*cur);
1432         }
1433
1434         if (nvme_multi_css(ctrl) && !csi_seen) {
1435                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1436                          info->nsid);
1437                 status = -EINVAL;
1438         }
1439
1440 free_data:
1441         kfree(data);
1442         return status;
1443 }
1444
1445 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1446                         struct nvme_id_ns **id)
1447 {
1448         struct nvme_command c = { };
1449         int error;
1450
1451         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1452         c.identify.opcode = nvme_admin_identify;
1453         c.identify.nsid = cpu_to_le32(nsid);
1454         c.identify.cns = NVME_ID_CNS_NS;
1455
1456         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1457         if (!*id)
1458                 return -ENOMEM;
1459
1460         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1461         if (error) {
1462                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1463                 kfree(*id);
1464         }
1465         return error;
1466 }
1467
1468 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1469                 struct nvme_ns_info *info)
1470 {
1471         struct nvme_ns_ids *ids = &info->ids;
1472         struct nvme_id_ns *id;
1473         int ret;
1474
1475         ret = nvme_identify_ns(ctrl, info->nsid, &id);
1476         if (ret)
1477                 return ret;
1478
1479         if (id->ncap == 0) {
1480                 /* namespace not allocated or attached */
1481                 info->is_removed = true;
1482                 return -ENODEV;
1483         }
1484
1485         info->anagrpid = id->anagrpid;
1486         info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1487         info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1488         info->is_ready = true;
1489         if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1490                 dev_info(ctrl->device,
1491                          "Ignoring bogus Namespace Identifiers\n");
1492         } else {
1493                 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1494                     !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1495                         memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1496                 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1497                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1498                         memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1499         }
1500         kfree(id);
1501         return 0;
1502 }
1503
1504 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1505                 struct nvme_ns_info *info)
1506 {
1507         struct nvme_id_ns_cs_indep *id;
1508         struct nvme_command c = {
1509                 .identify.opcode        = nvme_admin_identify,
1510                 .identify.nsid          = cpu_to_le32(info->nsid),
1511                 .identify.cns           = NVME_ID_CNS_NS_CS_INDEP,
1512         };
1513         int ret;
1514
1515         id = kmalloc(sizeof(*id), GFP_KERNEL);
1516         if (!id)
1517                 return -ENOMEM;
1518
1519         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1520         if (!ret) {
1521                 info->anagrpid = id->anagrpid;
1522                 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1523                 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1524                 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1525         }
1526         kfree(id);
1527         return ret;
1528 }
1529
1530 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1531                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1532 {
1533         union nvme_result res = { 0 };
1534         struct nvme_command c = { };
1535         int ret;
1536
1537         c.features.opcode = op;
1538         c.features.fid = cpu_to_le32(fid);
1539         c.features.dword11 = cpu_to_le32(dword11);
1540
1541         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1542                         buffer, buflen, NVME_QID_ANY, 0, 0);
1543         if (ret >= 0 && result)
1544                 *result = le32_to_cpu(res.u32);
1545         return ret;
1546 }
1547
1548 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1549                       unsigned int dword11, void *buffer, size_t buflen,
1550                       u32 *result)
1551 {
1552         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1553                              buflen, result);
1554 }
1555 EXPORT_SYMBOL_GPL(nvme_set_features);
1556
1557 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1558                       unsigned int dword11, void *buffer, size_t buflen,
1559                       u32 *result)
1560 {
1561         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1562                              buflen, result);
1563 }
1564 EXPORT_SYMBOL_GPL(nvme_get_features);
1565
1566 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1567 {
1568         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1569         u32 result;
1570         int status, nr_io_queues;
1571
1572         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1573                         &result);
1574         if (status < 0)
1575                 return status;
1576
1577         /*
1578          * Degraded controllers might return an error when setting the queue
1579          * count.  We still want to be able to bring them online and offer
1580          * access to the admin queue, as that might be only way to fix them up.
1581          */
1582         if (status > 0) {
1583                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1584                 *count = 0;
1585         } else {
1586                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1587                 *count = min(*count, nr_io_queues);
1588         }
1589
1590         return 0;
1591 }
1592 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1593
1594 #define NVME_AEN_SUPPORTED \
1595         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1596          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1597
1598 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1599 {
1600         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1601         int status;
1602
1603         if (!supported_aens)
1604                 return;
1605
1606         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1607                         NULL, 0, &result);
1608         if (status)
1609                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1610                          supported_aens);
1611
1612         queue_work(nvme_wq, &ctrl->async_event_work);
1613 }
1614
1615 static int nvme_ns_open(struct nvme_ns *ns)
1616 {
1617
1618         /* should never be called due to GENHD_FL_HIDDEN */
1619         if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1620                 goto fail;
1621         if (!nvme_get_ns(ns))
1622                 goto fail;
1623         if (!try_module_get(ns->ctrl->ops->module))
1624                 goto fail_put_ns;
1625
1626         return 0;
1627
1628 fail_put_ns:
1629         nvme_put_ns(ns);
1630 fail:
1631         return -ENXIO;
1632 }
1633
1634 static void nvme_ns_release(struct nvme_ns *ns)
1635 {
1636
1637         module_put(ns->ctrl->ops->module);
1638         nvme_put_ns(ns);
1639 }
1640
1641 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1642 {
1643         return nvme_ns_open(disk->private_data);
1644 }
1645
1646 static void nvme_release(struct gendisk *disk)
1647 {
1648         nvme_ns_release(disk->private_data);
1649 }
1650
1651 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1652 {
1653         /* some standard values */
1654         geo->heads = 1 << 6;
1655         geo->sectors = 1 << 5;
1656         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1657         return 0;
1658 }
1659
1660 #ifdef CONFIG_BLK_DEV_INTEGRITY
1661 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1662                                 u32 max_integrity_segments)
1663 {
1664         struct blk_integrity integrity = { };
1665
1666         switch (ns->pi_type) {
1667         case NVME_NS_DPS_PI_TYPE3:
1668                 switch (ns->guard_type) {
1669                 case NVME_NVM_NS_16B_GUARD:
1670                         integrity.profile = &t10_pi_type3_crc;
1671                         integrity.tag_size = sizeof(u16) + sizeof(u32);
1672                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1673                         break;
1674                 case NVME_NVM_NS_64B_GUARD:
1675                         integrity.profile = &ext_pi_type3_crc64;
1676                         integrity.tag_size = sizeof(u16) + 6;
1677                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1678                         break;
1679                 default:
1680                         integrity.profile = NULL;
1681                         break;
1682                 }
1683                 break;
1684         case NVME_NS_DPS_PI_TYPE1:
1685         case NVME_NS_DPS_PI_TYPE2:
1686                 switch (ns->guard_type) {
1687                 case NVME_NVM_NS_16B_GUARD:
1688                         integrity.profile = &t10_pi_type1_crc;
1689                         integrity.tag_size = sizeof(u16);
1690                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1691                         break;
1692                 case NVME_NVM_NS_64B_GUARD:
1693                         integrity.profile = &ext_pi_type1_crc64;
1694                         integrity.tag_size = sizeof(u16);
1695                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1696                         break;
1697                 default:
1698                         integrity.profile = NULL;
1699                         break;
1700                 }
1701                 break;
1702         default:
1703                 integrity.profile = NULL;
1704                 break;
1705         }
1706
1707         integrity.tuple_size = ns->ms;
1708         blk_integrity_register(disk, &integrity);
1709         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1710 }
1711 #else
1712 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1713                                 u32 max_integrity_segments)
1714 {
1715 }
1716 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1717
1718 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1719 {
1720         struct nvme_ctrl *ctrl = ns->ctrl;
1721         struct request_queue *queue = disk->queue;
1722         u32 size = queue_logical_block_size(queue);
1723
1724         if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1725                 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1726
1727         if (ctrl->max_discard_sectors == 0) {
1728                 blk_queue_max_discard_sectors(queue, 0);
1729                 return;
1730         }
1731
1732         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1733                         NVME_DSM_MAX_RANGES);
1734
1735         queue->limits.discard_granularity = size;
1736
1737         /* If discard is already enabled, don't reset queue limits */
1738         if (queue->limits.max_discard_sectors)
1739                 return;
1740
1741         blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1742         blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1743
1744         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1745                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1746 }
1747
1748 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1749 {
1750         return uuid_equal(&a->uuid, &b->uuid) &&
1751                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1752                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1753                 a->csi == b->csi;
1754 }
1755
1756 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1757 {
1758         bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1759         unsigned lbaf = nvme_lbaf_index(id->flbas);
1760         struct nvme_ctrl *ctrl = ns->ctrl;
1761         struct nvme_command c = { };
1762         struct nvme_id_ns_nvm *nvm;
1763         int ret = 0;
1764         u32 elbaf;
1765
1766         ns->pi_size = 0;
1767         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1768         if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1769                 ns->pi_size = sizeof(struct t10_pi_tuple);
1770                 ns->guard_type = NVME_NVM_NS_16B_GUARD;
1771                 goto set_pi;
1772         }
1773
1774         nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1775         if (!nvm)
1776                 return -ENOMEM;
1777
1778         c.identify.opcode = nvme_admin_identify;
1779         c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1780         c.identify.cns = NVME_ID_CNS_CS_NS;
1781         c.identify.csi = NVME_CSI_NVM;
1782
1783         ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1784         if (ret)
1785                 goto free_data;
1786
1787         elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1788
1789         /* no support for storage tag formats right now */
1790         if (nvme_elbaf_sts(elbaf))
1791                 goto free_data;
1792
1793         ns->guard_type = nvme_elbaf_guard_type(elbaf);
1794         switch (ns->guard_type) {
1795         case NVME_NVM_NS_64B_GUARD:
1796                 ns->pi_size = sizeof(struct crc64_pi_tuple);
1797                 break;
1798         case NVME_NVM_NS_16B_GUARD:
1799                 ns->pi_size = sizeof(struct t10_pi_tuple);
1800                 break;
1801         default:
1802                 break;
1803         }
1804
1805 free_data:
1806         kfree(nvm);
1807 set_pi:
1808         if (ns->pi_size && (first || ns->ms == ns->pi_size))
1809                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1810         else
1811                 ns->pi_type = 0;
1812
1813         return ret;
1814 }
1815
1816 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1817 {
1818         struct nvme_ctrl *ctrl = ns->ctrl;
1819         int ret;
1820
1821         ret = nvme_init_ms(ns, id);
1822         if (ret)
1823                 return ret;
1824
1825         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1826         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1827                 return 0;
1828
1829         if (ctrl->ops->flags & NVME_F_FABRICS) {
1830                 /*
1831                  * The NVMe over Fabrics specification only supports metadata as
1832                  * part of the extended data LBA.  We rely on HCA/HBA support to
1833                  * remap the separate metadata buffer from the block layer.
1834                  */
1835                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1836                         return 0;
1837
1838                 ns->features |= NVME_NS_EXT_LBAS;
1839
1840                 /*
1841                  * The current fabrics transport drivers support namespace
1842                  * metadata formats only if nvme_ns_has_pi() returns true.
1843                  * Suppress support for all other formats so the namespace will
1844                  * have a 0 capacity and not be usable through the block stack.
1845                  *
1846                  * Note, this check will need to be modified if any drivers
1847                  * gain the ability to use other metadata formats.
1848                  */
1849                 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1850                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1851         } else {
1852                 /*
1853                  * For PCIe controllers, we can't easily remap the separate
1854                  * metadata buffer from the block layer and thus require a
1855                  * separate metadata buffer for block layer metadata/PI support.
1856                  * We allow extended LBAs for the passthrough interface, though.
1857                  */
1858                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1859                         ns->features |= NVME_NS_EXT_LBAS;
1860                 else
1861                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1862         }
1863         return 0;
1864 }
1865
1866 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1867                 struct request_queue *q)
1868 {
1869         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1870
1871         if (ctrl->max_hw_sectors) {
1872                 u32 max_segments =
1873                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1874
1875                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1876                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1877                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1878         }
1879         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1880         blk_queue_dma_alignment(q, 3);
1881         blk_queue_write_cache(q, vwc, vwc);
1882 }
1883
1884 static void nvme_update_disk_info(struct gendisk *disk,
1885                 struct nvme_ns *ns, struct nvme_id_ns *id)
1886 {
1887         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1888         u32 bs = 1U << ns->lba_shift;
1889         u32 atomic_bs, phys_bs, io_opt = 0;
1890
1891         /*
1892          * The block layer can't support LBA sizes larger than the page size
1893          * yet, so catch this early and don't allow block I/O.
1894          */
1895         if (ns->lba_shift > PAGE_SHIFT) {
1896                 capacity = 0;
1897                 bs = (1 << 9);
1898         }
1899
1900         blk_integrity_unregister(disk);
1901
1902         atomic_bs = phys_bs = bs;
1903         if (id->nabo == 0) {
1904                 /*
1905                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1906                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1907                  * 0 then AWUPF must be used instead.
1908                  */
1909                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1910                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1911                 else
1912                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1913         }
1914
1915         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1916                 /* NPWG = Namespace Preferred Write Granularity */
1917                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1918                 /* NOWS = Namespace Optimal Write Size */
1919                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1920         }
1921
1922         blk_queue_logical_block_size(disk->queue, bs);
1923         /*
1924          * Linux filesystems assume writing a single physical block is
1925          * an atomic operation. Hence limit the physical block size to the
1926          * value of the Atomic Write Unit Power Fail parameter.
1927          */
1928         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1929         blk_queue_io_min(disk->queue, phys_bs);
1930         blk_queue_io_opt(disk->queue, io_opt);
1931
1932         /*
1933          * Register a metadata profile for PI, or the plain non-integrity NVMe
1934          * metadata masquerading as Type 0 if supported, otherwise reject block
1935          * I/O to namespaces with metadata except when the namespace supports
1936          * PI, as it can strip/insert in that case.
1937          */
1938         if (ns->ms) {
1939                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1940                     (ns->features & NVME_NS_METADATA_SUPPORTED))
1941                         nvme_init_integrity(disk, ns,
1942                                             ns->ctrl->max_integrity_segments);
1943                 else if (!nvme_ns_has_pi(ns))
1944                         capacity = 0;
1945         }
1946
1947         set_capacity_and_notify(disk, capacity);
1948
1949         nvme_config_discard(disk, ns);
1950         blk_queue_max_write_zeroes_sectors(disk->queue,
1951                                            ns->ctrl->max_zeroes_sectors);
1952 }
1953
1954 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1955 {
1956         return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1957 }
1958
1959 static inline bool nvme_first_scan(struct gendisk *disk)
1960 {
1961         /* nvme_alloc_ns() scans the disk prior to adding it */
1962         return !disk_live(disk);
1963 }
1964
1965 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1966 {
1967         struct nvme_ctrl *ctrl = ns->ctrl;
1968         u32 iob;
1969
1970         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1971             is_power_of_2(ctrl->max_hw_sectors))
1972                 iob = ctrl->max_hw_sectors;
1973         else
1974                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1975
1976         if (!iob)
1977                 return;
1978
1979         if (!is_power_of_2(iob)) {
1980                 if (nvme_first_scan(ns->disk))
1981                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1982                                 ns->disk->disk_name, iob);
1983                 return;
1984         }
1985
1986         if (blk_queue_is_zoned(ns->disk->queue)) {
1987                 if (nvme_first_scan(ns->disk))
1988                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
1989                                 ns->disk->disk_name);
1990                 return;
1991         }
1992
1993         blk_queue_chunk_sectors(ns->queue, iob);
1994 }
1995
1996 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1997                 struct nvme_ns_info *info)
1998 {
1999         blk_mq_freeze_queue(ns->disk->queue);
2000         nvme_set_queue_limits(ns->ctrl, ns->queue);
2001         set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2002         blk_mq_unfreeze_queue(ns->disk->queue);
2003
2004         if (nvme_ns_head_multipath(ns->head)) {
2005                 blk_mq_freeze_queue(ns->head->disk->queue);
2006                 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2007                 nvme_mpath_revalidate_paths(ns);
2008                 blk_stack_limits(&ns->head->disk->queue->limits,
2009                                  &ns->queue->limits, 0);
2010                 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2011                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2012         }
2013
2014         /* Hide the block-interface for these devices */
2015         ns->disk->flags |= GENHD_FL_HIDDEN;
2016         set_bit(NVME_NS_READY, &ns->flags);
2017
2018         return 0;
2019 }
2020
2021 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2022                 struct nvme_ns_info *info)
2023 {
2024         struct nvme_id_ns *id;
2025         unsigned lbaf;
2026         int ret;
2027
2028         ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2029         if (ret)
2030                 return ret;
2031
2032         if (id->ncap == 0) {
2033                 /* namespace not allocated or attached */
2034                 info->is_removed = true;
2035                 ret = -ENODEV;
2036                 goto error;
2037         }
2038
2039         blk_mq_freeze_queue(ns->disk->queue);
2040         lbaf = nvme_lbaf_index(id->flbas);
2041         ns->lba_shift = id->lbaf[lbaf].ds;
2042         nvme_set_queue_limits(ns->ctrl, ns->queue);
2043
2044         ret = nvme_configure_metadata(ns, id);
2045         if (ret < 0) {
2046                 blk_mq_unfreeze_queue(ns->disk->queue);
2047                 goto out;
2048         }
2049         nvme_set_chunk_sectors(ns, id);
2050         nvme_update_disk_info(ns->disk, ns, id);
2051
2052         if (ns->head->ids.csi == NVME_CSI_ZNS) {
2053                 ret = nvme_update_zone_info(ns, lbaf);
2054                 if (ret) {
2055                         blk_mq_unfreeze_queue(ns->disk->queue);
2056                         goto out;
2057                 }
2058         }
2059
2060         /*
2061          * Only set the DEAC bit if the device guarantees that reads from
2062          * deallocated data return zeroes.  While the DEAC bit does not
2063          * require that, it must be a no-op if reads from deallocated data
2064          * do not return zeroes.
2065          */
2066         if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2067                 ns->features |= NVME_NS_DEAC;
2068         set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2069         set_bit(NVME_NS_READY, &ns->flags);
2070         blk_mq_unfreeze_queue(ns->disk->queue);
2071
2072         if (blk_queue_is_zoned(ns->queue)) {
2073                 ret = nvme_revalidate_zones(ns);
2074                 if (ret && !nvme_first_scan(ns->disk))
2075                         goto out;
2076         }
2077
2078         if (nvme_ns_head_multipath(ns->head)) {
2079                 blk_mq_freeze_queue(ns->head->disk->queue);
2080                 nvme_update_disk_info(ns->head->disk, ns, id);
2081                 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2082                 nvme_mpath_revalidate_paths(ns);
2083                 blk_stack_limits(&ns->head->disk->queue->limits,
2084                                  &ns->queue->limits, 0);
2085                 disk_update_readahead(ns->head->disk);
2086                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2087         }
2088
2089         ret = 0;
2090 out:
2091         /*
2092          * If probing fails due an unsupported feature, hide the block device,
2093          * but still allow other access.
2094          */
2095         if (ret == -ENODEV) {
2096                 ns->disk->flags |= GENHD_FL_HIDDEN;
2097                 set_bit(NVME_NS_READY, &ns->flags);
2098                 ret = 0;
2099         }
2100
2101 error:
2102         kfree(id);
2103         return ret;
2104 }
2105
2106 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2107 {
2108         switch (info->ids.csi) {
2109         case NVME_CSI_ZNS:
2110                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2111                         dev_info(ns->ctrl->device,
2112         "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2113                                 info->nsid);
2114                         return nvme_update_ns_info_generic(ns, info);
2115                 }
2116                 return nvme_update_ns_info_block(ns, info);
2117         case NVME_CSI_NVM:
2118                 return nvme_update_ns_info_block(ns, info);
2119         default:
2120                 dev_info(ns->ctrl->device,
2121                         "block device for nsid %u not supported (csi %u)\n",
2122                         info->nsid, info->ids.csi);
2123                 return nvme_update_ns_info_generic(ns, info);
2124         }
2125 }
2126
2127 #ifdef CONFIG_BLK_SED_OPAL
2128 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2129                 bool send)
2130 {
2131         struct nvme_ctrl *ctrl = data;
2132         struct nvme_command cmd = { };
2133
2134         if (send)
2135                 cmd.common.opcode = nvme_admin_security_send;
2136         else
2137                 cmd.common.opcode = nvme_admin_security_recv;
2138         cmd.common.nsid = 0;
2139         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2140         cmd.common.cdw11 = cpu_to_le32(len);
2141
2142         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2143                         NVME_QID_ANY, 1, 0);
2144 }
2145
2146 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2147 {
2148         if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2149                 if (!ctrl->opal_dev)
2150                         ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2151                 else if (was_suspended)
2152                         opal_unlock_from_suspend(ctrl->opal_dev);
2153         } else {
2154                 free_opal_dev(ctrl->opal_dev);
2155                 ctrl->opal_dev = NULL;
2156         }
2157 }
2158 #else
2159 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2160 {
2161 }
2162 #endif /* CONFIG_BLK_SED_OPAL */
2163
2164 #ifdef CONFIG_BLK_DEV_ZONED
2165 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2166                 unsigned int nr_zones, report_zones_cb cb, void *data)
2167 {
2168         return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2169                         data);
2170 }
2171 #else
2172 #define nvme_report_zones       NULL
2173 #endif /* CONFIG_BLK_DEV_ZONED */
2174
2175 const struct block_device_operations nvme_bdev_ops = {
2176         .owner          = THIS_MODULE,
2177         .ioctl          = nvme_ioctl,
2178         .compat_ioctl   = blkdev_compat_ptr_ioctl,
2179         .open           = nvme_open,
2180         .release        = nvme_release,
2181         .getgeo         = nvme_getgeo,
2182         .report_zones   = nvme_report_zones,
2183         .pr_ops         = &nvme_pr_ops,
2184 };
2185
2186 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2187                 u32 timeout, const char *op)
2188 {
2189         unsigned long timeout_jiffies = jiffies + timeout * HZ;
2190         u32 csts;
2191         int ret;
2192
2193         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2194                 if (csts == ~0)
2195                         return -ENODEV;
2196                 if ((csts & mask) == val)
2197                         break;
2198
2199                 usleep_range(1000, 2000);
2200                 if (fatal_signal_pending(current))
2201                         return -EINTR;
2202                 if (time_after(jiffies, timeout_jiffies)) {
2203                         dev_err(ctrl->device,
2204                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2205                                 op, csts);
2206                         return -ENODEV;
2207                 }
2208         }
2209
2210         return ret;
2211 }
2212
2213 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2214 {
2215         int ret;
2216
2217         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2218         if (shutdown)
2219                 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2220         else
2221                 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2222
2223         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2224         if (ret)
2225                 return ret;
2226
2227         if (shutdown) {
2228                 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2229                                        NVME_CSTS_SHST_CMPLT,
2230                                        ctrl->shutdown_timeout, "shutdown");
2231         }
2232         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2233                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2234         return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2235                                (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2236 }
2237 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2238
2239 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2240 {
2241         unsigned dev_page_min;
2242         u32 timeout;
2243         int ret;
2244
2245         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2246         if (ret) {
2247                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2248                 return ret;
2249         }
2250         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2251
2252         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2253                 dev_err(ctrl->device,
2254                         "Minimum device page size %u too large for host (%u)\n",
2255                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2256                 return -ENODEV;
2257         }
2258
2259         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2260                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2261         else
2262                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2263
2264         if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2265                 ctrl->ctrl_config |= NVME_CC_CRIME;
2266
2267         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2268         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2269         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2270         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2271         if (ret)
2272                 return ret;
2273
2274         /* Flush write to device (required if transport is PCI) */
2275         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2276         if (ret)
2277                 return ret;
2278
2279         /* CAP value may change after initial CC write */
2280         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2281         if (ret)
2282                 return ret;
2283
2284         timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2285         if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2286                 u32 crto, ready_timeout;
2287
2288                 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2289                 if (ret) {
2290                         dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2291                                 ret);
2292                         return ret;
2293                 }
2294
2295                 /*
2296                  * CRTO should always be greater or equal to CAP.TO, but some
2297                  * devices are known to get this wrong. Use the larger of the
2298                  * two values.
2299                  */
2300                 if (ctrl->ctrl_config & NVME_CC_CRIME)
2301                         ready_timeout = NVME_CRTO_CRIMT(crto);
2302                 else
2303                         ready_timeout = NVME_CRTO_CRWMT(crto);
2304
2305                 if (ready_timeout < timeout)
2306                         dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2307                                       crto, ctrl->cap);
2308                 else
2309                         timeout = ready_timeout;
2310         }
2311
2312         ctrl->ctrl_config |= NVME_CC_ENABLE;
2313         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2314         if (ret)
2315                 return ret;
2316         return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2317                                (timeout + 1) / 2, "initialisation");
2318 }
2319 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2320
2321 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2322 {
2323         __le64 ts;
2324         int ret;
2325
2326         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2327                 return 0;
2328
2329         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2330         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2331                         NULL);
2332         if (ret)
2333                 dev_warn_once(ctrl->device,
2334                         "could not set timestamp (%d)\n", ret);
2335         return ret;
2336 }
2337
2338 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2339 {
2340         struct nvme_feat_host_behavior *host;
2341         u8 acre = 0, lbafee = 0;
2342         int ret;
2343
2344         /* Don't bother enabling the feature if retry delay is not reported */
2345         if (ctrl->crdt[0])
2346                 acre = NVME_ENABLE_ACRE;
2347         if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2348                 lbafee = NVME_ENABLE_LBAFEE;
2349
2350         if (!acre && !lbafee)
2351                 return 0;
2352
2353         host = kzalloc(sizeof(*host), GFP_KERNEL);
2354         if (!host)
2355                 return 0;
2356
2357         host->acre = acre;
2358         host->lbafee = lbafee;
2359         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2360                                 host, sizeof(*host), NULL);
2361         kfree(host);
2362         return ret;
2363 }
2364
2365 /*
2366  * The function checks whether the given total (exlat + enlat) latency of
2367  * a power state allows the latter to be used as an APST transition target.
2368  * It does so by comparing the latency to the primary and secondary latency
2369  * tolerances defined by module params. If there's a match, the corresponding
2370  * timeout value is returned and the matching tolerance index (1 or 2) is
2371  * reported.
2372  */
2373 static bool nvme_apst_get_transition_time(u64 total_latency,
2374                 u64 *transition_time, unsigned *last_index)
2375 {
2376         if (total_latency <= apst_primary_latency_tol_us) {
2377                 if (*last_index == 1)
2378                         return false;
2379                 *last_index = 1;
2380                 *transition_time = apst_primary_timeout_ms;
2381                 return true;
2382         }
2383         if (apst_secondary_timeout_ms &&
2384                 total_latency <= apst_secondary_latency_tol_us) {
2385                 if (*last_index <= 2)
2386                         return false;
2387                 *last_index = 2;
2388                 *transition_time = apst_secondary_timeout_ms;
2389                 return true;
2390         }
2391         return false;
2392 }
2393
2394 /*
2395  * APST (Autonomous Power State Transition) lets us program a table of power
2396  * state transitions that the controller will perform automatically.
2397  *
2398  * Depending on module params, one of the two supported techniques will be used:
2399  *
2400  * - If the parameters provide explicit timeouts and tolerances, they will be
2401  *   used to build a table with up to 2 non-operational states to transition to.
2402  *   The default parameter values were selected based on the values used by
2403  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2404  *   regeneration of the APST table in the event of switching between external
2405  *   and battery power, the timeouts and tolerances reflect a compromise
2406  *   between values used by Microsoft for AC and battery scenarios.
2407  * - If not, we'll configure the table with a simple heuristic: we are willing
2408  *   to spend at most 2% of the time transitioning between power states.
2409  *   Therefore, when running in any given state, we will enter the next
2410  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2411  *   microseconds, as long as that state's exit latency is under the requested
2412  *   maximum latency.
2413  *
2414  * We will not autonomously enter any non-operational state for which the total
2415  * latency exceeds ps_max_latency_us.
2416  *
2417  * Users can set ps_max_latency_us to zero to turn off APST.
2418  */
2419 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2420 {
2421         struct nvme_feat_auto_pst *table;
2422         unsigned apste = 0;
2423         u64 max_lat_us = 0;
2424         __le64 target = 0;
2425         int max_ps = -1;
2426         int state;
2427         int ret;
2428         unsigned last_lt_index = UINT_MAX;
2429
2430         /*
2431          * If APST isn't supported or if we haven't been initialized yet,
2432          * then don't do anything.
2433          */
2434         if (!ctrl->apsta)
2435                 return 0;
2436
2437         if (ctrl->npss > 31) {
2438                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2439                 return 0;
2440         }
2441
2442         table = kzalloc(sizeof(*table), GFP_KERNEL);
2443         if (!table)
2444                 return 0;
2445
2446         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2447                 /* Turn off APST. */
2448                 dev_dbg(ctrl->device, "APST disabled\n");
2449                 goto done;
2450         }
2451
2452         /*
2453          * Walk through all states from lowest- to highest-power.
2454          * According to the spec, lower-numbered states use more power.  NPSS,
2455          * despite the name, is the index of the lowest-power state, not the
2456          * number of states.
2457          */
2458         for (state = (int)ctrl->npss; state >= 0; state--) {
2459                 u64 total_latency_us, exit_latency_us, transition_ms;
2460
2461                 if (target)
2462                         table->entries[state] = target;
2463
2464                 /*
2465                  * Don't allow transitions to the deepest state if it's quirked
2466                  * off.
2467                  */
2468                 if (state == ctrl->npss &&
2469                     (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2470                         continue;
2471
2472                 /*
2473                  * Is this state a useful non-operational state for higher-power
2474                  * states to autonomously transition to?
2475                  */
2476                 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2477                         continue;
2478
2479                 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2480                 if (exit_latency_us > ctrl->ps_max_latency_us)
2481                         continue;
2482
2483                 total_latency_us = exit_latency_us +
2484                         le32_to_cpu(ctrl->psd[state].entry_lat);
2485
2486                 /*
2487                  * This state is good. It can be used as the APST idle target
2488                  * for higher power states.
2489                  */
2490                 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2491                         if (!nvme_apst_get_transition_time(total_latency_us,
2492                                         &transition_ms, &last_lt_index))
2493                                 continue;
2494                 } else {
2495                         transition_ms = total_latency_us + 19;
2496                         do_div(transition_ms, 20);
2497                         if (transition_ms > (1 << 24) - 1)
2498                                 transition_ms = (1 << 24) - 1;
2499                 }
2500
2501                 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2502                 if (max_ps == -1)
2503                         max_ps = state;
2504                 if (total_latency_us > max_lat_us)
2505                         max_lat_us = total_latency_us;
2506         }
2507
2508         if (max_ps == -1)
2509                 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2510         else
2511                 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2512                         max_ps, max_lat_us, (int)sizeof(*table), table);
2513         apste = 1;
2514
2515 done:
2516         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2517                                 table, sizeof(*table), NULL);
2518         if (ret)
2519                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2520         kfree(table);
2521         return ret;
2522 }
2523
2524 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2525 {
2526         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2527         u64 latency;
2528
2529         switch (val) {
2530         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2531         case PM_QOS_LATENCY_ANY:
2532                 latency = U64_MAX;
2533                 break;
2534
2535         default:
2536                 latency = val;
2537         }
2538
2539         if (ctrl->ps_max_latency_us != latency) {
2540                 ctrl->ps_max_latency_us = latency;
2541                 if (ctrl->state == NVME_CTRL_LIVE)
2542                         nvme_configure_apst(ctrl);
2543         }
2544 }
2545
2546 struct nvme_core_quirk_entry {
2547         /*
2548          * NVMe model and firmware strings are padded with spaces.  For
2549          * simplicity, strings in the quirk table are padded with NULLs
2550          * instead.
2551          */
2552         u16 vid;
2553         const char *mn;
2554         const char *fr;
2555         unsigned long quirks;
2556 };
2557
2558 static const struct nvme_core_quirk_entry core_quirks[] = {
2559         {
2560                 /*
2561                  * This Toshiba device seems to die using any APST states.  See:
2562                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2563                  */
2564                 .vid = 0x1179,
2565                 .mn = "THNSF5256GPUK TOSHIBA",
2566                 .quirks = NVME_QUIRK_NO_APST,
2567         },
2568         {
2569                 /*
2570                  * This LiteON CL1-3D*-Q11 firmware version has a race
2571                  * condition associated with actions related to suspend to idle
2572                  * LiteON has resolved the problem in future firmware
2573                  */
2574                 .vid = 0x14a4,
2575                 .fr = "22301111",
2576                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2577         },
2578         {
2579                 /*
2580                  * This Kioxia CD6-V Series / HPE PE8030 device times out and
2581                  * aborts I/O during any load, but more easily reproducible
2582                  * with discards (fstrim).
2583                  *
2584                  * The device is left in a state where it is also not possible
2585                  * to use "nvme set-feature" to disable APST, but booting with
2586                  * nvme_core.default_ps_max_latency=0 works.
2587                  */
2588                 .vid = 0x1e0f,
2589                 .mn = "KCD6XVUL6T40",
2590                 .quirks = NVME_QUIRK_NO_APST,
2591         },
2592         {
2593                 /*
2594                  * The external Samsung X5 SSD fails initialization without a
2595                  * delay before checking if it is ready and has a whole set of
2596                  * other problems.  To make this even more interesting, it
2597                  * shares the PCI ID with internal Samsung 970 Evo Plus that
2598                  * does not need or want these quirks.
2599                  */
2600                 .vid = 0x144d,
2601                 .mn = "Samsung Portable SSD X5",
2602                 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2603                           NVME_QUIRK_NO_DEEPEST_PS |
2604                           NVME_QUIRK_IGNORE_DEV_SUBNQN,
2605         }
2606 };
2607
2608 /* match is null-terminated but idstr is space-padded. */
2609 static bool string_matches(const char *idstr, const char *match, size_t len)
2610 {
2611         size_t matchlen;
2612
2613         if (!match)
2614                 return true;
2615
2616         matchlen = strlen(match);
2617         WARN_ON_ONCE(matchlen > len);
2618
2619         if (memcmp(idstr, match, matchlen))
2620                 return false;
2621
2622         for (; matchlen < len; matchlen++)
2623                 if (idstr[matchlen] != ' ')
2624                         return false;
2625
2626         return true;
2627 }
2628
2629 static bool quirk_matches(const struct nvme_id_ctrl *id,
2630                           const struct nvme_core_quirk_entry *q)
2631 {
2632         return q->vid == le16_to_cpu(id->vid) &&
2633                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2634                 string_matches(id->fr, q->fr, sizeof(id->fr));
2635 }
2636
2637 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2638                 struct nvme_id_ctrl *id)
2639 {
2640         size_t nqnlen;
2641         int off;
2642
2643         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2644                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2645                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2646                         strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2647                         return;
2648                 }
2649
2650                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2651                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2652         }
2653
2654         /*
2655          * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2656          * Base Specification 2.0.  It is slightly different from the format
2657          * specified there due to historic reasons, and we can't change it now.
2658          */
2659         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2660                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2661                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2662         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2663         off += sizeof(id->sn);
2664         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2665         off += sizeof(id->mn);
2666         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2667 }
2668
2669 static void nvme_release_subsystem(struct device *dev)
2670 {
2671         struct nvme_subsystem *subsys =
2672                 container_of(dev, struct nvme_subsystem, dev);
2673
2674         if (subsys->instance >= 0)
2675                 ida_free(&nvme_instance_ida, subsys->instance);
2676         kfree(subsys);
2677 }
2678
2679 static void nvme_destroy_subsystem(struct kref *ref)
2680 {
2681         struct nvme_subsystem *subsys =
2682                         container_of(ref, struct nvme_subsystem, ref);
2683
2684         mutex_lock(&nvme_subsystems_lock);
2685         list_del(&subsys->entry);
2686         mutex_unlock(&nvme_subsystems_lock);
2687
2688         ida_destroy(&subsys->ns_ida);
2689         device_del(&subsys->dev);
2690         put_device(&subsys->dev);
2691 }
2692
2693 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2694 {
2695         kref_put(&subsys->ref, nvme_destroy_subsystem);
2696 }
2697
2698 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2699 {
2700         struct nvme_subsystem *subsys;
2701
2702         lockdep_assert_held(&nvme_subsystems_lock);
2703
2704         /*
2705          * Fail matches for discovery subsystems. This results
2706          * in each discovery controller bound to a unique subsystem.
2707          * This avoids issues with validating controller values
2708          * that can only be true when there is a single unique subsystem.
2709          * There may be multiple and completely independent entities
2710          * that provide discovery controllers.
2711          */
2712         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2713                 return NULL;
2714
2715         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2716                 if (strcmp(subsys->subnqn, subsysnqn))
2717                         continue;
2718                 if (!kref_get_unless_zero(&subsys->ref))
2719                         continue;
2720                 return subsys;
2721         }
2722
2723         return NULL;
2724 }
2725
2726 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2727 {
2728         return ctrl->opts && ctrl->opts->discovery_nqn;
2729 }
2730
2731 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2732                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2733 {
2734         struct nvme_ctrl *tmp;
2735
2736         lockdep_assert_held(&nvme_subsystems_lock);
2737
2738         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2739                 if (nvme_state_terminal(tmp))
2740                         continue;
2741
2742                 if (tmp->cntlid == ctrl->cntlid) {
2743                         dev_err(ctrl->device,
2744                                 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2745                                 ctrl->cntlid, dev_name(tmp->device),
2746                                 subsys->subnqn);
2747                         return false;
2748                 }
2749
2750                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2751                     nvme_discovery_ctrl(ctrl))
2752                         continue;
2753
2754                 dev_err(ctrl->device,
2755                         "Subsystem does not support multiple controllers\n");
2756                 return false;
2757         }
2758
2759         return true;
2760 }
2761
2762 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2763 {
2764         struct nvme_subsystem *subsys, *found;
2765         int ret;
2766
2767         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2768         if (!subsys)
2769                 return -ENOMEM;
2770
2771         subsys->instance = -1;
2772         mutex_init(&subsys->lock);
2773         kref_init(&subsys->ref);
2774         INIT_LIST_HEAD(&subsys->ctrls);
2775         INIT_LIST_HEAD(&subsys->nsheads);
2776         nvme_init_subnqn(subsys, ctrl, id);
2777         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2778         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2779         subsys->vendor_id = le16_to_cpu(id->vid);
2780         subsys->cmic = id->cmic;
2781
2782         /* Versions prior to 1.4 don't necessarily report a valid type */
2783         if (id->cntrltype == NVME_CTRL_DISC ||
2784             !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2785                 subsys->subtype = NVME_NQN_DISC;
2786         else
2787                 subsys->subtype = NVME_NQN_NVME;
2788
2789         if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2790                 dev_err(ctrl->device,
2791                         "Subsystem %s is not a discovery controller",
2792                         subsys->subnqn);
2793                 kfree(subsys);
2794                 return -EINVAL;
2795         }
2796         subsys->awupf = le16_to_cpu(id->awupf);
2797         nvme_mpath_default_iopolicy(subsys);
2798
2799         subsys->dev.class = nvme_subsys_class;
2800         subsys->dev.release = nvme_release_subsystem;
2801         subsys->dev.groups = nvme_subsys_attrs_groups;
2802         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2803         device_initialize(&subsys->dev);
2804
2805         mutex_lock(&nvme_subsystems_lock);
2806         found = __nvme_find_get_subsystem(subsys->subnqn);
2807         if (found) {
2808                 put_device(&subsys->dev);
2809                 subsys = found;
2810
2811                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2812                         ret = -EINVAL;
2813                         goto out_put_subsystem;
2814                 }
2815         } else {
2816                 ret = device_add(&subsys->dev);
2817                 if (ret) {
2818                         dev_err(ctrl->device,
2819                                 "failed to register subsystem device.\n");
2820                         put_device(&subsys->dev);
2821                         goto out_unlock;
2822                 }
2823                 ida_init(&subsys->ns_ida);
2824                 list_add_tail(&subsys->entry, &nvme_subsystems);
2825         }
2826
2827         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2828                                 dev_name(ctrl->device));
2829         if (ret) {
2830                 dev_err(ctrl->device,
2831                         "failed to create sysfs link from subsystem.\n");
2832                 goto out_put_subsystem;
2833         }
2834
2835         if (!found)
2836                 subsys->instance = ctrl->instance;
2837         ctrl->subsys = subsys;
2838         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2839         mutex_unlock(&nvme_subsystems_lock);
2840         return 0;
2841
2842 out_put_subsystem:
2843         nvme_put_subsystem(subsys);
2844 out_unlock:
2845         mutex_unlock(&nvme_subsystems_lock);
2846         return ret;
2847 }
2848
2849 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2850                 void *log, size_t size, u64 offset)
2851 {
2852         struct nvme_command c = { };
2853         u32 dwlen = nvme_bytes_to_numd(size);
2854
2855         c.get_log_page.opcode = nvme_admin_get_log_page;
2856         c.get_log_page.nsid = cpu_to_le32(nsid);
2857         c.get_log_page.lid = log_page;
2858         c.get_log_page.lsp = lsp;
2859         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2860         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2861         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2862         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2863         c.get_log_page.csi = csi;
2864
2865         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2866 }
2867
2868 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2869                                 struct nvme_effects_log **log)
2870 {
2871         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2872         int ret;
2873
2874         if (cel)
2875                 goto out;
2876
2877         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2878         if (!cel)
2879                 return -ENOMEM;
2880
2881         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2882                         cel, sizeof(*cel), 0);
2883         if (ret) {
2884                 kfree(cel);
2885                 return ret;
2886         }
2887
2888         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2889 out:
2890         *log = cel;
2891         return 0;
2892 }
2893
2894 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2895 {
2896         u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2897
2898         if (check_shl_overflow(1U, units + page_shift - 9, &val))
2899                 return UINT_MAX;
2900         return val;
2901 }
2902
2903 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2904 {
2905         struct nvme_command c = { };
2906         struct nvme_id_ctrl_nvm *id;
2907         int ret;
2908
2909         if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2910                 ctrl->max_discard_sectors = UINT_MAX;
2911                 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2912         } else {
2913                 ctrl->max_discard_sectors = 0;
2914                 ctrl->max_discard_segments = 0;
2915         }
2916
2917         /*
2918          * Even though NVMe spec explicitly states that MDTS is not applicable
2919          * to the write-zeroes, we are cautious and limit the size to the
2920          * controllers max_hw_sectors value, which is based on the MDTS field
2921          * and possibly other limiting factors.
2922          */
2923         if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2924             !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2925                 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2926         else
2927                 ctrl->max_zeroes_sectors = 0;
2928
2929         if (ctrl->subsys->subtype != NVME_NQN_NVME ||
2930             nvme_ctrl_limited_cns(ctrl) ||
2931             test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
2932                 return 0;
2933
2934         id = kzalloc(sizeof(*id), GFP_KERNEL);
2935         if (!id)
2936                 return -ENOMEM;
2937
2938         c.identify.opcode = nvme_admin_identify;
2939         c.identify.cns = NVME_ID_CNS_CS_CTRL;
2940         c.identify.csi = NVME_CSI_NVM;
2941
2942         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2943         if (ret)
2944                 goto free_data;
2945
2946         if (id->dmrl)
2947                 ctrl->max_discard_segments = id->dmrl;
2948         ctrl->dmrsl = le32_to_cpu(id->dmrsl);
2949         if (id->wzsl)
2950                 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2951
2952 free_data:
2953         if (ret > 0)
2954                 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
2955         kfree(id);
2956         return ret;
2957 }
2958
2959 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
2960 {
2961         struct nvme_effects_log *log = ctrl->effects;
2962
2963         log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2964                                                 NVME_CMD_EFFECTS_NCC |
2965                                                 NVME_CMD_EFFECTS_CSE_MASK);
2966         log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2967                                                 NVME_CMD_EFFECTS_CSE_MASK);
2968
2969         /*
2970          * The spec says the result of a security receive command depends on
2971          * the previous security send command. As such, many vendors log this
2972          * command as one to submitted only when no other commands to the same
2973          * namespace are outstanding. The intention is to tell the host to
2974          * prevent mixing security send and receive.
2975          *
2976          * This driver can only enforce such exclusive access against IO
2977          * queues, though. We are not readily able to enforce such a rule for
2978          * two commands to the admin queue, which is the only queue that
2979          * matters for this command.
2980          *
2981          * Rather than blindly freezing the IO queues for this effect that
2982          * doesn't even apply to IO, mask it off.
2983          */
2984         log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
2985
2986         log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2987         log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2988         log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2989 }
2990
2991 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2992 {
2993         int ret = 0;
2994
2995         if (ctrl->effects)
2996                 return 0;
2997
2998         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2999                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3000                 if (ret < 0)
3001                         return ret;
3002         }
3003
3004         if (!ctrl->effects) {
3005                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3006                 if (!ctrl->effects)
3007                         return -ENOMEM;
3008                 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3009         }
3010
3011         nvme_init_known_nvm_effects(ctrl);
3012         return 0;
3013 }
3014
3015 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3016 {
3017         struct nvme_id_ctrl *id;
3018         u32 max_hw_sectors;
3019         bool prev_apst_enabled;
3020         int ret;
3021
3022         ret = nvme_identify_ctrl(ctrl, &id);
3023         if (ret) {
3024                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3025                 return -EIO;
3026         }
3027
3028         if (!(ctrl->ops->flags & NVME_F_FABRICS))
3029                 ctrl->cntlid = le16_to_cpu(id->cntlid);
3030
3031         if (!ctrl->identified) {
3032                 unsigned int i;
3033
3034                 /*
3035                  * Check for quirks.  Quirk can depend on firmware version,
3036                  * so, in principle, the set of quirks present can change
3037                  * across a reset.  As a possible future enhancement, we
3038                  * could re-scan for quirks every time we reinitialize
3039                  * the device, but we'd have to make sure that the driver
3040                  * behaves intelligently if the quirks change.
3041                  */
3042                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3043                         if (quirk_matches(id, &core_quirks[i]))
3044                                 ctrl->quirks |= core_quirks[i].quirks;
3045                 }
3046
3047                 ret = nvme_init_subsystem(ctrl, id);
3048                 if (ret)
3049                         goto out_free;
3050
3051                 ret = nvme_init_effects(ctrl, id);
3052                 if (ret)
3053                         goto out_free;
3054         }
3055         memcpy(ctrl->subsys->firmware_rev, id->fr,
3056                sizeof(ctrl->subsys->firmware_rev));
3057
3058         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3059                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3060                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3061         }
3062
3063         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3064         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3065         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3066
3067         ctrl->oacs = le16_to_cpu(id->oacs);
3068         ctrl->oncs = le16_to_cpu(id->oncs);
3069         ctrl->mtfa = le16_to_cpu(id->mtfa);
3070         ctrl->oaes = le32_to_cpu(id->oaes);
3071         ctrl->wctemp = le16_to_cpu(id->wctemp);
3072         ctrl->cctemp = le16_to_cpu(id->cctemp);
3073
3074         atomic_set(&ctrl->abort_limit, id->acl + 1);
3075         ctrl->vwc = id->vwc;
3076         if (id->mdts)
3077                 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3078         else
3079                 max_hw_sectors = UINT_MAX;
3080         ctrl->max_hw_sectors =
3081                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3082
3083         nvme_set_queue_limits(ctrl, ctrl->admin_q);
3084         ctrl->sgls = le32_to_cpu(id->sgls);
3085         ctrl->kas = le16_to_cpu(id->kas);
3086         ctrl->max_namespaces = le32_to_cpu(id->mnan);
3087         ctrl->ctratt = le32_to_cpu(id->ctratt);
3088
3089         ctrl->cntrltype = id->cntrltype;
3090         ctrl->dctype = id->dctype;
3091
3092         if (id->rtd3e) {
3093                 /* us -> s */
3094                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3095
3096                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3097                                                  shutdown_timeout, 60);
3098
3099                 if (ctrl->shutdown_timeout != shutdown_timeout)
3100                         dev_info(ctrl->device,
3101                                  "Shutdown timeout set to %u seconds\n",
3102                                  ctrl->shutdown_timeout);
3103         } else
3104                 ctrl->shutdown_timeout = shutdown_timeout;
3105
3106         ctrl->npss = id->npss;
3107         ctrl->apsta = id->apsta;
3108         prev_apst_enabled = ctrl->apst_enabled;
3109         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3110                 if (force_apst && id->apsta) {
3111                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3112                         ctrl->apst_enabled = true;
3113                 } else {
3114                         ctrl->apst_enabled = false;
3115                 }
3116         } else {
3117                 ctrl->apst_enabled = id->apsta;
3118         }
3119         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3120
3121         if (ctrl->ops->flags & NVME_F_FABRICS) {
3122                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3123                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3124                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3125                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3126
3127                 /*
3128                  * In fabrics we need to verify the cntlid matches the
3129                  * admin connect
3130                  */
3131                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3132                         dev_err(ctrl->device,
3133                                 "Mismatching cntlid: Connect %u vs Identify "
3134                                 "%u, rejecting\n",
3135                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3136                         ret = -EINVAL;
3137                         goto out_free;
3138                 }
3139
3140                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3141                         dev_err(ctrl->device,
3142                                 "keep-alive support is mandatory for fabrics\n");
3143                         ret = -EINVAL;
3144                         goto out_free;
3145                 }
3146         } else {
3147                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3148                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3149                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3150                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3151         }
3152
3153         ret = nvme_mpath_init_identify(ctrl, id);
3154         if (ret < 0)
3155                 goto out_free;
3156
3157         if (ctrl->apst_enabled && !prev_apst_enabled)
3158                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3159         else if (!ctrl->apst_enabled && prev_apst_enabled)
3160                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3161
3162 out_free:
3163         kfree(id);
3164         return ret;
3165 }
3166
3167 /*
3168  * Initialize the cached copies of the Identify data and various controller
3169  * register in our nvme_ctrl structure.  This should be called as soon as
3170  * the admin queue is fully up and running.
3171  */
3172 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3173 {
3174         int ret;
3175
3176         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3177         if (ret) {
3178                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3179                 return ret;
3180         }
3181
3182         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3183
3184         if (ctrl->vs >= NVME_VS(1, 1, 0))
3185                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3186
3187         ret = nvme_init_identify(ctrl);
3188         if (ret)
3189                 return ret;
3190
3191         ret = nvme_configure_apst(ctrl);
3192         if (ret < 0)
3193                 return ret;
3194
3195         ret = nvme_configure_timestamp(ctrl);
3196         if (ret < 0)
3197                 return ret;
3198
3199         ret = nvme_configure_host_options(ctrl);
3200         if (ret < 0)
3201                 return ret;
3202
3203         nvme_configure_opal(ctrl, was_suspended);
3204
3205         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3206                 /*
3207                  * Do not return errors unless we are in a controller reset,
3208                  * the controller works perfectly fine without hwmon.
3209                  */
3210                 ret = nvme_hwmon_init(ctrl);
3211                 if (ret == -EINTR)
3212                         return ret;
3213         }
3214
3215         clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3216         ctrl->identified = true;
3217
3218         return 0;
3219 }
3220 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3221
3222 static int nvme_dev_open(struct inode *inode, struct file *file)
3223 {
3224         struct nvme_ctrl *ctrl =
3225                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3226
3227         switch (ctrl->state) {
3228         case NVME_CTRL_LIVE:
3229                 break;
3230         default:
3231                 return -EWOULDBLOCK;
3232         }
3233
3234         nvme_get_ctrl(ctrl);
3235         if (!try_module_get(ctrl->ops->module)) {
3236                 nvme_put_ctrl(ctrl);
3237                 return -EINVAL;
3238         }
3239
3240         file->private_data = ctrl;
3241         return 0;
3242 }
3243
3244 static int nvme_dev_release(struct inode *inode, struct file *file)
3245 {
3246         struct nvme_ctrl *ctrl =
3247                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3248
3249         module_put(ctrl->ops->module);
3250         nvme_put_ctrl(ctrl);
3251         return 0;
3252 }
3253
3254 static const struct file_operations nvme_dev_fops = {
3255         .owner          = THIS_MODULE,
3256         .open           = nvme_dev_open,
3257         .release        = nvme_dev_release,
3258         .unlocked_ioctl = nvme_dev_ioctl,
3259         .compat_ioctl   = compat_ptr_ioctl,
3260         .uring_cmd      = nvme_dev_uring_cmd,
3261 };
3262
3263 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3264                 unsigned nsid)
3265 {
3266         struct nvme_ns_head *h;
3267
3268         lockdep_assert_held(&ctrl->subsys->lock);
3269
3270         list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3271                 /*
3272                  * Private namespaces can share NSIDs under some conditions.
3273                  * In that case we can't use the same ns_head for namespaces
3274                  * with the same NSID.
3275                  */
3276                 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3277                         continue;
3278                 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3279                         return h;
3280         }
3281
3282         return NULL;
3283 }
3284
3285 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3286                 struct nvme_ns_ids *ids)
3287 {
3288         bool has_uuid = !uuid_is_null(&ids->uuid);
3289         bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3290         bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3291         struct nvme_ns_head *h;
3292
3293         lockdep_assert_held(&subsys->lock);
3294
3295         list_for_each_entry(h, &subsys->nsheads, entry) {
3296                 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3297                         return -EINVAL;
3298                 if (has_nguid &&
3299                     memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3300                         return -EINVAL;
3301                 if (has_eui64 &&
3302                     memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3303                         return -EINVAL;
3304         }
3305
3306         return 0;
3307 }
3308
3309 static void nvme_cdev_rel(struct device *dev)
3310 {
3311         ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3312 }
3313
3314 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3315 {
3316         cdev_device_del(cdev, cdev_device);
3317         put_device(cdev_device);
3318 }
3319
3320 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3321                 const struct file_operations *fops, struct module *owner)
3322 {
3323         int minor, ret;
3324
3325         minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3326         if (minor < 0)
3327                 return minor;
3328         cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3329         cdev_device->class = nvme_ns_chr_class;
3330         cdev_device->release = nvme_cdev_rel;
3331         device_initialize(cdev_device);
3332         cdev_init(cdev, fops);
3333         cdev->owner = owner;
3334         ret = cdev_device_add(cdev, cdev_device);
3335         if (ret)
3336                 put_device(cdev_device);
3337
3338         return ret;
3339 }
3340
3341 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3342 {
3343         return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3344 }
3345
3346 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3347 {
3348         nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3349         return 0;
3350 }
3351
3352 static const struct file_operations nvme_ns_chr_fops = {
3353         .owner          = THIS_MODULE,
3354         .open           = nvme_ns_chr_open,
3355         .release        = nvme_ns_chr_release,
3356         .unlocked_ioctl = nvme_ns_chr_ioctl,
3357         .compat_ioctl   = compat_ptr_ioctl,
3358         .uring_cmd      = nvme_ns_chr_uring_cmd,
3359         .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3360 };
3361
3362 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3363 {
3364         int ret;
3365
3366         ns->cdev_device.parent = ns->ctrl->device;
3367         ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3368                            ns->ctrl->instance, ns->head->instance);
3369         if (ret)
3370                 return ret;
3371
3372         return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3373                              ns->ctrl->ops->module);
3374 }
3375
3376 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3377                 struct nvme_ns_info *info)
3378 {
3379         struct nvme_ns_head *head;
3380         size_t size = sizeof(*head);
3381         int ret = -ENOMEM;
3382
3383 #ifdef CONFIG_NVME_MULTIPATH
3384         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3385 #endif
3386
3387         head = kzalloc(size, GFP_KERNEL);
3388         if (!head)
3389                 goto out;
3390         ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3391         if (ret < 0)
3392                 goto out_free_head;
3393         head->instance = ret;
3394         INIT_LIST_HEAD(&head->list);
3395         ret = init_srcu_struct(&head->srcu);
3396         if (ret)
3397                 goto out_ida_remove;
3398         head->subsys = ctrl->subsys;
3399         head->ns_id = info->nsid;
3400         head->ids = info->ids;
3401         head->shared = info->is_shared;
3402         kref_init(&head->ref);
3403
3404         if (head->ids.csi) {
3405                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3406                 if (ret)
3407                         goto out_cleanup_srcu;
3408         } else
3409                 head->effects = ctrl->effects;
3410
3411         ret = nvme_mpath_alloc_disk(ctrl, head);
3412         if (ret)
3413                 goto out_cleanup_srcu;
3414
3415         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3416
3417         kref_get(&ctrl->subsys->ref);
3418
3419         return head;
3420 out_cleanup_srcu:
3421         cleanup_srcu_struct(&head->srcu);
3422 out_ida_remove:
3423         ida_free(&ctrl->subsys->ns_ida, head->instance);
3424 out_free_head:
3425         kfree(head);
3426 out:
3427         if (ret > 0)
3428                 ret = blk_status_to_errno(nvme_error_status(ret));
3429         return ERR_PTR(ret);
3430 }
3431
3432 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3433                 struct nvme_ns_ids *ids)
3434 {
3435         struct nvme_subsystem *s;
3436         int ret = 0;
3437
3438         /*
3439          * Note that this check is racy as we try to avoid holding the global
3440          * lock over the whole ns_head creation.  But it is only intended as
3441          * a sanity check anyway.
3442          */
3443         mutex_lock(&nvme_subsystems_lock);
3444         list_for_each_entry(s, &nvme_subsystems, entry) {
3445                 if (s == this)
3446                         continue;
3447                 mutex_lock(&s->lock);
3448                 ret = nvme_subsys_check_duplicate_ids(s, ids);
3449                 mutex_unlock(&s->lock);
3450                 if (ret)
3451                         break;
3452         }
3453         mutex_unlock(&nvme_subsystems_lock);
3454
3455         return ret;
3456 }
3457
3458 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3459 {
3460         struct nvme_ctrl *ctrl = ns->ctrl;
3461         struct nvme_ns_head *head = NULL;
3462         int ret;
3463
3464         ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3465         if (ret) {
3466                 /*
3467                  * We've found two different namespaces on two different
3468                  * subsystems that report the same ID.  This is pretty nasty
3469                  * for anything that actually requires unique device
3470                  * identification.  In the kernel we need this for multipathing,
3471                  * and in user space the /dev/disk/by-id/ links rely on it.
3472                  *
3473                  * If the device also claims to be multi-path capable back off
3474                  * here now and refuse the probe the second device as this is a
3475                  * recipe for data corruption.  If not this is probably a
3476                  * cheap consumer device if on the PCIe bus, so let the user
3477                  * proceed and use the shiny toy, but warn that with changing
3478                  * probing order (which due to our async probing could just be
3479                  * device taking longer to startup) the other device could show
3480                  * up at any time.
3481                  */
3482                 nvme_print_device_info(ctrl);
3483                 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3484                     ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3485                      info->is_shared)) {
3486                         dev_err(ctrl->device,
3487                                 "ignoring nsid %d because of duplicate IDs\n",
3488                                 info->nsid);
3489                         return ret;
3490                 }
3491
3492                 dev_err(ctrl->device,
3493                         "clearing duplicate IDs for nsid %d\n", info->nsid);
3494                 dev_err(ctrl->device,
3495                         "use of /dev/disk/by-id/ may cause data corruption\n");
3496                 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3497                 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3498                 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3499                 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3500         }
3501
3502         mutex_lock(&ctrl->subsys->lock);
3503         head = nvme_find_ns_head(ctrl, info->nsid);
3504         if (!head) {
3505                 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3506                 if (ret) {
3507                         dev_err(ctrl->device,
3508                                 "duplicate IDs in subsystem for nsid %d\n",
3509                                 info->nsid);
3510                         goto out_unlock;
3511                 }
3512                 head = nvme_alloc_ns_head(ctrl, info);
3513                 if (IS_ERR(head)) {
3514                         ret = PTR_ERR(head);
3515                         goto out_unlock;
3516                 }
3517         } else {
3518                 ret = -EINVAL;
3519                 if (!info->is_shared || !head->shared) {
3520                         dev_err(ctrl->device,
3521                                 "Duplicate unshared namespace %d\n",
3522                                 info->nsid);
3523                         goto out_put_ns_head;
3524                 }
3525                 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3526                         dev_err(ctrl->device,
3527                                 "IDs don't match for shared namespace %d\n",
3528                                         info->nsid);
3529                         goto out_put_ns_head;
3530                 }
3531
3532                 if (!multipath) {
3533                         dev_warn(ctrl->device,
3534                                 "Found shared namespace %d, but multipathing not supported.\n",
3535                                 info->nsid);
3536                         dev_warn_once(ctrl->device,
3537                                 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3538                 }
3539         }
3540
3541         list_add_tail_rcu(&ns->siblings, &head->list);
3542         ns->head = head;
3543         mutex_unlock(&ctrl->subsys->lock);
3544         return 0;
3545
3546 out_put_ns_head:
3547         nvme_put_ns_head(head);
3548 out_unlock:
3549         mutex_unlock(&ctrl->subsys->lock);
3550         return ret;
3551 }
3552
3553 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3554 {
3555         struct nvme_ns *ns, *ret = NULL;
3556
3557         down_read(&ctrl->namespaces_rwsem);
3558         list_for_each_entry(ns, &ctrl->namespaces, list) {
3559                 if (ns->head->ns_id == nsid) {
3560                         if (!nvme_get_ns(ns))
3561                                 continue;
3562                         ret = ns;
3563                         break;
3564                 }
3565                 if (ns->head->ns_id > nsid)
3566                         break;
3567         }
3568         up_read(&ctrl->namespaces_rwsem);
3569         return ret;
3570 }
3571 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3572
3573 /*
3574  * Add the namespace to the controller list while keeping the list ordered.
3575  */
3576 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3577 {
3578         struct nvme_ns *tmp;
3579
3580         list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3581                 if (tmp->head->ns_id < ns->head->ns_id) {
3582                         list_add(&ns->list, &tmp->list);
3583                         return;
3584                 }
3585         }
3586         list_add(&ns->list, &ns->ctrl->namespaces);
3587 }
3588
3589 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3590 {
3591         struct nvme_ns *ns;
3592         struct gendisk *disk;
3593         int node = ctrl->numa_node;
3594
3595         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3596         if (!ns)
3597                 return;
3598
3599         disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3600         if (IS_ERR(disk))
3601                 goto out_free_ns;
3602         disk->fops = &nvme_bdev_ops;
3603         disk->private_data = ns;
3604
3605         ns->disk = disk;
3606         ns->queue = disk->queue;
3607
3608         if (ctrl->opts && ctrl->opts->data_digest)
3609                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3610
3611         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3612         if (ctrl->ops->supports_pci_p2pdma &&
3613             ctrl->ops->supports_pci_p2pdma(ctrl))
3614                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3615
3616         ns->ctrl = ctrl;
3617         kref_init(&ns->kref);
3618
3619         if (nvme_init_ns_head(ns, info))
3620                 goto out_cleanup_disk;
3621
3622         /*
3623          * If multipathing is enabled, the device name for all disks and not
3624          * just those that represent shared namespaces needs to be based on the
3625          * subsystem instance.  Using the controller instance for private
3626          * namespaces could lead to naming collisions between shared and private
3627          * namespaces if they don't use a common numbering scheme.
3628          *
3629          * If multipathing is not enabled, disk names must use the controller
3630          * instance as shared namespaces will show up as multiple block
3631          * devices.
3632          */
3633         if (nvme_ns_head_multipath(ns->head)) {
3634                 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3635                         ctrl->instance, ns->head->instance);
3636                 disk->flags |= GENHD_FL_HIDDEN;
3637         } else if (multipath) {
3638                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3639                         ns->head->instance);
3640         } else {
3641                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3642                         ns->head->instance);
3643         }
3644
3645         if (nvme_update_ns_info(ns, info))
3646                 goto out_unlink_ns;
3647
3648         down_write(&ctrl->namespaces_rwsem);
3649         nvme_ns_add_to_ctrl_list(ns);
3650         up_write(&ctrl->namespaces_rwsem);
3651         nvme_get_ctrl(ctrl);
3652
3653         if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3654                 goto out_cleanup_ns_from_list;
3655
3656         if (!nvme_ns_head_multipath(ns->head))
3657                 nvme_add_ns_cdev(ns);
3658
3659         nvme_mpath_add_disk(ns, info->anagrpid);
3660         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3661
3662         return;
3663
3664  out_cleanup_ns_from_list:
3665         nvme_put_ctrl(ctrl);
3666         down_write(&ctrl->namespaces_rwsem);
3667         list_del_init(&ns->list);
3668         up_write(&ctrl->namespaces_rwsem);
3669  out_unlink_ns:
3670         mutex_lock(&ctrl->subsys->lock);
3671         list_del_rcu(&ns->siblings);
3672         if (list_empty(&ns->head->list))
3673                 list_del_init(&ns->head->entry);
3674         mutex_unlock(&ctrl->subsys->lock);
3675         nvme_put_ns_head(ns->head);
3676  out_cleanup_disk:
3677         put_disk(disk);
3678  out_free_ns:
3679         kfree(ns);
3680 }
3681
3682 static void nvme_ns_remove(struct nvme_ns *ns)
3683 {
3684         bool last_path = false;
3685
3686         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3687                 return;
3688
3689         clear_bit(NVME_NS_READY, &ns->flags);
3690         set_capacity(ns->disk, 0);
3691         nvme_fault_inject_fini(&ns->fault_inject);
3692
3693         /*
3694          * Ensure that !NVME_NS_READY is seen by other threads to prevent
3695          * this ns going back into current_path.
3696          */
3697         synchronize_srcu(&ns->head->srcu);
3698
3699         /* wait for concurrent submissions */
3700         if (nvme_mpath_clear_current_path(ns))
3701                 synchronize_srcu(&ns->head->srcu);
3702
3703         mutex_lock(&ns->ctrl->subsys->lock);
3704         list_del_rcu(&ns->siblings);
3705         if (list_empty(&ns->head->list)) {
3706                 list_del_init(&ns->head->entry);
3707                 last_path = true;
3708         }
3709         mutex_unlock(&ns->ctrl->subsys->lock);
3710
3711         /* guarantee not available in head->list */
3712         synchronize_srcu(&ns->head->srcu);
3713
3714         if (!nvme_ns_head_multipath(ns->head))
3715                 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3716         del_gendisk(ns->disk);
3717
3718         down_write(&ns->ctrl->namespaces_rwsem);
3719         list_del_init(&ns->list);
3720         up_write(&ns->ctrl->namespaces_rwsem);
3721
3722         if (last_path)
3723                 nvme_mpath_shutdown_disk(ns->head);
3724         nvme_put_ns(ns);
3725 }
3726
3727 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3728 {
3729         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3730
3731         if (ns) {
3732                 nvme_ns_remove(ns);
3733                 nvme_put_ns(ns);
3734         }
3735 }
3736
3737 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3738 {
3739         int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3740
3741         if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3742                 dev_err(ns->ctrl->device,
3743                         "identifiers changed for nsid %d\n", ns->head->ns_id);
3744                 goto out;
3745         }
3746
3747         ret = nvme_update_ns_info(ns, info);
3748 out:
3749         /*
3750          * Only remove the namespace if we got a fatal error back from the
3751          * device, otherwise ignore the error and just move on.
3752          *
3753          * TODO: we should probably schedule a delayed retry here.
3754          */
3755         if (ret > 0 && (ret & NVME_SC_DNR))
3756                 nvme_ns_remove(ns);
3757 }
3758
3759 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3760 {
3761         struct nvme_ns_info info = { .nsid = nsid };
3762         struct nvme_ns *ns;
3763         int ret;
3764
3765         if (nvme_identify_ns_descs(ctrl, &info))
3766                 return;
3767
3768         if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3769                 dev_warn(ctrl->device,
3770                         "command set not reported for nsid: %d\n", nsid);
3771                 return;
3772         }
3773
3774         /*
3775          * If available try to use the Command Set Idependent Identify Namespace
3776          * data structure to find all the generic information that is needed to
3777          * set up a namespace.  If not fall back to the legacy version.
3778          */
3779         if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3780             (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3781                 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3782         else
3783                 ret = nvme_ns_info_from_identify(ctrl, &info);
3784
3785         if (info.is_removed)
3786                 nvme_ns_remove_by_nsid(ctrl, nsid);
3787
3788         /*
3789          * Ignore the namespace if it is not ready. We will get an AEN once it
3790          * becomes ready and restart the scan.
3791          */
3792         if (ret || !info.is_ready)
3793                 return;
3794
3795         ns = nvme_find_get_ns(ctrl, nsid);
3796         if (ns) {
3797                 nvme_validate_ns(ns, &info);
3798                 nvme_put_ns(ns);
3799         } else {
3800                 nvme_alloc_ns(ctrl, &info);
3801         }
3802 }
3803
3804 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3805                                         unsigned nsid)
3806 {
3807         struct nvme_ns *ns, *next;
3808         LIST_HEAD(rm_list);
3809
3810         down_write(&ctrl->namespaces_rwsem);
3811         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3812                 if (ns->head->ns_id > nsid)
3813                         list_move_tail(&ns->list, &rm_list);
3814         }
3815         up_write(&ctrl->namespaces_rwsem);
3816
3817         list_for_each_entry_safe(ns, next, &rm_list, list)
3818                 nvme_ns_remove(ns);
3819
3820 }
3821
3822 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3823 {
3824         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3825         __le32 *ns_list;
3826         u32 prev = 0;
3827         int ret = 0, i;
3828
3829         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3830         if (!ns_list)
3831                 return -ENOMEM;
3832
3833         for (;;) {
3834                 struct nvme_command cmd = {
3835                         .identify.opcode        = nvme_admin_identify,
3836                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
3837                         .identify.nsid          = cpu_to_le32(prev),
3838                 };
3839
3840                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3841                                             NVME_IDENTIFY_DATA_SIZE);
3842                 if (ret) {
3843                         dev_warn(ctrl->device,
3844                                 "Identify NS List failed (status=0x%x)\n", ret);
3845                         goto free;
3846                 }
3847
3848                 for (i = 0; i < nr_entries; i++) {
3849                         u32 nsid = le32_to_cpu(ns_list[i]);
3850
3851                         if (!nsid)      /* end of the list? */
3852                                 goto out;
3853                         nvme_scan_ns(ctrl, nsid);
3854                         while (++prev < nsid)
3855                                 nvme_ns_remove_by_nsid(ctrl, prev);
3856                 }
3857         }
3858  out:
3859         nvme_remove_invalid_namespaces(ctrl, prev);
3860  free:
3861         kfree(ns_list);
3862         return ret;
3863 }
3864
3865 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3866 {
3867         struct nvme_id_ctrl *id;
3868         u32 nn, i;
3869
3870         if (nvme_identify_ctrl(ctrl, &id))
3871                 return;
3872         nn = le32_to_cpu(id->nn);
3873         kfree(id);
3874
3875         for (i = 1; i <= nn; i++)
3876                 nvme_scan_ns(ctrl, i);
3877
3878         nvme_remove_invalid_namespaces(ctrl, nn);
3879 }
3880
3881 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3882 {
3883         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3884         __le32 *log;
3885         int error;
3886
3887         log = kzalloc(log_size, GFP_KERNEL);
3888         if (!log)
3889                 return;
3890
3891         /*
3892          * We need to read the log to clear the AEN, but we don't want to rely
3893          * on it for the changed namespace information as userspace could have
3894          * raced with us in reading the log page, which could cause us to miss
3895          * updates.
3896          */
3897         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3898                         NVME_CSI_NVM, log, log_size, 0);
3899         if (error)
3900                 dev_warn(ctrl->device,
3901                         "reading changed ns log failed: %d\n", error);
3902
3903         kfree(log);
3904 }
3905
3906 static void nvme_scan_work(struct work_struct *work)
3907 {
3908         struct nvme_ctrl *ctrl =
3909                 container_of(work, struct nvme_ctrl, scan_work);
3910         int ret;
3911
3912         /* No tagset on a live ctrl means IO queues could not created */
3913         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3914                 return;
3915
3916         /*
3917          * Identify controller limits can change at controller reset due to
3918          * new firmware download, even though it is not common we cannot ignore
3919          * such scenario. Controller's non-mdts limits are reported in the unit
3920          * of logical blocks that is dependent on the format of attached
3921          * namespace. Hence re-read the limits at the time of ns allocation.
3922          */
3923         ret = nvme_init_non_mdts_limits(ctrl);
3924         if (ret < 0) {
3925                 dev_warn(ctrl->device,
3926                         "reading non-mdts-limits failed: %d\n", ret);
3927                 return;
3928         }
3929
3930         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3931                 dev_info(ctrl->device, "rescanning namespaces.\n");
3932                 nvme_clear_changed_ns_log(ctrl);
3933         }
3934
3935         mutex_lock(&ctrl->scan_lock);
3936         if (nvme_ctrl_limited_cns(ctrl)) {
3937                 nvme_scan_ns_sequential(ctrl);
3938         } else {
3939                 /*
3940                  * Fall back to sequential scan if DNR is set to handle broken
3941                  * devices which should support Identify NS List (as per the VS
3942                  * they report) but don't actually support it.
3943                  */
3944                 ret = nvme_scan_ns_list(ctrl);
3945                 if (ret > 0 && ret & NVME_SC_DNR)
3946                         nvme_scan_ns_sequential(ctrl);
3947         }
3948         mutex_unlock(&ctrl->scan_lock);
3949 }
3950
3951 /*
3952  * This function iterates the namespace list unlocked to allow recovery from
3953  * controller failure. It is up to the caller to ensure the namespace list is
3954  * not modified by scan work while this function is executing.
3955  */
3956 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3957 {
3958         struct nvme_ns *ns, *next;
3959         LIST_HEAD(ns_list);
3960
3961         /*
3962          * make sure to requeue I/O to all namespaces as these
3963          * might result from the scan itself and must complete
3964          * for the scan_work to make progress
3965          */
3966         nvme_mpath_clear_ctrl_paths(ctrl);
3967
3968         /*
3969          * Unquiesce io queues so any pending IO won't hang, especially
3970          * those submitted from scan work
3971          */
3972         nvme_unquiesce_io_queues(ctrl);
3973
3974         /* prevent racing with ns scanning */
3975         flush_work(&ctrl->scan_work);
3976
3977         /*
3978          * The dead states indicates the controller was not gracefully
3979          * disconnected. In that case, we won't be able to flush any data while
3980          * removing the namespaces' disks; fail all the queues now to avoid
3981          * potentially having to clean up the failed sync later.
3982          */
3983         if (ctrl->state == NVME_CTRL_DEAD)
3984                 nvme_mark_namespaces_dead(ctrl);
3985
3986         /* this is a no-op when called from the controller reset handler */
3987         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
3988
3989         down_write(&ctrl->namespaces_rwsem);
3990         list_splice_init(&ctrl->namespaces, &ns_list);
3991         up_write(&ctrl->namespaces_rwsem);
3992
3993         list_for_each_entry_safe(ns, next, &ns_list, list)
3994                 nvme_ns_remove(ns);
3995 }
3996 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3997
3998 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
3999 {
4000         const struct nvme_ctrl *ctrl =
4001                 container_of(dev, struct nvme_ctrl, ctrl_device);
4002         struct nvmf_ctrl_options *opts = ctrl->opts;
4003         int ret;
4004
4005         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4006         if (ret)
4007                 return ret;
4008
4009         if (opts) {
4010                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4011                 if (ret)
4012                         return ret;
4013
4014                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4015                                 opts->trsvcid ?: "none");
4016                 if (ret)
4017                         return ret;
4018
4019                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4020                                 opts->host_traddr ?: "none");
4021                 if (ret)
4022                         return ret;
4023
4024                 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4025                                 opts->host_iface ?: "none");
4026         }
4027         return ret;
4028 }
4029
4030 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4031 {
4032         char *envp[2] = { envdata, NULL };
4033
4034         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4035 }
4036
4037 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4038 {
4039         char *envp[2] = { NULL, NULL };
4040         u32 aen_result = ctrl->aen_result;
4041
4042         ctrl->aen_result = 0;
4043         if (!aen_result)
4044                 return;
4045
4046         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4047         if (!envp[0])
4048                 return;
4049         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4050         kfree(envp[0]);
4051 }
4052
4053 static void nvme_async_event_work(struct work_struct *work)
4054 {
4055         struct nvme_ctrl *ctrl =
4056                 container_of(work, struct nvme_ctrl, async_event_work);
4057
4058         nvme_aen_uevent(ctrl);
4059
4060         /*
4061          * The transport drivers must guarantee AER submission here is safe by
4062          * flushing ctrl async_event_work after changing the controller state
4063          * from LIVE and before freeing the admin queue.
4064         */
4065         if (ctrl->state == NVME_CTRL_LIVE)
4066                 ctrl->ops->submit_async_event(ctrl);
4067 }
4068
4069 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4070 {
4071
4072         u32 csts;
4073
4074         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4075                 return false;
4076
4077         if (csts == ~0)
4078                 return false;
4079
4080         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4081 }
4082
4083 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4084 {
4085         struct nvme_fw_slot_info_log *log;
4086
4087         log = kmalloc(sizeof(*log), GFP_KERNEL);
4088         if (!log)
4089                 return;
4090
4091         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4092                         log, sizeof(*log), 0))
4093                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4094         kfree(log);
4095 }
4096
4097 static void nvme_fw_act_work(struct work_struct *work)
4098 {
4099         struct nvme_ctrl *ctrl = container_of(work,
4100                                 struct nvme_ctrl, fw_act_work);
4101         unsigned long fw_act_timeout;
4102
4103         if (ctrl->mtfa)
4104                 fw_act_timeout = jiffies +
4105                                 msecs_to_jiffies(ctrl->mtfa * 100);
4106         else
4107                 fw_act_timeout = jiffies +
4108                                 msecs_to_jiffies(admin_timeout * 1000);
4109
4110         nvme_quiesce_io_queues(ctrl);
4111         while (nvme_ctrl_pp_status(ctrl)) {
4112                 if (time_after(jiffies, fw_act_timeout)) {
4113                         dev_warn(ctrl->device,
4114                                 "Fw activation timeout, reset controller\n");
4115                         nvme_try_sched_reset(ctrl);
4116                         return;
4117                 }
4118                 msleep(100);
4119         }
4120
4121         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4122                 return;
4123
4124         nvme_unquiesce_io_queues(ctrl);
4125         /* read FW slot information to clear the AER */
4126         nvme_get_fw_slot_info(ctrl);
4127
4128         queue_work(nvme_wq, &ctrl->async_event_work);
4129 }
4130
4131 static u32 nvme_aer_type(u32 result)
4132 {
4133         return result & 0x7;
4134 }
4135
4136 static u32 nvme_aer_subtype(u32 result)
4137 {
4138         return (result & 0xff00) >> 8;
4139 }
4140
4141 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4142 {
4143         u32 aer_notice_type = nvme_aer_subtype(result);
4144         bool requeue = true;
4145
4146         switch (aer_notice_type) {
4147         case NVME_AER_NOTICE_NS_CHANGED:
4148                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4149                 nvme_queue_scan(ctrl);
4150                 break;
4151         case NVME_AER_NOTICE_FW_ACT_STARTING:
4152                 /*
4153                  * We are (ab)using the RESETTING state to prevent subsequent
4154                  * recovery actions from interfering with the controller's
4155                  * firmware activation.
4156                  */
4157                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4158                         nvme_auth_stop(ctrl);
4159                         requeue = false;
4160                         queue_work(nvme_wq, &ctrl->fw_act_work);
4161                 }
4162                 break;
4163 #ifdef CONFIG_NVME_MULTIPATH
4164         case NVME_AER_NOTICE_ANA:
4165                 if (!ctrl->ana_log_buf)
4166                         break;
4167                 queue_work(nvme_wq, &ctrl->ana_work);
4168                 break;
4169 #endif
4170         case NVME_AER_NOTICE_DISC_CHANGED:
4171                 ctrl->aen_result = result;
4172                 break;
4173         default:
4174                 dev_warn(ctrl->device, "async event result %08x\n", result);
4175         }
4176         return requeue;
4177 }
4178
4179 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4180 {
4181         dev_warn(ctrl->device, "resetting controller due to AER\n");
4182         nvme_reset_ctrl(ctrl);
4183 }
4184
4185 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4186                 volatile union nvme_result *res)
4187 {
4188         u32 result = le32_to_cpu(res->u32);
4189         u32 aer_type = nvme_aer_type(result);
4190         u32 aer_subtype = nvme_aer_subtype(result);
4191         bool requeue = true;
4192
4193         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4194                 return;
4195
4196         trace_nvme_async_event(ctrl, result);
4197         switch (aer_type) {
4198         case NVME_AER_NOTICE:
4199                 requeue = nvme_handle_aen_notice(ctrl, result);
4200                 break;
4201         case NVME_AER_ERROR:
4202                 /*
4203                  * For a persistent internal error, don't run async_event_work
4204                  * to submit a new AER. The controller reset will do it.
4205                  */
4206                 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4207                         nvme_handle_aer_persistent_error(ctrl);
4208                         return;
4209                 }
4210                 fallthrough;
4211         case NVME_AER_SMART:
4212         case NVME_AER_CSS:
4213         case NVME_AER_VS:
4214                 ctrl->aen_result = result;
4215                 break;
4216         default:
4217                 break;
4218         }
4219
4220         if (requeue)
4221                 queue_work(nvme_wq, &ctrl->async_event_work);
4222 }
4223 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4224
4225 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4226                 const struct blk_mq_ops *ops, unsigned int cmd_size)
4227 {
4228         int ret;
4229
4230         memset(set, 0, sizeof(*set));
4231         set->ops = ops;
4232         set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4233         if (ctrl->ops->flags & NVME_F_FABRICS)
4234                 set->reserved_tags = NVMF_RESERVED_TAGS;
4235         set->numa_node = ctrl->numa_node;
4236         set->flags = BLK_MQ_F_NO_SCHED;
4237         if (ctrl->ops->flags & NVME_F_BLOCKING)
4238                 set->flags |= BLK_MQ_F_BLOCKING;
4239         set->cmd_size = cmd_size;
4240         set->driver_data = ctrl;
4241         set->nr_hw_queues = 1;
4242         set->timeout = NVME_ADMIN_TIMEOUT;
4243         ret = blk_mq_alloc_tag_set(set);
4244         if (ret)
4245                 return ret;
4246
4247         ctrl->admin_q = blk_mq_init_queue(set);
4248         if (IS_ERR(ctrl->admin_q)) {
4249                 ret = PTR_ERR(ctrl->admin_q);
4250                 goto out_free_tagset;
4251         }
4252
4253         if (ctrl->ops->flags & NVME_F_FABRICS) {
4254                 ctrl->fabrics_q = blk_mq_init_queue(set);
4255                 if (IS_ERR(ctrl->fabrics_q)) {
4256                         ret = PTR_ERR(ctrl->fabrics_q);
4257                         goto out_cleanup_admin_q;
4258                 }
4259         }
4260
4261         ctrl->admin_tagset = set;
4262         return 0;
4263
4264 out_cleanup_admin_q:
4265         blk_mq_destroy_queue(ctrl->admin_q);
4266         blk_put_queue(ctrl->admin_q);
4267 out_free_tagset:
4268         blk_mq_free_tag_set(set);
4269         ctrl->admin_q = NULL;
4270         ctrl->fabrics_q = NULL;
4271         return ret;
4272 }
4273 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4274
4275 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4276 {
4277         blk_mq_destroy_queue(ctrl->admin_q);
4278         blk_put_queue(ctrl->admin_q);
4279         if (ctrl->ops->flags & NVME_F_FABRICS) {
4280                 blk_mq_destroy_queue(ctrl->fabrics_q);
4281                 blk_put_queue(ctrl->fabrics_q);
4282         }
4283         blk_mq_free_tag_set(ctrl->admin_tagset);
4284 }
4285 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4286
4287 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4288                 const struct blk_mq_ops *ops, unsigned int nr_maps,
4289                 unsigned int cmd_size)
4290 {
4291         int ret;
4292
4293         memset(set, 0, sizeof(*set));
4294         set->ops = ops;
4295         set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4296         /*
4297          * Some Apple controllers requires tags to be unique across admin and
4298          * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4299          */
4300         if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4301                 set->reserved_tags = NVME_AQ_DEPTH;
4302         else if (ctrl->ops->flags & NVME_F_FABRICS)
4303                 set->reserved_tags = NVMF_RESERVED_TAGS;
4304         set->numa_node = ctrl->numa_node;
4305         set->flags = BLK_MQ_F_SHOULD_MERGE;
4306         if (ctrl->ops->flags & NVME_F_BLOCKING)
4307                 set->flags |= BLK_MQ_F_BLOCKING;
4308         set->cmd_size = cmd_size,
4309         set->driver_data = ctrl;
4310         set->nr_hw_queues = ctrl->queue_count - 1;
4311         set->timeout = NVME_IO_TIMEOUT;
4312         set->nr_maps = nr_maps;
4313         ret = blk_mq_alloc_tag_set(set);
4314         if (ret)
4315                 return ret;
4316
4317         if (ctrl->ops->flags & NVME_F_FABRICS) {
4318                 ctrl->connect_q = blk_mq_init_queue(set);
4319                 if (IS_ERR(ctrl->connect_q)) {
4320                         ret = PTR_ERR(ctrl->connect_q);
4321                         goto out_free_tag_set;
4322                 }
4323                 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4324                                    ctrl->connect_q);
4325         }
4326
4327         ctrl->tagset = set;
4328         return 0;
4329
4330 out_free_tag_set:
4331         blk_mq_free_tag_set(set);
4332         ctrl->connect_q = NULL;
4333         return ret;
4334 }
4335 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4336
4337 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4338 {
4339         if (ctrl->ops->flags & NVME_F_FABRICS) {
4340                 blk_mq_destroy_queue(ctrl->connect_q);
4341                 blk_put_queue(ctrl->connect_q);
4342         }
4343         blk_mq_free_tag_set(ctrl->tagset);
4344 }
4345 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4346
4347 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4348 {
4349         nvme_mpath_stop(ctrl);
4350         nvme_auth_stop(ctrl);
4351         nvme_stop_keep_alive(ctrl);
4352         nvme_stop_failfast_work(ctrl);
4353         flush_work(&ctrl->async_event_work);
4354         cancel_work_sync(&ctrl->fw_act_work);
4355         if (ctrl->ops->stop_ctrl)
4356                 ctrl->ops->stop_ctrl(ctrl);
4357 }
4358 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4359
4360 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4361 {
4362         nvme_start_keep_alive(ctrl);
4363
4364         nvme_enable_aen(ctrl);
4365
4366         /*
4367          * persistent discovery controllers need to send indication to userspace
4368          * to re-read the discovery log page to learn about possible changes
4369          * that were missed. We identify persistent discovery controllers by
4370          * checking that they started once before, hence are reconnecting back.
4371          */
4372         if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4373             nvme_discovery_ctrl(ctrl))
4374                 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4375
4376         if (ctrl->queue_count > 1) {
4377                 nvme_queue_scan(ctrl);
4378                 nvme_unquiesce_io_queues(ctrl);
4379                 nvme_mpath_update(ctrl);
4380         }
4381
4382         nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4383         set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4384 }
4385 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4386
4387 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4388 {
4389         nvme_hwmon_exit(ctrl);
4390         nvme_fault_inject_fini(&ctrl->fault_inject);
4391         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4392         cdev_device_del(&ctrl->cdev, ctrl->device);
4393         nvme_put_ctrl(ctrl);
4394 }
4395 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4396
4397 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4398 {
4399         struct nvme_effects_log *cel;
4400         unsigned long i;
4401
4402         xa_for_each(&ctrl->cels, i, cel) {
4403                 xa_erase(&ctrl->cels, i);
4404                 kfree(cel);
4405         }
4406
4407         xa_destroy(&ctrl->cels);
4408 }
4409
4410 static void nvme_free_ctrl(struct device *dev)
4411 {
4412         struct nvme_ctrl *ctrl =
4413                 container_of(dev, struct nvme_ctrl, ctrl_device);
4414         struct nvme_subsystem *subsys = ctrl->subsys;
4415
4416         if (!subsys || ctrl->instance != subsys->instance)
4417                 ida_free(&nvme_instance_ida, ctrl->instance);
4418
4419         nvme_free_cels(ctrl);
4420         nvme_mpath_uninit(ctrl);
4421         nvme_auth_stop(ctrl);
4422         nvme_auth_free(ctrl);
4423         __free_page(ctrl->discard_page);
4424         free_opal_dev(ctrl->opal_dev);
4425
4426         if (subsys) {
4427                 mutex_lock(&nvme_subsystems_lock);
4428                 list_del(&ctrl->subsys_entry);
4429                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4430                 mutex_unlock(&nvme_subsystems_lock);
4431         }
4432
4433         ctrl->ops->free_ctrl(ctrl);
4434
4435         if (subsys)
4436                 nvme_put_subsystem(subsys);
4437 }
4438
4439 /*
4440  * Initialize a NVMe controller structures.  This needs to be called during
4441  * earliest initialization so that we have the initialized structured around
4442  * during probing.
4443  */
4444 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4445                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4446 {
4447         int ret;
4448
4449         ctrl->state = NVME_CTRL_NEW;
4450         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4451         spin_lock_init(&ctrl->lock);
4452         mutex_init(&ctrl->scan_lock);
4453         INIT_LIST_HEAD(&ctrl->namespaces);
4454         xa_init(&ctrl->cels);
4455         init_rwsem(&ctrl->namespaces_rwsem);
4456         ctrl->dev = dev;
4457         ctrl->ops = ops;
4458         ctrl->quirks = quirks;
4459         ctrl->numa_node = NUMA_NO_NODE;
4460         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4461         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4462         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4463         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4464         init_waitqueue_head(&ctrl->state_wq);
4465
4466         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4467         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4468         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4469         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4470
4471         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4472                         PAGE_SIZE);
4473         ctrl->discard_page = alloc_page(GFP_KERNEL);
4474         if (!ctrl->discard_page) {
4475                 ret = -ENOMEM;
4476                 goto out;
4477         }
4478
4479         ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4480         if (ret < 0)
4481                 goto out;
4482         ctrl->instance = ret;
4483
4484         device_initialize(&ctrl->ctrl_device);
4485         ctrl->device = &ctrl->ctrl_device;
4486         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4487                         ctrl->instance);
4488         ctrl->device->class = nvme_class;
4489         ctrl->device->parent = ctrl->dev;
4490         if (ops->dev_attr_groups)
4491                 ctrl->device->groups = ops->dev_attr_groups;
4492         else
4493                 ctrl->device->groups = nvme_dev_attr_groups;
4494         ctrl->device->release = nvme_free_ctrl;
4495         dev_set_drvdata(ctrl->device, ctrl);
4496         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4497         if (ret)
4498                 goto out_release_instance;
4499
4500         nvme_get_ctrl(ctrl);
4501         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4502         ctrl->cdev.owner = ops->module;
4503         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4504         if (ret)
4505                 goto out_free_name;
4506
4507         /*
4508          * Initialize latency tolerance controls.  The sysfs files won't
4509          * be visible to userspace unless the device actually supports APST.
4510          */
4511         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4512         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4513                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4514
4515         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4516         nvme_mpath_init_ctrl(ctrl);
4517         ret = nvme_auth_init_ctrl(ctrl);
4518         if (ret)
4519                 goto out_free_cdev;
4520
4521         return 0;
4522 out_free_cdev:
4523         nvme_fault_inject_fini(&ctrl->fault_inject);
4524         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4525         cdev_device_del(&ctrl->cdev, ctrl->device);
4526 out_free_name:
4527         nvme_put_ctrl(ctrl);
4528         kfree_const(ctrl->device->kobj.name);
4529 out_release_instance:
4530         ida_free(&nvme_instance_ida, ctrl->instance);
4531 out:
4532         if (ctrl->discard_page)
4533                 __free_page(ctrl->discard_page);
4534         return ret;
4535 }
4536 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4537
4538 /* let I/O to all namespaces fail in preparation for surprise removal */
4539 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4540 {
4541         struct nvme_ns *ns;
4542
4543         down_read(&ctrl->namespaces_rwsem);
4544         list_for_each_entry(ns, &ctrl->namespaces, list)
4545                 blk_mark_disk_dead(ns->disk);
4546         up_read(&ctrl->namespaces_rwsem);
4547 }
4548 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4549
4550 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4551 {
4552         struct nvme_ns *ns;
4553
4554         down_read(&ctrl->namespaces_rwsem);
4555         list_for_each_entry(ns, &ctrl->namespaces, list)
4556                 blk_mq_unfreeze_queue(ns->queue);
4557         up_read(&ctrl->namespaces_rwsem);
4558 }
4559 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4560
4561 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4562 {
4563         struct nvme_ns *ns;
4564
4565         down_read(&ctrl->namespaces_rwsem);
4566         list_for_each_entry(ns, &ctrl->namespaces, list) {
4567                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4568                 if (timeout <= 0)
4569                         break;
4570         }
4571         up_read(&ctrl->namespaces_rwsem);
4572         return timeout;
4573 }
4574 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4575
4576 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4577 {
4578         struct nvme_ns *ns;
4579
4580         down_read(&ctrl->namespaces_rwsem);
4581         list_for_each_entry(ns, &ctrl->namespaces, list)
4582                 blk_mq_freeze_queue_wait(ns->queue);
4583         up_read(&ctrl->namespaces_rwsem);
4584 }
4585 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4586
4587 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4588 {
4589         struct nvme_ns *ns;
4590
4591         down_read(&ctrl->namespaces_rwsem);
4592         list_for_each_entry(ns, &ctrl->namespaces, list)
4593                 blk_freeze_queue_start(ns->queue);
4594         up_read(&ctrl->namespaces_rwsem);
4595 }
4596 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4597
4598 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4599 {
4600         if (!ctrl->tagset)
4601                 return;
4602         if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4603                 blk_mq_quiesce_tagset(ctrl->tagset);
4604         else
4605                 blk_mq_wait_quiesce_done(ctrl->tagset);
4606 }
4607 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4608
4609 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4610 {
4611         if (!ctrl->tagset)
4612                 return;
4613         if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4614                 blk_mq_unquiesce_tagset(ctrl->tagset);
4615 }
4616 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4617
4618 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4619 {
4620         if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4621                 blk_mq_quiesce_queue(ctrl->admin_q);
4622         else
4623                 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4624 }
4625 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4626
4627 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4628 {
4629         if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4630                 blk_mq_unquiesce_queue(ctrl->admin_q);
4631 }
4632 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4633
4634 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4635 {
4636         struct nvme_ns *ns;
4637
4638         down_read(&ctrl->namespaces_rwsem);
4639         list_for_each_entry(ns, &ctrl->namespaces, list)
4640                 blk_sync_queue(ns->queue);
4641         up_read(&ctrl->namespaces_rwsem);
4642 }
4643 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4644
4645 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4646 {
4647         nvme_sync_io_queues(ctrl);
4648         if (ctrl->admin_q)
4649                 blk_sync_queue(ctrl->admin_q);
4650 }
4651 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4652
4653 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4654 {
4655         if (file->f_op != &nvme_dev_fops)
4656                 return NULL;
4657         return file->private_data;
4658 }
4659 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4660
4661 /*
4662  * Check we didn't inadvertently grow the command structure sizes:
4663  */
4664 static inline void _nvme_check_size(void)
4665 {
4666         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4667         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4668         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4669         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4670         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4671         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4672         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4673         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4674         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4675         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4676         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4677         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4678         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4679         BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4680                         NVME_IDENTIFY_DATA_SIZE);
4681         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4682         BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4683         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4684         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4685         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4686         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4687         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4688         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4689         BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4690 }
4691
4692
4693 static int __init nvme_core_init(void)
4694 {
4695         int result = -ENOMEM;
4696
4697         _nvme_check_size();
4698
4699         nvme_wq = alloc_workqueue("nvme-wq",
4700                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4701         if (!nvme_wq)
4702                 goto out;
4703
4704         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4705                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4706         if (!nvme_reset_wq)
4707                 goto destroy_wq;
4708
4709         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4710                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4711         if (!nvme_delete_wq)
4712                 goto destroy_reset_wq;
4713
4714         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4715                         NVME_MINORS, "nvme");
4716         if (result < 0)
4717                 goto destroy_delete_wq;
4718
4719         nvme_class = class_create("nvme");
4720         if (IS_ERR(nvme_class)) {
4721                 result = PTR_ERR(nvme_class);
4722                 goto unregister_chrdev;
4723         }
4724         nvme_class->dev_uevent = nvme_class_uevent;
4725
4726         nvme_subsys_class = class_create("nvme-subsystem");
4727         if (IS_ERR(nvme_subsys_class)) {
4728                 result = PTR_ERR(nvme_subsys_class);
4729                 goto destroy_class;
4730         }
4731
4732         result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4733                                      "nvme-generic");
4734         if (result < 0)
4735                 goto destroy_subsys_class;
4736
4737         nvme_ns_chr_class = class_create("nvme-generic");
4738         if (IS_ERR(nvme_ns_chr_class)) {
4739                 result = PTR_ERR(nvme_ns_chr_class);
4740                 goto unregister_generic_ns;
4741         }
4742
4743         result = nvme_init_auth();
4744         if (result)
4745                 goto destroy_ns_chr;
4746         return 0;
4747
4748 destroy_ns_chr:
4749         class_destroy(nvme_ns_chr_class);
4750 unregister_generic_ns:
4751         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4752 destroy_subsys_class:
4753         class_destroy(nvme_subsys_class);
4754 destroy_class:
4755         class_destroy(nvme_class);
4756 unregister_chrdev:
4757         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4758 destroy_delete_wq:
4759         destroy_workqueue(nvme_delete_wq);
4760 destroy_reset_wq:
4761         destroy_workqueue(nvme_reset_wq);
4762 destroy_wq:
4763         destroy_workqueue(nvme_wq);
4764 out:
4765         return result;
4766 }
4767
4768 static void __exit nvme_core_exit(void)
4769 {
4770         nvme_exit_auth();
4771         class_destroy(nvme_ns_chr_class);
4772         class_destroy(nvme_subsys_class);
4773         class_destroy(nvme_class);
4774         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4775         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4776         destroy_workqueue(nvme_delete_wq);
4777         destroy_workqueue(nvme_reset_wq);
4778         destroy_workqueue(nvme_wq);
4779         ida_destroy(&nvme_ns_chr_minor_ida);
4780         ida_destroy(&nvme_instance_ida);
4781 }
4782
4783 MODULE_LICENSE("GPL");
4784 MODULE_VERSION("1.0");
4785 module_init(nvme_core_init);
4786 module_exit(nvme_core_exit);